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In this Supplemental Material, we present the analysis of the system symmetries (Sec. I), Pauli
exclusion principle (Sec. II), dimensions of the many-body spectrum (Sec. III), more discussions
of critical interaction strength (Sec. IV), density-density correlation (Sec. V), free energy and per-
sistent current (Sec. VI), spectral winding numbers and charge-density pro�les (Sec. VII), other
complementary half-�lled cases (Sec. VIII), and the non-Hermitian SSH-type model (Sec. IX).

I. PT AND PARTICLE-HOLE SYMMETRIES

For general twisted periodic boundary conditions (PBC) characterized by a twist boundary angle φ, the Hamiltonian
reads

Ĥ =

L−1∑
`=1

[(t+ γ)ĉ†` ĉ`+1 + (t− γ)ĉ†`+1ĉ` + Un̂`n̂`+1] + eiφ(t+ γ)ĉ†Lĉ1 + e−iφ(t− γ)ĉ†1ĉL + Un̂Ln̂1, (1)

Particularly, φ = 0 and π correspond to PBC and anti-PBC, respectively. We de�ne the PT symmetry operation as

PT ĉ`(PT )−1 = ĉL+1−`, PT i(PT )−1 = −i. (2)

Acting with PT on Ĥ, we �nd

PT Ĥ(PT )−1

=PT
{ L−1∑
`=1

[(t+ γ)ĉ†` ĉ`+1 + (t− γ)ĉ†`+1ĉ` + Un̂`n̂`+1] + eiφ(t+ γ)ĉ†Lĉ1 + e−iφ(t− γ)ĉ†1ĉL + Un̂Ln̂1

}
(PT )−1

=

L−1∑
`=1

[(t+ γ)ĉ†L+1−`ĉL−` + (t− γ)ĉ†L−`ĉL+1−` + Un̂L+1−`n̂L−`] + e−iφ(t+ γ)ĉ†1ĉL + eiφ(t− γ)ĉ†Lĉ1 + Un̂1n̂L

=

L−1∑
=1

[(t+ γ)ĉ†+1ĉ + (t− γ)ĉ† ĉ+1 + Un̂+1n̂] + [eiφ(t+ γ)ĉ†Lĉ1 + e−iφ(t− γ)ĉ†1ĉL]† + Un̂1n̂L. (3)

In the last line, we have replaced  = L− `. For PBC and anti-PBC, it follows that

PT Ĥ(PT )−1 = Ĥ†. (4)

This relation indicates that the eigenenergies of Ĥ must either be real or come in complex-conjugate pairs.
To see the particle-hole symmetry explicitly, we divide the lattices into two sublattices A and B of even and odd

sites. We perform the transformation ĉ†` → ĉ` and ĉ` → ĉ†` on sublattice A while ĉ†` → −ĉ` and ĉ` → −ĉ
†
` on sublattice

B. Accordingly, the transformation for the occupation number operators reads n̂` → 1 − n̂`. Then, it is clear to see
that the transformed Hamiltonian takes the same form up to a constant energy shift.

II. PAULI EXCLUSION PRINCIPLE

In this work, we consider the interacting Hatano-Nelson model which can be written in the basis of conventional
fermionic operators ĉ†` and ĉ

†
` as

Ĥ =

L∑
`=1

[(t+ γ)ĉ†` ĉ
†
`+1 + (t− γ)ĉ†`+1ĉ

†
` + Un̂`n̂`+1]. (5)
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The fermionic operators ĉ†` and ĉ
†
` follow the anticommutation relations

{ĉ†`, ĉ
†
} = δ`,, {ĉ`, ĉ} = 0. (6)

With these relations, we �nd that the number operator n̂ ≡ ĉ† ĉ† at site  follows the relation

n̂2 = ĉ† ĉ
†
 ĉ
†
 ĉ
†
 = ĉ†

(
1− ĉ† ĉ†

)
ĉ† = ĉ† ĉ

†
 = n̂, (7)

which gives n̂ = 0 or 1. This means that an arbitrary site  is at most occupied by one electron, which is the Pauli
exclusion principle considered in this work.
The singe-particle eigenstates also follow the Pauli exclusion principle. To illustrate this, we rewrite the single-

particle Hamiltonian (with U = 0) as

Ĥ =
∑
n

En|Rn〉〈Ln|, (8)

where |Ln〉 and |Rn〉 are the left and right eigenstates of Ĥ, satisfying Ĥ|Rn〉 = En|Rn〉 and Ĥ†|Ln〉 = E∗n|Rn〉,
respectively. The left and right eigenstates have the biorthogonal relations 〈Lm|Rn〉 = δm,n. If we de�ne d

