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Abstract

A simple and effective self-adjusting hybrid technique has been introduced to
develop a new conservative and monotonic advection scheme that exhibits very
low numerical diffusion of resolvable scales. The proposed scheme combines Bott's
area preserving flux form algorithm with an area preserving exponential interpo-
lating scheme, the use of either at any particular location being automatically con-
trolled by the local ratio of the nodal values involved in the approximation
process.

The performance of the combined scheme is illuminated in a series of one- and
two-dimensional linear advection experiments. The comparative test calculations
presented demonstrate that the combined scheme provides highly accurate solu-
tions both in regions where the transported flow variable is smooth and in the
vicinity of sharp gradients. Furthermore, the self-adjusting hybrid technique is
highly effective in removing numerical artefacts such as dispersive ripples and
simultaneously requires only an admissible additional computational effort rela-
tive to Bott's scheme. Thus, it is concluded that the combined scheme is well
suited for many atmospheric modelling applications where advection plays a sig-
nificant role.






1. Introduction

Advective processes are of central importance in geophysical fluid dynamics and
their treatment is crucial in numerical modelling of the transport of trace constit-
uents in atmospheric models. However, the numerical handling of advection is
plagued with difficulties. For instance, problems may arise when the transport of
positive definite scalar quantities, such as moisture, liquid water content and
chemical concentrations, is treated, since unphysically negative constituent val-
ues may be generated and/or strong spatial gradients can be smeared out or rip-
ples can be produced in their vicinitiy by the numerical scheme. Hence, the
numerical approximation of advective transport is a classical example of an exer-
cise in compromise, attempting here to reconcile the requirements of stability,
boundedness, accuracy, and algorithmic simplicity. The main conflict arises from
the need to retain or introduce some kind of stabilizing diffusive mechanism
against the desire to maximize accuracy by minimizing numerically diffusive
agencies. According to Rood (1987) the desirable physical and computational
attributes of a good advection algorithm should be and a good numerical scheme
should fulfil the following criteria, respectively:

*  Stability - the estimated solution should remain bounded as the integration
time extends to infinity.

* Mass conservation - the scheme should be conservative in the absence of
sources and sinks to assure that total mass is conserved.

*  Accuracy - this means that the calculated solution should closely represent
the actual solution of the differential equation, i.e. amplitude and phase
errors should be small.

®  Positive definiteness - this means that positive defined quantities should
remain positive through the whole advection process.

*  Monotonicity - this implies that the numerical scheme should not generate
any new maxima or minima, i.e. numerical solutions should be free from spu-
rious oscillations.

. Computational efficiency - this means that the highest possible accuracy
should be achieved for specified computational costs.

During the past decades, a wide variety of finite difference methods have been
suggested for the numerical solution of the advection equation and several inter-
comparisons have been published (e.g. see Woodward and Colella, 1984; Rood,
1987; and Miiller, 1992 for reviews). However, many of these transport schemes do
not adequately model the advection equation. For instance, the well known
upstream-scheme suffers from high numerical diffusion. The Lax-Wendroff-



scheme (Lax and Wendroff, 1960), is not as diffusive as the upstream scheme but
because of dispersion the solution is not ripple-free. The schemes of Crowley
(1968) and Tremback et al. (1987) which utilize the method of polynomial fitting to
develop higher order accurate schemes are far less diffusive than the upwind
approximation and the Lax-Wendroff scheme, but unfortunately, they cannot obvi-
ate the problem of unphysical negative mixing ratios. Recent advances in numeri-
cal techniques designed specifically for meteorological models can be placed in the
category of so-called positive definite schemes, i.e. schemes which do not allow
physically positive quantities to become negative. Smolarkiewicz (1983, 1984)
developed a conservative and positive definite scheme based on Crowley's second
order scheme which has found many applications over the last years. He intro-
duced corrective advection fluxes to reduce the truncation error caused by the
upstream method. Based on the integrated flux schemes of Tremback et al. (1987),
Bott (1989a, b) presented a conservative positive definite advection algorithm
which is computationally very efficient. His procedure consists in the normaliza-
tion and limitation of the advective fluxes employing specific limiters to avoid neg-
ative mixing ratios. Prather's scheme (1986), which is an extension of the slopes
scheme of Russel and Lerner (1981), uses a polynomial expression to represent
the tracer concentration within each grid box. In his scheme first order moments
(i.e. slope) as well as second order moments (i.e. curvature) of the distribution are
transported in addition to the cell average (i.e. zeroth order moments) to reduce
numerical diffusion. Prather also presents a method to assure sign preservation.
However, although these methods work quite well and are widely used in the
meteorological community, their applicability is mainly restricted to flows which
exhibit comparatively smooth gradients because they cannot control dispersive
ripples. Especially in regions of steep gradients of the transported quantity these
schemes display unphysical oscillations (i.e. the schemes produce over- and under-
shoots) which can be sufficiently serious to cause numerical instability.

