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Priming cardiovascular exercise 
improves complex motor skill 
learning by affecting the trajectory 
of learning‑related brain plasticity
Nico Lehmann 1,2*, Arno Villringer 1,3 & Marco Taubert2,4

In recent years, mounting evidence from animal models and studies in humans has accumulated 
for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE 
and motor learning may induce highly dynamic structural and functional brain changes, but how 
both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects 
receiving CE would show a different pattern of learning‑related brain plasticity compared to non‑CE 
controls, which in turn associates with improved motor learning. To address this issue, we paired CE 
and motor learning sequentially in a randomized controlled trial with healthy human participants. 
Specifically, we compared the effects of a 2‑week CE intervention against a non‑CE control group 
on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. 
Structural and functional MRI measurements were conducted at regular 2‑week time intervals to 
investigate dynamic brain changes during the experiment. The trajectory of learning‑related changes 
in white matter microstructure beneath parieto‑occipital and primary sensorimotor areas of the 
right hemisphere differed between the CE vs. non‑CE groups, and these changes correlated with 
improved learning of the CE group. While group differences in sensorimotor white matter were already 
present immediately after CE and persisted during DBT learning, parieto‑occipital effects gradually 
emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray 
matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful 
link between structural and functional plasticity. Collectively, these findings may lead to a better 
understanding of the neural mechanisms mediating the CE‑learning link within the brain.

Mounting evidence shows that cardiovascular exercise (CE) facilitates neuromotor function and adaptive plas-
ticity in the brain’s motor  circuitry1,2. In the healthy brain, CE may aid to maximize motor potential in terms 
of skill acquisition and retention. For example, at the behavioral level, acute bouts of CE are robustly related 
to improved motor memory  consolidation3,4, whereas CE interventions lasting several days or weeks associate 
with steeper learning curves in  rodents5 and  humans6. In the elderly, regular engagement in CE promotes the 
maintenance of motor functions and is thus an important factor supporting healthy  aging7,8. Likewise, CE has 
also been shown to contribute to improved neuroprotection and rehabilitation outcomes in several neurological 
disorders like Parkinson’s9 or multiple  sclerosis10,11, to name but a few.

Not surprisingly, recent years have witnessed an increased interest in the neurobiological phenomena through 
which CE improves motor functions. Understanding CE-mediated functional and structural brain changes and 
their behavioral consequences is important to identify relevant central nervous system biomarkers that may 
help to guide the optimization of CE  parameters12,13, and of efficient CE-mimicking treatments as  well14–16. A 
proposed mechanistic explanation for the seemingly broad transfer of CE training on motor functions, sometimes 
referred to as “motor priming”17, is that CE (“task A”) induces plasticity within neural circuits that are directly 
relevant for the acquisition or performance of another behavior (“task B”)1,12,18,19. For example, short-term plas-
ticity studies in humans indicate that an increase of certain humoral parameters like lactate and  BDNF20, altered 
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cortical  excitability21,22, downregulation of GABA-inhibition (short-interval intracortical inhibition) in  M123 or 
decreased movement-related beta  desynchronization24 correlate with behavioral measures of motor learning. 
Although there is an ongoing debate surrounding the question of “optimal” exercise regimens in terms of neu-
roplasticity, previous studies in animals and humans seem to indicate that CE interventions of comparably short 
duration (i.e., days to weeks) and sufficiently intense to strain the anaerobic-lactic energy system are efficacious 
to trigger changes in neural activity, plasticity-related genes, neurotrophins, and neuronal and non-neuronal 
tissue  structure1,2,25.

A by and large neglected area in the research on CE-induced transfer mechanisms on motor functions is the 
use of natural multi-articular movements as endpoints, i.e. of tasks involving the body axis and a comparably large 
range of motion in several joints (multiple degrees‐of‐freedom)26,27. Mastering of tasks with high coordinative 
complexity typically requires several sessions of  practice26,27, and the learning process itself is accompanied by 
changes of the brain’s functional and structural network  architecture28–31. The few studies aiming at improving 
learning of complex motor skills with acute CE showed promising results especially in neurologically impaired 
 subjects32,33, but this effect was markedly less pronounced in healthy  individuals34. Therefore, alternative CE 
protocols like training over longer time periods before motor skill learning might be an interesting alternative 
to acute  CE1.

We recently reported the results of a randomized controlled trial where we evaluated the effects of two weeks 
of CE against an inactive control condition on subsequent learning of a well-established dynamic balancing 
 task6. We found that subjects receiving CE showed a superior learning rate compared to controls. Furthermore, 
CE-induced increases in cerebral blood flow in frontal brain regions and changes in white matter microstructure 
in frontotemporal fiber tracts mediated the effect of CE on motor learning. While this study demonstrated the 
transfer potential of CE-induced brain plasticity, we were not able to address the question whether priming CE 
did also affect the dynamics of learning-dependent neuroplasticity. In this regard, Kleim and Jones outlined the 
intriguing hypothesis that CE might induce “plasticity within one set of neural circuits to promote concurrent 
or subsequent plasticity”12. This possibility is especially interesting with respect to the DBT paradigm, for it has 
been shown that functional and structural properties of the brain and their practice-induced reorganization 
covary with DBT performance and  learning30,31,35,36.

Extending our previous  work6 we here focus on tracing behaviorally-relevant functional and structural plas-
ticity during 6 weeks of DBT  training30,31,35 that follows after a 2-week CE intervention using multimodal MRI 
(see Fig. 1, for experimental design). We hypothesize that subjects receiving CE show a different pattern of brain 
plasticity compared to controls, which in turn associates with improved DBT learning in the former group. 
In principle, there are two not mutually exclusive scenarios by which CE-mediated mechanisms might affect 
subsequent learning. Based on the assumption that structural constraints imposed by the brain determine the 
brain’s current range of  functioning19,36,37, CE might build up a “structural repertoire” in the gray and/or white 
matter that extends the momentarily achievable performance potential of the individual. Possibly, this scenario 
is accompanied by between-group differences in the trajectory of functional activity changes during  learning19,38. 
For instance, it has been suggested that adaptive and maladaptive plasticity in structural brain networks directly 
influences functional spontaneous brain  activity39. Alternatively, CE might trigger processes that are not neces-
sarily observable with MRI post-CE (e.g., signalling and release of growth factors like  BDNF40–43 or  VEGF44), 
nevertheless manifesting themselves in altered temporal dynamics of experience-induced brain plasticity later 
 on12,18. By tracing functional and structural brain changes during DBT learning relative to the brain’s state prior 
to CE, we are able to determine which of these mechanistic hypotheses better conforms with the observed data.

Figure 1.  Overview of the experimental design. Subjects were randomly assigned to either 2 weeks of 
cardiovascular exercise (CE) or no exercise (life as usual)6. White squares depict seven training sessions subjects 
in the CE group engaged in. After the intervention period, both groups learned a complex dynamic balancing 
task (DBT) over six training sessions (TS) separated by 1 week, respectively. MRI measurements to assess CE- 
and DBT-related neuroplasticity were conducted before and at regular time intervals during the  study6,30,31,35. 
MRI MRI measurement [number], TS DBT training session [number].
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Results
Sample characteristics and analysis of behavioral data. In the following, we recapitulate the most 
relevant sample characteristics and behavioral results that were already published in Ref.6. Please also see the 
online Supplementary Data file containing demographic, anthropometric, and aerobic fitness data of the sample. 
In brief, no significant between-group differences regarding demographic, anthropometric and aerobic fitness 
variables were detected before the experiment started. Likewise, we found that groups were comparable in terms 
of their extra-study physical activities (as assessed with the IPAQ-SF45) as well as regarding their performance in 
three standardized posturographic tests (see Ref.6, Table 1).