†
n,R (d†n,L)

as the creation operator related to the eigenstate |Rn〉 (|Ln〉),

d†n,R =
∑
`

〈`|Rn〉ĉ†`, (9)

then we �nd that these operators have the following modi�ed anticommutation relations

{d†m,R, d
†
n,L} = δm,n,

{d†m,R, d
†
n,R} = 0,

{d†m,R, d
†
n,R} = 〈Rn|Rm〉. (10)

Note that for non-Hermitian system, not all the eigenstates |Rm〉 are orthogonal, i.e., 〈Rn|Rm〉 could be �nite even for

m 6= n. Using the modi�ed anticommutation relations in Eq. (10), we �nd that the number operator ℵ̂m ≡ d†m,Rdm,R
for the eigenstate |Rm〉 follows

ℵ̂2m = d†m,R

(
〈Rm|Rm〉 − d†m,Rdm,R

)
dm,R = 〈Rm|Rm〉ℵ̂m. (11)

Thus, ℵ̂m can only have the eigenvalues 0 and 〈Rm|Rm〉, where the latter can be di�erent from 1 (in particular larger).
Similar results can be obtained for the left eigenstates. These results show that the eigenstates also obey the Pauli
exclusion principle, i.e., a fermionic state can be occupied at most by one particle simultaneously.

III. DIMENSION OF THE MANY-BODY SPECTRUM

The extent of the spectrum at U = 0 on the real and imaginary axes can be written as

ΞR ≈ tα{N,L} and ΞI ≈ γα{N,L}, (12)

where κ are integers, ncl ≡ min(N,L−N) and

α{N,L} = 2
∑

|κ|6ncl/2

cos(2πκ/L). (13)

For ncl � 1, we transform the summation in Eq. (13) to an integral and obtain

α{N,L} =
2L

π
sin
(nclπ
L

)
. (14)

At half-�lling, ncl = L/2. Thus, α{N,L} simpli�es to

α{N,L} =
2L

π
. (15)
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IV. CRITICAL INTERACTION STRENGTH IN THE THERMODYNAMIC LIMIT

The dependence of Uc on L follows a power-law scaling, as shown in Fig. S1(a). The circle dots are numerical
results obtained by exact diagonalization while the curves are the �tting with the power-law relation, Eq. (2) in the
main text. The extrapolated Uc = UTD in the TDL is shown by the red line in Fig. 1(c) of the main text. The �tting
parameters α and β depend explicitly on γ, as shown in Fig. S1(b).

Fig. S1. (a) Critical interaction strength Uc as a function of L for di�erent nonreciprocity γ. The color changes from cyan to
red when γ increases from 0 to 1.2t. The circle dots are exact diagonalization results and the curves are the �tting with the
power-law relation, Eq. (2), in the main text. (b) Extrapolated index α (right orange) and decaying strength β (left blue) as
functions of γ.

V. DENSITY-DENSITY CORRELATION FUNCTION

To characterize the phase diagram, we compute the density-density correlation function by [1]

C` = 〈(n̂0 − 1/2)(n̂` − 1/2)〉

=

∑
j〈j|(n̂0 − 1/2)(n̂` − 1/2)e−βEj |j〉

Z
, (16)

where |j〉 are the right eigenstates of the many-body Hamiltonian with eigenvalues Ej , Z is the partition function given
by Eq. (18). For concreteness, we consider the long-range correlation function with ` = L/2 and at low temperatures
1/β = kBT � t. In the low-temperature limit β → ∞, Eq. (16) describes the density-density correlation of the
ground state. The correlation function as a function of interaction strength U for increasing L is shown in Fig. S2.
At U = 0, we �nd CL/2 = 0. When increasing U , |CL/2| increases slowly in the small U regime but rapidly around

(a) (b)

Fig. S2. (a) Density-density correlation function as a function of U for di�erent L. The red dotted curve sketches the result in
the TDL. Other parameters are γ = 0.6t and kBT = 0.1t. (b) is the same as (a) but for the Hermitian limit γ = 0.
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(b)

(d)(c)

(a)

2

Fig. S3. (a) Real part of the low-Re(E) spectrum as a function of U . We take L = 10 for illustration. (b) Free energy F(U),
its �rst (b) F ′(U) and second (c) derivative F ′′(U) as functions of U . In contrast to the case with �nite γ 6= 0, F and its
derivatives change smoothly when increasing U . γ = 0 and other parameters are the same as Fig. 3 in the main text.