A number of methods have been proposed to suppress these unphysical “wiggles”
(see e.g. Woodward and Colella, 1984; Rood, 1987), most of which are based on the
introduction of artificial diffusion. However, these schemes are highly empirical,
relying on experience to determine the level of diffusion coefficients for particular
applications to keep the rippling from occurring. Other, more systematic
approaches are based on the flux corrected transport (FCT) method of Boris and
Book (1973, 1976), Book et al. (1975) and Zalesak (1979). The basic idea of this
approach is to blend the results of two difference schemes together. FCT con-
structs the advective fluxes point by point as weighted average of a flux computed
by a monotonic, but diffusive, low-order scheme and a flux computed by a high-
order scheme. The criterion used to control the weighting or blending factors is to



insure that the high order flux is used to the greatest extent possible without
introducing ripples, and this constraint leads to blending factors which depend on
local conditions. The principal disadvantage of this flux blending is such, however,
that the contribution of the low-order scheme is much greater than needed for
avoiding spurious oscillations, especially in regions of steep gradients in highly
convective flows. Hence, a certain amount of additional numerical diffusion must
be tolerated which results in smearing out of sharp gradients. Based on the FCT
methodology Smolarkiewicz and Grabowski (1990) and Bott (1992) extended their
original positive definite approach to monotonicity preservation.

A third method, the Piecewise Parabolic Method (PPM), (Colella and Woodward,
1984; Woodward, 1986; Carpenter et al., 1990) uses cell averages to construct a
unique, monotonic parabola which represents the distribution of a dependent var-
iable within a grid box. This scheme is nonoscillatory by construction and thus
monotonicity preserving. The principal drawback of this scheme is its complexity
and the consequent great computational expense (see article by Miller (1992)).

In this paper we present a monotone version of the area preserving flux form
advection algorithm of Bott (1989a, b) using a simple but effective switching pro-
cedure. In contrast to the approach of Bott (1992), which utilizes the concept of the
FCT method to limit the total advective fluxes, we abandon to employ specific lim-
iters to achieve monotonicity. In principle our scheme combines Bott's flux scheme
with an exponential upstream-weighted interpolation, the use of either at any
particular location being essentially controlled by the local ratio of the nodal val-
ues involved in the approximation process. Hence, the Bott scheme is used in the
bulk of the domain in regions with smooth gradients; when the local curvature of
the advected variable exceeds a present value, however, the algorithm automati-
cally switches to exponential upwinding. Since we use exponential interpolation
functions the scheme is non-oscillatory by construction and the scheme introduces
implicitly and locally just enough diffusion into only those regions in which, other-
wise, oscillations would occur, and this introduction is automatically controlled
through a dynamic adjustment of the switch during the solution process. As a
result, the hybrid scheme is also appropriate to address problems with sharp gra-
dients and the scheme produces solutions which are found to be very close to those
of the Bott-scheme, but displaying no over- or undershoots.

The paper is organized as follows. In Section 2 we describe the details of the
numerical methodology. Numerical results of different advection experiments in
one- and two spatial dimensions are presented in Section 3 to illustrate the per-
formance of the resulting scheme. Finally, the conclusions are summarized in Sec-



tion 4.
2, Theory
2.1 The continuity equation

To illustrate the problem, we consider the continuity equation describing the
advection of a nondiffusive quantity in a flow field, i.e.:

%I :—V.(y \l]) s (1)

where v (%, t) is the nondiffusive scalar quantity, v = (u, v, w) is the velocity vector,
x = (x, y, z) is the position vector in a Cartesian coordinate system and t is the
time. For simplicity the proposed numerical solution of (1) will be derived only for
the one-dimensional case, namely,

dy _ d

With the assumption of a constant positive velocity, (2) represents the shape-con-
serving movement of an initial distribution toward positive x. Since the analytic
solution is known in this simple case, the numerical solution can be critically eval-
uated. The scheme is easily extended to two or three dimensions through the well-
known technique of directional splitting (Strang, 1968). In this technique, a multi-
dimensional problem is solved via successive, one-dimensional sweeps in each of
the coordinate directions.

Denoting the flux of y past the point x at time t with
Fx,t) =u -y , (3)
the continuity equation then reads

dy 0
or g e )

To solve (4) a “finite volume” technique is used which is based on control volume



averaged data. Hence, the continuity equation (4) is integrated in space from

Ax .
X—— to x+ — and in time from t to t + At to obtain the control-volume formu-
lation. The mass conservation principle applied to any finite control volume then
reads

At — -
<\|’>t+ A = (W), - Ax (Fp=Fp) (5)

where subscripts L and R denote the left and right edges of the associated control
volume, < > denotes control volume averages, and an overbar denotes a temporal
average, which are given by

Ax
x+7
<a>:ALx J. a dx
Ax
T
(6)
t+ At
Zz=l J a dt
At ’ ’

t

where a is any variable, Ax is the control volume width, and At is the time incre-
ment.

