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Abstract

Subject–verb agreement errors are common in sentence production. Many studies have used exper-
imental paradigms targeting the production of subject–verb agreement from a sentence preamble (The
key to the cabinets) and eliciting verb errors (… *were shiny). Through reanalysis of previous data (50
experiments; 102,369 observations), we show that this paradigm also results in many errors in pream-
ble repetition, particularly of local noun number (The key to the *cabinet). We explore the mechanisms
of both errors in parallelism in producing syntax (PIPS), a model in the Gradient Symbolic Com-
putation framework. PIPS models sentence production using a continuous-state stochastic dynamical
system that optimizes grammatical constraints (shaped by previous experience) over vector representa-
tions of symbolic structures. At intermediate stages in the computation, grammatical constraints allow
multiple competing parses to be partially activated, resulting in stable but transient conjunctive blend
states. In the context of the preamble completion task, memory constraints reduce the strength of the
target structure, allowing for co-activation of non-target parses where the local noun controls the verb
(notional agreement and locally agreeing relative clauses) and non-target parses that include structural
constituents with contrasting number specifications (e.g., plural instead of singular local noun). Simu-
lations of the preamble completion task reveal that these partially activated non-target parses, as well
the need to balance accurate encoding of lexical and syntactic aspects of the prompt, result in errors.
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In other words: Because sentence processing is embedded in a processor with finite memory and prior
experience with production, interference from non-target production plans causes errors.

Keywords: Sentence production; Gradient symbolic computation; Agreement production; Symbolic
connectionist modeling

1. Introduction

Speaking is a hard act that feels deceptively easy: Producing an utterance requires that
the speaker select, plan, and articulate only one out of many possible ways of expressing
any given message. Alternate production plans—things that could have been said—influence
speech at multiple levels of representation, with effects of co-activated lexemes/lemmas on
the phonological level (synonym effects: Jeschniak & Schriefers, 1998; cognate facilitation:
Costa, Caramazza, & Sebastian-Galles, 2000; phonological facilitation: Morsella & Miozzo,
2002) and effects of co-activated phonological representations on the articulatory/acoustic
properties of speech (Goldrick, Keshet, Gustafson, Heller, & Needle, 2016). There is also
evidence for the influence of alternate sentence plans on production (see e.g., idiom blends:
Cutting & Bock, 1997; blends of two syntactic formulations attested in Frazier & Clifton,
2015), but this phenomenon has received less attention in the literature. We use a computa-
tional model to show how alternate production plans elicit verb and noun errors in a sentence
completion task.

We begin the paper with an overview of nearly 30 years of experimental data showing that
subject–verb number agreement errors and the mis-recall of a sentence prompt (“preamble”
errors) both occur frequently in the same experimental paradigm. We then model these data
using parallelism in producing syntax (PIPS), a model in the Gradient Symbolic Computation
(GSC) framework (Cho, Goldrick, Lewis, & Smolensky, 2018; Cho, Goldrick, & Smolensky,
2017, 2020; Smolensky, Goldrick, & Mathis, 2014). Using PIPS, we demonstrate how verb
errors and some types of preamble errors are consequences of a human processor operating
in real time with memory constraints. Specifically, transient blend states during the planning
process allow portions of target and non-target structures to interact, causing interference.

1.1. Experimentally eliciting agreement errors

Errors in subject–verb number agreement are relatively common in everyday language
production, occurring approximately once in every 6000 words in English (estimated from
Strang, 1966). The typical laboratory paradigm targeting subject–verb agreement errors uses
a preamble completion task (e.g., Bock & Miller, 1991) in which a participant hears or reads
a sentence fragment containing inflected nouns (The key to the cabinets) and uses it to form
a complete sentence (e.g., The key to the cabinets is shiny). While much of the literature
reviewed here focuses on English, this task reliably elicits agreement errors in a wide
assortment of languages, including Dutch (Anton-Mendez & Hartsuiker, 2010; Bock, Eber-
hard, Cutting, Meyer, & Schriefers, 2001; Hartsuiker, Schriefers, Bock, & Kikstra, 2003),
German (Hartsuiker, Schriefers, Bock, & Kikstra, 2003); French (Franck, Vigliocco, & Nicol,
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2002), Hebrew (Deutsch & Dank, 2009, 2011), Italian (Franck, Lassi, Frauenfelder, & Rizzi,
2006; Vigliocco, Butterworth, & Semenza, 1995), Portuguese (Acuña-Fariña, 2018), Russian
(Lorimor, Bock, Zalkind, Sheyman & Beard, 2008), Serbian (Mircovic & MacDonald,
2013), and Spanish (Acuña-Fariña, 2018; Bock, Carreiras, & Meseguer, 2012; Foote & Bock,
2012; Vigliocco, Butterworth, & Garrett, 1996), and analogous findings appear in agreement
comprehension (see e.g., Lago, Shalom, Sigman, Lau & Phillips, 2015; Tanner, Nicol, &
Brehm, 2014; Wagers, Lau, & Phillips, 2009). Agreement production errors occur in a wide
assortment of structural and semantic configurations with different lexical factors in play,
such as co-occurrences between nouns and predicates, word regularity, and word frequency.
Agreement production errors also occur on other parts of speech (e.g., noun–pronoun agree-
ment; Bock, Eberhard, & Cutting, 2004) and for other morphosyntactic features such as
grammatical gender (Badecker & Kuminiak, 2007; Franck, Vigliocco, Antón-Méndez, Col-
lina, & Frauenfelder, 2008; Slioussar & Malko, 2016; Vigliocco & Franck, 2001). Because
agreement is so pervasive across and within languages, and because it is prone to error, it is
an important aspect of sentence production to explore experimentally and computationally.

Existing experimental work on English subject–verb agreement production has focused on
three core phenomena. The first is errors in selecting the correct verb form for production
where the verb agrees with a linearly intervening local noun instead of the head of the phrase,
which is the typicala controller of agreement (e.g., The key to the cabinets *were shiny). The
increase in agreement errors for head-mismatching local nouns, compared to head-matching
ones (e.g., vs. The key to the cabinet *were shiny) is called attraction in the literature (e.g.,
Bock & Miller, 1991). The verb error rate in American English is highest for preambles
with a singular head and plural local noun (henceforth, Ns Np: The key to the cabinets…
*were), compared to preambles with a plural head and singular local noun (Np Ns: The keys
to the cabinet… *was). This mismatch asymmetry (MA) is often attributed to grammatical
markedness: In English, plural nouns receive an inflection, making their number grammati-
cally “marked” relative to the singular default (e.g., Eberhard, Cutting, & Bock, 2005). These
patterns are summarized in Table 1: When examining error rates out of what in the literature
are called “valid” trials (trials with correct preamble repetitions and an inflected verb com-
pletion), the attraction effect in American English is estimated to be about 12%, and the MA
effect is estimated to be about 10%. Importantly, the attraction also generalizes to so-called
non-intervening or remote configurations, where the attractor is the first noun in the sentence
(The cabinets that the key *were used to open), and the preamble contains an embedded rel-
ative clause (see e.g., Bock & Miller, 1991; Franck & Vigliocco, 2002; Franck et al., 2006;
Santesteban, Pickering & Branigan, 2013; Staub, 2009, 2010). Though error rates are lower
in this configuration, in English, a similar MA appears with plural attractors stronger than
singular ones.

The second core phenomenon relates to the conceptual number of the phrase. Phrases that
refer to referents that are conceptually (often called notionally) plural (e.g., The picture on
the postcards; the gang on the motorcycles; the apple with the fresh peach) elicit reliably
more plural verb completions than those referring to referents that are conceptually singular
(e.g., The key to the cabinets) regardless of the grammatical number marked on the nouns
in the phrase. This is termed notional agreement (see e.g., Brehm & Bock, 2013, 2017;
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Eberhard, 1999; Humphreys & Bock, 2005; Vigliocco et al., 1995). Notional agreement is
extremely common, especially for collective noun heads like gang or staff. As shown in
Table 1, collective-headed phrases with plural local nouns (e.g., The gang on the motorcy-
cles) elicit plural verb completions at rates of 60% of all “valid” trials, despite the fact that
they are prescriptively singular in American English (i.e., are “supposed” to take singular
agreement).

On top of attraction and notional agreement, a third phenomenon has been examined in
experiments on subject–verb agreement production: the role of experience. Recent exposure
to specific sentence types changes rates of notional agreement and attraction (Haskell, Thorn-
ton, & MacDonald, 2010). It also changes rates of plural agreement with conjoined noun
phrases, which are inherently flexible in their verb agreement because the number of the
phrase sometimes conflicts with a notional number (e.g., The name and address is/are; Lori-
mor, Adams, & Middleton, 2018). Word frequency, an important factor in long-term language
experience, also impacts attraction such that high-frequency local nouns do not cause agree-
ment attraction in comprehension (correct and erroneous verbs are read equally fast no matter
the local noun number; Brehm, Hussey, & Christianson, 2020). Base rates of structure fre-
quencies also change what structure is comprehended, such that infrequent agreement patterns
are sometimes initially misread (Keshev & Meltzer-Asscher, 2021). Because of the observed
effects of priming and structure frequency in agreement, MacDonald and colleagues (Haskell
et al., 2010; also see Thornton & MacDonald, 2003) propose that past experience with gram-
matical sentences exhibiting notional agreement or attraction errors following local plurals is
what drives the MA effect in American English. The authors show that non-canonical plural
agreement is high for Ns Np phrases—comprising 21% of all completions for all Ns Np items
in the Brown corpus—but low for all other phrases. Indeed, many of these items are pseu-
dopartitive: The second noun can in some cases syntactically control the agreement of the
phrase. Their claim is that exposure to the notional agreement, pseudopartitives, and errors
enhances the MA effect, leading to high rates of plural verb production errors for Ns Np items.

1.2. Modeling subject–verb agreement

Existing models of agreement have mainly focused on the mechanisms by which attraction,
the MA, and notional agreement occur. One class of model explains agreement production
via a feature-based mechanism that appeals to syntactic and semantic properties of sentence
preambles. The earliest and still most commonly cited model of agreement production is
Marking and Morphing (M&M; Eberhard et al., 2005). M&M generates verb or pronoun
completions to phrases based upon spreading activation within a noun phrase; while it was
designed to account for both subject–verb and pronoun agreement, we focus here only on
what it predicts for subject–verb agreement.

M&M generates preamble completions based upon a valuation of the head that combines
grammatical and notional numbers into a single, continuous index ranging from −1 (spec-
ified singulars such as One key) to 1 (unambiguous plurals; The keys), with singular count
nouns (The key) receiving a value of 0 and notionally plural phrases (e.g., The picture on the
postcards) receiving moderately positive values. This valuation is combined with the sum of
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grammatical number values for all nouns in the phrase, weighted based upon the noun’s dis-
tance from the root of the tree and the so-called “contrastiveness” of singular to plural usages
for that class of noun, such that nouns that are syntactically closer to the root and nouns that
have no singular form (e.g., pants) contribute more plural value to the whole phrase. This
means that M&M accounts for notional, lexical, and syntactic factors in agreement and for
the relative frequency of singular versus plural forms used with particular lexical items. Verb
number is then generated by taking the logistic transform of the combined number value,
with an additional bias included to elicit more singular agreement as it is considered the
“unmarked” form in English.

However, later work has shown M&M to fail in a variety of cases. It fails to characterize
non-intervening attraction because the attractor is outside of the noun phrase; however, this
is not problematic if the non-intervening attraction is caused by a different mechanism (see
Staub, 2009, 2010). Most crucially, it fails for constructions where both singular and plural
forms are available (e.g., for Serbian nouns with quantifiers: Mirković & MacDonald, 2013;
for conjoined nouns in English: Keung & Staub, 2018), and when there are more than two
options for agreement (e.g., Slovak gender agreement: Badecker & Kuminiak, 2007). It also
cannot clearly account for form-based effects on agreement, which include reduced attraction
rates for irregular plurals (Haskell & MacDonald, 2003) and reduced attraction rates within
paradigms where singular and plural forms have some overlap (Lorimor, Jackson, Spalek,
& van Hell, 2016; Mirković & MacDonald, 2013). These suggest that the fact that M&M
requires an additional bias toward singular forms—a way of accounting for frequency pat-
terns of American English—in fact prevents the model from generalizing across structures
and languages.