In our previous paper, we also reported that DBT performance significantly increased from the first to the 
last training session in both groups. Baseline DBT performance did not differ between groups, whereas a sig-
nificantly steeper slope of the learning curve (adjusted for initial DBT performance, age, and sex) was observed 
for the group receiving  CE6. Importantly, there was no significant group-by-time interaction with respect to 
general standing balance as assessed with posturography, suggesting that the CE intervention specifically targeted 
the neural mechanisms of learning the  DBT6. Neither the temporal progression of performance within single 
training sessions (online  learning46) nor motor skill  consolidation47,48 differed between groups (Supplementary 
Tables 1 and 2).

White matter plasticity during learning mediates motor learning differences between CE and 
controls. In our previous study, CE-induced functional and structural plasticity predicted the between-group 
differences in motor  learning6. However, the relevant plasticity processes occurring during the learning phase 
remained unclear. To address this issue, we calculated change images between the pre-intervention baseline MRI 
measurement (MRI_1) and the MRI measurements during motor learning (MRI_3, MRI_4, MRI_5), separately 
for each imaging modality (cf. Fig. 1). This step resulted in three images per modality signifying change from 
baseline that were further analyzed using the nonparametric combination (NPC) framework, which combines 
multiple pieces of evidence collected on the same experimental units to yield a style of meta-analytic  result49–51. 
Specifically, across all intervals of the learning phase, we aimed to identify clusters of voxels whose changes did 
(1) differ between groups, and (2) correlate with concurrent behavioral changes in the DBT (Fig. 2). Put another 
way, we looked for a reproducible pattern of results consistent with the assumption that structural and/or func-
tional changes of the brain during learning mediate the between-group differences in motor learning.

With respect to the diffusion index fractional anisotropy (FA), a measure reflecting the directionality of dif-
fusion in each  voxel52, NPC analysis revealed significant results (pFWE < 0.05) in white matter mainly beneath 
the parieto-occipital area of the right hemisphere (Fig. 3), including the Precuneous Cortex, superior division 
of the Lateral Occipital Cortex, Superior Parietal Lobule, and Postcentral Gyrus (Table 1). The observed pattern 
of results indicates, across all three time intervals under examination, that FA change from baseline was higher 
in the CE-group than in the control group. FA increases were in turn consistently correlated with concurrent 
DBT performance improvements, irrespective of group (Fig. 3).

Likewise, we obtained significant NPC results (pFWE < 0.05) for radial diffusivity (λ⊥), a diffusion index 
reflecting water diffusivity perpendicular to axonal fiber tracts, mainly in the right superior longitudinal fascicu-
lus beneath primary motor and somatosensory areas (Fig. 4 and Table 1). Expectedly, in contrast to FA results, 
results suggest that λ⊥ decreased more in the CE than in the control group, along with a negative correlation 
between λ⊥ changes and DBT performance changes (Fig. 4).

As a sanity check, we followed up voxel-based NPC results for FA and λ⊥ with multiple mediator analysis 
(Fig. 5). To this end, we averaged residualized change images (intervals 1–3) within-modality and subsequently 
extracted averaged voxel values within significant clusters. Taken as a set, neuroplastic changes in FA and λ⊥ 

Table 1.  Peak voxel coordinates and localization of significant clusters emerging from the voxel-based NPC 
analyses (Figs. 3 and 4).

Cluster Index Cluster extent Maximum p-value
Peak voxel 
(MNI152) Most prominent structures in  clusters53,54

Fractional anisotropy (Δ_FA)

4 1437 0.018 18 − 63 44

White matter beneath the right parieto-occipital area, including precuneous cortex, superior parietal 
lobule, superior division of the lateral occipital cortex and postcentral gyrus

3 79 0.04 30 − 62 41

2 61 0.047 38 − 60 36

1 14 0.049 24 − 59 45

Radial diffusivity (Δ_λ⊥)

7 264 0.036 41 − 18 34

White matter beneath the right precentral and postcentral gyri, right superior longitudinal fasciculus

6 87 0.045 39 − 7 30

5 22 0.049 35 − 19 35

4 10 0.048 49 1 26

3 6 0.049 44 − 21 35

2 2 0.05 49 − 5 20

1 1 0.05 53 3 26
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during learning mediated the effect of group (CE vs. controls) on DBT learning rate (ab = 0.52, 95% percentile CI 
[0.03, 1.12], bootstrapped standard error [SE] = 0.28). Thus, the CE group’s DBT learning rate was 0.52 standard 
deviations higher than the control group’s as the result of FA and λ⊥ changes, corrected for the influence of age 
and sex. Specific indirect effects for both FA (a1b1 = 0.25, 95% percentile CI [− 0.07, 0.61], bootstrapped SE = 0.18) 
and λ⊥ (a2b2 = 0.27, 95% percentile CI [− 0.07, 0.83], bootstrapped SE = 0.23) clearly trended toward significance.

Further whole-brain analyses on gray matter volume, cerebral blood flow, and network centrality measures 
based on resting-state fMRI (eigenvector centrality, degree centrality) showed no significant results.

Time course of white matter plasticity differs between subjects receiving CE and controls. So 
far, we have demonstrated that learning-related white matter plasticity differs between subjects receiving CE 
and controls, and that these changes are related to improved DBT learning in the CE group. As a next step, we 
aimed to disentangle whether white matter changes were immediately present after the CE intervention, whether 
they developed during the learning phase, or some permutation of the two. To this end, we visualized changes 
in FA and λ⊥ (averaged within significant clusters, respectively) during the experiment as index plot (Fig. 6). 
Furthermore, like in exploratory whole-brain analyses, we used the NPC framework to jointly analyse change 
scores relative to baseline.

Fisher’s chi-square  combination55 of rank-based partial p-values yielded significant global p-values for both 
FA and λ⊥, respectively (Table 2). Regarding FA, the CE intervention itself did not induce neuroplastic changes 
in parieto-occipital white matter. Notwithstanding that, between-group differences in FA successively developed 
during the learning phase, for p-values tended to decrease the longer the learning process lasted (Fig. 6 and 
Table 2). In contrast to FA, we observed that λ⊥ changes relative to baseline differed between groups immediately 
after the CE intervention. This suggests that the relevant neuroplastic adaptations relevant for improved DBT 
learning were already in place before learning commenced. Of note, these between-group differences in λ⊥ were 
maintained during the learning phase and were strongest at MRI_4 (Fig. 6 and Table 2).

Evidence of coupling between structural and functional brain plasticity. Finally, we examined 
whether white matter plasticity as presented in the previous sections was accompanied by changes in the ampli-
tude of focal spontaneous brain activity (amplitude of low-frequency functional fluctuations,  ALFF60). ALFF val-
ues were extracted for each participant and measurement point in the gray matter adjacent to significant clusters 
(peak voxels) of the whole-brain NPC analyses (see Table 1). ALFF changes from baseline were then subjected 
to NPC analyses, which consistently revealed that cortical ALFF decreased more in the CE group compared to 
controls (Table 3 and Supplementary Information).