Thus, the time change of the area average of v in the control volume x - Ax/2 < x' <
X + Ax/2 during a time step At is equal to the amount of constituent transported
across the boundaries into or out of the grid volume.

2.2, Bott's flux scheme

Recently, Bott (1989a, b) presented an upstream biased Eulerian finite volume
advection scheme conserving mass, being positive definite and possessing small
amplitude and phase errors. To develop the numerical advective operator Bott uti-
lizes the methodology of Tremback et al. (1987). The advection procedure proceeds
in two steps. In the first step area preserving polynomials are used to calculate
the transport fluxes. In the second step specific limiters are employed to avoid



negative mixing ratios.

To derive the method the calculation domain is divided into a number of non-over-
lapping control volumes such that there is one control volume surrounding each
grid point. We adopt the notation that subscripts (i) refer to discrete locations in
the x-direction with constant grid spacing Ax, and superscripts (n) refer to discrete
times with time interval At. The discretized form of (5) then reads

Af _
1 _
yt =W - x Fiv12-Fici2 (N

where ;" is the value of y at grid point i after n time steps and F; , 1/9, Fi.1/2 are
the time averaged approximate y-fluxes through the right and left boundary of
the grid box, respectively. According to (3) and (6) we write F;,1/2 as follows

At
= 1 A ] !
Fi+1/2=A—tj[u-w(x,t+t)] Ay B
0 x=)c,.+7
(8)
At
_ 1 ~ n ' '
—AtJ.[u-\p(x—qu/z-t,t)] Axd[ ,
0 x=x‘+7

where { (%, t) denotes a piecewise profile representing the variation of y between
the grid points. With x' = x - u";,1/2 * t' (8) becomes

{ Xiv1/2
Fivi = 5 j i x,0)de . 9)

n
Xiv1/2— Wiv1,2 AL

Hence, the advective flux is proportional to the total mass of constituent trans-
ported through the right boundary of the grid box i during the time interval At,
which corresponds to the integral of { (x, t) extending from a point at a distance
u"i,1/2 * At upwind of x;, 12 t0 X;,1/9. Using the notations



) n
X =X U; - At
A05 = i ne i+1/2
(D) = » Gl ‘MAX(O’ i ]
and
i’ <At
n-— _ i+1/2
(9) could be written:
= Ax _
Fivi2= jWiv127Liv12l (10)
where
1/2
Li12= J. Y (x" (), dx" (i)
172-Ciip
(11)
172+ Ci1
Liia= | GeD,0 de e
-1/2

To evaluate the integrals in (11) Bott (1989a, b) applied the polynomial fit method-
ology developed by Crowley (1968) and Tremback et al. (1987). In this way, the

local y-distribution inside a grid box i is represented using an area preserving
polynomial of order 1,

[
Y@, = @) = Y a2 (12)
k=0

The coefficients ani’k are functions of the y-values at grid point i and at neighbor-
ing grid pointsi* 1,...,1+[/2 and are determined from the requirements that at
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Xit1, -+ + » Xi4 1 /2 the values of y"; | (X'(1)) agree with y"j41, . . ., W 11/ and that the
area covered by y"; ] (x'()) in grid box i equals y"; « Ax. Table 1 lists values of a";
for [ =2 and [ = 4 (after Bott, 1989b). Substitution of (12) into (11) yields the inte-

grals I*; 10 and I';, /0, respectively (superscript n ommitted):

+ — o bk___.[ _ _ + k+1i|
[i+1/2,l z (k+1)2k+1 1 (1 2Ci+1/2)

(13)
!

a.
- i+1,k k - k+1
I = — 2 (-1)*- |1- (1—2cC, ) J
i+1/2,1 Z k+1 [ i+1/2
poo (k)2

Finally, positive definitness of the scheme is obtained in two steps by introducing
the following nonlinear flux limiters. First, the flux F;, 1/ should have the same
sign as the advecting velocity uj,1/2, otherwise it will be put to zero.

Table 1: Coefficients a; for the 1 = 2 and 1 = 4 versions of Bott's area-
preservring flux from algorithm (after Bott, 1989b).
1=2 1=4
T
24 (Vi ~20vt Y )
—116y; , +9%y; _,)
1 1
3,1 | 3 (¥ 7V ) a8 Wit 3V T3 Y )
1
a; 9 15 (3, o+ 36w, | — 66y, + 36y,
2 (V1 720y y)
4,3 ' 7 (Vo= 2V t2Y; v o)
T
2, 4 - 2 Wia =4V POV 4yt )

Second, the flux F;, 5 is limited in such a way that the total amount of outflux
from a grid box i during a time step At is limited by y"; Ax/At. Combining these
restrictions the flux F;, 1/ can be written in the form

- Ax ~+ % -
Fiv120= E[Bi+1/2' 1i+1/2,1_Bi+3/2'1i+1/2,lJ (14)
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with
Iiv 12,1 = MAX U}, 1, 1,0)
Iiy1,0,1 = MAX U], 172,00 (15)

~ 4 ~
Bi+1/2 = MIN(I,W?/MAX(IH_1/2,l+li_1/2,l, £))

where ¢ is a small value, e.g. ~ 101® which has been introduced to avoid the
numerical unstable situation with i,:l /2,1+; i—1s2,1 = 0 . Similar equations for
F,.1/2 are obtained by replacing i with i - 1 in the equations above. For a more
detailed description and discussion of the scheme and of the flux limitation, the
reader is referred to the original papers of Bott (1989a, b).

