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Zusammenfassung

Der Kohlenstoffaustausch zwischen terrestrischen Ökosystemen und der Atmosphäre ist

hauptsächlich gekennzeichnet durch nicht-lineare, komplexe und zeitversetzte Prozesse.

Die damit verbundenen Ökosystemantworten und klimatischen Rückwirkungen zu ver-

stehen, ist eine fundamentale Herausforderung im Hinblick auf Probleme wie steigende

CO2 Anteile in der Atmosphäre und den Klimawandel allgemein. Für gewöhnlich wer-

den die zu Grunde liegenden Zusammenhänge als fest vorgeschriebene Funktionen mod-

elliert, die eine Reihe von meteorologischen, Strahlungs- und Gasaustauschvariablen

verknüpfen. Im Gegensatz dazu ermöglichen Algorithmen des Maschinellen Lernens

(ML), wie zum Beispiel Künstliche Neuronale Netze oder Gaußsche Prozesse, das Er-

forschen der Zusammenhänge direkt auf Grundlage der Daten.

Mikrometeorologische, hochaufgelöste Messungen an Türmen, über den Globus verteilt,

sind ein wichtiges Werkzeug für das Quantifizieren der Ökosystemvariablen: z.B. CO2-

Austausch, Sonnenstrahlung und Lufttemperatur werden fortlaufend gemessen. Um die

Interaktionen und Rückwirkungen zwischen diesen Variablen besser untersuchen zu kön-

nen, müssen mehrere schwierige Dateneigenschaften berücksichtigt werden: verrauscht,

mehrdimensional und lückenhaft.

In dieser Arbeit wird das Abschätzen der Unsicherheiten in solchen mikrometeorologis-

chen Messungen mit der Methode Gaußsche Prozesse (GPs) angegangen, einer moder-

nen, nicht-parametrischen Methode für nicht-lineare Regression. In den letzten Jahren

wurde gezeigt, dass die GP Methode ein mächtiger Modellierungsansatz ist, unabhängig

von der Variablen-Dimensionalität, dem Grad der Nicht-Linearität und der Stärke des

Rauschens. Heteroskedastische Gaußsche Prozesse (HGPs) sind eine GP Methode speziell

für Daten mit einer variierenden, inhomogenen Rauschvarianz, wie sie gewöhnlich in

Messungen des CO2-Austausch der Fall ist. Hier zeigt eine Bewertung der HGP Leistung

in mehreren Experimenten mit künstlichen Daten, sowie ein Vergleich zu existierenden

Methoden, dass ihre besondere Fähigkeit darin liegt, unter relativ wenigen Vorausset-

zungen, das Rauschen in Messungen abzuschätzen und gleichzeitig gute Daten ”Fits” zu

liefern.

Auf der Grundlage von lückenhaften, verrauschten, halbstündlichen Messungen von

Ökosystemvariablen werden HGPs eingesetzt um an zwei Messtürmen in Hainich (Deutsch-

land) und Hesse (Frankreich), Unsicherheiten in Jahressummen des CO2-Austauschs

abzuschätzen. Ähnliche Rauschmuster mit verschiedenen Stärken wurden ermittelt, mit

einem geschätzten jährlichen Rauschanteil von±14.1 gCm−2yr−1 bzw. ±23.5 gCm−2yr−1

für das Jahr 2001.





Abstract

The flow of carbon between terrestrial ecosystems and the atmosphere is mainly driven

by nonlinear, complex and time-lagged processes. Understanding the associated ecosys-

tem responses and climatic feedbacks is a key challenge regarding climate change ques-

tions such as increasing atmospheric CO2 levels. Usually, the underlying relationships

are implemented in models as prescribed functions which interlink numerous meteoro-

logical, radiative and gas exchange variables. In contrast, supervised Machine Learning

algorithms, such as Artificial Neural Networks or Gaussian Processes, allow for an in-

sight into the relationships directly from a data perspective.

Micrometeorological, high resolution measurements at flux towers spread across the

globe are an essential tool for obtaining quantifications of the ubiquitious ecosystem

variables, as they continuously record e.g. CO2 exchange, solar radiation and air tem-

perature. In order to understand the interactions and feedbacks between these variables,

several challenging data properties need to be taken into account: noisy, multidimen-

sional and incomplete.

In this work, the task of investigating relationships and estimating uncertainties in such

measurements was addressed by Gaussian Processes (GPs), a modern nonparametric

method for nonlinear regression. The GP approach has recently been shown to be a

powerful modeling tool, regardless of the input dimensionality, the degree of nonlinear-

ity or the noise level. Heteroscedastic Gaussian Processes (HGPs) are a specialized GP

method for data with a varying, inhomogeneous noise variance, as often observed in

CO2 flux measurements. Here, an evaluation of the HGP performance on several artifi-

cial experiments and comparison to existing nonlinear regression methods showed that

their outstanding ability is to capture measurement noise levels, concurrently providing

reasonable data fits under relatively few assumptions.