As revealed by repeated measures  correlation61,62, λ⊥ changes consistently associated with ALFF changes in 
the surrounding gray matter (0.25 ≤ rrm ≤ 0.49). Intermodal associations were less incisive for FA changes, where 
we found one significant (cluster #2: rrm = − 0.28), two marginally significant (cluster #4: rrm = − 0.16, cluster #1: 
rrm = − 0.17), and one absent (cluster #3: rrm = − 0.02) correlation (see Supplementary Information).

Figure 2.  Overview of the statistical analyses using the NPC framework. For each imaging modality, we first 
calculated change images between baseline (MRI_1) and the MRI measurements during learning (MRI_3, 
MRI_4, MRI_5). Next, we set up three statistical submodels comparing groups regarding learning-related 
plasticity at three distinct time intervals under examination (top row). Likewise, three submodels addressing the 
correlation between brain changes and concurrent DBT performance changes were set up (bottom row). Union-
intersection tests (UIT) were then carried out to identify clusters of voxels in which learning-related plasticity 
covaries with both treatment (CE vs. control) and outcome (change in DBT performance from baseline). To this 
end, UIT outputs a single measurement that summarizes evidence over all six submodels in every voxel.
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Discussion
Executing novel whole-body movements poses complex control problems on the motor  system27,63, thus demand-
ing considerable training efforts to (re-)learn, stabilize and improve such  tasks26. In recent years, mounting 
evidence has accumulated that performance and learning of complex movements like the DBT is tightly linked 
to both initial  state36 and practice-induced (re-)organization of the brain’s neural  circuitry30,31,35. In this study, 
we investigated whether priming CE over two weeks affects the temporal dynamics of brain plasticity during 
complex motor skill learning. Analyzing structural and functional brain changes during 3 different time intervals 
of DBT learning using the NPC framework, we found that microstructural changes in white matter relative to the 
pre-intervention baseline consistently differed between controls and subjects receiving CE. Importantly, these 
between-group differences in neuroplasticity were also meaningfully related to concomitant DBT performance 
changes, collectively suggesting a mediating role of white matter plasticity to DBT performance changes. Further 
analyses revealed that functional base activity in the gray matter spatially adjacent to white matter findings was 
also altered, thus indicating a link between structural and functional plasticity.

According to neuroscientific theories, the presence of transfer is bound on the logic that trained task and 
transfer task share some neural commonality, and that this shared substrate changes in response to the trained 
 task12,19. For example, we found that increases in FA in the white matter underlying parieto-occipital areas of 

Figure 3.  Fractional anisotropy changes (Δ_FA) during three distinct time intervals of learning the DBT 
covary with treatment (CE vs. control) and concurrent DBT performance changes (time balancing, BAL). Top 
row: Results from the UIT on baseline-adjusted (residualized) Δ_FA maps based on the NPC methodology. 
Significant clusters depict voxels, in which UIT revealed evidence for consistent between-group differences 
regarding Δ_FA (corrected for age and sex) as well as consistent correlations between Δ_FA and (residualized) 
DBT performance changes (corrected for age, sex and group). Data was visualized using MRIcroGL (https:// 
www. mccau sland center. sc. edu/ mricr ogl/ home). Clusters are displayed at p < 0.05, FWE-corrected (TFCE) 
and fattened with the “tbss_fill” script for the purpose of better visualization. Bottom row: Descriptive data 
illustrating the results of the UIT. For each time interval under examination (cf. Fig. 2), a partial regression 
scatterplot with line of best fit shows the relation between Δ_FA (within-cluster average in SD units) of the 
respective time interval and concurrent DBT performance changes from TS_1 (in SD units), corrected for the 
influence of age and sex. Adjacent boxplots visualize between-group differences in Δ_FA and DBT performance 
changes, respectively. Note that z-scores < 0 indicate subjects whose change scores decreased more than could be 
linearly predicted from the covariates, and reverse for z-scores > 0.

https://www.mccauslandcenter.sc.edu/mricrogl/home
https://www.mccauslandcenter.sc.edu/mricrogl/home
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the right hemisphere consistently correlate with DBT improvement, irrespective of group and regardless which 
interval of the learning phase is examined. The same applies, with a reversed direction of correlations, to radial 
diffusivity (λ⊥) beneath the primary sensorimotor area of the right hemisphere. Therefore, the evidence we pre-
sent concurs with the notion that white matter plasticity plays a crucial role in motor  learning29,30,64,65, and that 
CE was successful in affecting motor learning-related white matter plasticity.

Figure 4.  Radial anisotropy changes (Δ_λ⊥) during three distinct time intervals of learning the DBT covary 
with treatment (CE vs. control) and concurrent DBT performance changes (time balancing, BAL). Top 
row: Results from the UIT on baseline-adjusted (residualized) Δ_λ⊥ maps based on the NPC methodology. 
Significant clusters depict voxels, in which UIT revealed evidence for consistent between-group differences 
regarding Δ_λ⊥ (corrected for age and sex) as well as consistent correlations between Δ_λ⊥ and (residualized) 
DBT performance changes (corrected for age, sex and group). Data was visualized using MRIcroGL (https:// 
www. mccau sland center. sc. edu/ mricr ogl/ home). Clusters are displayed at p < 0.05, FWE-corrected (TFCE) 
and fattened with the “tbss_fill” script for the purpose of better visualization. Bottom row: Descriptive data 
illustrating the results of the UIT. For each time interval under examination (cf. Fig. 2), a partial regression 
scatterplot with line of best fit shows the relation between Δ_λ⊥ (within-cluster average in SD units) of the 
respective time interval and concurrent DBT performance changes from TS_1 (in SD units), corrected for the 
influence of age and sex. Adjacent boxplots visualize between-group differences in Δ_λ⊥ and DBT performance 
changes, respectively. Note that z-scores < 0 indicate subjects whose change scores decreased more than could be 
linearly predicted from the covariates, and reverse for z-scores > 0.

Figure 5.  Exercise-induced neuroplasticity conveys the effect of treatment on motor learning. The multiple 
mediator model shows the relationship between allocation to treatment (Group) and baseline-adjusted 
(residualized) DBT learning rate, transmitted via residualized white matter changes and corrected for the 
influence of age and sex. CIs not including zero indicate significant indirect effects.

https://www.mccauslandcenter.sc.edu/mricrogl/home
https://www.mccauslandcenter.sc.edu/mricrogl/home
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Parieto-occipital FA findings align with previous evidence in young and elderly subjects showing that learn-
ing-related increases in nodal  hubness31 and local gray matter  volume35 in the very same area are correlated with 
DBT performance improvements. Likewise, the clusters we identified are also remarkably close to previously 
reported FA increases in response to another well-established experimental paradigm of complex motor learn-
ing, namely learning to  juggle29. Since involvement of parieto-occipital brain areas in motor learning has been 
repeatedly reported in the  literature66–68, these results point to the probability that priming CE targets a general 
motor learning-relevant network, thus potentially promoting learning in a task-independent fashion. A follow-
up NPC analysis of the temporal dynamics of FA plasticity clearly revealed that between-group differences were 
not present immediately after CE, but instead gradually developed during learning. One possible explanation 
for this pattern is an additive or cumulated neuroplastic response if adequate learning opportunities or novel 
experiences follow after a priming CE  intervention13,69. For example, past evidence from animal models points to 
the probability that CE evokes certain learning-relevant molecular and cellular level  changes5,40,44, which might 
however not be detectable via the MR imaging signal in  humans13. Nevertheless, such changes may crucially 
contribute to a fertile milieu in the brain by laying the foundations for subsequent plasticity and  learning1,5,43. 