U = Uc. In the large U regime, |CL/2| saturates slowly to a universal value 0.25. For larger systems, these features are
more pronounced. In the TDL, we can expect |CL/2| to suddenly jump from zero to the universal value 0.25 at the
transition, as sketched by the red dotted curve in Fig. S2(a). A similar behavior of |CL/2| happens for γ = 0 but with
the rapid increment around a smaller U , as shown in Fig. S2(b). Finally, we note that for odd L/2, we have always
CL/2 ≥ 0, while for even L/2, we have always CL/2 ≤ 0. This re�ects the fact that the ground state of the system is
likely to have staggered charge-density distribution, namely, di�erent charge densities at odd and even lattice sites.

VI. FREE ENERGY AND PERSISTENT CURRENT

The free energy F of the interacting system at temperature T is given by

F = − 1

β
logZ, (17)

where β = 1/kBT with kB being the Boltzmann constant, and Z is the partition function

Z =
∑
j

e−βEj . (18)

The sum in Eq. (18) runs over all eigenenergies. In the Hermitian limit γ = 0, all eigenenergies change smoothly with
increasing U [Fig. S3(a)]. Consequently, F and its derivative also change smoothly, as shown in Figs. S3(b�d).

The application of a magnetic �ux φ thread through the ring changes the eigenenergies and hence F periodically.
The persistent current along the ring can be found as the derivative of F with respect to φ [2], i.e.,

Ip = − e
~
∂F
∂φ

, (19)

where e is the elementary charge and ~ the reduced Planck constant.
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At zero temperature, the free energy is equal to the ground-state energy, i.e., F = E0. In the absence of interactions,
the ground-state energy can be found as

E0(φ) = −2
∑
|κ|6L/4

[
t cos

(2πκ

L
+
φ

L

)
+ iγ sin

(2πκ

L
+
φ

L

)]
, (20)

where κ are integers. For L� 1, we approximate the summation in Eq. (20) as an integral and obtain

E0(φ) = −L
π

∫ π/2

−π/2

dx
[
t cos(x) cos

(φ
L

)
− t sin(x) sin

(φ
L

)
+ iγ sin(x) cos

(φ
L

)
+ iγ cos(x) sin

(φ
L

)]
= −2L

π

[
t cos

(φ
L

)
+ iγ sin

(φ
L

)]
. (21)

Plugging F = E0 into Eq. (19), we �nd

Ip =
2e

~π

[
− t sin

(φ
L

)
+ iγ cos

(φ
L

)]
. (22)

At zero �ux φ = 0, the persistent current is given by

Ip = i
2e

~
γ

π
. (23)

VII. NONTRIVIAL WINDING NUMBERS AND CHARGE DENSITY PROFILES OF THE

MANY-BODY EIGENSTATES

At U = 0, the �ow of the eigenenergies as varying the twist boundary angle φ in a period [0, 2π), and charge-density
pro�les of all many-body sates are shown in Fig. S4. In the strong interaction regime, the �ow of the eigenenergies
and charge-density pro�les of the many-body eigenstates associated with the spectral clusters (i.e., with the energies
close to the respective cluster energy centers) are shown in Fig. S5. Clearly, all the eigenenergies wind around the
corresponding energy centers when φ increases from 0 to 2π. Correspondingly, the charge densities of the many-body
eigenstates, which are evenly distributed in the system under PBC, tend to localize to an open boundary. We note that
the winding numbers de�ned by Eq. (3) in the main text are applicable to �nite-size systems. Due to the �nite-size
e�ect, all eigenenergies are away from the energy centers of clusters, provided that U is �nite. Thus, the clusters have
well-de�ned point gaps in �nite-size systems. In the L → ∞ limit but with �xed N , each clusters has at least one
continuous orbit surrounding their energy centers. Nontrivial topological invariants can be de�ned as the winding
numbers along these orbits.