A more recent model that uses a feature-based mechanism to account for notional and
grammatical effects in agreement production uses a self-organizing probabilistic dynami-
cal system framework (Self-Organized Sentence Processing, SOSP; Smith, Franck, & Tabor,
2018, 2021). This model derives notional number from a set of syntactic and semantic features
such that more plural agreement occurs for collective heads and other grammatically pseu-
dopartitive phrases (e.g., A lot of postcards are) because in constructions like this, the second
noun can be probabilistically used as the grammatical head of the phrase. In this model, sen-
tences are built out of self-assembling treelets (atomic tree structures consisting of a parent
and one or more child nodes, corresponding to rules in a context-free grammar). The prob-
abilistic activation of treelets causes a graded pattern of plural verb completions based upon
the features of the lexical item in the phrase. This model uses a single, simple mechanism that
synthesizes both notional and grammatical factors in agreement as conceptually suggested by
MacDonald and colleagues, doing away with the multi-stage framework in M&M that sep-
arates grammatical and notional numbers. SOSP (Smith et al., 2021) also covers encoding
interference effects, where semantic similarity at item encoding leads to later errors, better
than any other model (see Barker, Nicol, & Garrett, 2001; Smith et al., 2021; Villata, Tabor,
& Franck, 2018).

A second class of models of agreement, those using ACT-R (‘Adaptive Control of Thought-
Rational’), focus primarily on the role of lexical factors and memory retrieval in attraction.
These models use a domain-general framework that ascribes errors or processing difficulty to
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memory retrieval; these models were first applied to agreement comprehension but have since
been adapted for production. Models using the ACT-R implementation state that attraction
arises from noun mis-retrieval in a content-addressable (or cue-based) memory framework
(e.g., Lewis & Vasishth, 2005; for meta-analysis, see Jäger, Engelmann, & Vasishth, 2017, but
see Hammerly, Staub, & Dillon, 2019, for counter-evidence in agreement comprehension).
Existing data support the role of content-addressable memory dynamics in production, such
that attraction reflects when the local noun is mis-retrieved as the agreement controller instead
of the head. Patterns consistent with mis-retrieval in production include the increased attrac-
tion rate for case-ambiguous head nouns and the graded attraction pattern across the gender
paradigm hierarchy in Slovak (feminine > masculine > neuter), where attraction occurs in
proportion to how much more marked the local noun is than the head (Badecker & Kuminiak,
2007), the increased attraction rate when gender and number cues both mismatch in Spanish
(Lorimor, Jackson, & Foote, 2015), and the increased rates of singular agreement for con-
joined noun phrases matching in determiner gender in Dutch and German (Lorimor et al.,
2016).

The primary error mechanism of ACT-R is a domain-general aspect of memory: mis-
retrieving the number of the verb controller. This reliance on memory dynamics in eliciting
agreement errors also has broad ecological validity. There is a known link between working
memory capacity and success in agreement production for special populations (bilingual
children: Veenstra, Antoniou, Katsos, & Kissine, 2018; older adults: Fyndanis, Arcara,
Christidou, & Caplan, 2018; aphasic patients: Fyndanis et al., 2018; Slevc & Martin, 2016),
and in some populations of healthy young adults (e.g., Hartsuiker & Barkhuysen, 2006,
though cf. Bock & Cutting, 1992). This underscores the importance of retrieving nouns from
memory while performing the subject–verb agreement. It also highlights that errors might
occur because of the need to manipulate multiple simultaneously active lexical elements
while planning to prepare a speech, suggesting a plausible role for parallel planning in
eliciting morphosyntactic errors.

1.3. Memory errors in agreement as a key phenomenon

Importantly, the existing literature may have under-estimated the role of memory in agree-
ment production. This is because memory failures might explain an often-overlooked aspect
of the observed data from production error elicitation experiments. As shown in Table 1, the
preamble completion paradigm elicits many more types of responses than the “valid” trials
reported in the literature (correct preamble repetitions followed by overtly inflected plural or
singular verbs). Here, we focus on the production of what we term preamble errors, where
the speaker has mis-produced the sentence preamble they were prompted with; these are
also often called miscellaneous errors in the literature. Many types of preamble errors occur.
Instead of producing “The key to the cabinets,” speakers might change the inflection on the
local noun (The key to the *cabinet_) or the head (The *keys to the cabinets), might alter lex-
ical items while preserving the original inflections (The key to the *locks), or might change
the preamble’s structure entirely (e.g., The key *and the cabinets).
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Fig. 1. Empirical preamble error probabilities tabulated over preambles’ original head and local numbers. Error
bars show 95% confidence intervals (CIs) generated by 5000 runs of a non-parametric bootstrap, sampling with
replacement. Labels refer to the target production, not the error production.

Taking the mean of the count-noun trials in Table 1 shows that preamble errors reflect
11% of all trials, while agreement errors reflect only 4% of all trials. This means that the
single most common error in subject–verb agreement paradigms is not in selecting a verb for
production but in recalling and repeating the words correctly from the prompt. Critically,
preamble errors also co-vary with an agreement, with more preamble errors typically appear-
ing when either the head noun or the local noun is plural; this fact has gone largely unnoticed
in the literature (though cf. Bergen & Gibson, 2012; Thornton & MacDonald, 2003).

One important subtype of preamble error is those in which the lexical items and structure
are repeated veridically, but inflections on the head or local noun are changed. We term these
head and local errors.

Fig. 1 and Table 2 show the preamble error rates reported in Thornton and MacDonald
(2003) combined with two datasets made available to the authors (Brehm & Bock, 2013;
Humphreys & Bock, 2005) to estimate how often the inflections are changed (this represents
all of the preamble errors that were available for re-coding from any of the studies reported in
Appendix A.) Though data are sparse—particularly for plural-headed phrases—three patterns
emerge. First, local errors (right panel of Fig. 1) are more common than head errors (left
panel). Second, plural heads (purple lines) are broadly associated with more errors (becoming
singular) for both head and local errors. Finally, head and local number interact for both error
types, with the consequence that mismatches are often eliminated between head and local
number (so that “The key to the cabinets” becomes “The key to the cabinet,” or “The keys
to the cabinets”). Plural-headed preambles show more head and local errors for singular than
plural local nouns, whereas singular-headed preambles tend to show the opposite pattern. This
interaction is particularly strong for local errors, with notably high error rates for Np Ns items
so that “The keys to the cabinet” frequently becomes “The keys to the cabinets.” Because
of the high rates of preamble errors in preamble completion tasks and their relationship to
grammatical number, we test how a model fitted to verb errors generalizes to preamble errors
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rather than discarding preamble errors as failures to perform the task. This serves as a test of
the model.

1.4. PIPS: A parallel planning model of sentence production

We present here PIPS: a model of structure generation in sentence production. In PIPS,
agreement errors and preamble errors both reflect a broader phenomenon within sentence
production: the presence of transient blend states during planning. While planning to speak,
the temporary activation of components of alternative structures and alternative lexical items
allows elements of other sentences to compete for production, producing errors. Our goal is
to describe production errors as a consequence of these transient blend states in a model that
produces sentences based on the structural frequencies of American English. This will serve
to capture effects due to competition from structural and lexical elements within a system
that is based on the constraints of the language, is fallible in memory, and has to plan over
time. As such, our model incorporates many of the key strengths of SOSP and ACT-R models
of agreement while providing a fuller description of the dynamical computation of sentence
structure during production.

We adopt the GSC framework (Cho et al., 2017, 2018, 2020; Smolensky et al., 2014).
In GSC, sentence production is represented as a continuous-time, continuous-state stochastic
dynamical system (similar to the underlying dynamics of SOSP; Smith et al., 2018). Symbolic
constituents are represented by vectors (e.g., Ns corresponds to a list of numbers denoted here
by Ns). Because all constituents are represented by vectors, we can directly encode similarity
between representations in a graded manner. For example, rather than treating Ns, Np, Vs,
Vp as separate, discrete symbols, we can encode the greater similarity of elements of the
same type (such that Ns is more similar to Np than to Vp). This allows us to manipulate the
lexical and structural similarity between elements of a sentence in order to test how varying
representations affect errors.

In the implementation of PIPS used here, there are only two types of words: nouns and
verbs, each inflected for number as singular or plural. The model has, however, a rich repre-
sentation of elements at the sentence level: Sentences are combinations of nouns and verbs
in a variety of structures such as NP, RC, and S(entence). Sentence representations are struc-
tured combinations of symbolic constituents, constructed using tensor (outer)b products of
vectors representing fillers (lexical items and structural constituent categories) and vectors
representing roles (positions within hierarchical sentence structures). This allows the model
to represent the tree structure of a sentence and its lexical items as a single vector: the sum of
the tensor products binding roles with fillers (Smolensky, 1990, 2006). For example, consider
the treelet [Ss Ns Vs], representing a simplified tree structure for a sentence that comprised
a singular noun followed by an agreeing intransitive singular verb; Ss represents the parent
node, and Ns and Vs are the child nodes in order from left to right.c Each element of the treelet
can be represented as the tensor product (⊗) of a filler vector (Ns) and a role vector (left-child;
Ns ⊗ left-child). The entire treelet is simply the sum of all the tensor products (Sentence ⊗
root + Ns ⊗ left-child + Vs ⊗ right-child). Note that representing linguistic structure as a
tensor product of fillers and roles also allows the model to generalize fillers to roles they did



12 of 49 L. Brehm et al. / Cognitive Science 46 (2022)

not appear in within the model’s training data, including ungrammatical sentence types with
verb errors (e.g., [Ss Ns Vp]: Sentence ⊗ root + Ns ⊗ left-child + Vp ⊗ right-child). This
means that PIPS represents errors when well-supported by other constraints in the input or
grammar.

These discrete combinations of tensor products representing discrete symbolic structures
identify a subset of states within the continuous representational space of the model. The
remainder of the space consists of conjunctive blend states where multiple symbols are simul-
taneously partially active, for example, a state where both a singular and plural noun occupy
the first position of the sentence to varying degrees (0.25·Ns + 0.6·Np) ⊗ left-child or a state
where both a singular and a plural verb occupy the final position of the sentence to varying
degrees: (0.25·Vp + 0.6·Vs) ⊗ right-child). Activations in the model can be any real number,
but two constraints restrict activations (one prevents extreme activations, and another pushes
symbol activations toward 0 or 1). See Cho et al. (2018, 2020) for more details.

While output blends are rare, they have been consistently found in real production, moti-
vating us to explore the consequences of a fully gradient representational space. An example
of a full conjunctive blend of sentences in real production would involve simultaneously pro-
ducing two different sentences by speaking one and signing the other; while unusual, this
does occur (e.g., Emmorey, Borinstein, Thompson & Gollan, 2008). In the model, this would
correspond to all units representing both sentences being activated at values close to 1.

A partial conjunctive blend would involve combining elements from multiple formulations
so that some of the units from multiple sentences are activated at values close to 1. Examples
of this include:

1. Combining multiple elements of idiomatic expressions (e.g., “kick the maker,” from
“kick the bucket” and “meet your maker”; Cutting & Bock, 1997).

2. Combining multiple elements of distinct formulations conveying similar meanings
(e.g., “Many students often turn in their assignments late,” where many and often are
two ways to express a similar meaning; Coppock, 2010; Frazier & Clifton, 2015).

3. “Doubling” in code-mixing, where an element appears in two languages (e.g., “They
gave me a research grant koɖutaa,” where the final word is the Tamil translation equiv-
alent of “gave”; Sankoff, Poplack, & Vannianiarajan, 1990; for review and discussion,
see Goldrick, Putnam, & Schwarz, 2016).

GSC claims that all conjunctive blends are surface manifestations of intermediate states
arising ubiquitously within cognitive processes. In sentence production, conjunctive blends
represent multiple choices of formulations—for example, what the grammatical number of
the verb or the subject noun should be. Since PIPS only has one token of each word class,
many of its blend states are analogous to being undecided whether to use a singular or plural
noun (e.g., pastas or noodlesp) or being undecided as to which verb inflection is appropriate
(e.g., The police is/are). However, conjunctive blend states cover the full range of possible
formulations and can include parts of ungrammatical sentences.

At the outset, the model is undecided as to which out of all possible combinations of words
and structures should be produced—existing in a conjunctive blend of all possible formula-
tions. Production is then a winnowing of these possibilities. Modulo the blend errors noted
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above, processing typically moves from considering multiple possible utterance formulations
to selecting a single well-formed utterance for production. The selection of one plan instead
of a blend of multiple plans is driven by a dynamic control parameter, commitment strength,
which increases over the course of processing, pushing the model toward states that corre-
spond to discrete sentence structures. Commitment strength is the magnitude of a constraint
that forces the system to commit to the production of a single discrete structure.