Figure 6.  Grouped box chart of indexed FA (top) and λ⊥ (bottom) data during the experiment. Indexed data 
was calculated based on averaged voxel values within significant clusters emerging from the NPC analyses 
(Figs. 3 and 4). One-sided permutation p-values (Table 2) reflecting between-group differences at different 
measurement points are depicted as follows: ** for p ≤ 0.01, * for p ≤ 0.05, for p ≤ 0.1, ns for p > 0.1.

Table 2.  One-sided permutation p-values based on a studentized Wilcoxon rank-sum  statistic56 of the global 
null hypothesis that the intervention (CE vs. control) had no effect on FA/λ⊥ changes during the experiment 
(cf. Fig. 6). p-values have been adjusted for multiple comparisons using a closed testing procedure (FWE-
correction) 57. Fisher’s chi-square combining  function55 was used to summarize evidence over the partial tests 
(last column). Effect sizes for between-group comparisons at all time intervals are reported as Cliff ’s delta 
(d)58 with the related 95% CI. The magnitude of d can be interpreted using the following thresholds: |d|< 0.147 
"negligible", |d|< 0.33 "small", |d|< 0.474 "medium", otherwise "large"59.

MRI_1–MRI_2 MRI_1–MRI_3 MRI_1–MRI_4 MRI_1–MRI_5 NPC

FA p = 0.17, d = − 0.2, 95% CI [− 0.57, 
0.23]

p = 0.16, d = − 0.19, 95% CI [− 0.55, 
0.23]

p = 0.072, d = − 0.34, 95% CI [− 0.67, 
0.1]

p = 0.044, d = − 0.49, 95% CI [− 0.78, 
− 0.03] p = 0.027

λ⊥ p = 0.015, d = 0.48, 95% CI [0.05, 0.75] p = 0.039, d = 0.38, 95% CI [− 0.05, 
0.69] p = 0.006, d = 0.64, 95% CI [0.21, 0.86] p = 0.017, d = 0.43, 95% CI [0.01, 0.72] p = 0.004



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1107  | https://doi.org/10.1038/s41598-022-05145-7

www.nature.com/scientificreports/

Alternatively, different time courses of FA plasticity might not be a consequence of priming CE, but simply a 
consequence of diverging learning curves of the CE and control groups over time (see Ref.6). Whether or not 
the parieto-occipital time course of white matter plasticity is primarily determined by CE or by performance 
improvements can only be determined if plasticity itself is manipulated, for example by means of an interfering 
non-invasive brain stimulation protocol.

Compared to parieto-occipital FA, a different pattern of plasticity was observed for λ⊥ changes in the white 
matter beneath primary sensorimotor brain areas. In line with our previous  study6, we observed that λ⊥ in these 
very regions was already reduced immediately after cessation of CE. This aligns also with other work showing 
white matter remodelling in primary sensorimotor areas after CE training in young- to middle-aged  subjects70,71. 
Interestingly, further analyses in the present paper showed that CE-induced for λ⊥ changes are not merely a 
temporary phenomenon, but that they are persisting during six weeks of motor learning and do not return to the 
pre-intervention baseline. These results concur well with the idea that CE itself builds up a “structural repertoire” 
in the white matter, which can then be exploited during motor skill  learning19,36,37.

Cognitive and motor functions can be viewed as the behavioral outcome of collaborative processing of sensory 
information by distributed but interconnected neural  systems72. Against this background, we asked whether 
changes in structural connectivity as observed by whole-brain NPC analyses were accompanied by changes that 
are measurable using blood-oxygenation level-dependent (BOLD) signals. Indeed, we found that learning-related 
changes in local spontaneous neural activity (ALFF) consistently differed between groups. Specifically, we found 
a greater ALFF reduction relative to the pre-intervention baseline in subjects receiving CE compared to controls. 
At present, a well-grounded interpretation of ALFF reductions is difficult due to the general lack of studies inves-
tigating the effects of CE and/or motor learning on ALFF. It should especially be noted that there is no one-to-one 
mapping between (local) spontaneous activity and (global) network measures like hubness or  centrality73, and 
stronger spontaneous BOLD fluctuations can even be a sign of decreased functional  connectivity74. Furthermore, 
it has been shown that local white matter volume as assessed with voxel-based morphometry negatively correlates 
with  ALFF75, which is consistent with the intermodal DTI-ALFF correlations that we observed. Therefore, we 
interpret the reduced power in the low‐frequency band as a positive adaptation to training, for it is a consist-
ent effect across ROIs and time that coincides (and in most cases correlates) with structural plasticity. Of note, 
previous expert-novice comparisons have shown reduced ALFF in the left superior parietal lobule in badminton 
 players76. Likewise, fractional ALFF (fALFF) was reduced in several networks, amongst them the frontoparietal 
and default mode networks, in Tai Chi Chuan practitioners compared to  controls77. Decreased ALFF has also 
been reported as a result of training interventions, for example in patients with early psychosis practicing  yoga78.

It is plausible that a number of limitations might have influenced the results obtained. To begin with, we 
acknowledge that the consideration of an active control group would have further strengthened the conclusions 
regarding CE’s effectiveness in enhancing motor learning. Another possible limiting factor is that our study was 

Table 3.  One-sided permutation p-values based on a studentized Wilcoxon rank-sum  statistic56 of the 
global null hypothesis that the intervention (CE vs. control) had no effect on ALFF changes during the 
experiment (see Supplementary Information, for indexed box charts). p-values have been adjusted for 
multiple comparisons using a closed testing procedure (FWE-correction)57. Fisher’s chi-square combining 
 function55 was used to summarize evidence over the partial tests (last column). Effect sizes for between-group 
comparisons at all time intervals are reported as Cliff ’s delta (d)58 with the related 95% CI. The magnitude of d 
can be interpreted using the following thresholds: |d|< 0.147 "negligible", |d|< 0.33 "small", |d|< 0.474 "medium", 
otherwise "large"59.