(a)
PBC

(b)
OBC

(c)

Fig. S4. (a) Movement of the eigenenergies at U = 0 as the twist boundary angle φ increases from 0 (cyan) to 2π (red). All
eigenenergies wind around E = 0 in one direction. The spectral winding number for the spectrum is found as ν = 12. (b)
Charge density pro�les of all many-body states under PBC. (c) the same as (b) but for OBC. We consider L = 10, N = 3,
U = 20t and a relatively large γ = 0.9t for better illustration.

Figure S6 plots the clusters for �xed N and increasing L. We see that as L grows, the eigenenergies �ll the clusters
more densely. In the TDL, the clusters form continuous areas and orbits in the complex-energy plane. Thus, we can
always �nd a continuous orbit of eigenenergies that surround the energy center of any cluster. A nonzero topological
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(b) (c)

PBC PBC PBC

OBC OBC OBC

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(a)

Fig. S5. (a-c) Movement of the eigenenergies of the clusters at εs = 0, U and 2U , respectively, when the twist boundary angle
φ increases from 0 (cyan) to 2π (red). All eigenenergies belonging to the same cluster wind around the center in one direction.
The spectral winding numbers for the three clusters are found as νs = 5, 4 and 3, respectively. (a1-c1) Charge density pro�les
of the eigenstates with energies around εs = 0, U and 2U , respectively, when PBC are imposed. (a2-c2) the same as (a1-c1)
but for OBC. The charge-density pro�les are markedly di�erent for PBC and OBC. Moreover, the charge densities tend to
localize at one open boundary when OBC are imposed. Other parameters are the same as Fig. S4.

(a)

(b)

N=3, L=14

N=3, L=22

N=4, L=14

N=4, L=22

(c)

(d)

(e)
N=5, L=14

N=5, L=22(f)

Fig. S6. Spectral clusters for �xed N and increasing L. The right, middle and left panels are for N = 3, 4 and 5, respectively.
The upper and lower panels are L = 14 and 22, respectively. As L grows, the eigenenergies �ll the clusters more densely. In
the TDL, the clusters occupy continuous areas and orbits around their energy centers in the complex-energy plane.

invariant can be obtained as the winding numbers of these orbits. We note that the extents of the clusters (including
the one at ε1 = (N − 1)U) on real and imaginary axes are independent of large L. The extents of the clusters are
�nite, provided that U is �nite.

For single particles, it has been demonstrated that a nonzero spectral winding number inevitably lead to the
non-Hermitian skin e�ect [3, 4]. In the following, we show that this relationship can be generalized to many-body
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strongly interacting systems. The point-gap topology with nonzero winding numbers in the PBC spectrum ensures
that its di�erence as compared to the OBC one, thus leading to the non-Hermitian skin e�ect even in the many-body
interacting systems.
We focus on the strong interaction (U � t) regime where the PBC spectrum develops multiple clusters which

are centered at εs ∈ {0, U, ..., (N − 1)U} and have nonzero winding numbers, as we discussed before. In this strong
interaction regime, we consider the kinetic hopping term

V̂h =

L∑
`=1

[(t+ γ)ĉ†` ĉ
†
`+1 + (t− γ)ĉ†`+1ĉ

†
`] (24)

as a perturbation to the unperturbed Hamiltonian which consists of only the interaction term

Ĥint = U

L∑
`=1

n̂`n̂`+1. (25)

Then, up to the N -order perturbations in V̂h, the e�ective Hamiltonian projected within cluster s ∈ {1, 2, ..., N} may
be written as

Ĥ
(s)
e� = (N − s)U + P̂s

N∑
j=1

V̂h[(E − Ĥint)
−1V̂h]j−1P̂s +O(V̂ N+1

h ), (26)

where P̂s is the orthogonal projection operator onto the many-body Fock subspace associated with cluster s. Using the
perturbation theory, we can derive e�ective Hamiltonians under PBC and OBC, respectively, for each cluster. From
these Hamiltonians, we can �nd again that the PBC spectrum has a nonzero nonzero winding number whereas the
OBC spectrum is always real, which is consistent with our numerical calculations. Indeed, the e�ective Hamiltonian
under OBC can be converted into a Hermitian one via a similarity transformation. Such a similarity transformation
does not change the spectrum, and clearly shows the concentration of the many-body eigenstates to the Fock basis
state with its particles accumulated close to an open boundary. Therefore, the many-body eigen wavefunctions are
localized to the boundary, thus exhibiting the many-body non-Hermitian skin e�ect.
As an illustration, we consider the cluster s = 1. For this cluster, we denote and order the orthogonal many-body

basis with the position as

|`〉 = ĉ†` ĉ
†
`+1...ĉ

†
`+N−1|vac〉, ` ∈ {1, ..., L}, (27)

where |vac〉 is the vaccum state. The e�ective Hamiltonian under PBC can be derived as