2.3. The exponential upwind scheme

The exponential upwinding interpolation concept is based on previous work of
Spalding (1972). In this approach piecewise exponential profiles are used to
express the variation of y between the grid points. The exponential interpolation
function in grid box i may be uniquely described by three coefficients (A;", B;",
D;") of the following equation:

Y@, 0 =y p () = Al +Blexp(D} X (D), (16)

where x'(i) is again a normalized grid coordinate. To determine the coefficients A;",
B;" and D;" information from grid point i and two neighboring grid points is used
demanding that at x;;; the values of y; g" (x'(1)) agree with y;+;" and that the
integrated area beneath each interpolation curve is preserved. Thus, the resulting
set of defining equations will be (superscripts n ommited henceforth except where
confusion is possible):

VY, | =A;+B; exp(-D)) (17.a)
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B; D; D,
v, = A,’"‘ﬁi (exP(T) —exp (_7)) (17.b)
VY, 1 = A;+Bexp(D)) . (17.¢)

Combining (17.a) and (17.c) yields

(W= V) - exp (D))

A=, - —epD) —exp (DY (18.a)

B. = _ Vier" Vi1 (18.b)
b exp(D;) —exp(=D;) ~ '

The substitution of (18.a) and (18.b) into (17.b) leads to a nonlinear equation for D;

V.-V exp (=D;)
- + D, —
(%H—‘Iﬂ-_l GJC[)(DE) _e—xp(_Di)j :
(18.¢)
D. D

1

exp (5) —exp (—%)
exp(D;) —exp (-D))

=0

which can easily be solved using Newton's method. In this manner, the coefficients
A;, B; and D; of the interpolation curve may be obtained from (18.¢), (18.a) and
(18.b). Finally, substitution of (16) into (11) yields the integrals 11,10 and I';, /9,
respectively:

. At B; D; Pi ol ot
i+1/28 = 4 Civ12% exp(=) —exp (5 (1-2C;, 1))

Livippe= A1 Civinnt (19)
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B
D

i D. D.

1 1 - 1
l.+1|:exp (— 12+ (1 _2Cl+1/2)) _exp(_ 12+> ):|
1+

+

It is important to note that due to the local exponential curve fitting procedure the
advection algorithm in this form is well suited for accurately representing sharp
gradients. Since the interpolation formula is monotonic by construction the advec-
tion procedure ensures (especially in the vicinity of localized sharp interfaces)
that positive quantities will remain positive and that sharp gradients will be han-
dled correctly without the generation of spurious oscillations. The main disadvan-
tages of the exponential scheme relate firstly to the high computational costs
associated with the solution of (18.a) - (18.¢) and with the evaluation of (19) and
secondly to the inability of the scheme to treat non-monotonic regimes (i.e. local
extrema of the advected variable).

2.4. The combined scheme

As already stated in Section 2.2 Bott's flux scheme has several attractive proper-
ties: the method is mass conservative, positive definite, has small phase and
amplitude errors and is computationally very efficient. However, the simulation of
sharply varying gradients - especially in situations with non zero background val-
ues of the transported quantity - can result in unphysical oscillations, which
although localized could cause difficulties in non-linear problems.

To eliminate this deficiency of the scheme and to insure monotonicity we use a
variant of Harten and Zwas' (1972) self-adjusting hybrid technique. The basic idea
is to identify regions where monotonicity might be violated and then keep the rip-
pling from occurring. This goal is achieved by combining Bott's accurate scheme,
which is used in the smooth regions of the transported quantity, with the exponen-
tial scheme which is used in regions of sharp gradients (hence, the name hybrid is
indicative of a combination of two different methods). The use of either of these
two schemes at any particular location is controlled by a switch which automati-
cally (i.e. self-adjusting) switches from one scheme to the other. Since the expo-
nential interpolation functions are monotonic by construction no specific flux
limiters have to be employed to avoid spurious oscillations near sharp gradients.
Thus, we propose to construct the hybrid scheme using a combination of the
unlimited Bott-scheme and the exponential scheme. Formally we write the advec-
tive y-flux through the right boundary of the grid box i as follows:
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i Ax + +
Fivi2= 5 VA=8) Ly 04 S Lk 10, E