MRI_1–MRI_2 MRI_1–MRI_3 MRI_1–MRI_4 MRI_1–MRI_5 NPC

FA_cluster04
18, − 63, 44

p = 0.17, d = 0.25, 95% CI [− 0.18, 
0.60]

p = 0.076, d = 0.33, 95% CI [− 0.09, 
0.65]

p = 0.029, d = 0.55, 95% CI [0.12, 
0.81]

p = 0.29, d = 0.13, 95% CI [− 0.31, 
0.53] p = 0.017

FA_cluster03
30, − 62, 41

p = 0.18, d = 0.21, 95% CI [− 0.24, 
0.58]

p = 0.1, d = 0.28, 95% CI [− 0.15, 
0.61]

p = 0.014, d = 0.61, 95% CI [0.20, 
0.84]

p = 0.093, d = 0.3, 95% CI [− 0.14, 
0.64] p = 0.009

FA_cluster02
38, − 60, 36

p = 0.2, d = 0.19, 95% CI [− 0.25, 
0.57]

p = 0.14, d = 0.26, 95% CI [− 0.17, 
0.60]

p = 0.036, d = 0.53, 95% CI [0.11, 
0.79]

p = 0.086, d = 0.33, 95% CI [− 0.10, 
0.66] p = 0.021

FA_cluster01
24, − 59, 45

p = 0.15, d = 0.23, 95% CI [− 0.21, 
0.60]

p = 0.053, d = 0.38, 95% CI [− 0.05, 
0.68]

p = 0.013, d = 0.54, 95% CI [0.11, 
0.80]

p = 0.2, d = 0.19, 95% CI [− 0.24, 
0.56] p = 0.004

λ⊥_cluster07
41, − 18, 34

p = 0.027, d = 0.46, 95% CI [0.03, 
0.74]

p = 0.046, d = 0.36, 95% CI [− 0.06, 
0.67]

p = 0.04, d = 0.42, 95% CI [− 0.01, 
0.72]

p = 0.12, d = 0.25, 95% CI [− 0.19, 
0.61] p = 0.017

λ⊥_cluster06
39, − 7, 30

p = 0.039, d = 0.43, 95% CI [− 0.01, 
0.73] p = 0.036, d = 0.42, 95% CI [0, 0.71] p = 0.027, d = 0.48, 95% CI [0.06, 

0.76]
p = 0.15, d = 0.23, 95% CI [− 0.21, 
0.60] p = 0.012

λ⊥_cluster05
35, − 19, 35

p = 0.058, d = 0.43, 95% CI [− 0.01, 
0.73]

p = 0.062, d = 0.36, 95% CI [− 0.06, 
0.67]

p = 0.052, d = 0.41, 95% CI [− 0.02, 
0.71]

p = 0.19, d = 0.19, 95% CI [− 0.24, 
0.56] p = 0.028

λ⊥_cluster04
49, 1, 26 p = 0.037, d = 0.43, 95% CI [− 0, 0.73] p = 0.022, d = 0.47, 95% CI [0.05, 

0.74]
p = 0.058, d = 0.43, 95% CI [− 0.02, 
0.73]

p = 0.18, d = 0.19, 95% CI [− 0.24, 
0.56] p = 0.01

λ⊥_cluster03
44, − 21, 35 p = 0.02, d = 0.47, 95% CI [0.04, 0.75] p = 0.046, d = 0.36, 95% CI [− 0.06, 

0.67]
p = 0.045, d = 0.43, 95% CI [− 0.01, 
0.72]

p = 0.13, d = 0.25, 95% CI [− 0.19, 
0.60] p = 0.016

λ⊥_cluster02
49, − 5, 20

p = 0.047, d = 0.4, 95% CI [− 0.04, 
0.71]

p = 0.019, d = 0.48, 95% CI [0.06, 
0.75]

p = 0.021, d = 0.49, 95% CI [0.05, 
0.77]

p = 0.15, d = 0.23, 95% CI [− 0.20, 
0.59] p = 0.008

λ⊥_cluster01
53, 3, 26

p = 0.034, d = 0.45, 95% CI [0.02, 
0.74]

p = 0.025, d = 0.48, 95% CI [0.06, 
0.75]

p = 0.056, d = 0.44, 95% CI [− 0.01, 
0.74]

p = 0.19, d = 0.18, 95% CI [− 0.24, 
0.55] p = 0.009
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powered based on the expected behavioral effect of CE on motor  learning6. In line with methodological guide-
lines in the field of neuroplasticity  research79, we stringently corrected the exploratory whole-brain analyses 
for multiple comparisons, but this comes at the potential cost that our study might have been under-powered 
to detect small-to-moderate neuroplastic effects. However, this potential problem was brought into account 
by focusing on reproducible and behaviorally relevant changes of the brain by using the NPC methodology. 
Although existing evidence suggests that CE interventions straining the anaerobic-lactic energy system may 
lead to an augmented neuroplastic  response1,6,25,80, the debate surrounding the question of “optimal” exercise 
regimens is still  ongoing1,2,4. Therefore, we cannot comment on whether using a CE regimen with a different 
combination of crucial parameters (duration, intensity, frequency, timing etc.) would have led to different out-
comes. Furthermore, we cannot rule out that subjects’ individual responsiveness to CE or motor learning was 
affected by inherited factors like certain genetic  polymorphisms81,82. Related to this, another downside factor 
regarding our methodology is that we were not able to analyze a potential interaction between sex and the 
responsiveness to CE due to the too small and unbalanced sample. Finally, we acknowledge that a systematic 
assessment of sleep  behavior83 would have further strengthened our conclusions regarding CE’s effectiveness in 
enhancing motor learning.

Further work needs to be carried out to establish whether our results would generalize to the acquisition of 
other types of motor  skills26,27, different stages of the motor skill learning process (i.e., fast vs. slow  learning46), 
and to other domains of application like rehabilitation (e.g., in patients suffering from neurological  disorders9–11). 
Another interesting opportunity for future research could be to directly compare the effectiveness of different 
CE intervention strategies on complex motor skill learning, e.g., performing single bouts of CE in close temporal 
proximity to practice sessions vs. long-term CE interventions prior to the learning  phase1–4. Current evidence 
suggests that the mechanisms of action by which acute CE (prior to or after learning) and long-term CE influence 
motor learning are at least partially different from one another (see Refs.1–3, for reviews), which might in turn 
lead to different effects on learning. Finally, although our results fulfil the statistical requirements of an indirect 
 effect84, establishing causality by directly manipulating the assumed central nervous mechanisms of action would 
certainly be an important contribution to further advance the  field85.

In this study, we aimed at understanding neural plasticity that governs long-term motor skill learning after 
a 2-week CE intervention in the intact brain. Our results suggest that improved motor learning following CE 
is neurobiologically underpinned by altered temporal dynamics of plasticity in task-relevant networks during 
learning. This lends support to the notion that CE has the potential to affect adaptive neural plasticity in the 
brain’s motor  circuitry1,2,12,18. Given that neuroplastic change is considered a basic prerequisite for successful 
motor skill  learning28–31,64,65, the findings presented herein might have promising practical implications for dif-
ferent fields of application.

Materials and methods
Participants and experimental design. Most experimental procedures including sample size planning 
were extensively described in our previous  paper6, such that we will focus on a brief description of the methods 
in the following. For this randomized controlled trial, a total of 34 healthy, right-handed adults aged 18–35 years 
(3 dropouts due to illness or injury) were recruited. Exclusion criteria were contraindications to MRI, body mass 
index (BMI) > 30 kg/cm2, a history of neuropsychiatric diseases, left-handedness, self-reported physical activity 
of > 4 h/week, prior experience with the DBT, and past or present performance-oriented participation in endur-
ance and/or coordinative-demanding sports. The study was performed in accordance with the ethical standards 
as laid down in the 1964 Declaration of Helsinki and its later amendments. Approval was granted by the Ethics 
Committee of the University of Leipzig (175-11-30052011) and the study was retrospectively registered in the 
German Clinical Trial Register (DRKS00025337; date of full registration: 18/05/2021). Written informed con-
sent was obtained from all participants. Prior to participation, all subjects underwent neurological examination 
as assessed by a credentialed physician.