〈|Ĥ(1)
e� |`〉 = Ẽ1δ,` +

(t− γ)N

UN−1
δ,`+1 +

(t+ γ)N

UN−1
δ,`−1, (28)

where ε̃1 = (N − 1)U + E1,c. Thus, the e�ective Hamiltonian is given by

Ĥ
(1)
PBC = ε̃1 +

L∑
`=1

[ (t− γ)N

UN−1
|`+ 1〉〈`|+ (t+ γ)N

UN−1
|`〉〈`+ 1|

]
. (29)

This Hamiltonian takes a similar form as the single-particle Hatano-Nelson model but is de�ned on the basis of Fock
states. In the N = 1 limit, it recovers the single-particle Hamiltonian. The Eshift in Eq. (29) stems from the even-
order corrections. It shifts the energy of the cluster globally in real axis and thus does not a�ect the topology of the
system of interest. To the second-order corrections, the energy shift can be estimated as E1,c ≈ 2(t2 − γ2)/U . The
hopping terms are dominated by the N -order correction. They are non-reciprocal in the orthogonal Fock subspace:
the hopping amplitude from the many-body state |`〉 to the next one |`+ 1〉 is (t − γ)N/UN−1, while the hopping
amplitude for the inverse process is instead (t+ γ)N/UN−1. By Fourier transformation, the energy spectrum can be
found as

Ẽ
(1)
PBC = ε̃1 +

(t− γ)N

UN−1
e−iq +

(t+ γ)N

UN−1
eiq, (30)

where q ∈ {0, 2π/L, 4π/L, ..., 2π} can be viewed as the momentum of the many-body eigenstates. This spectrum is
consistent with the numerical calculations, as shown in Fig. S7. From Eq. (30), we also see that in the TDL (L→∞),
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the spectrum forms a closed loop in the complex-energy plane, similar to that of the single-particle Hatano-Nelson
model [cf. Fig. S7(b)]. Taking into account the magnetic �ux, the spectrum becomes

Ẽ
(1)
PBC(φ) = ε̃1 + e−iNφ/Le−iq + eiNφ/Leiq

(t+ γ)N

UN−1
. (31)

Using Eq. (3) in the main text, we obtain the winding number as ν1 = sgn(γ)N , which again is consistent with our
numerical calculations [c.f. Fig. S7(c)].

Re E

(a)

Im
 E

Re ERe E

(c)(b)

Fig. S7. (a) Many-body spectrum (blue) obtained by the e�ective model in Eq. (29). The red circles are obtained by exact
diagonalizing the full many-body Hamiltonian and are plotted for comparison. (c) Many-body spectrum (blue) obtained by the
e�ective model in Eq. (30) in the TDL. The red circles are obtained by exact diagonalizing the full many-body Hamiltonian
with L = 30 sites and are plotted for comparison. (c) Evolution of many-body spectrum (blue) obtained by the e�ective model
in Eq. (31) by increasing the twist angle φ from 0 to 2π. We consider N = 3, γ = 0.2t, U = 20t, t = 1, s = 1 and PBC in all
panels, and φ = 0 in (a) and (b).