(20)
—(A=8, ) Liv1 0 Sisiliv12,E]

where Iii+1/2,1 and Iii+1/2,E denote the area integrals obtained using the polyno-
mial- and exponential fitting technique, respectively, defined in (13) and (19). The
dimensionless quantity S;, which will be called the “automatic switch”, admits
only two states and should have the property

= 1 1in “danger zones*
Si =1 0 in “smooth zones* - (21)

In order to identify the “danger zones” where monotonicity might be violated we
introduce the so-called “monitor functions” mi(l), mi(z) and mi(3) defined by

m; " = =
Vieg1~ Vi1 T8
(2) ]“fzf —a;
T e, o e
ﬂai,l ta;
I=4 =2
(3) ‘“z‘,z Y
N T R
Q‘“i,z Gaip

where € ist a small number, e.g. ~10'15, and aﬁl , afj1 , af:f , af-=22 denote the coef-

ficients a;y for the polynomials of order 1 = 2 and 1 = 4 of Bott's area-preserving
flux form scheme listed in Table 1. Hence, the monitor function m;(1) measures the
local curvature of the advected variable and the monitor functions m;'?) and m;®
are quantities that, in some way, give a rough estimate of the local spatial trunca-
tion error.

For convenience two additional switches Si(l) and Si(z) are defined:
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1 F [ <m{Y <1) AND
1
s - ((m{;jlgUAND ((,,11)1_(+)1 <1)) }(()f
[(mi—1=1)0R(ml-+1=1)0R(ml.+1=1)]
0 otherwise
(23)
2 2 3 9

o _ b T [ 2o ) ]
] -0 otherwise

which are combined according to a locical OR to yield the automatic switch S;,
such as

(1) (2)
2 St. +Si

; , (24)

max stV +52, 1)

which constitutes the modification criterion for deciding wether to use Bott's
scheme or the exponential upwinding scheme. Hence, according to (23) and (24)
this non-linear switch satisfies the conditions imposed by (21). S; equals zero in
regions with smooth varying gradients across a nodal point (this will account for
the bulk of the flow field) but S; equals one in regions where localized sharp tran-
sitions are found. Finally, it is important to note that we have coded the exponen-
tial upwinding scheme in a way that it degenerates to a ordinary first order
upwinding scheme in non-monotonic regimes (i.e. for mj(l) > 1) so that the formu-
lation given by (20) is valid for any arbitrary grid point in the computational
domain.

In (23) ti(l) and ti(z) are threshold values for which we have chosen
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(D 035

(2) _ ( 035 IF m{"<1

25
0.12 IF m">1 (25)

which are found to be optimal in the sense that the combined scheme adds implic-
itely and locally just enough diffusion to suppress unphysical “wiggles”.

The results of the numerical advection experiments presented in Section 3 are
obtained using Bott's scheme in the version 1 = 4, abbreviated. The method to use
the abbrivated from of Bott's scheme was proposed by Miiller (1992). This tech-
nique requires to construct a fourth order polynomial to provide a local represen-
tation of the dependent variable within a grid box. However, only coefficients of
the polynomial up to order two are used for actually computing the fluxes. In this
way the computational effort can be reduced significantly even though the results
are quite similar compared to order four fitting (Miiller, 1992).

The extension of the one-dimensional scheme to two dimensions is done with the
directional splitting technique (Strang, 1968), which requires to make a series of
one-dimensional calculations in the different coordinate directions. Hence, a two-
dimensional time step of length At consists of a sequence of four one-dimensional
advection substeps, each of length At/2. To make the calculation symmetrical with
respect to x and y a x-y-y-x-sequence of sweeps is performed, each one using the
output of the previous sweep as input data. Finally we note that in the deforma-
tional flow field test with

ou v
dx 9y

(Section 3.3) we take into account the effects of compressions and rarefractions
which occur during the one-dimensional advection substeps. In this way we
improve the accuracy of the directional splitting approach considerably, especially
in situations with non-zero background values of the transported quantity.
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3. Numerical results

In this section numerical results will be presented to examine the performance of
the newly proposed combined flux scheme algorithm. The results obtained with
the combined scheme will be compared with Bott's (1989a, b) scheme (version 1 =
4), abbreviated), which will serve as a reference.

3.1. One-dimensional experiments

We first consider one-dimensional advection in a constant velocity field. The calcu-
lations are performed in a 64-point periodic domain with Ax = 1. The four types of
test problems that are used to evaluate the accuracy of a numerical scheme are
the single Fourier mode function, the square wave function, the triangular func-
tion and the ramp function which are superimposed on a constant background
value of yg = 100. Each of these functions helps to illustrate some strengths and
limitations of a numerical method. The numerical results presented below are
obtained with constant Courant numbers

u- At

of C =0.1,C = 0.4 and C = 0.8 after Nt = 1920, Nt = 480 and N = 240 iterations,
respectively, corresponding to three revolutions arround the 64-point periodic
domain. As a measure for the total error of a numerical method we use the so
called Area Ratio (AR) which is the ratio of the total area of the deviations from
the exact solution and the total area and is given by