Subjects were randomly (and gender-balanced) assigned to a CE intervention (n = 15) or an inactive control 
group (n = 16; see Ref.6 for group characteristics). All participants engaged in six consecutive weeks of learning 
the  DBT30,31,35. Before learning commenced, the intervention group underwent a total of seven supervised and 
individually tailored CE sessions dispersed over two weeks, whereas the control group continued with their 
habitual activities (life as usual) in parallel (Fig. 1). The rate of adherence was 100% for both CE intervention 
and DBT learning.

Cardiovascular fitness assessment. Before engaging in two weeks of either exercise or life-as-usual, all 
participants performed a graded incremental exercise test (GXT) on a bicycle ergometer (Ergoline ergoselect 
200, Bitz, Germany). We used the standard scheme of the World Health Organization (WHO) with an initial 
work intensity of 25 W and an increase of 25 W every 2 min (pedalling rate 60–70 rpm)86. The GXT was termi-
nated after completion of the stage during which a heart rate of 170 bpm was reached. Heart rate was continu-
ously monitored (Polar Elektro Oy H7, Kempele, Finland) and capillary whole blood samples were drawn from 
a hyperaemic earlobe 15–25 s before the end of each two-minute GXT stage.

Body weight-adjusted power output (physical working capacity, PWC) at fixed heart rates of 120 bpm 
(PWC120) and 170 bpm (PWC170) was determined by linear interpolation of the workload–heart rate  pairs87. 
Lactate concentrations were determined photometrically using a laboratory analyser. Workload–lactate pairs 
were fitted with a degree three polynomial and two body weight-adjusted indices of cardiovascular fitness were 
calculated. These were the workload at a fixed lactate concentration of 3 mmol/l  (P3) and the individual anaero-
bic threshold (IAT) determined with the “1.5 mmol method” (as described in Ref.88). Body weight-adjusted  P3 
and IAT are both recognized as valid indicators of maximal lactate steady state and therefore cardiovascular 
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 fitness89,90. A GXT post-test was not scheduled since we did not expect fitness gains exceeding a familiarization 
effect in a training period as short as 2  weeks6.

Cardiovascular exercise intervention. Participants of the CE group performed seven supervised train-
ing sessions of cycling spread over 2 weeks. The aim of the CE intervention was to repeatedly expose subjects 
to exercise-induced hyperlactatemia within the intervention  period1,25, but without evoking an undesired over-
training/overreaching  state91 that potentially exerts a negative effect on brain  plasticity92. The theoretical back-
ground is the assumption that lactate produced from active muscles during exercise enters the brain, where it 
triggers several beneficial neuroplastic responses (see Refs.1,6,25,80). Previous research suggests that the lower 
bound intensity of CE to induce increased brain net lactate uptake is the power or velocity at the “lactate thresh-
old”93,94.

Taking these considerations into account, we scheduled an individually tailored exercise protocol with exercise 
intensity varying between PWC120 and PWC170 (see Ref.6, for details). Briefly, each training session started 
with continuous cycling at PWC120 for 5 min, immediately followed by a 3-min-phase with a gradual increase of 
exercise intensity in 6 steps of 30 s each, up to the individual’s 100% PWC170. This intensity peak was followed by 
an another 4-min-phase at PWC120 and another 3-min-phase of stepwise increasing workload up to PWC170. 
The training session ended after a cooling down phase at PWC120 for 4 min (overall session duration: 19 min). 
In the second week of training, the total duration of each training session was increased by 2 min by prolonging 
the time of the two intensity peaks (see Ref.6). This adaptation of the CE protocol was done in order to avoid a 
habituation effect that potentially results in a reduced neuroplastic  response95.

To test whether the CE intervention was successful in straining the anaerobic lactic metabolism, we drew 
blood samples from the hyperemic earlobe at regular intervals during one training session of week 1 (19 min 
program) and one training session of week 2 (21 min program)6. The resulting mean lactate value of each partici-
pant was subsequently normalized to the individual’s IAT (in terms of the absolute lactate value) and compared 
against μ0 = 100 by means of a one-sample t-test. The average lactate concentration measured during training 
was significantly higher (mean difference = 44.48%, 95% CI [18.98, 69.98]) than the IAT, t(14) = 3.74, p = 0.002.

Whole‑body dynamic balancing task (DBT) and quantification of motor learning. After two 
weeks of CE or control period, subjects engaged in six weeks of DBT training on a seesaw-like platform (stabil-
ity platform, model 16030, Lafayette Instrument, Lafayette, IN, USA)96,97 with one training session (TS) each 
 week30,31,35. The platform is moveable in a medio-lateral direction with a maximum deviation of ± 26° on either 
side. Each training session consisted of 15  trials30,31,35 with an inter-trial break of 2 min to avoid  fatigue97. Stand-
ing with both feet on the platform, subjects were instructed to keep the board in a horizontal position for as long 
as possible during a 30-s  trial30. The behavioral outcome measure was the time (millisecond timer) in which 
subjects kept the platform in a horizontal target interval of ± 3° on either side (time balancing, BAL). After each 
trial subjects received verbal feedback about their BAL (knowledge of results), whereas no feedback regarding 
strategy or other aspects of the task was provided (discovery learning approach). During task execution, partici-
pants’ attention was directed to a fixation cross affixed to the wall in front of them (external focus of  attention96).

Behavioral indices of motor learning as described in the following were calculated after first averaging the 15 
BAL values belonging to the respective training session. For exploratory whole-brain NPC analyses, residualized 
percentage change scores calculated as depicted in Fig. 2 (submodels 4–6) were used as regressors. For statisti-
cal mediation analysis (see Fig. 5), we fitted a general power  function98 to the DBT performance data of each 
individual, as described in Ref.6. We then used the slope value of the power function, adjusted for baseline DBT 
 performance99, as dependent variable in the mediation model.

Analysis of behavioral data on motor skill learning as outlined previously focused on motor skill acquisition 
over 6 weeks, calculated based on averaged within-session motor skill  performance6,46. Because CE, especially 
when performed in temporal proximity to motor skill practice, is also thought to affect online learning and motor 
skill consolidation1–4, two additional statistical analyses were performed.

To address whether CE exerted an influence on the change of performance within single training sessions 
(online  learning46), we first fitted a regression line to the BAL data of each training session and each participant. 
Therefore, we ended up with six slopes and six intercepts per subject. Due to the fact that initial task performance 
and the rate of subsequent learning are typically negatively  correlated99, we partialled out the variance associated 
with the intercept from the slopes. The six resulting residualized slopes were then subjected to an NPC  analysis50. 
Specifically, between-group comparisons were conducted on each score using rank-based permutation tests 
(studentized version of Wilcoxon’s rank sum  test56) with 1000 permutations. Family-wise error rate of partial 
p-values was adjusted using a closed testing  procedure57. In addition, we calculated the effect size Cliff ’s  delta58 for 
each between-group comparison. Note that there is no direct correspondence between the NPC-derived partial 
p-values on the one hand and Cliff ’s delta on the other hand since both methods use different ways for calculat-
ing differences in the central tendencies between groups. All of the above was done using the NPC v1.1.050,100 
and effsize v0.8.059 packages running in R v3.6.1101.