Next, we impose OBC (i.e., termination of the coupling between the ` = 1 and L sites) and derive the e�ective
Hamiltonian as

Ĥ
(1)
OBC = ε̃1 −

N−1∑
`=1

E`(|`〉〈`|+ |L− `〉〈L− `|) +

L−N∑
`=1

(t− γ)N

UN−1
|`+ 1〉〈`|+ (t+ γ)N

UN−1
|`〉〈`+ 1|. (32)

Note that under OBC, we have L−N + 1 many-body states in cluster s = N . Due to the termination, the Fock basis
states close to the two ends have di�erent potential corrections compared to those deep in the bulk. Following the
spirit of Refs. [3, 4], one can show that the Hamiltonian with open boundaries is always topological trivial in terms
of point gaps. To be explicit, we can apply a similarity transformation

|`〉 → η`|`〉, 〈`| → η−`〈`|, (` ∈ {1, ..., L−N + 1}), (33)

where η = |(t+ γ)/(t− γ)|N/2, and transfer the Hamiltonian (32) to a Hermitian one

Ĥ
(1)′
OBC = ε̃1 −

N−1∑
`=1

E`(|`〉〈`|+ |L− `〉〈L− `|) +
(t2 − γ2)N/2

UN−1

L−N∑
`=1

(|`+ 1〉〈`|+ |`〉〈`+ 1|). (34)

The similarity transformation does not change the spectrum. Thus, the e�ective Hamiltonian (32) under OBC has a
purely real spectrum, topologically di�erent from that under PBC. In the TDL, we approximate the spectrum as

Ẽ
(1)
OBC ≈ ε̃1 + 2

(t2 − γ2)N/2

UN−1
cos q, (35)

where q ∈ {0, 2π/(L−N + 1), 4π/(L−N + 1), ..., 2π}. The OBC spectrum forms a line in real axis inside the PBC
spectrum (i.e., closed loop) (see Fig. S8). This result indicates that most and extensive many-body eigenstates under
OBC are localized to one open boundary. These results are also consistent with our numerical calculations.
In fact, from the similarity transformation, we can further see that for N � L, the many-body eigenstates tend to

concentrate to the Fock basis state |L−N + 1〉 if |η| > 1 while to the state |1〉 if η < 1. Note that the wavefunction
of the basis state |`〉 are accumulated from sites ` to ` + N − 1. Thus, the many-body eigen wavefunctions are
localized at the right end if η > 1 while at the left end if η < 1. When γ = 0, the spectral winding numbers become
ill-de�ned. Accordingly, the similarity transformation become trivial with η = 1, and thus the many-body skin e�ect
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Fig. S8. (a) Many-body spectrum (blue dots) obtained by the e�ective model in Eq. (32). The red circles are obtained by exact
diagonalizing the full many-body Hamiltonian. The cyan dots are the spectrum under OBC. Other parameters are the same
as those in Fig. S7.

disappears. From this aspect, we see clearly that the nontrivial spectral winding number and the many-body skin
e�ect are intimately related.

The above derivation can be generalized to other clusters, which is relatively more complicate. However, the essential
results are the same: the many-body system can be understood as a "single-particle" model de�ned on the basis of
Fock states, and the OBC e�ectively terminate the direct coupling between the "boundary" Fock basis states whose
particles accumulated towards the boundaries. The nontrivial spectral topology of the PBC spectrum leads to the
localization of the many-body eigenstates to the boundary Fock states, in the same manner as that in single-particle
system, which hence exhibit the localization of the many-body eigen wavefunctions towards the boundaries. Finally,
it may be also worth noting that for other clusters, the non-reciprocal hopping between the Fock basis states can be
obtained by lower-order corrections. Thus, we �nd stronger e�ective nonreciprocity and hence larger spectral areas
for these clusters. This is also con�rmed by our numerical observations [Fig. 4(b) in the main text].

(a) (b)

Fig. S9. Charge-density pro�les of many-body states for U = 0, t, 2t, 5t and 10t, respectively. Two states, namely, (a) the
ground state and (b) the 50th lowest-Re(E) states, are taken for illustrations. With increasing U , the charge-density pro�le of
the many-body states become extended over the whole lattice chain with open boundaries. L = 10, N = 5 and other parameters
are the same as Fig. S5

In contrast, at half-�lling and for |γ| < t (|γ| > t), the many-body spectrum of a �nite system under PBC shrinks
onto the real axis (open lines parallel to the imaginary axis) as U increase. Accordingly, we observe that upon
increasing U , the charge-density pro�le of the many-body states become extended over the whole lattice chain with
open boundaries, as shown in Fig. S9. For concreteness and brevity, we show the results for two states in Fig. S9. We
note that all other many-body states exhibit similar behaviors.
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VIII. OTHER HALF-FILLED CASES