Changes in commitment strength are unique to GSC models and might be analogized as a
helium balloon (the current state of the model) beginning the computation by floating at the
center of a tent’s ceiling. The space on the fabric between tent poles is the model’s represen-
tational space, with discrete structures mapping to the top of poles and conjunctive blends
of utterances mapping to points in the middle. Increasing commitment strength changes the
goodness of symbolic states by altering their harmony (here, the height of the tent at each
point). States with higher harmony values are preferred by the model; the processing sys-
tem’s state movement within the continuous representational space is continuously updated
so as to maximize this value (as SOSP does in a continuous but non-changing space; Smith
et al., 2018). The increase in commitment strength is like lifting the tent poles while anchor-
ing the center to create distinct peaks so that the balloon tends to settle in one symbolic state,
floating to the top of one peak, despite the inherently gradient representational space. Random
fluctuations in traversing the space cause the model to sometimes choose a peak that is not
the highest one, making errors proportional to their harmony. See Cho et al. (2017) for more
details.

The selection of a particular structure is guided by the model’s experience. During training,
the model encounters some structures more than others: for example, sentences correspond-
ing to different “preamble” inputs or singular versus plural verbs. The relative probability of
different structures forms a second key part of the model’s dynamics; it is more likely to com-
mit to higher probability sentences, which have higher harmony values, than low probability
sentences. This allows us to account for the influence of structure frequencies and asymme-
tries in the distribution of fillers (e.g., plural verbs vs. singular verbs) and to explicitly test
the role of grammar frequencies in production. In addition to overall frequency differences,
an error that obeys local dependencies (while violating non-local dependencies; e.g., Ns Np

Vp) has higher harmony and therefore is more likely than an error that does not (e.g., Ns

Ns Vp), following earlier work (see e.g., Goldrick & Daland, 2009; Smolensky et al., 2014).
Continuing the analogy, the higher harmony of some states causes the initial starting state of
the model to be raised toward one side: The balloon will settle in those spaces preferentially.
This provides a mechanism for the higher probability of some errors, such as the increase in
agreement errors when the head and local noun mismatch.

In addition to context-free probability, the model’s selection of a specific structure is
guided by the task. In the experimental preamble completion task, we assume that participants
first encode the preamble, then attempt to retrieve the correct elements from their memory.
The model implements memory encoding by partially pre-activating fillers from the model’s
grammar—both words (e.g., Ns, Np) and structural constituents (e.g., NPCs). The activation of
constituents during processing, based upon that input, corresponds to memory retrieval. Noise
in the system means that the model will make errors in encoding and retrieval like people do.
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Structural elements are activated in addition to lexical elements following the assumption that
in the preamble completion task, speakers need to parse the input and then produce a sentence
with the input structure. Partial activation of structures corresponds to the intuition that this
process can be faulty.

A final simplifying assumption that we take in PIPS is that production happens after all
utterance planning is complete. While individuals have a fundamentally flexible planning
scope (e.g., Konopka & Meyer, 2014), there is existing evidence that the planning scope of
simple sentences often includes a verb (e.g., Kuchinsky & Bock, 2010; Momma & Ferreira,
2019). PIPS uses a fairly wide planning scope of two nouns and up to two verbs. We took
this assumption as a starting point: Since we do not have data on the typical planning scope
for sentences of the elicited type, incorporating variations in incrementality would require an
extra free parameter.

Combined, these properties allow us to build a model that characterizes preamble and
agreement errors as arising from the same dynamical mechanisms: language production pro-
cesses that are sensitive to both globally and locally driven agreement. The model’s dynam-
ics are sensitive to the distribution of structures in its experience—here, based on American
English—accounting for the role of past experience in current production, and production is
supported by an inherently noisy memory encoding and retrieval process.

The approach we take in the rest of this paper is to qualitatively fit a model in the GSC
framework to the two critical verb error patterns displayed in human data for canonical attrac-
tion constructions: attraction (more errors for Ns Np than Ns Ns inputs) and the MA (more
errors for Ns Np than Np Ns inputs). We fit these data by fitting noun and structural constituent
similarity as well as the strength of structural encoding of an input preamble. We then inves-
tigate how the same model dynamics give rise to errors of other types. First, if verb errors in
canonical constructions and non-intervening constructions are generated by the same dynam-
ics, we should be able to capture an MA in both cases. Second, if verb and preamble errors
are generated by the same model dynamics, then we should also be able to model preamble
errors with the same model settings. We end with an exploration of the model space in order
to demonstrate how each parameter contributes to model behavior.

2. Method

Code and results from all simulations reported here are archived on the Open Science
Framework: https://osf.io/3udb8/.

2.1. Structure of training grammar

A GSC model was trained to implement a probabilistic context-free grammar (PCFG) G
(1) that generates sentences of up to four words in length (omitting function words). The
key sentences in the grammar were complex noun phrases (NPC): preverbal noun phrases
with an inflected count noun head and an inflected “local” prepositional phrase complement
(e.g., “The key(s) to the cabinet(s)”; the inflection on each noun is reflected by the subscript

https://osf.io/3udb8/
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s(ingular) or p(lural). Noun phrases with multiple expansions were represented with multiple
distinct non-terminal (i.e., phrasal) representations, following Cho et al. (2018). This means
that, for example, the sentence preamble Ns Np was represented separately from the preamble
Np Ns at non-terminal nodes as well as at the terminals (words).

All probabilities within the grammar follow American English (see Appendix B for full cal-
culations). Singular nouns were twice as probable as plural nouns, following English biases
derived from a search of inflected nouns in COCA (the Corpus of Contemporary Ameri-
can English; Davies, 2008). Probabilities for subject–verb agreement come from an average
over studies of American English with items in an Ns/p Ns/p form (as shown in Table 1, see
Appendix A for full data).

To account for notional agreement patterns, we also allowed a plural headed noun phrase
(NPp) to expand to the terminals Ns Np, reflecting a version of the right-headed analysis of
notional agreement adopted by Smith et al. (2018) where the syntactic head of the phrase was
the plural second noun, and the noun phrase itself was marked as plural. The probability of
the pseudopartitive was based on the reported rates of plural agreement for this type of noun
phrase in American English (Haskell et al., 2010; see Appendix B for full calculations).

We acknowledge that pseudopartives are not available in English for all Ns Np items. How-
ever, the parse is not strongly lexically restricted: for example, many nouns can be part of a
distributive referent (e.g., The label on the bottles) and take either singular or plural agree-
ment. Our analysis—which relied solely on a non-lexicalized PCFG, excluding semantics—
assumed that all nouns used in these preamble experiments have some degree of access to this
parse. This is a clear oversimplification. We leave lexical specificity and semantic contribu-
tions to the processing of this construction to future work.

In addition to the complex noun phrase structure containing a PP, which represents the
canonical “agreement attraction” sentence preamble, the model grammar also included one
NPC parse in which a verb agreed with a local noun, in order to represent the fact that in
English, sometimes the second noun is the subject of, and so agrees with, the adjacent verb.
This parse is a main-clause subject noun phrase containing an embedded reduced object-
relative clause Ni Vi (e.g., “The key [the cabinets use] broke),” with probability based on a
corpus analysis by Roland, Dick, & Elman (2007). Including this parse also allowed us to test
how a model fitted to intervening attraction captured non-intervening attraction, which served
as a test of how well PIPS generalizes.

(1) A PCFG G yielding three sentence types: [Ni Vi]; [[Ni Nj] Vi]; [Ni [Nj Vj] Vi].
Subscripts denote the grammatical number of the associated symbol; pipes separate
different expansions of the same symbol ranked from higher to lower probability.
Note that there is no VP in this grammar, to simplify the problem space.

S → 0.44 Ns Vs | 0.22 Np Vp | 0.208 NPCs Vs | 0.122 NPCp Vp

NPCs → 0.54 Ns Ns | 0.27 Ns Np | 0.18 Ns RC
NPCp → 0.47 Np Ns | 0.24 Np Np | 0.18 Np RC | 0.10 Ns Np

RC → 0.66 Ns Vs | 0.33 Np Vp

Based on the grammar G, 11 sentences of length 2 through 4 can be generated. Their
target probabilities (pt), observed probabilities in the trained model (po), terminals, and phrase
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structures are given in (2). Subscripts denote grammatical numbers. Sentences 2 through 5 are
the target sentences for the main simulations, sentences 6, 7, 9, and 10 contain an embedded
reduced object relative, and sentence 8 is the pseudopartitive.

(2) Sentence 0: pt = 0.4344, po = 0.4042 ([Ss Ns Vs])

Sentence 1: pt = 0.2270, po = 0.2154 ([Sp Np Vp])
Sentence 2: pt = 0.1192, po = 0.1138 ([Ss [NPCs Ns Ns] Vs])
Sentence 3: pt = 0.0572, po = 0.0487 ([Ss [NPCs Ns Np] Vs])
Sentence 4: pt = 0.0570, po = 0.0425 ([Sp [NPCp Np Ns] Vp])
Sentence 5: pt = 0.0304, po = 0.0240 ([Sp [NPCp Np Np] Vp])
Sentence 6: pt = 0.0286, po = 0.0274 ([Ss [NPCs Ns [RCs Ns Vs]] Vs])
Sentence 7: pt = 0.0148, po = 0.0087 ([Sp [NPCp Np [RCs Ns Vs]] Vp])
Sentence 8: pt = 0.0126, po = 0.0209 ([Sp [NPCp Ns Np] Vp])
Sentence 9: pt = 0.0112, po = 0.0081([Ss [NPCs Ns [RCp Np Vp]] Vs])
Sentence 10: pt = 0.0076, po = 0.0087 ([Sp [NPCp Np [RCp Np Vp]] Vp])

2.2. Model structure and training

Two separate free parameters encoded the representational similarity (i) between fillers
representing nouns differing only in number inflection (Ns and Np; “noun terminal similar-
ity”) and (ii) between pairs of fillers representing different expansions of a structural element
with the same number inflection (e.g., all of the symbols representing the NPCs expansions
in (1); “structural constituent similarity”). These parameters reflect variations in lexical and
structural similarity on a scale from 0.0 (fully orthogonal), where the two elements were as
distinct as any randomly chosen pair of items, to 1.0 (identical), where there was no distinc-
tion between the two elements. Both parameters were varied across simulations so that the dot
product of each relevant pair of vectors ranged from 0.2 (mostly orthogonal) and 0.7 (highly
similar). The dot product of all other pairs—including the two terminal symbols representing
verbs inflected as singular or plural—was set to 0 (perfectly orthogonal), following the sim-
plifying assumption that what matters most for agreement is properties of the preamble, not
the verb.

From these constraints, 29 filler vectors were randomly chosen as distributed vector encod-
ings of the terminal and non-terminal symbols. Ten orthonormal role vectors were randomly
chosen as vector encodings of the structural position of the symbols. As in Smolensky (1990),
these filler and role vectors were composed by the outer product to generate 290 binding vec-
tors, for example, Sentence ⊗ root. The role vectors were structured using the “brick role”
system proposed by Cho et al. (2020), with roles encoded based upon whether the position
was the right or left child of its parent node, its syntactic depth in the tree, and its position
from left to right. We elected to use these roles because they are useful for constraining inter-
actions between different structural positions, allowing us to scale to a model of this size and
complexity— for details, see Cho et al. (2020).

As discussed above, the network dynamics were structured so as to favor the selection
of grammatical over ungrammatical structures and to favor higher over lower probability
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grammatical structures, approximating the empirically observed probability distribution
across structures when run as a language generator. Two key mechanisms supported these
dynamics: commitment strength (also referred to as quantization or discreteness; for more
details, see Cho et al., 2018, 2020) and spreading activation. Commitment strength is unique
to GSC. This parameter is what allows the model to allow flexibility at the outset of planning
but end with full commitment to a single parse: It starts weak and grows in strength over
the course of computation. Spreading activation was similar to other connectionist networks.d

Activation spreading along weighted connections linking representational units connected in
treelets served to push the system toward particular states. In PIPS, these weights pushed the
system toward grammatical states based on their relative probabilities in training (Cho et al.,
2018, 2020) so that higher frequency structures became more likely outputs. More details
about the weight setting procedure follow below.

Sentence generation was modeled by initializing the system to a random point near its
equilibrium state at commitment strength 0. Activation spread between representational units,
with normally distributed random noise (standard deviation = 0.01) added to each unit’s
activation. Commitment strength was then increased up to a maximum of 15 (at a rate of 1
unit increase per unit of simulated time), pushing the system to select a discrete structure.
This selection was probabilistic due to the random selection of the initial state and random
noise in unit activations.

Weights were initialized to parameters used in discrete-state connectionist networks (Hale
& Smolensky, 2006). An error-driven training procedure then updated these parameters. In
this training, the sentence generation procedure was run 100 times to estimate the model’s cur-
rent probability distribution over discrete sentence structures. The weights were then adjusted
so as to increase the probability of selecting frequent structures and to decrease the probability
of less frequent or ungrammatical structures (Cho et al., 2020). After 10 epochs of training,
the model generated grammatical structures on more than 91% of trials; on these trials, the
model approximated the grammar’s probability distribution over full parse trees (see (2) in
section 2.1).