To investigate whether CE affected motor skill consolidation, we calculated percent relative retention  scores47 
for all consecutive training sessions (see Fig. 1). We started by averaging the first two trials of a given training 
session  TSi and the last two trials of the immediately preceding training session  TSi-1, respectively. Note that via 
averaging we aimed to reduce contamination of retention scores by both continued learning during retention 
and warm-up  decrement47,48. Percent relative retention was then computed according to the formula
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As described in the previous paragraph, the five resulting retention scores (TS_1–TS_2, TS_2–TS_3, 
TS_3–TS_4, TS_4–TS_5, TS_5–TS_6) were then subjected to another NPC  analysis50.

MR image acquisition. MRI data were acquired on a 3 T MAGNETOM Prisma system (Siemens Health-
care) using a 32-channel head coil. We used the same protocol for each volunteer and each scanning session. 
The imaging protocol consisted of a series of MRI sequences, as outlined below. Whenever possible, subjects 
were measured at approximately the same time of day during the study. Subjects were asked to relax, keep their 
mind free of any thoughts, and to move as little as possible. With respect to the functional image acquisitions, 
they were additionally instructed to stay awake and alert while keeping their eyes  closed102. A pillow was placed 
surrounding the sides and the back of the head to minimize head motion and within- as well as between-subject 
differences in positioning.

Whole-brain diffusion-weighted images were acquired from 88 axial slices with a spatial resolution of 
1.72 × 1.72 × 1.7  mm3 (no gap) with a twice-refocused spin echo echo-planar-imaging  sequence103: TE = 80 ms, 
TR = 11,000 ms, α = 90°, FOV = 220 × 220  mm2, matrix: 128 × 128, phase encoding = A ≫ P, parallel imaging: 
GRAPPA acceleration factor  2104. Sixty isotropically distributed diffusion sensitization directions at b = 1000 s/
mm2 were collected. Additionally, seven datasets without diffusion weighting (b = 0 s/mm2) were acquired initially 
and interleaved after each block of 10 diffusion-weighted images as anatomical reference for off-line motion 
correction. The diffusion MRI sequence lasted ≈ 15 min.

Resting state fMRI scans were acquired using T2*-weighted gradient-echo EPI (GE-EPI) with multiband 
acceleration, sensitive to BOLD  contrast105,106. A total of 420 whole-brain volumes were acquired using the follow-
ing parameters: axial acquisition orientation, phase encoding = A ≫ P, echo spacing = 0.67 ms, voxel size = 2.3 mm 
isotropic, FOV = 202 × 202  mm2, matrix = 88 × 88, 64 slices with 2.3 mm thickness, TE = 30 ms, TR = 1400 ms, 
α = 69°, partial Fourier factor = 7/8, multiband acceleration factor = 4, acquisition bandwidth = 1775 Hz/Px, inter-
leaved slice order. The total acquisition time for rs-fMRI was ≈ 10 min.

T1-weighted anatomical images to investigate gray matter volume and pulsed arterial spin labeling data to 
investigate cerebral blood flow were also acquired and processed. Since analyses based on these data did not yield 
significant results or statistical trends in the present study, they are not discussed further (see Ref.6, for details).

Preprocessing of MR images. All imaging modalities were processed as extensively described in a previ-
ously published  paper6. In the following, we therefore focus on a brief description of the applied diffusion and 
rs-fMRI preprocessing pipelines.

Diffusion-weighted images were processed using tools provided by the FMRIB Software Library v5.0.9. 
(https:// fsl. fmrib. ox. ac. uk/ fsl/ fslwi ki/ FSL)107. We started by checking for visual artifacts, followed by skull strip-
ping and motion  correction108 with appropriate correction of gradient  directions109. Subsequently, a diffusion 
 tensor110 was fitted at each voxel. The diffusion indices fractional anisotropy (FA), mean diffusivity (MD) and 
radial diffusivity (λ⊥) were computed from the eigenvalues of the diffusion tensor with the respective  formulas52. 
Subsequent steps followed a  reliable111 and  sensitive112 TBSS-based113 processing routine, starting with deter-
mining an unbiased midspace between the five FA images of each  participant114. In the next step, the original 
FA images of each participant were linearly registered to the individual midspace and then averaged to generate 
an FA  template111,112. Afterwards, each subject’s FA template was nonlinearly  aligned115 to every other one to 
identify the most representative template of the sample (target)113,116. After warping each subject’s template to 
the target, images were registered to MNI152 space (FMRIB58 1 mm template) using affine transformation, and 
a group-average FA image was thinned and binarized with an FA-value of > 0.2 (skeletonization). The midspace-
registered FA, MD, and λ⊥ maps of all measurement points were projected onto this skeleton using the warp 
fields created previously.

The rs-fMRI data were processed using the toolbox fMRIPprep 1.1.3117, a  Nipype118 based toolbox. The pipe-
line included corrections for  motion108, slice  timing119 and susceptibility distortions, followed by intra-subject 
registration to the respective T1-weighted image and spatial  normalization120 to the ICBM 152 Nonlinear Asym-
metrical Template  2009c121. After applying spatial smoothing of 6 mm FWHM, nonaggressive  denoising122 of 
images was performed including linear detrending, high-pass filtering, corrections for the global signal in the 
white matter and the cerebrospinal fluid, and correction for motion-related components as identified by inde-
pendent component analysis (ICA-AROMA)123. Shared variance between the noise components as classified by 
ICA-AROMA and the other nuisance regressors was removed before denoising was  performed117,124.

We originally computed voxel-wise measures reflecting nodal hubness based on a graph theoretical approach 
(degree centrality and eigenvector centrality), which however did not yield significant results. However, to test 
for a potential coupling of structural and functional plasticity on a local  level125,126, we additionally quantified 
 ALFF60 in a range of 0.01–0.08 Hz using the BRANT  toolkit127. As recommended in the literature, ALFF maps 
were computed after full nuisance  regression128 including high-pass  filtering60,127. Note that we used ALFF instead 
of fALFF because the former has shown to be a more reliable measure of focal functional base  activity129.

Nonparametric combination (whole‑brain analysis). In the Introduction section of this paper, we 
hypothesized that subjects receiving CE show a different pattern of brain plasticity during the acquisition of a 
complex, novel motor skill compared to controls. We furthermore hypothesized that, if it is true that priming CE 
alters the time course of brain plasticity, this effect should also express itself in terms of behavioral differences 
in  learning18,19,130. The complex hypothesis of different time courses of plasticity and their behavioral relevance 

(1)Retention Score of TSi−1(%) =
Initial Performance TSi · 100

Final Performance TSi−1

− 100.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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consists of several testable sub-hypotheses. The NPC framework allows to draw a global conclusion regarding 
a complex theory by “combining multiple pieces of evidence into a single summary measure of support for the 
theory”50.