PR
Area Ratio = . (26)

2“"? - "’B_‘ ’

i

where the summation is made over all grid-points; y° and \VNT are the values of
at grid box i at initial time and after n = Ny time steps (i.e. after three revolu-
tions), respectively. The constant background value is denoted by yg. This meas-
ure of accuracy turns out to be very usefull because the AR gives an estimate of
the shape preservation of the numerical solution.
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Figure 1 depicts the analytical solution as well as the numerical results of the
advection of the single Fourier mode of wavelength 16 Ax, which are obtained with
the combined scheme (a) and with Bott's scheme (b) (background values have been
removed in this Figure and in the following). Obviously, both schemes yield a good
agreement with the analytical solution and produce low amplitude and phase
errors. Thus, this experiment provides a demonstration of each schemes' ability to
transport well-resolved, smoothly varying functions over large distances.

The second example is the advection of the square wave function. This function
reveals a numerical method's capability to handle Gibb's oscillations that arise in
the vicinity of discontinuities. As shown in Figure 2b, Bott's scheme generates dis-
persive ripples which distort the distribution. The combined scheme (Figure 2a)
broadens the distribution, but, as a result of monotonicity, exhibits no spurious
oscillations, i.e. it generates diffusive rather than dispersive errors.

The third test is the advection of a triangular distribution which should illustrate
a numerical methods' capacity to treat sharp peaks and extremum points. As it is
seen in Figure 3b, Bott's scheme performs quite well. Dispersive errors are still
present but are much smaller in amplitude than for the case of the square wave.
In Figure 3a the same problem has been solved using the combined scheme. In
this situation, no phase errors and dispersive ripples are visible and the numeri-
cal solution is almost identical to the exact solution, except at the lower corner
points and in the vicinity of the extremum.

In the final example of one-dimensional advection, a ramp like distribution is
transported three revolutions around the 64-point periodic domain. This experi-
ment gives information about each schemes' capability to handle asymmetric
functions. As in the case of the square wave function, Bott's algorithm (Figure 4b)
provokes tremendous dispersive ripples in regions with strong spatial gradients of
the transported quantity. In contrast, the solution obtained with the combined
scheme remains free of spurious oscillations (Figure 4a). The slope of the ramp
function is well represented in regions where the function is only smoothly vary-
ing, but the combined scheme tends to broaden the distribution in the vicinity of
the localized sharp transition zone by spreading the gradient over several grid
boxes.

The accuracies in terms of the Area Ratio for Bott's flux scheme and for the com-
bined flux scheme for the four test functions and for various Courant numbers are
listed in Table 2. It appears that both schemes exhibit errors of nearly the same
order of magnitude with area ratios in the range of 0.01 - 0.12. However, as
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already stated, Bott's scheme produces mainly dispersion errors which lead to a
lack of monotonicity and which can severely disort the distribution especially in
flows where strong gradients or shocks develop. In contrast, as a consequence of
the monotonicity constraint, the solutions of the combined scheme are free from
Gibb's oscillations and this scheme generates only small diffusive errors. As a
result, the combined scheme produces solutions which are found to be very close to
those of Bott's scheme, but displaying no over- or undershoots.

Finally, we note that our results clearly demonstrate that a positive definite con-
straint is less stringent than monotonicity. Moreover, in case of non zero back-
ground values of the transported quantity it turns out that Bott's flux limiters are
almost inactive. The reason for this is that the limiter is specifically constructed to
eliminate negative values of the transported quantity by demanding that the total
amount of outflux from a grid box 1 during a time step is limited by the available
amount of y in grid box i at time n. Hence, in the case of zero back ground values
the scheme performs quite well by simply cutting away negative values, while in
the case of non zero background values the procedure fails to work and the limiter
therefore, additionaly allows the generation of new extrema around the level of
the background value.

Table 2: Area Ratios for Bott's flux scheme and for the combined flux scheme
after three revolutions around the 64-point periodic domain for
various Courant numbers

Area Ratios
Nﬁziigal Fourier Square Triangle Ramp
Bott (C = 0.1) 5.87 « 102 |0.1194 2.82+102 |0.1195
Combined (C =0.1) |4.84+102 [9.23.102 [248+102 |0.1038
Bott (C = 0.4) 2.06 » 102 |0.1018 2.13 + 102 [9.99 « 1072
Combined (C =0.4) [9.88+ 103 [9.06 102 [2.15+102 |9.23+ 102
Bott (C = 0.8) 1.00 102 | 797102 |[1.47+102 |7.78 102
Combined (C =0.8) |9.06 « 103 |7.64+102 [2.09+102 |7.89+102
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3.2. Two dimensional rotational flow field test

In this section we present results of several two dimensional rotational flow field
tests identical to those reported by Smolarkiewicz (1982), in which a prescribed
distribution undergoes solid-body rotation counterclockwise around a 100 x 100
zone grid with Ax = Ay = 1. The velocity field is given by

v = QX (r—r,) 27

with a constant angular velocity of 1Q1 = 0.1 s'1 and a rotation center located at r,
= (50, 50). The integrations are carried out with a time step of At = 0.1 so that 628
time steps will effect one complete revolution about the central point. The maxi-
mum Courant number in the domain is 0.7. As initial conditions we use three dif-
ferent test functions: the cone, the cube and the grooved cylinder which are
superimposed upon a constant background value of yg = 100.