In the main text, we have discussed (I) the half-�lled cases with odd (even) N = L/2 and (anti-)PBC. In this section,
we discuss the results for the complementary half-�lled cases (II), namely, with even (odd) N and (anti-)PBC. In
the cases (II), the system has always two ground states with complex-conjugate energies; and there is no exceptional
point between two lowest excited states, as shown in Figs. S10(a) and (b). Thus, we do not observe the two PT
transitions. However, we observe that as the size of the system L grows, the excitation gap ∆gap becomes vanishingly
small for U < U ′c and increases rapidly for U > U ′c, and the critical interaction strength U ′c approaches with that one
(Uc) characterizing the low-energy T P transition in the cases (I) [cf. Fig. S10(c)]. This result indicates that in the
TDL, the phase transition from the gapless regime to the gapped CDW regime happens also in the cases (II) and the
corresponding critical interaction strength coincides with that in the cases (I).

(a) (b) (c)

Fig. S10. Results for the cases with even (odd) N = L/2 and (anti-)PBC. (a) Many-body spectrum at half-�lling in the
absence of interactions (U = 0). (b) Real part of the low-energy many-body spectrum as a function of U . We take L = 10 for
illustration. (c) Excitation gap ∆gap as a function of U . The light colored lines are the results for cases (I) and presented here
for comparison. We see that as L→ ∞, the metal-insulator transition in cases (II) resemble that in cases (I). Other parameters
are the same as that in Fig. 3 in the main text, namely L = 10 in panels (a) and (b), and γ = 0.6t in all panels.

IX. CALCULATIONS FOR THE NON-HERMITIAN SSH-TYPE MODEL

Our main results, such as the symmetry-breaking phase transitions and nontrivial spectral topology, revealed
from the interacting Hatano-Nelson model are general. They can also be applied to other models. As an example,
we consider the Su-Schrie�er-Heeger (SSH) type model in which non-reciprocal hopping occurs every two nearest-
neighbour bonds, as sketched in Fig. S11(a). The non-Hermitian SSH-type Hamiltonian reads

H =
∑
`

{
(Ĉ†` (tσx − iγσy)Ĉ†` +

t

2
[Ĉ†`+1(σx + iσy)Ĉ†` + h.c.]

}
, (36)

where Ĉ` ≡ (ĉA,`, ĉB,`)
T = (ĉ2`−1, ĉ2`)

T with A and B indicating odd and even lattice sites, respectively. The Pauli
matrices act on sublattice space consisting of A and B. h.c. indicates Hermitian conjugation of the previous term.
Figure S11(c) illustrates the �ow of the full spectrum of the model with size L = 12 and half-�lling under anti-PBC.
We see clearly that both the low-energy and full PT phase transitions occurs in the non-Hermitian SSH-type model
as we increase the strength of nearest neighbor interaction. We have also checked that as L increases, while the
critical strength Uc,all for the full PT transition increases monotonically, the critical strength Uc for the low-energy
PT transition saturates to a �nite value. The non-Hermitian SSH-type model also exhibits the nontrivial winding in
the spectrum, as shown in Fig. S12. All these features are the same as those in the interacting Hatano-Nelson model
(up to that the imaginary energies are half of those of the Hatano-Nelson model).
It may be worthy noting that through a local unitary transformation Ĉ` → 1/

√
2(σ0 + iσx)Ĉ`, the model (36) can

be converted to a Creutz-ladder-like model [5]

H =
∑
`

{
(Ĉ†` (tσx + iγσz)Ĉ` +

t

2
[Ĉ†`+1(σx − iσz)Ĉ` + h.c.]

}
. (37)

Notably, the non-Hermiticity in the Creutz-ladder-like model contains pure onsite gain (iγ) and loss (−iγ) [see
Fig. S11(a)]. The interaction term can be transformed accordingly and remains Hermitian after the transformation.
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Fig. S11. (a) Schematic for the non-Hermitian SSH-type model (left panel). The orange and blue dots indicate two sublattices (A
and B), respectively. The nonreciprocal hopping occurs only within unit cells. The model can be converted to a Creutz-ladder-
like model with imaginary hopping and onsite gain and loss (right panel). (b) PT transitions in the interacting non-Hermitian
SSH-type lattice chain with L = 12, N = 6 and γ = 0.2t. The changing colour (from cyan to red) indicates the change of
interaction strength from U = 0 to 3t. The insets show the spectra at U = 0 and 3t, respectively. We consider anti-PBC for
illustration.