Separately for each imaging modality, we started by calculating residualized change  images131,132 between 
the baseline MRI scan (MRI_1) and the measurements during learning (MRI_3, MRI_4, MRI_5) using FSL’s 
tool fsl_glm (Fig. 1). We defined MRI_1 (pre-intervention) instead of MRI_2 (post-intervention) as baseline for 
the calculation of change images for two reasons. First, in case that the subjects’ brains are unchanging during 
CE (i.e., between MRI_1 and MRI_2), it does not matter which of both measurements is chosen as baseline. 
Second, assuming that the brain actually changes between MRI_1 and MRI_2, MRI_1 has the advantage to be 
not susceptible to the occurrence of potential renormalization  processes133 during the learning phase. Such 
renormalization processes might give rise to misleading conclusions regarding neuroplastic changes and might 
lead to spurious correlations between neuroplasticity and changes in behavior.

Next, the global hypothesis of CE’s effects was broken down into a set of six sub-hypotheses (general linear 
models), each sensitive to the empirical predictions of the theory (see Fig. 2, for a graphical overview). The 
first three sub-models addressed whether CE-induced structural/functional neuroplasticity was determined by 
exposure to treatment. This resulted in three ANCOVA-type models regressing residualized neuroplastic change 
on group assignment (CE vs. control) considering age and sex as covariates of no interest. The remaining three 
contrasts postulate that structural/functional neuroplasticity during learning correlate with concurrent DBT 
performance changes, independent of group. Specifically, we used regression-type models to test for a linear 
relationship between (residualized) DBT performance changes and concurrent neuroplastic changes, adjusted 
for the influence of age, sex and group. To test our theory, we implemented directional contrasts (one-sided tests) 
based on the anticipated pattern of  results6 in all sub-models.

Next, we aimed to identify clusters of voxels showing (a) consistent between-group differences in terms of 
neuroplasticity as well as (b) common neuroplasticity-performance relationships across groups without the need 
for prior decisions about where to look (exploratory whole-brain analysis). To this end, we used the Permuta-
tion Analysis of Linear Models v. alpha115 (PALM)  toolbox51,134 to jointly analyze the six statistical sub-models 
(separately for each imaging modality) using a modified NPC approach. NPC begins with analyzing the sub-
models separately using synchronized  permutations51. Afterwards, at each voxel, combined evidence of test 
statistics over the six sub-tests was produced using Fisher’s combining  function55 in a way that accounts for the 
dependence among component  tests49–51. Therefore, the joint statistic is significant if an aggregate of the partial 
tests is  significant49–51.

We ran the NPC with 5000 permutations (within-group sign-flippings) of the data to build up the empirical 
null distribution from which statistical inference was performed. Clusters were formed using threshold-free clus-
ter enhancement  (TFCE135) and tested for significance at p < 0.05 (cluster-based family-wise error correction). To 
localize the results in stereotactic space, we used the Harvard–Oxford cortical  atlas54 and the JHU white-matter 
tractography  atlas53 as implemented in FSL.

Statistical mediation. As a sanity check, we followed up significant results from whole-brain NPC analy-
ses with regression-based statistical mediation, which evaluates the decline in the strength of the relationship 
between a predictor and an outcome when controlled for the influence of putative  mechanisms84. We evaluated 
whether the entire set of putative mediators identified via the NPC analyses would transmit the effect of treat-
ment to DBT learning (total indirect effect) as well as the unique contribution of each mediator while controlling 
for the influence of the other mediators in the model (specific indirect effect).

First, significant clusters emerging from the whole-brain NPC analyses were used as a mask for averaging 
and extracting voxel values of residualized change for each participant and time interval within the respective 
modality (cf. Figs. 1 and 2). Next, the residualized change values for each participant were summed up und 
divided by three in order to get a single variable reflecting the average neuroplastic change during the learning 
period. Before inclusion into the statistical mediation model, the presence of an acceptable level of collinearity 
among putative mediators was checked as described  elsewhere6.

To determine whether neuroplasticity mediates the relationship between the intervention (binary-coded 
as: control = 0 and CE = 1) and the baseline-corrected DBT learning  rate6, we calculated a parallel multiple 
mediator model with bootstrap confidence interval (CI) estimation as implemented in PROCESS v3.5beta84 
running in R v3.6.1101. Resampling-based estimation of the mediated effect imposes no distributional assump-
tions and has shown to be applicable even in case of small samples (n ≈ 25)136,137. To keep variation due to the 
random resampling process to an absolute minimum, 50,000 bootstrap samples were drawn using the percentile 
method. A heteroscedasticity-consistent standard error and covariance matrix estimator was  used138. From each 
of the bootstrap samples the total and specific indirect effects were computed and sampling distributions were 
empirically generated. With the distribution, 95% confidence intervals (percentile 95% CI) were determined. A 
significant mediating effect is assumed if the percentile 95% CI of an indirect effect does not contain zero. Age 
and sex were added to the multiple mediator models as covariates of no interest.

Nonparametric combination (follow‑up analysis). For a thorough evaluation of the time course of 
neuroplasticity during the experiment, we conducted a series of additional analyses. We were especially inter-
ested in any brain changes significantly deviating from the pre-intervention baseline to determine in detail 
whether these changes were present immediately after the CE intervention, whether they emerged during the 
learning phase, or some permutation of the two.

To this end, within significant clusters that emerged from whole-brain NPC analysis, we first extracted and 
averaged voxel values of the respective modality for each individual and each measurement point. Based on 
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the extracted data, we then calculated percentage change scores of all time points (MRI_2, MRI_3, MRI_4, 
MRI_5) relative to baseline (MRI_1) (see Figs. 1 and 2). For each modality, we applied another NPC to the data 
and compared percentage change scores between groups at all time intervals (MRI_1–MRI_2, MRI_1–MRI_3, 
MRI_1–MRI_4, MRI_1–MRI_5). Between-group comparisons at each time interval were conducted using rank-
based permutation  tests56 with 1000 permutations (cf. statistical analysis of motor skill consolidation above). 
Again, we applied FWE-correction to partial p-values using a closed testing  procedure57 and combined the 
partial p-values into a global p-value using Fisher’s chi-square  combination55. The effect size Cliff ’s  delta58 was 
computed for each between-group comparison. All of the above was done using the NPC v1.1.050,100 and effsize 
v0.8.059 packages running in R v3.6.1101.

We were also interested whether learning-related white matter changes were paralleled by changes in rest-
ing state functional connectivity. To address this, we created a binary brain mask (sphere with 10 mm radius) 
around all peak voxels that emerged from significant clusters of the whole-brain NPC analyses (Table 1). Within-
sphere ALFF values were then extracted and averaged for each participant and measurement point, but only in 
voxels where the sphere intersected with the surrounding gray matter (GM threshold ≥ 0.2). We then calculated 
percentage change scores of ALFF and subjected these to NPC analysis, exactly as described above. Finally, we 
tested for a statistical intermodal relationship between changes in white matter microstructure and concomitant 
changes in ALFF by means of a repeated measures  correlation61,62, where each of the four intervals was treated 
as a subject with 31 observations. This corresponds to the idea of pooling evidence across bivariate correlations 
between diffusion and ALFF changes at four time intervals (MRI_1–MRI_2, MRI_1–MRI_3, MRI_1–MRI_4, 
MRI_1–MRI_5). Repeated measures correlations were conducted using R’s101 rmcorr v0.4.3  package61,139.
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