In the first experiment the cone is initialized with a base radius of 15 Ax and a
maximum height of yyax = 3.87 at (%, y) = (50, 75). Figure 5 shows (a) the initial
distribution and the final distribution after six full rotations (3768 time steps)
obtained with Bott's flux scheme (b) and with the combined flux scheme (c). As
expected, both schemes exhibit very good shape preserving characteristics. Bott's
scheme leaves the maximum amplitude of the cone nearly unchanged but creates
new extrema in the distribution at the base of the cone. In contrast, the combined
scheme produces no over- and undershootings but reduces the maximum slightly
with ypax™ finally reaching 93.5% of yypax®.

A more severe test problem is the rotation of a cube of unit height with lateral
lengths of 20 Ax centered at (%, y) = (30, 70), (see Figure 6a). Figure 6 presents a
comparison of the results of the two schemes for six full rotations of the cube.
Bott's scheme generates dispersive errors which severely distort the distribution.
In contrast, the combined scheme preserves the shape of the cube very well but
tends to broaden the distribution somewhat. However, no oscillations occur nei-
ther at the base nor at the top of the cube.

The last calculation is performed with a rather severe test function similar to that
proposed by Zalesak (1979): a cylinder of unit height centered at (x, y) = (70, 50)
with base radius 15 Ax containing a groove five zones wide. The width of the
bridge connecting the two halves of the cylinder is ten zones. The initial condition
and the numerical results for both schemes after one revolution are shown in Fig-
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ure 7. Several features are worth noting. As in the case before, Bott's scheme pro-
duces spurious oscillations as a result of large dispersion errors. The solution
obtained with the combined scheme resembles the initial conditions quite good.
However, the groove and the bridge are both eroded, i.e. the discontinuities which
were originally 1 Ax wide are now smeared over several grid zones leading to a
partial loss of the bridge connecting the two halves of the cylinder.

3.3. Deformational flow field test

In this section the combined scheme was tested in the deformational flow field
given by Smolarkiewicz (1982). The problem is the advection of a prescribed dis-
tribution (the same cone as in Figure 5a superimposed upon a constant back-
ground value of yg = 100 centered at (x, y) = (50, 50)) in a flow field defined by the
streamfunction:

3 . X Ty
X(x,y) = 80s1n(2—5) .008(2_5) (28)
The velocity components (u,v) are given by
= 24 = o (29)
U = —a Vv = a :

Obviously, the given X-distribution yields a strong deformational flow field con-
sisting of sets of symmetrical vortices, each vortex occupying a square with lateral
lengths of 25 grid zones. As already mentioned by Smolarkiewicz (1982) this flow
field could not be regarded as typical for atmospheric situations, but it serves as a
stringent test for the numerical stability of a numerical scheme.

Recently, Staniforth et al. (1987) presented the analytical solution of this problem.
They pointed out that the length scale of the exact solution diminishes as a func-
tion of time. Hence, in the context of the evaluation of the performance of a
numerical scheme it appears convenient to compare the numerical solution with
the exact one only for short integration times in a quantitative manner, whereas
for longer integration times the numerical scheme should be evaluated on the
basis of stability.

Figures 8a-d depict the numerical short term solutions (i.e., for integration peri-
ods, when the space scales of the analytical solution are still resolvable by the
numerical grid mesh) obtained with the combined scheme with a time step of At =
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0.7 after 19, 38, 57 and 75 iterations (background values removed). Since in the
deformational flow field test Bott's scheme produces solutions which are very close
to those obtained with the combined scheme (except that Bott's scheme yields lit-
tle underschooting values (about 5% of the initial maximum) in the vicinity of
sharp gradients), their presentation will be ommitted here. The distributions cal-
culated with the combined scheme quite closely resemble those of the analytical
solution presented in Figures 3a-d of Staniforth et al. (1987). After 19 steps the
numerical solution is almost indistinguishable from the exact one. As time
evolves, the distribution inside each vortex spirals around the vortex center. As a
result, the flow develops its strongest gradients at vortex boundaries, where the
solution becomes almost vertical. After 38 and 57 iterations the numerical solu-
tion quite closely matches that of the exact solution, although the gradients devel-
oping at the boundaries of each vortex are not as steep as in the exact solution.
After 75 time steps these gradients are nearly completely eroded at the upper
boundaries of the central vortices. However, the numerical solution still faithfully
represents the main features of the analytical solution, especially it maintains the
right/left symmetry as it should. Finally we note that for long time integration
periods, which are beyond the limit at which any numerical method (which uti-
lizes our mesh-spacing) is capable of representing all space scales of the exact
solution, the combined scheme generates no numerical instabilities but produces
bounded solutions. This result differs from Bott's (1989a) findings who reports
that his long term solution produces slight numerical instabilities.