2.3. The preamble completion task

In the preamble completion task, a participant hears or reads a sentence fragment contain-
ing inflected nouns (The key to the cabinets) and uses it to form a complete sentence (e.g.,
The key to the cabinets is shiny). Performing this task requires participants to perceive the
preamble, encode the words (key, cabinets) and an associated structural analysis (e.g., [NPCs

Ns Np]) in memory, and then use this memory representation to drive the production of a full
sentence.

After training on context-free production, the model then was given inputs to drive produc-
tion. As in the human version of the task, the model was presented with four preamble types
varying in head and local number (Ns Np, Ns Ns, Np Ns, and Np Np), which correspond to
elements that need to be encoded and then retrieved from memory. Inputs served to partially
activate representational states corresponding to words (e.g., Ns) and structural constituents
(e.g., NPs); memory errors were deviations from the input. In the model, the Ns Np input
was always presented as a singular NP and paired with the appropriate singular higher-order
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structure. Having these inputs allowed us to characterize productions as errors (case where
the output mismatched the input) even when the sentences produced were fully grammatical.

To examine the role of encoding lexical versus structural information for production, we
varied the weighting of these inputs between an entirely lexicalist strategy (s0), in which the
preamble is encoded as a sequence of terminals with no higher-order structure (e.g., Ns, Np, Vs

with no tree structure), versus an entirely structuralist strategy (s1), in which the preamble is
encoded only by its structural constituents with no activation of the terminals (e.g., [Ss[NPCs

_ _]_] where the blanks represent slots for terminal nodes). We varied the s1 to s0 ratio as a
free parameter across simulations, such that the weights of both always summed to 1; that is,
if the s1 weight was 0, then the s0 weight was 1. These activities scaled the input to terminals
and non-terminal units. During the course of the simulation, the activity then decayed over
the 15 time intervals of production (in arbitrary units) at a rate of 0.9.

For each combination of preamble type, noun terminal similarity, structural constituent
similarity, and s1 weight, four separate sets of model runs were performed with different
random seeds, with 1000 iterations of sentence generation in each set of runs. Model out-
comes were coded as follows. Correct: both nouns repeated correctly and followed by a
head-matching verb in the appropriate structure (e.g., Ns Np → [Ss [NPCs Ns Np] Vs]). Verb
error, non-pseudopartitive: both nouns repeated correctly with a non-head-matching verb,
with structure nodes for either sentence number and any NP other than the one in sentence 8
(e.g., Ns Np → [Ss/p [NPCs/p Ns Np] Vp]). Verb error, pseudopartitive: both nouns repeated
correctly with a non-head-matching verb, with NP and sentence structure nodes from sen-
tence 8 (e.g., Ns Np → [Sp [NPCp Ns Np] Vp]). Head error: change to the number of the head
noun, with verb matching the modified head and the appropriate structure (e.g., Ns Np → [Sp

[NPCp Np Np] Vp]). Local error: change to the number of the local noun, with head-matching
verb and the appropriate structure (e.g., Ns Np → [Ss [NPCs Ns Ns] Vs]). Other: all other
responses, including embedded RCs, incomplete responses, and responses containing both a
change to the head or local noun and a verb error. Note that while pseudopartitive verb errors
for the Ns Np sentences are correct with respect to the model grammar, all verb errors are
incorrect with respect to the input. Similarly, head and local errors are correct with respect to
the grammar (they are grammatical sentences) but errors with respect to the input.

The primary diagnostic for model fit was which parameter settings best approximated the
empirical effects of attraction (0.11 more verb errors for Ns Np than Ns Ns) and the MA
(0.09 more verb errors for Ns Np than Np Ns; see Table 1). We did this by ranking all models
by their distance to each empirical target, and then sorting based upon the sum of the two
ranks, breaking ties as necessary by the total numerical distance to both metrics.e This pro-
vided a qualitative measure of model fit accounting for how settings behaved given different
input.

3. Results

As outlined in the introduction, we began by fitting a model to verb errors and examining
how conjunctive blend states contribute to verb error production. To evaluate the model, we
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then tested how these settings elicit non-local attraction and preamble errors. This demon-
strated whether the same parameters fit multiple types of errors, which is predicted if all error
types are consequences of the same model dynamics. We then explored the model space by
manipulating one parameter at a time, disclosing, for each aspect of the model, how it affects
model outcomes. Note that these patterns are correlational, not causal: establishing causality
in complex dynamical systems is not straightforward (see e.g., Chattopadhyay, Manupriya,
Sarkar, & Balasubramanian, 2019). However, observing what happens given changes to free
parameters provides some support for possible factors contributing to the model’s patterns of
performance.

3.1. Grid search for best-fitting grammar

We began with a grid search for the parameter settings that best fit the empirical effects
of attraction and MA. We trained a series of 275 models allowing noun terminal similarity
and structural constituent similarity to vary orthogonally between 0.2 and 0.7, and allowing
s1 weight to vary between 0 and 1. The impact of these parameters on the ability of the
model to fit the empirical attraction and MA effects is shown in Fig. 2, where a perfect fit
is represented by the intersection of the curve for each effect with the horizontal zero line.
For these simulations, both types of verb errors (pseudopartitive and non-pseudopartitive)
were pooled together, as the form of errors observed experimentally does not distinguish
between the parses. A variety of parameter settings replicate the attraction and MA effects
separately (i.e., both curves cross the zero point somewhere in each panel). To fit both effects
simultaneously—finding settings in which the four inputs generated appropriate ratios of verb
errors in relation to each other—we identified the parameter values where both curves cross
zero nearest to each other. To do this, we ranked each model for the absolute value of its
distance from the target attraction and MA effects. The distance rankings for the top five
models are displayed in Table 3 along with the overall distance from the target correct and
error proportions for each sentence.

The resulting model had the following parameter values: structural constituent similarity =
0.5, noun similarity = 0.7, and s1 weight = 0.5. In the model, the attraction effect was 14.6%
( = 0.182–0.036) versus an 11% ( = 0.13–0.02) target, yielding a � of –0.036 ( = 11.0–
14.6); the MA effect was 9.0% ( = 0.182–0.092) (vs. a 9% = 0.13–0.04 target), yielding a �

of 0.000.
Across preamble types, verb error rates in the model and experimental data were highest in

the Ns Np condition, followed by the Np Ns condition. The Ns Ns and Np Np conditions both
elicited low rates of verb errors—though in the model, the Ns Ns condition elicited slightly
more errors, and in the experimental data, the Np Np condition elicited slightly more errors.
Verb error rates were relatively close to the empirical targets laid out in Table 1, though the
Ns Np and Np Ns error rates were further from the targets than Ns Ns and Np Np error rates.
Subsetting by verb error type, 99% of the verb errors in the Ns Np condition contained the
pseudopartitive, compared to 0% of verb errors in the other conditions. The model under-
produced correct completions in general and did so especially for the Ns Np preambles. Com-
bined, these properties give the model a qualitative fit to the human data and not a quantitative
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Fig. 2. Difference between model outcome and empirical target for the attraction (red dashed line) and mismatch
asymmetry effects (solid purple line) for a grid search by structural constituent similarity (similarity of symbols
representing different types of singular/plural NP, RC, and S; panels by row), noun terminal similarity (similarity
of singular and plural forms; panels by column), and s1 weight (lexicalist vs. structuralist encoding; x-axis within
each panel). Points reflect results by model run with varied random seeds. Optimum highlighted with green oval.

fit: The model fits the relative error rates across preamble types, but does not precisely match
experimental data.

3.2. Transient blends in production

After fitting a model to verb errors, we then evaluated it with a deeper investigation of how
constituent activation changed over time within model runs when the model was given Ns

Np input (grammar sentence 3). This allows us to clearly demonstrate the role of transient
conjunctive blends in eliciting verb errors, which is a central premise of the model.

Fig. 3 contrasts activation on pairs of fillers in the same role depending on whether the
best-fitting model generated the correct verb ([Ss [NPCs Ns Np] Vs]) or made a verb error
with a pseudopartitive structure ([Sp [NPCp Ns Np] Vp]). Panel A examines the activation of
fillers dominating the first two terminal nodes Ns and Np. When a verb error was made, the
incorrect pseudopartitive noun phrase ([NPCp Ns Np]) was activated instead of the correct
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Fig. 3. Mean activation at each simulated time point on pairs of fillers in the same role based upon correct (Ss

[NPCs Ns Np] Vs]) versus pseudopartitive error ([Sp [NPCp Ns Np] Vp] outcome (error bars show standard error
across model runs). At the initial time point (circled in black), fillers have similar, low (� 0.5) activation levels.
Panel A: pseudopartitive noun phrase ([NPCp Ns Np]) versus singular noun phrase with plural local noun ([NPCs

Ns Np]). Panel B: plural noun as head of relative clause ([RCp Np_]) versus as local noun in either a singular or
plural noun phrase ([NPCs/p _Np]). Panel C: relative clause containing plural verb (RCp[]) versus singular verb
(Vs). In all panels, the element on the x-axis reflects the correct target, and the element on the y-axis reflects a
competing non-target element. See text for details.

singular noun phrase with the same terminal node expansion ([NPCs Ns Np]) and remained
active even at the end of the model run. Panel B shows how a transient re-analysis of the local
Np as the head of an RC phrase, compared to its correct identity as a local noun in an NP,
was correlated with the production of agreement errors: Activation of an analysis of the local
noun as an RC head during the midpoint of the computation was associated with errors, even
though the activation typically died down by the end of the model run. Panel C shows how
transient activation of a relative clause immediately dominating the local noun and following
verb (RCp) instead of a singular verb (Vs) was associated with agreement errors, such that
activation of the relative clause at the beginning of the model run decreased activation of the
singular verb, allowing the plural verb to be selected instead. These show the crucial role of
competition and blend states in how PIPS produces verb errors.

When the model made a non-pseudopartitive verb error, activation on all nodes was similar,
aside from the pattern of activation on the pseudopartitive noun phrase itself. This increased
at the early stages of the computation and then decreased again by the end of the model run.
This suggests that competition from the pseudopartitive parse increases attraction, even when
the ultimate output does not use the pseudopartitive structure.

3.3. Non-intervening attraction

To see if PIPS can successfully generalize to other empirical data, we next assessed how
the trained model completed embedded relative clause inputs. This examines whether PIPS
produces non-intervening attraction with an MA, which would be predicted if both arise
as consequences of the same system. This is an important test because unlike intervening
attraction, which can be grammatically correct in the Ns Np case in PIPS because of the
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Table 4
Proportions of correct completions, verb errors, and all other errors by type of embedded relative clause input
(non-intervening attraction) in from parallelism in producing syntax

Input Correct Verb Error Other Error

[Ss[NPCs Ns [RCp Np _]]_] 0.921 0.002 0.078
[Ss[NPCs Ns [RCs Ns _]]_] 0.946 0.000 0.054
[Sp[NPCp Np [RCs Ns _]]_] 0.867 0.004 0.130
[Sp[NPCp Np [RCp Np _]]_] 0.922 0.000 0.078

pseudopartitive but which mismatches the input, non-intervening attraction is an error with
respect to both the model grammar and the input.

The input to the model here was two nouns, as in the canonical attraction cases (Ns or Np

in the first two terminal positions) and the units comprising the embedded relative clause
structure ([Ss/p [NPCs/p _ [RCs/p _ _]] _]); all other parameters were as described in the
Methods section. Responses were coded following the guidelines in Bock and Miller (1991)
based upon the terminals only. Correct trials reproduced the nouns in the input and used a
correctly inflected verb in at least the first position (inside the relative clause). Verb error
trials reproduced the nouns from the input and used an incorrectly inflected verb in at least
the first position. All other responses were coded as Other errors. Results appear in Table 4.
Similar to the human data (Bock & Miller, 1991; Staub, 2009, 2010), there was an MA where
more verb errors were produced when the first noun was plural and the second noun was sin-
gular than vice-versa. While few verb errors were elicited overall, the asymmetry was stable:
The same pattern was obtained in each of four separate sets of runs of the model with differ-
ent randomization seeds. Most often, verb errors corresponded to fully grammatical re-parses
of the input, matching the complex noun phrase structure (e.g., [Ss [NPCs Ns Np] Vs]); this
shows that these errors typically correspond to a structural re-analysis of the input. Note that
base rates of verb errors were lower than earlier work: Bock and Miller (1991) elicited 6%
verb errors for non-intervening Ns Np items with the structure [Sp [NPCp Np [RCs Ns _]]
_] and 1% for non-intervening Np Ns p items with the structure [Ss [NPCs Ns [RCp Np _]]
_]].k In experimental data, intervening and non-intervening attraction rates are found to be
comparable; this is discussed further in the General Discussion.