(a) (b)

Re E Re E

Re E Re E Re E

Im
 E

Im
 E

(c) (d) (e)

Fig. S12. Energy spectrum of the interacting SSH-type lattice chain with L = 12, N = 3 and γ = 0.2t. (a) and (b) are the
spectra at U = 0 and 20t respectively. (c), (d) and (e) display respectively the movement of the three spectral clusters (labeled
by s = 1, 2, 3) as varies φ from 0 (cyan) to 2π (red).

The dissipative Hamiltonian (37) can be directly derived from the Lindblad equation as we show in the following.
The Lindblad equation under the Markov approximation reads [6]

dρ

dt
= −i[H0, ρ] +

∑
`

(
L`ρL

†
` −

1

2
{L†`L`, ρ}

)
, (38)

where ρ(t) is the density matrix of the system at time t. H0 is the system Hamiltonian in the absence of coupling to
environment. It is Hermitian and prepared as

H0 =
∑
`

t
{
Ĉ†`σxĈ` +

1

2
[Ĉ†`+1(σx − iσz)Ĉ` + h.c.]

}
. (39)

L` are the Lindblad jump operators in terms of fermion operators. We consider one-body loss events described by
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L` = g`ĉ` with g` = i`
√

2γ. The coe�cients g` are determined from the loss rates of atoms. Following the quantum
trajectory method [7], the dynamics of the system can be decomposed into a Schrödinger evolution under an e�ective
non-Hermitian Hamiltonian and quantum-jump processes which induce particle losses with the jump operators L`,

dρ

dt
= −i(He�ρ− ρH†e�) +

∑
`

L`ρL`. (40)

We �nd that the resulting e�ective Hamiltonian

He� = H0 −
i

2

∑
`

L†`L` = H0 + iγ
∑
`

Ĉ†`σzĈ` (41)

gives exactly the dissipative Creutz model in Eq. (37). It describes the evolution of the system during a time interval
between quantum jump events. If we consider a situation where the equilibration time in the measured many-body
system is shorter than a typical time between quantum jumps, it is justi�ed to consider only He� for the short-time
evolution.

[1] M. H. Kaltho�, D. M. Kennes, and M. A. Sentef, �Floquet-engineered light-cone spreading of correlations in a driven
quantum chain�, Phys. Rev. B 100, 165125 (2019).

[2] N. Byers and C. N. Yang, �Theoretical considerations concerning quantized magnetic �ux in superconducting cylinders�,
Phys. Rev. Lett. 7, 46 (1961).

[3] K. Zhang, Z. Yang, and C. Fang, �Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems�,
Phys. Rev. Lett. 125, 126402 (2020).

[4] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, �Topological origin of non-hermitian skin e�ects�, Phys. Rev. Lett.
124, 086801 (2020).

[5] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, �Exceptional topology of non-Hermitian systems�, Rev. Mod. Phys. 93,
015005 (2021).

[6] G. Lindblad, �On the generators of quantum dynamical semigroups�, Commun. Math. Phys. 48, 119 (1976).
[7] A. J. Daley, �Quantum trajectories and open many-body quantum systems�, Adv. Phys. 63, 77 (2014).

http://dx.doi.org/10.1103/PhysRevB.100.165125
http://dx.doi.org/10.1103/PhysRevLett.7.46
http://dx.doi.org/ 10.1103/PhysRevLett.125.126402
http://dx.doi.org/10.1103/PhysRevLett.124.086801
http://dx.doi.org/10.1103/PhysRevLett.124.086801
http://dx.doi.org/ 10.1103/RevModPhys.93.015005
http://dx.doi.org/ 10.1103/RevModPhys.93.015005
http://dx.doi.org/ 10.1007/BF01608499
http://dx.doi.org/ 10.1080/00018732.2014.933502

	Supplemental material for  "Symmetry breaking and spectral structure of the interacting Hatano-Nelson model"
	Abstract
	PT and particle-hole symmetries
	Pauli exclusion principle
	Dimension of the many-body spectrum 
	Critical interaction strength in the thermodynamic limit 
	Density-density correlation function 
	Free energy and persistent current 
	Nontrivial winding numbers and charge density profiles of the many-body eigenstates 
	Other half-filled cases
	Calculations for the non-Hermitian SSH-type model
	References