To conclude the discussion of linear advection, one point is worth noting. We have
demonstrated that the combined scheme performs quite well on linear advection
problems and could be regarded as superior relative to Bott's scheme. However,
this gain in accuracy must be weighted against computational costs. This issue is
addressed in Table 3 where we have listed CPU-times of the combined scheme rel-
ative to Bott's scheme for the different test problems. Both schemes are com-
pletely vectorizable coded. It turns out that one has to pay only a relative low price
for the highly improved performance of the combined scheme. The combined
scheme is less than twice as expensive as Bott's scheme. Since Bott's scheme
requires about three times as much CPU time as the usual upstream scheme, the
combined transport algorithm appears quite suitable for a large variety of applica-
tions in atmospheric modelling and thus gives a good balance between accuracy
and efficiency.
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Table 3: CPU time requirements (on a CRAY 2S) for the combined scheme.
CPU time is given relative to Bott's scheme (version 1 = 4, abbre-
viated) for different advection experiments after 3768 time steps.

Test Relative CPU-time
Rotating cone 1.61
Rotating cube 1.65
Rotating cylinder 1.72
Deformational flow field 2.03
4. Conclusions

A simple and effective self-adjusting hybrid technique has been introduced to con-
struct a new conservative and monotonic advection scheme which is computation-
ally very efficient. In principle the scheme combines Bott's (1989a, b) area
preserving flux form algorithm, which is used in smooth regions of the flow, with
an area preserving exponential interpolating scheme, which is used in regions
where monotonicity might be violated (i.e. in regions of sharp gradients of the
transported quantity). The use of either of these two schemes at any particular
location is controlled by a switch which - depending essentially on the local curva-
ture of the advected variable - automatically switches from one scheme to the
other. Since the exponential interpolation functions are monotonic by contruction
no specific flux limiters have to be employed to avoid rippling.

Using standard linear advection test, we evaluated the accuracy of the combined
scheme relative to Bott's scheme. The comparative test calculations presented
demonstrate the combined schemes ability to accurately transport well-resolved,
smoothly varying functions over large distances. Furthermore, the combined
scheme is also well suited to address problems with sharp gradients and returns
solutions which are virtually as good as those predicted by Bott's scheme in
respect of capturing step gradients, but without the deficiency of the latter to pro-
duce physically unrealistic and often serious spurious oscillations. Taken together,
the combined scheme is mass conservative, has excellent amplitude and phase
characteristics, exhibits very low numerical diffusion of resolvable scales, obviates
numerical artefacts such as dispersive ripples and is numerically relatively inex-
pensive. Hence, it appears that the combined scheme is well suited for many
atmospheric modeling applications and its use is especially recommended for
highly convective flows where advection plays a significant role to assure that
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numerical models reflect the physics of the system rather than the inaccuracies of
the numerical methods.
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 6:
Figure 7:

Figure 8:

Solution of the one-dimensional linear advection equation in which a
single Fourier mode of wavelength 16 Ax superimposed upon a con-
stant background field of yg = 100 is advected to the right in a 64-
point grid with periodic boundaries. Shown are the analytical solu-
tion (full line) along with numerical solutions (dashed lines) obtained
with Bott's flux scheme (version 1 = 4, abbreviated) (a) and with the
combined flux scheme (b) after three revolutions for Courant num-
bers C = 0.8, C = 0.4 and C = 0.1, corresponding to 240, 480 and 1920
time steps, respectively. Background field has been removed.

As in Figure 1, except for the square wave.
As in Figure 1, except for a triangular wave.
As in Figure 1, except for a ramp function.

Solution of the two-dimensional linear advection equation in which a
cone superimposed upon a constant background field of yg =100
undergoes solid body rotation counterclockwise in a 100 x 100 zone
grid with cyclic boundary conditions. Shown are the initial condition
(a) along with numerical solutions obtained with Bott's flux scheme
(version 1 = 4, abbreviated) (b) and with the combined scheme after
six full rotations, corresponding to 3768 time steps. The maximum
Courant number is 0.7. Background field has been removed.

As Figure 5, except for a cube.
As Figure 5, except for a grooved cylinder.

Solution of the two-dimensional linear advection equation in which a
cone centered on the center of a 100 x 100 point grid domain superim-
posed upon a constant background field of yg =100 is exposed in a
deformational flow field. Shown are numerical results of the deforma-
tional flow field test obtained with the combined scheme with At = 0.7
after 19 (a), 38 (b), 57 (c) and 75 (d) iterations. Background field has
been removed.
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