3.4. Preamble error distribution

We next examined patterns of preamble errors in PIPS. This is a second test of how the
model generalizes to other empirical data. In this model, preamble errors are fully grammat-
ical sentences that are erroneous with respect to the input. The core phenomena this model
should capture are displayed in Tables 1 and 2; while Table 1 includes more data, Table 2 has
a more specific coding of head and local preamble errors. Since we have only sparse human
data on the rates of preamble errors, we focused primarily on evaluating the qualitative pat-
terns identified in the introduction.

Fig. 4 compares PIPS to the observed experimental data. The first observation, that local
errors are more frequent than head errors, was matched in PIPS: the local error rate was
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Fig. 4. Top row: Response probabilities in parallelism in producing syntax for the optimal model by preamble
type. Points show results from individual model runs. Bottom row (repeated from Fig. 1): empirical preamble
error probabilities. 95% CIs generated by 5000 runs of a non-parametric bootstrap, sampling with replacement.
Note that scales are different between rows to ease qualitative comparison.

7.4% versus a 3.3% head error rate (i.e., the average value in the left column of plots is
larger than the average value in the right). The second observation was that head and local
error rates pattern in the same way with respect to head number, with plural heads associated
with more head and more local errors. As shown in Fig. 4, PIPS matched this pattern for
head error rates (purple above green line) but showed the opposite pattern for local errors.
Similarly, the interactions were reasonably matched by PIPS for head errors but not for local
errors. This is clear by looking qualitatively at the simple effects of the local number on head
errors. In both PIPS and the empirical data, there is a large difference between the two head
nouns paired with local singulars and a small difference between the two head nouns paired
with local plurals. For head errors, PIPS’ plural-headed preambles showed more errors for
singular versus plural local nouns (n.b. the plural-headed effect was much stronger in PIPS’
results than the experimental data). In contrast, PIPS’ local errors showed the reverse pattern.

Combined, this means that PIPS elicited both preamble error types at reasonable rates rel-
ative to each other, with more local than head errors. Although PIPS was fit to verb errors
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alone, we have captured the critical main effect and interactions observed for head errors in
experimental data, supporting our claim that verb errors and head errors are parallel conse-
quences of competition in the same system. PIPS elicited local errors at a reasonable overall
rate but elicited radically too few local errors in the Np Ns condition. This might be because
the model was not configured correctly to elicit them, for example, because the planning con-
straints are different for head and local nouns. We return to this question in the Discussion
section.

3.5. Analysis of the components of PIPS

Having established that PIPS qualitatively matched the attraction effect and MA for verb
agreement errors and having tested its generalization to non-intervening attraction and pream-
ble errors, we next explored how each parameter in PIPS contributes to error rates. We varied
the type of memory encoding (lexical or structural), as well as the representational simi-
larity of lexical and structural elements. We also varied the model grammar. This section
explores how these properties contributed to the overall pattern of behavior by manipulating
each parameter in turn and examining how error probabilities qualitatively varied as these
parameters shift. The goal is to show what each parameter contributes to the model, support-
ing the development of a more accurate model.

3.5.1. Syntactic versus lexical components of memory representations
Memory representations in PIPS encode information about the syntactic structure and lex-

ical content of the preamble. To examine how these two aspects of memory may contribute
to errors, we shifted the relative activations of the preamble’s structural constituents and lex-
ical items (i.e., the encoding strategy, reflected by parameter s1). Fig. 5 shows how model
outcomes for each preamble type changed as the encoding strategy shifted, varying from 0.0
(all lexicalist) to 1.0 (all structuralist) in steps of 0.1.f

When following an entirely structuralist encoding strategy (high values of s1), pseudopar-
titive verb errors were infrequent for Ns Np inputs. The corresponding weak activation of
the lexical items was also associated with an increased rate of local errors, especially for Ns

Np inputs. This reveals an inverse relationship between local errors and agreement errors for
Ns Np inputs when the preamble structure has been encoded in memory with even moderate
strength. It also suggests a possible tradeoff between local errors and attraction since attrac-
tion is a difference score between the Ns Np and Ns Ns inputs. This is consistent with the
empirical results reported in Table 2 and has been remarked on previously by Thornton and
MacDonald (2003).

When following a dominantly lexicalist encoding strategy (low values of s1), there were
many pseudopartitive-containing verb errors produced for the Ns Np preamble, with the peak
of verb errors at s1 = 0.2. This suggests the importance of local lexical input in driving
attraction as in all other models of agreement (M&M, SOSP, and ACT-R). There was also a
high rate of head errors, particularly for both types of mismatch sentences (Ns Np and Np Ns).
This suggests that head errors might be made as a way of compensating for conflict between
locally disagreeing elements. The local conflict that leads to attraction can be resolved by
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Fig. 5. Response probabilities for the optimal model (structural constituent similarity = 0.5, noun similarity =
0.7, and s1 weight = 0.5) varied by encoding strategy (s1 weight) and preamble type (panels). Points correspond
to individual model runs, and lines correspond to averages across runs with matching settings.

changing the head number to match the local noun; however, since this also requires changes
to the number on the noun phrase and sentence, this type of change may be most feasible
when the higher-order structure is weakly encoded. The implication of this pattern is that head
errors should correlate with agreement errors. This has not been discussed in the literature, in
part due to the low base rates of head error occurrence. The data summarized in Table 2 are
not inconsistent with this pattern but do not allow us to conclusively test it.

3.5.2. Continuous representational similarity: Lexical items
Next, we assessed how changing the similarity of the singular and plural form of nouns

impacted model outcomes. Since constituents are represented as vectors, we could manipu-
late the representational similarity of singular and plural nouns in a continuous fashion (here,
varied at a step size of 0.1 between 0.2 and 0.7). As shown in Fig. 6, verb errors for mis-
match preambles (Ns Np and Np Ns) decreased as noun similarity increased. This suggests
that increasing the similarity of noun forms may decrease competition from alternate parses,
reducing the verb error rate. At first glance, this may seem to contrast with the observation
that high semantic similarity (e.g., Barker et al., 2001) or tight semantic integration (Solomon
& Pearlmutter, 2004) increases verb errors; however, note that our manipulation is of noun
forms differing in number, not semantics.

The differential effects of noun similarity for verb errors on match versus mismatch pream-
bles means that noun similarity co-varied with attraction (the difference in all verb errors,
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Fig. 6. Response probabilities for the optimal model (structural constituent similarity = 0.5, noun similarity = 0.7,
and s1 weight = 0.5) varied by noun terminal similarity (similarity of singular and plural forms) and preamble type
(panels). Points correspond to individual model runs, and lines correspond to averages across runs with matching
settings.

shown in red and magenta, between Ns Np and Ns Ns sentences) but not the MA (the differ-
ence in all verb errors, shown in red and magenta, between Ns Np and Np Ns sentences). This
is consistent with the hypothesized role for cue-based memory retrieval in eliciting agreement
attraction (e.g., Badecker & Kuminiak, 2007; Lewis & Vasishth, 2005; Lorimor, et al. 2015,
2016).

Local errors also increased for preambles with plural local nouns (Ns Np and Np Np) but
not for preambles with singular local nouns (Ns Ns and Np Ns) as noun terminal similarity
increased. One possible explanation for this is that while increasing noun similarity may
allow singular local nouns to replace plural ones more easily (and vice-versa), singular nouns’
higher harmony (reflecting their higher frequency) supports accurate processing. Further tests
would be necessary, however, to support this hypothesis, which we leave for future work.

3.5.3. Continuous representational similarity: Structural constituents
Finally, we examined the role of structural constituent similarity in model outcomes, vary-

ing this parameter at a step size of 0.1 from 0.2 to 0.7. A plot of model outcomes appears
in Fig. 7. Increasing structural constituent similarity tended to slightly decrease the correct
rate for all preambles and clearly decreased the correct rate for the Ns Np condition: Increas-
ing similarity between pairs of structures, like the various NP structures, may allow them to
compete for more for selection.
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Fig. 7. Response probabilities for the optimal model (structural constituent similarity = 0.5, noun similarity =
0.7, and s1 weight = 0.5) varied by structural constituent similarity (similarity of symbols representing different
types of singular/plural NP, RC, and S) and preamble type (panels). Points correspond to individual model runs,
and lines correspond to averages across runs with matching settings.

3.6. Competition and experience

Core to PIPS is the claim that competition between structures drives errors. To fur-
ther investigate the contribution of this component of the model, we altered the structure
of the training data—lowering the frequency of the pseudopartitive parse so as to reduce
competition while holding the free model parameters constant at the optimal values selected
above. Comparison between the output of this model and the base model reveals how aspects
of the model’s training experience influenced its performance.

We reduced the frequency of sentence 8 (the pseudopartitive) in the training data to 25% of
the original value and re-fit the model to these data. As competition from the pseudopartitive
decreased, verb errors for Ns Np preambles decreased from 18% to 16%. The shift in training
data also led to increased verb errors for Np Ns and Np Np preambles (from 9% to 12% and
from 1% to 3%, respectively). The source of this is unclear; reducing the probability of the
pseudopartitive may weaken the diversity of structures supporting plural verbs, leading to
increased errors where singular verbs replace plural verbs. These combined effects reduce the
MA for plural versus singular local nouns from 9% (in the original model) to 4%.

Follow-up simulations that entirely eliminated the pseudopartitive parse resulted in a rever-
sal of the MA effect: In these simulations, the Np Ns Vs preamble (with a lower-frequency
plural head) elicited more total verb errors than the Ns Np Vp preamble (19% vs. 8%)
and the difference between the Np Ns Vs and Np Np Vs preambles was greater than the
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difference between the Ns Np Vp and Ns Ns Vp preambles (13% vs. 5%). This suggests that
the availability of the pseudopartitive parse is important for eliciting the MA effect observed
in English.

4. Discussion

We have presented PIPS, a model of sentence production. When applied to agreement pro-
duction, PIPS accounts for verb agreement errors by relying upon domain-general principles.
The model uses a grammar rooted in the phrase frequencies of American English, such that
elements that appear more often are preferred by the model. To produce a sentence, the model
uses spreading-activation rules to activate representational state vectors corresponding to lex-
ical and structural constituents; in our modeled preamble completion task, the model’s acti-
vated representational state vectors come from a combination of a partially activated (fuzzily
remembered) input and the model’s grammatical knowledge.

The premise of this GSC-style model is that blend states consisting of multiple simulta-
neously represented possible utterance plans play a role in language production. Initially, the
model simultaneously activates many possible structures in the form of blends because of low
commitment strength; over the course of processing, these structures compete until the model
is pushed to select a single structure via increasing commitment strength. These transiently
activated blends lead to competition between target and non-target structures, allowing PIPS
to make human-like errors.

Experimental research on agreement production has focused on a few key phenomena,
including agreement asymmetries based on the grammatical number and the role of notional
(semantic) number in agreement (e.g., Bock & Miller, 1991; Eberhard, 1999; Eberhard et al.,
2005; Vigliocco et al., 1995), the role of exposure to various agreement configurations (e.g.,
Haskell et al. 2010; Lorimor et al., 2018), and the general constraints that memory places on
agreement (e.g., Hartsuiker & Barkhuysen, 2006; Slevc & Martin, 2016). PIPS successfully
captures these properties of agreement and takes a step toward covering other types of errors
commonly elicited in the same experimental tasks as we unpack below.

4.1. Accounting for verb errors

Critical in a model that captures subject–verb number agreement is how it can account
for two agreement asymmetries that reflect the differential susceptibility of sentence types to
agreement errors based upon the number configuration of the two nouns. These are attraction
and the mistmatch asymmetry (MA); in PIPS, both arise from competition between similar
constituents (lexical items and structures) in the grammar. In PIPS, the MA arises because of
a second observation in the empirical data: A grammatical construction associated with the
notional number is available for Ns Np phrases only (e.g., Haskell et al., 2010).

Attraction is the pattern that noun phrase preambles containing a singular head and plural
local noun (Ns Np; The key to the cabinets) elicit more verb errors than those with a singu-
lar head and singular local noun (Ns Ns; The key to the cabinet). In PIPS, we believe this
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comes from the transient influence of other sentences in which a verb agrees locally, such as a
reduced relative clause (The key [the cabinets use] broke), and from the high lexical/syntactic
similarity of all nouns in the model grammar regardless of their grammatical number. The
implication is that attraction likely arises because of sometimes transient activation of similar
structures and words, most of which are contained in grammatical constituents such as the
pseudopartitive or reduced relative clauses.

The MA is the pattern that noun phrase preambles containing a singular head and plural
local noun (Ns Np; The key to the cabinets) elicit more verb errors than those with a plural
head and singular local noun (Np Ns; The keys to the cabinet) despite the fact that the head
and local noun mismatch in both preambles and despite the fact that singular nouns have a
higher overall frequency. In PIPS, the MA comes from a grammatical parse that is typically
associated with the notional agreement. In American English, it is relatively common to have
a pseudopartitive parse of Ns Np phrases where the second noun becomes the agreement
controller (e.g., A lot of postcards are). Following the high frequency of these phrases in
American English, and inspired by earlier experimental (Haskell et al., 2010) and modeling
work (SOSP; Smith et al., 2018), we implemented a pseudopartitive parse in PIPS where the
nouns Ns Np expand to a plural noun phrase. In a set of simulations reducing or removing
the pseudopartitive parse, the MA diminished or vanished, suggesting this non-target parse
plays an important role in creating the asymmetry in error rates between Ns Np and Np Ns

items. Note that since the plural-headed pseudopartitive parse is in the (non-lexicalized) PIPS
grammar, activating it can be grammatically correct if the appropriate higher-order structure
is also changed. Critically, while this parse is grammatical, it is still an error. This parse is in
conflict with the input, where the higher-order structure specifies Ns Np items as belonging to
a singular NP. This makes all first-noun mismatching verbs errors with respect to the input,
even if they are in some cases grammatically correct.

PIPS achieves the MA despite lacking semantics: Only one noun, and one verb, are instan-
tiated in the grammar for each number inflection. This means that the probabilistic availability
of the pseudopartitive in the grammar reflects inherent flexibility in the class of noun phrases
as a whole, akin to the distributive and non-distributive readings of phrases like “The label
on the bottles.” Haskell et al. (2010) suggested that the availability of a right-headed parse
changes the production of verbs in general. Our model follows this assumption and shows
that grammatically allowing for a construction associated with notionally driven agreement
creates the MA. In other words, the MA arises because of grammaticalization of exposure
to notional agreement. The implication is therefore that languages without a pseudopartitive
construction should not elicit an MA effect. The size and presence of mismatch asymmetries
vary across languages, especially for gender agreement (see e.g., Deutsch & Dank, 2011;
Franck, 2018), and it has been argued that either morphological decomposition (Deutsch &
Dank, 2011) or the relative markedness of the head noun (Franck, 2018) may contribute to
these differences. Following Haskell et al. (2010) and Franck (2018), we suggest that the pres-
ence of notionally agreeing constructions like pseudopartitives also contributes to the effect;
this is a prediction to be tested in future research.

We also capture MA in so-called non-intervening or remote attraction cases (The cabinets
that the key *were used to open), which is a strong test of the model. Earlier work in English
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(Bock & Miller, 1991; Staub, 2009, 2010) demonstrates an asymmetry such that “The cabinets
that the key” elicits more attraction than “The cabinet that the keys.” However, the non-
intervening attraction also follows a different error reaction time profile than other attraction
cases (Staub, 2010). Staub suggests that this means non-intervening attraction occurs because
the structure of the sentence was mis-identified, while intervening attraction occurs because
of feature percolation; this left a mystery why the markedness asymmetry would be present.

PIPS provides one possible explanation. In PIPS, the MA comes from the pseudopartitive
boosting errors in Ns Np items. In the case of intervening attraction, which is seeded with the
input structure [Ss [NPCs Ns Np] _], the elements comprising the pseudopartitive easily turn
on because of the similar structure to the input, producing the output [Sp [NPCp Ns Np] Vp]).
In the case of non-intervening attraction, the input structure is [Sp [NPCp Np [RCs Ns _]]_],
which differs from the pseudopartitive in its branching structure and in the type of NP node;
this often elicits completions like [Ss [NPCs Ns Np] Vs], a fully grammatical three-word sen-
tence. Following Staub (2009, 2010), this means that while attraction happens in both cases
by competition from a set of self-reinforcing symbols, the competition in non-intervening
cases means entertaining a structural reanalysis. Note that this is a fundamentally different
mechanism than the hierarchical planning account proposed by Franck et al. (2002, 2006).
Their account does especially well in distinguishing which non-intervening configurations
elicit attraction, and it would be worth for future work to evaluate how well PIPS does in
replicating these data.

One weakness of PIPS’s account of non-intervening attraction is that attraction error rates
were much lower for non-intervening attraction than for intervening attraction. This contra-
dicts empirical data from human errors, where attraction was of similar magnitude in both
cases (Bock & Miller, 1991; Staub, 2009, 2010). A possible reason for this is that that we
initialized the model with an equal amount of activation at the terminal nodes, encoding the
words of the preamble, and the non-terminal nodes, encoding its structure. Because the non-
intervening attraction sentences are more complex than the canonical attraction sentences,
there is more external activation supporting the structural analysis; this may protect it from
errors. Equalizing the overall amount of activation (rather than the activation of individual ele-
ments) might provide for a better fit to the empirical data, and would be a worthy extension
for future work.

The reliance on domain-general computational mechanisms such as spreading activation
and competition means that PIPS implements agreement in a way that is radically different
from the leading model of agreement production, M&M (Eberhard et al., 2005). M&M was
created to describe the influence of lexical, structural, and notional information in the agree-
ment. Specifically, it aimed to explain how lexical and semantic properties of nouns affect
verbs and pronouns, and the way that grammatical and notional numbers are reconciled to
allow both to contribute to an agreement using a simple set of rules.

In PIPS, we focused on the first of these explananda. We tested the role of lexical factors
including lexical and structural representational similarity and the strength with which words
and phrases are encoded or retrieved. To elicit human-like agreement patterns, we needed
high lexical similarity, moderately high structural constituent similarity, and a memory repre-
sentation that is balanced for lexical and structural information. This means that both M&M
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and PIPS agree that in order to account for agreement errors, the system must strike a balance
between lexical (local) and structural (global) needs.

As noted above, PIPS has no semantics, which means that we account for notional numbers
indirectly: by implementing a syntactic rule corresponding to a pseudopartitive noun phrase.
This is a divergence from both SOSP (Smith et al., 2018) and M&M (Eberhard et al., 2005),
which explicitly integrate semantic and syntactic aspects of the agreement. This was a pur-
poseful choice made to explicitly examine the effects of lexical and structural competition
without needing to incorporate meaning.

However, an implementation of semantics might allow PIPS to go further in describing
notional agreement, and in particular, in describing the lexical and semantic conditions that
encourage activation of the pseudopartitive parse associated with notional plurality (e.g.,
Eberhard, 1999; Humphreys & Bock, 2005); this has been extensively explored in M&M
(Eberhard et al., 2005). In PIPS, this could be instantiated by manipulating representational
similarity in a larger grammar based upon shared semantic/syntactic features between multi-
ple words and sentence types. This would make PIPS more similar to SOSP in its treatment
of treelets as parts of a semantic-syntactic representation. An incorporation of message-level
representation in the PIPS model might provide further evidence for the role of message
conceptualization in sentence production, which has received relatively little attention in the
literature (for review, see e.g., Konopka & Brown-Schmidt, 2014).

Incorporating semantics in PIPS would also allow us to test how different types of similarity
affect errors. While we show that increasing structural similarity between nouns decreases
verb errors because the local noun becomes less good as an attractor, earlier work shows
that increasing semantic similarity increases verb errors because of interference at encoding
(e.g., Barker et al., 2001) or because of differences in message-level representation (Solomon
& Pearlmutter, 2004). This difference could result because the two types of similarity elicit
different types of competition: Future work would be needed to test this.

4.2. Extension to preamble errors

In agreement-error elicitation experiments, the most common mistakes are not agree-
ment errors but miscellaneous errors. Preamble errors—errors mis-recalling the head or local
noun—are an important sub-type of these miscellaneous errors. Because the representational
space in PIPS is gradient, it easily makes errors in reproducing its input because of competi-
tion from other items in the grammar. Effectively, noise in the system can cause the model to
jump from one grammatical state, matching the input, to another: the preamble error. The pat-
tern of head errors is captured fairly well in the model. By changing how the input is encoded,
altering the degree and type of representational similarity between model constituents, and
altering sentence frequencies in the model’s grammar, we show that head errors and attrac-
tion errors are both consequences of the same model dynamics. Note that because the mod-
eled data are sparse, this forms an empirical prediction to be validated in future experimental
work. We urge individuals to report noun number errors in agreement elicitation experiments
to further test these claims.
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The fact that PIPS can account for multiple error types means that it takes a step beyond
other models used to describe agreement production: M&M, in particular, has no way of
incorporating preamble errors because it assumes that the preamble has been encoded accu-
rately and influences the number marking on the phrase. SOSP has also focused to date
on modeling blend or coercion errors, not on modeling fully grammatical productions that
mismatch the input, which means that SOSP also does not have a straightforward way of
modeling preamble errors. However, more refinements need to be made in order for PIPS to
better match human data. While PIPS succeeds at capturing the fact that local errors are more
common than head errors, and approximates the overall pattern for head errors, it fails to cap-
ture the effects of head and local numbers on local errors. In empirical data, NpNs prompts to
elicit the most local errors: This is not the case in PIPS. One possibility is that the empirical
data are too sparse to disclose the true pattern with respect to head and local numbers; this
seems unlikely but is possible.

Another more interesting possibility is that PIPS fails to account for local preamble errors
because the model does not produce incrementally: In PIPS, the entire noun phrase and verb
are planned before production begins. Since local errors are linearly close to the verb, it
follows that a more incremental scope of planning should boost local errors over head errors.
This is consistent with earlier empirical work where local nouns that are closer to the head
in linear planning scope induce more attraction (e.g., Gillespie & Pearlmutter, 2011); the
prediction is that a narrower scope of planning might also influence local preamble errors.
Developing an incremental version of PIPS would allow us to test this, and it would be a
worthy modeling extension in its own right.

A final possibility is that Np Ns items are notably odd for semantic or pragmatic reasons.
The same nouns are typically used in all four cells of most preamble completion studies;
the Np Ns items could be less plausible than the rest. If this is the case, individuals will
misrepeat the input in order to correct a perceived infelicity (see e.g., Brehm, Jackson, &
Miller, 2021, for data consistent with this hypothesis). This would suggest that local errors
may in part be due to a secondary phenomenon not directly related to computing subject–verb
agreement.

4.3. Effects of frequency in agreement

A novel aspect of PIPS relative to other models that explain agreement production is that it
encodes a grammar trained on the relative frequency of structures in American English. This
allowed us to explicitly test the role of frequency in the model, which is an important way
that individual experience might affect agreement production. The role of frequency is clearly
highlighted in the PIPS model and underscores that in our model, agreement and preamble
errors are consequences of the same dynamics.

Structure frequencies generate the crucial MA in PIPS, providing a mechanism to explain
why this asymmetry appears in English. In simulations where the frequency of pseudopar-
titive phrases is decreased in the training grammar, the MA diminishes. This suggests that
differences in whether languages have a pseudopartitive or other similar construction could
be critically important in whether a given language elicits an MA.
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Recent and past experience matter for sentence production as demonstrated in the large lit-
erature on syntactic priming (Bock, 1986; see Mahowald, James, Futrell, & Gibson, 2016, for
meta-analysis) and experience-based changes to sentence biases over time (e.g., Chang, Dell,
& Bock, 2006; Ferreira & Schotter, 2013; Gennari & MacDonald, 2009; Konopka, 2012).
Correspondingly, the literature on subject–verb agreement (e.g., as highlighted in Haskell
et al., 2010) suggests an important role of priming (short-term experience) and frequency (a
contributor to long-term experience).

One could easily extend PIPS to account for short-term experience changes and to more
deeply explore the consequences of structural frequencies. To account for short-term experi-
ence, one could update constituent weights between trials. This would allow an examination
of how error production changes due to priming or learning (as discussed in Haskell et al.,
2010). Exploring frequency more deeply would also be fruitful: This would allow an exami-
nation of how structural frequency differences within or between languages affect what types
of errors are produced (as discussed in e.g., Bock et al., 2012, or Foote & Bock, 2012).

4.4. Memory encoding and memory retrieval

A final property we appeal to in PIPS is the role of memory in sentence production. As
in experimental elicitation of agreement errors, PIPS is seeded with a preamble as input and
asked to repeat and complete it. Mismatches between the input and output correspond to
memory errors. By only partially encoding words and structures, PIPS makes mistakes in a
human-like way, resolving the competition it receives from other items in its grammar by
producing an error on the head number, local number, or verb. To manipulate memory encod-
ing, we use a pair of yoked parameters that tune whether lexical items or structure is encoded
more veridically; future applications of PIPS could separate these parameters to test the role
of memory encoding for whole structures, treelets, or lexical items in error production.

Further refinements of PIPS might also consider a more elaborated implementation of
memory retrieval. For example, not only would target elements be weakly activated at encod-
ing, allowing the activation of multiple different elements during production planning, but
specific non-target elements might receive boosts in activation at the onset of production in
order to represent mis-retrieval. This would allow a closer comparison to existing domain-
general models like ACT-R (e.g., Lewis & Vasishth, 2005; as discussed in Lorimor et al.,
2015, 2016), which capture errors in agreement production by appealing to mis-retrieval of
words or features from memory. Directly contrasting the role of encoding versus retrieval
dynamics in sentence production would also allow for deeper connections to be made with
related effects in sentence comprehension (e.g., Villiata et al., 2018) and production (Barker
et al., 2001), where semantic properties of items cause interference at encoding. This would
allow us to test whether we observe the same semantically driven interference pattern.

4.5. Domain generality allows for many extensions

Comparison between how PIPS and other models (M&M, SOSP) account for the empirical
data from agreement production highlights a final key fact. The apparently domain-specific
phenomena of attraction errors, MA errors, and head preamble errors arise in PIPS out of
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domain-general properties. This is a consequence of PIPS being a dynamical systems model
in which multiple elements compete during language production or parsing. When other
seemingly discrete phenomena are investigated using dynamical systems models like GSC
(Cho et al., 2017), or SOSP (Smith & Tabor, 2018), previously unconnected types of errors
arise as consequences of the same continuous constraint space.

The fact that PIPS generates errors of multiple types highlights that while PIPS models
agreement attraction, it is not specifically a model of agreement attraction. This shows the
utility of adopting a general model such as PIPS to explore the role of linguistic and cogni-
tive principles in language production more broadly. As highlighted throughout this section,
there are many extensions possible within PIPS to explore how the structure of the grammar
and the general distributions of forms affect error production. There are still many disagree-
ments within the field of agreement production to be answered. PIPS does not clearly capture
the patterns observed for local preamble errors, which should be examined in future work.
We also suggest that a deeper and wider exploration of how other types of preamble errors,
verb errors, and notional agreement are inter-related and would be fruitful as would an explo-
ration of agreement in richer inflectional paradigms where more candidates are available for
production.

Within sentence production and comprehension, there are also many other phenomena in
which an appeal to multiple simultaneously active elements is necessary, and these would
also be good candidates for exploration using a model like PIPS where planning starts with
conjunctive blends and ends with fully discrete outcomes. This includes the many diverse
phenomena addressed by constraint-based theories of sentence comprehension (e.g., Mac-
Donald, Pearlmutter, & Seidenberg, 1994) or questions about interpretation or binding in
systems where more than one possibility is likely (scalar implicatures, e.g., Degen & Tanen-
haus, 2015; pronoun resolution: see e.g., Arnold & Zerkle, 2019, for a recent review). PIPS or
a similar model might provide new leverage to explain how these occur in the human mind.

5. Conclusion

Preamble completion paradigms highlight two common production errors: subject–verb
agreement errors and errors in repeating the sentence preamble prompt. Using PIPS, a com-
putational model in the GSC framework, we describe both as consequences of competition
during transient activation of similar competing sentences in a grammar that is trained on
structure frequencies from American English. This provides computational evidence for the
role of alternate production plans at a morphosyntactic and lexical level in explaining why
speech errors happen without modeling semantics.
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Notes

a Following the literature, “head noun” refers to the first noun of the sentence, and the
noun that nearly always controls agreement—except in a pseudopartitive parse, when the
agreement controller is the second (local) noun.

b Also called outer product, at the most basic level, the tensor product of two vectors a and
b is a matrix in which the ith, jth element is the product of the ith element of vector a and
the jth element of vector b (for a more detailed discussion, see Smolensky, 2006).

c Because of the high-dimensional problem space required to represent fillers and roles
separately, we simplified the number of nodes in the structure, making it as compact as
possible while representing the essential constituent structure of the phrase.

d The unit activation function was linear. Activation dynamics were constrained by a base-
line constraint that pulled activations toward the center of the representational space (Cho
et al., 2018, 2020). This is done to prevent activations from moving outside the desired
representational space (a jet of air keeping the balloon inside the tent, in our earlier anal-
ogy).

e As a quantitative measure of model fit, we also assessed KL (Kullback–Leibler) diver-
gence between the distribution of the model’s outputs and the empirical targets for all
agreement errors, other errors (pooled together) and correct repetitions across preamble
inputs. This tended to penalize one preamble type over all others (penalizing different
types with differing parameter settings), which made fits to the empirical attraction and
MA effects relatively poor.

f To ensure that we were accurately measuring trends in a stochastic distribution, we
compared the model outputs reported in Fig. 5, bottom left panel (NsNp input given
to four sets of 1000 sentence generation iterations each with different random seeds,
averaged) to a single set of 10,000 iterations. This showed qualitatively similar results.
The only reliable quantitative deviations were found at s0 = 0.0, with relatively small
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(< 0.015) deviations in proportion of correct productions and verb errors. However, these
deviations did not alter the overall trends noted in the section.

g For this paper, presumed number of “other” trials calculated from total trial number.
h For this paper, number of correct trials estimated from graphs; presumed number of

“other” trials estimated from total trial number.
i For this paper, number of correct trials estimated from proportion agreement errors out of

valid trials and counts of agreement errors; presumed number of “other” trials estimated
from total trial number.

j There is one extra trial reported in this cell.
k The sentence processing convention is to list the attractor (here, the first noun in the

sentence) in the second position.
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Appendix A

Counts of responses from spoken preamble completion paradigms in American English
using the structure NP1 [PP P NP2], where the head of NP1 is the head noun, and the head of
NP2 is the local noun. Ns = singular count noun; Np = plural count noun; Sg/Pl Coll = singu-
lar/plural collective noun; Sg/Pl Irr = irregular singular/plural noun, including pseudoplurals
(e.g., rose), pluralia tanta (e.g., tweezers), mass nouns (e.g., rice), and nouns with irregular
morphology (e.g., mice); NI = non-inflecting count noun (e.g., fish). A breakdown of “other”
responses is included when reported in each paper; these include “preamble” errors (also
called “miscellaneous errors” Pre; completions where preamble was not repeated veridically),
“uninflected” completions (Uninfl; completions using a lexical verb that does not require
marking of inflection), and any missing trials (NR). These data are available in plain text
format on the OSF.
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Paper Expt Head Local
Notional
Num

Singular
Verb

Plural
Verb Other [Pre Uninfl

NR]

Bock et al. (2006) 1 Sg Coll Ns Sg 327 435 390 390 0 0
Bock et al. (2006) 2 Sg Coll Ns Sg 157 50 369 72 297 0
Bock et al. (2006) 3 Sg Coll Ns Sg 567 7 146 55 91 0
Bock et al. (1999)g 1 Sg Coll Ns Sg 273 557 466 . . .
Humphreys and

Bock (2005)
1 Sg Coll Ns Sg 100 39 293 79 214 0

Bock et al. (2004) 3 Sg Coll Ns Pl 170 79 135 56 79 0
Bock et al. (2006) 1 Sg Coll Np Sg 220 497 435 435 0 0
Bock et al. (2006) 2 Sg Coll Np Sg 103 112 361 86 275 0
Bock et al. (1999) 1 Sg Coll Np Sg 153 571 572 . . .
Humphreys and

Bock (2005)
1 Sg Coll Np Sg 45 92 295 97 198 0

Bock et al. (2004) 3 Sg Coll Np Pl 105 109 170 103 67 0
Humphreys and

Bock (2005)
1 Sg Coll Np Pl 41 120 271 65 206 0

Bock and Eberhard
(1993)

4 Ns Sg Coll Sg 292 1 91 33 58 0

Bock et al. (2006) 4 Ns Sg Coll Sg 110 0 40 14 26 0
Bock et al. (2004) 2 Ns Sg Coll Sg 323 2 59 34 25 0
Bock et al. (2001) 3 Ns Sg Coll Sg 143 1 48 13 35 0
Bock and Eberhard

(1993)
4 Ns Pl Coll Sg 178 88 118 50 68 0

Bock et al. (2006) 4 Ns Pl Coll Sg 43 12 20 5 15 0
Bock et al. (2004) 2 Ns Pl Coll Sg 185 79 120 83 37 0
Bock et al. (2001) 3 Ns Pl Coll Sg 105 15 72 31 41 0
Bock and Eberhard

(1993)
1 Ns Ns Irr Sg 234 0 66 13 53 0

Bock and Eberhard
(1993)

2 Ns Ns Irr Sg 68 0 28 7 21 0

Bock and Eberhard
(1993)

3 Ns Ns Irr Sg 76 0 20 4 16 0

Barker et al. (2001) 1 Ns Ns Sg 614 1 153 119 34 0
Barker et al. (2001) 2 Ns Ns Sg 654 21 93 91 2 0
Bock and Cutting

(1992)
1 Ns Ns Sg 392 4 244 51 193 0

Bock and Cutting
(1992)

2 Ns Ns Sg 954 10 316 159 157 0

Bock and Cutting
(1992)

3 Ns Ns Sg 833 7 312 177 135 0

Bock and Eberhard
(1993)

1 Ns Ns Sg 235 0 65 19 46 0

Bock and Eberhard
(1993)

2 Ns Ns Sg 59 0 37 16 21 0

Bock and Eberhard
(1993)

3 Ns Ns Sg 73 1 22 6 16 0
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Paper Expt Head Local
Notional
Num

Singular
Verb

Plural
Verb Other [Pre Uninfl

NR]

Bock and Eberhard
(1993)

4 Ns Ns Sg 291 2 91 28 63 0

Bock and Miller
(1991)h

1 Ns Ns Sg 198 2 120 . . .

Bock and Miller
(1991)

2 Ns Ns Sg 381 10 121 . . .

Bock and Miller
(1991)

3 Ns Ns Sg 338 18 156 . . .

Bock and Miller
(1991)

2-r Ns Ns Sg 364 13 135 . . .

Bock et al. (2006) 1 Ns Ns Sg 824 23 305 305 0 0
Bock et al. (2006) 2 Ns Ns Sg 219 2 355 54 301 0
Bock et al. (2006) 3 Ns Ns Sg 556 6 158 55 103 0
Bock et al. (2006) 4 Ns Ns Sg 65 0 10 1 9 0
Bock et al. (2012) 1 Ns Ns Sg 352 0 160 38 122 0
Bock et al. (2012) 2 Ns Ns Sg 479 12 21 21 NA 0
Bock et al. (2004) 1 Ns Ns Sg 773 16 235 68 167 0
Bock et al. (2004) 2 Ns Ns Sg 318 0 66 31 35 0
Bock et al. (2004) 3 Ns Ns Sg 251 9 124 60 64 0
Bock et al. (2004) 4 Ns Ns Sg 301 3 80 36 44 0
Bock et al. (2004) 5 Ns Ns Sg 327 0 87 32 55 0
Bock et al. (2001) 1 Ns Ns Sg 416 2 158 30 128 0
Bock et al. (2001) 2 Ns Ns Sg 260 3 151 12 139 0
Bock et al. (2001) 3 Ns Ns Sg 138 1 53 16 37 0
Bock et al. (1999) 1 Ns Ns Sg 856 25 415 . . .
Brehm and Bock

(2013)
1 Ns Ns Sg 1755 42 3 0 NA 3

Brehm and Bock
(2013)

2 Ns Ns Sg 785 2 413 90 304 19

Eberhard (1997) 1 Ns Ns Sg 425 11 140 20 120 0
Eberhard (1997) 3 Ns Ns Sg 214 1 73 6 67 0
Eberhard (1999) 1 Ns Ns Sg 52 0 20 5 15 0
Eberhard (1999) 2 Ns Ns Sg 99 0 61 9 52 0
Eberhard (1999) 3 Ns Ns Sg 93 1 66 16 50 0
Foote and Bock

(2012)i
1 Ns Ns Sg 410 0 6 . . .

Gillespie and
Pearlmutter
(2013)

1 Ns Ns Sg 874 3 563 177 377 9

Gillespie and
Pearlmutter
(2013)

2 Ns Ns Sg 1258 5 741 327 407 7

Solomon and
Pearlmutter
(2004)

1 Ns Ns Sg 153 1 80 16 33 31
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Solomon and
Pearlmutter
(2004)

2 Ns Ns Sg 67 0 193 30 148 15

Solomon and
Pearlmutter
(2004)

3 Ns Ns Sg 58 0 242 19 177 46

Solomon and
Pearlmutter
(2004)

4 Ns Ns Sg 253 4 495 107 310 78

Solomon and
Pearlmutter
(2004)

5 Ns Ns Sg 532 7 523 150 158 215

Thornton and
MacDonald
(2003)

1 Ns Ns Sg 352 7 41 37 4 0

Thornton and
MacDonald
(2003)j

2 Ns Ns Sg 586 1 55 35 20 0

Vigliocco and Nicol
(1998)

1 Ns Ns Sg 240 1 47 47 0 0

Bock et al. (2012) 2 Ns Ns Pl 480 6 26 26 NA 0
Bock et al. (2004) 4 Ns Ns Pl 293 2 89 32 57 0
Bock et al. (2004) 5 Ns Ns Pl 314 5 95 39 56 0
Brehm and Bock

(2013)
1 Ns Ns Pl 1698 99 3 2 NA 1

Brehm and Bock
(2013)

2 Ns Ns Pl 701 74 425 98 302 25

Eberhard (1999) 1 Ns Ns Pl 54 0 18 3 15 0
Eberhard (1999) 2 Ns Ns Pl 92 0 68 7 61 0
Eberhard (1999) 3 Ns Ns Pl 91 3 66 7 59 0
Solomon and

Pearlmutter
(2004)

1 Ns Ns Pl 123 0 111 41 31 39

Solomon and
Pearlmutter
(2004)

2 Ns Ns Pl 62 2 196 31 147 18

Solomon and
Pearlmutter
(2004)

3 Ns Ns Pl 31 1 268 28 173 67

Solomon and
Pearlmutter
(2004)

4 Ns Ns Pl 116 10 156 28 68 60

Bock and Eberhard
(1993)

3 Ns Np Irr Sg 53 9 34 9 25 0

Bock et al. (2006) 4 Ns Np Irr Sg 55 3 17 2 15 0
Bock et al. (2001) 2 Ns Np Irr Sg 205 29 180 39 141 0
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Barker et al. (2001) 1 Ns Np Sg 516 61 191 163 28 0
Barker et al. (2001) 2 Ns Np Sg 487 132 149 149 0 0
Bock and Cutting

(1992)
1 Ns Np Sg 307 51 282 108 174 0

Bock and Cutting
(1992)

2 Ns Np Sg 869 44 367 210 157 0

Bock and Cutting
(1992)

3 Ns Np Sg 788 54 310 174 136 0

Bock and Eberhard
(1993)

1 Ns Np Sg 198 31 71 26 45 0

Bock and Eberhard
(1993)

2 Ns Np Sg 44 21 31 12 19 0

Bock and Eberhard
(1993)

3 Ns Np Sg 57 8 31 15 16 0

Bock and Eberhard
(1993)

4 Ns Np Sg 208 67 109 39 70 0

Bock and Miller
(1991)

1 Ns Np Sg 154 50 116 . . .

Bock and Miller
(1991)

2 Ns Np Sg 295 29 188 . . .

Bock and Miller
(1991)

3 Ns Np Sg 249 56 207 . . .

Bock and Miller
(1991)

2-r Ns Np Sg 320 25 167 . . .

Bock et al. (2006) 1 Ns Np Sg 541 125 486 486 0 0
Bock et al. (2006) 2 Ns Np Sg 173 34 369 110 259 0
Bock et al. (2006) 3 Ns Np Sg 517 56 147 45 102 0
Bock et al. (2006) 4 Ns Np Sg 58 4 13 4 9 0
Bock et al. (2012) 1 Ns Np Sg 312 37 163 64 99 0
Bock et al. (2012) 2 Ns Np Sg 438 45 29 29 NA 0
Bock et al. (2004) 1 Ns Np Sg 508 104 412 291 121 0
Bock et al. (2004) 2 Ns Np Sg 239 58 87 44 43 0
Bock et al. (2004) 3 Ns Np Sg 148 42 194 128 66 0
Bock et al. (2004) 4 Ns Np Sg 176 68 140 108 32 0
Bock et al. (2004) 5 Ns Np Sg 265 24 125 62 63 0
Bock et al. (2001) 1 Ns Np Sg 256 130 190 89 101 0
Bock et al. (2001) 2 Ns Np Sg 216 56 142 28 114 0
Bock et al. (2001) 3 Ns Np Sg 112 17 63 21 42 0
Bock et al. (1999) 1 Ns Np Sg 524 98 674 . . .
Brehm and Bock

(2013)
1 Ns Np Sg 1645 155 0 0 NA 0

Brehm and Bock
(2013)

2 Ns Np Sg 756 77 367 86 257 24

Eberhard (1997) 1 Ns Np Sg 271 112 193 81 112 0
Eberhard (1997) 3 Ns Np Sg 275 124 177 56 121 0
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Eberhard (1999) 1 Ns Np Sg 48 7 17 5 12 0
Eberhard (1999) 2 Ns Np Sg 79 17 64 6 58 0
Eberhard (1999) 3 Ns Np Sg 80 17 63 16 47 0
Foote and Bock

(2012)
1 Ns Np Sg 199 6 3 . . .

Gillespie and
Pearlmutter
(2013)

1 Ns Np Sg 787 65 588 240 342 6

Gillespie and
Pearlmutter
(2013)

2 Ns Np Sg 1137 96 771 383 374 14

Solomon and
Pearlmutter
(2004)

1 Ns Np Sg 118 32 84 24 29 31

Solomon and
Pearlmutter
(2004)

2 Ns Np Sg 67 16 177 25 140 12

Solomon and
Pearlmutter
(2004)

3 Ns Np Sg 35 13 252 36 161 55

Solomon and
Pearlmutter
(2004)

4 Ns Np Sg 188 47 517 155 255 107

Solomon and
Pearlmutter
(2004)

5 Ns Np Sg 456 54 552 199 147 206

Thornton and
MacDonald
(2003)

1 Ns Np Sg 287 64 49 42 7 0

Thornton and
MacDonald
(2003)

2 Ns Np Sg 504 60 77 52 25 0

Vigliocco and Nicol
(1998)

1 Ns Np Sg 196 36 56 56 0 0

Vigliocco et al.
(1996)

3 Ns Np Sg 270 36 126 33 93 0

Vigliocco et al.
(1996)

4 Ns Np Sg 199 25 64 64 0 0

Bock et al. (2012) 2 Ns Np Pl 388 92 32 32 NA 0
Bock et al. (2004) 4 Ns Np Pl 157 68 159 120 39 0
Bock et al. (2004) 5 Ns Np Pl 191 95 128 81 47 0
Brehm and Bock

(2013)
1 Ns Np Pl 1576 218 6 2 NA 4

Brehm and Bock
(2013)

2 Ns Np Pl 687 107 406 116 266 24
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Eberhard (1999) 1 Ns Np Pl 33 22 17 1 16 0
Eberhard (1999) 2 Ns Np Pl 62 30 68 15 53 0
Eberhard (1999) 3 Ns Np Pl 71 11 78 23 55 0
Foote and Bock

(2012)
1 Ns Np Pl 149 55 4 . . .

Solomon and
Pearlmutter
(2004)

1 Ns Np Pl 115 9 110 35 32 43

Solomon and
Pearlmutter
(2004)

2 Ns Np Pl 44 5 211 36 146 29

Solomon and
Pearlmutter
(2004)

3 Ns Np Pl 29 5 266 39 164 63

Solomon and
Pearlmutter
(2004)

4 Ns Np Pl 125 22 135 27 52 56

Vigliocco et al.
(1996)

3 Ns Np Pl 292 34 106 28 78 0

Vigliocco et al.
(1996)

4 Ns Np Pl 193 20 75 75 0 0

Bock et al. (2004) 5 Ns NI Sg 181 12 14 14 0 0
Bock et al. (2004) 5 Ns NI Pl 130 38 39 39 0 0
Bock and Eberhard

(1993)
3 Np NI Pl 5 69 22 4 18 0

Bock and Cutting
(1992)

1 Np Ns Pl 11 357 272 95 177 0

Bock and Eberhard
(1993)

3 Np Ns Pl 3 70 23 6 17 0

Bock and Miller
(1991)

1 Np Ns Pl 7 189 124 . . .

Bock and Miller
(1991)

2 Np Ns Pl 8 235 269 . . .

Bock and Miller
(1991)

3 Np Ns Pl 36 300 176 . . .

Bock and Miller
(1991)

2-r Np Ns Pl 8 270 234 . . .

Bock et al. (2006) 1 Np Ns Pl 29 771 352 352 0 0
Bock et al. (2006) 2 Np Ns Pl 2 208 366 102 264 0
Bock et al. (2012) 1 Np Ns Pl 16 318 178 82 96 0
Bock et al. (2012) 2 Np Ns Pl 88 887 49 49 NA 0
Bock et al. (2004) 1 Np Ns Pl 54 663 307 186 121 0
Bock et al. (1999) 1 Np Ns Pl 21 790 485 . . .
Eberhard (1997) 2 Np Ns Pl 34 1573 481 151 330 0
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Humphreys and
Bock (2005)

1 Np Ns Pl 4 131 297 93 204 0

Thornton and
MacDonald
(2003)

1 Np Ns Pl 15 297 88 80 8 0

Vigliocco and Nicol
(1998)

1 Np Ns Pl 15 217 56 54 0 2

Bock and Cutting
(1992)

1 Np Np Pl 9 370 261 91 170 0

Bock and Miller
(1991)

1 Np Np Pl 4 196 120 . . .

Bock and Miller
(1991)

2 Np Np Pl 1 325 186 . . .

Bock and Miller
(1991)

3 Np Np Pl 3 297 212 . . .

Bock et al. (2006) 1 Np Np Pl 11 713 428 428 0 0
Bock et al. (2006) 2 Np Np Pl 3 192 381 137 244 0
Bock et al. (2012) 1 Np Np Pl 18 305 189 97 92 0
Bock et al. (2012) 2 Np Np Pl 51 933 40 40 NA 0
Bock et al. (2004) 1 Np Np Pl 39 691 294 187 107 0
Bock et al. (1999) 1 Np Np Pl 8 708 580 . . .
Humphreys and

Bock (2005)
1 Np Np Pl 1 292 571 159 412 0

Thornton and
MacDonald
(2003)

1 Np Np Pl 21 340 39 35 4 0

Vigliocco and Nicol
(1998)

1 Np Np Pl 12 197 79 79 0 0

Appendix B

Calculation of PCFG grammar probabilities.
First, we estimated the frequencies of various NP structures in extant corpora:
0.02 NP → [N [PP P N]] (Biber, Grieve, & Iberri-Shea, 2009, fig. 9.2)
0.005 NP → [N [RC N V]] (Roland, Dick & Elman, 2007, also Biber et al., 2009, fig. 9.2)
0.05 NP → [D N] (Google Books: https://tinyurl.com/DET-NOUN)
Renormalizing, this gives us the following probabilities for structures in the grammar (with

the preposition and determiner elided):
0.27 NP → [N [PP N]]
0.06 NP → [N [RC N V]]
0.67 NP → [N]

https://tinyurl.com/DET-NOUN
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Our grammar distinguishes complex NPs (two words) versus simplex NPs (one word).
Combining the first two NP expansions above (and retaining the third) gives the following
probabilities:

0.33 NP → [NPC]
0.82 NPC → [N [PP P N]]
0.18 NPC → [N [RC N V]]
Estimates from COCA (Davies, 2008) suggest that two-thirds of English nouns are singular

(i.e., the singular-to-plural ratio is 2:1). In simple noun phrases and relative clauses, assume
that grammatical number follows this pattern.

0.44 S → [Ns Vs]
0.22 S → [Np Vp]
0.22 S → [NPCs Vs]
0.11 S → [NPCs Vp]
0.66 RC → [Ns Vs]
0.33 RC → [Np Vp]
Following Haskell et al. (2010), assume that 20% of the Ns Np items takes plural agree-

ment. Re-analyze these as plural-headed phrases (NPp). The overall probability of Ns Np is
0.059 (0.270 × 0.22). To reduce this by 20%, decrease its probability by 0.012 and increase
the probability of NPCp by 0.012.

0.208 S → [NPCs Vs]
0.122 S → [NPCp Vp]
Add a new rule to accommodate plural agreement with an overall probability of 0.012

(0.12/0.10).
0.10 NPCp → [Ns Np]
Combined, this leads to the following grammar:
0.44 S → [Ns Vs]
0.22 S → [Np Vp]
0.208 S → [NPCs Vs]
0.122 S → [NPCp Vp]
0.54 NPCs → [Ns Ns]
0.27 NPCs → [Ns Np]
0.18 NPCs → [Ns RC]
0.47 NPCp → [Np Ns]
0.24 NPCp → [Np Np]
0.10 NPCp → [Ns Np]
0.18 NPCp → [Np RC]
0.66 RC → [Ns Vs]
0.33 RC → [Np Vp]