On the basis of incomplete, noisy half-hourly measured ecosystem data, HGPs were

employed to assess uncertainties for annual sums of CO2 exchange at the two flux tower

sites in Hainich, Germany and Hesse, France. Similar noise patterns showing different

magnitudes were detected, with annual random error estimates of ±14.1 gCm−2yr−1 and

±23.5 gCm−2yr−1, respectively, for the year 2001.
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1 Introduction

This diploma thesis addresses the task of modeling the carbon exchange between terres-

trial ecosystems and the atmosphere, defined as the ecosystem response to meteorological

drivers. The underlying relationships are typically nonlinear, complex, time-lagged and

involve autocorrelative effects (Moffat et al., 2010). Micrometeorological, high resolution

measurements at flux towers are essential for exploring the interactions and feedbacks

of the processes regarding key climate change questions, such as increasing atmospheric

CO2 levels. Despite significant improvements in the applied instruments and measure-

ment techniques during the last decades, there is still some random noise left in the

measured ecosystem data, which it is challenging to assess. A specification of data

uncertainty affects not only the uncertainty of the model, but also model predictions

(Richardson et al., 2006):

“From the standpoint of model-data synthesis, uncertainties are as important as the

data values themselves” (Raupach et al., 2005)

The motivating background of modeling biosphere-atmosphere interactions and estimat-

ing relevant uncertainties in the ecosystem measurements is to better the understanding

of the global carbon cycle, a subject which has long attracted scientists from various

disciplines. Rising concentrations of greenhouse gases in the atmosphere have been at-

tributed to industrialization, human development and the resulting combustion of fossil

fuels and changes in land use. The concentration of carbon dioxide (CO2), the most im-

portant green house gas after water vapour, is currently the highest it has been in the last

650.000 years (Siegenthaler et al., 2005). The terrestrial biosphere strongly influences

the global carbon cycle by sequestering carbon via photosynthesis while simulatenously

releasing carbon via respiration. It was found that it exchanges 123 ± 8 Gt of carbon

per year with the atmosphere (Beer et al., 2010), while there are also considerable ex-

changes between oceans and atmosphere (∼90 Gt of carbon, see Fig. 1.1). Terrestrial

Ecosystems are often viewed as long-term carbon sinks, although their carbon seques-
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Figure 1.1: The global carbon cycle, illustrating the movement of carbon between land, at-
mosphere, and oceans. Yellow numbers are natural fluxes, and red numbers are
human contributions in gigatons (Gt) of carbon per year. White numbers indicate
stored carbon (U.S. Department of Energy, 2008).

tration capacity can vary largely between e.g. temperate deciduous forests and boreal

coniferous forests (Valentini et al., 2000; Baldocchi et al., 2001). The terrestrial carbon

sink is also considerably influenced by CO2 fertilization, climate change, stand age and

recovery from disturbance (Schulze et al., 2000).

Providing high resolution measurements of the net CO2, H2O and energy fluxes, as well

as auxiliary meteorological variables, over a wide range of ecosystems, the FLUXNET

observational network (Baldocchi, 2008) is an essential data source towards identifying

the contributions of various ecosystems to a global carbon sink. The CO2 exchange be-

tween biosphere and atmosphere is measured as the Net Ecosystem Production (NEP ),

which equals the difference between the carbon assimilation by photosynthesis (gross

primary production, GPP ) and the release of carbon to the atmosphere (ecosystem res-

piration, ER). The obtained datasets measured by the eddy covariance technique have

the following properties: complex, noisy, multidimensional and fragmented (Moffat, Ac-

cepted).

Usually, the underlying ecosystem responses are implemented in models as prescribed

functional relationships. In contrast, supervised Machine Learning (ML) algorithms,

such as Artificial Neural Networks, allow to extract the relationships to be character-

ized directly from the data (Moffat, Accepted). The term Machine Learning refers to
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intelligent methods, by which systems or computers learn characteristics and patterns

through generalizing from sample data. These tasks include prediction (both regres-

sion and classification), planning and robot control. One of the modern ML methods,

Gaussian Processes (GPs), were shown to be a powerful tool for nonlinear regression,

regardless of the input dimensionality, the degree of nonlinearity or the noise level (Ras-

mussen, 1996) and therefore are a promising method to be applied on ecosystem data

with the above properties. More recently, they have been shown to be applicable to real

world problems in biological or financial models (Gao, 2004; Sun et al., 2010; Macke

et al., 2011). Being a probabilistic model, GPs are also known for their good ability

to estimate uncertainties directly from the posterior distribution and are therefore the

method of choice.

Here, the central focus is on assessing the uncertainty, both, in the FLUXNET measure-

ments, as well as, the extracted relationships between fluxes and meteorological drivers,

by evaluating prediction and confidence intervals, respectively. Uncertainty estimates in

an ecophysiological context are of importance because they allow to quantify the mis-

match between models and data and can thus be used for model optimization, ecosys-

tem model validation against flux data, multi-site syntheses or regional-to-continental

integration efforts (Raupach et al., 2005; Richardson et al., 2008). Consequently, an

understanding of the uncertainties is crucial for the use of the FLUXNET observations

to constrain future climate predictions. Hence, from a data perspective, the GP method

promises to be a suitable approach to study.

This work is an attempt to present GPs as a novel method to explore ecological data sets,

especially regarding uncertainties in measurements. First, their ability to model nonlin-

ear relationships and to estimate uncertainties is tested on simulated data, where the

expected outcome is known beforehand. Afterwards they are applied to real world data

using their particular strengths, either as a stand-alone or an accompanying method.

A comparison to least squares nonlinear regression (NLR) and other methods, such as

local weighted regression smoothing (LOWESS), will give further insights into the per-

formance of GPs.

To demonstrate the principles of the GP method, it is first portrayed from a theoretical

perspective and compared to classical regression methods (Chapter 2). The main part

of this work, a series of artificial and real world data experiments, is then presented and

evaluated in order to point out their particular strengths and applicability (Chapter 3).

The last chapter comments on subsequent conclusions and a future perspective.
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2 Materials and Methods

In any system in which variable quantities change, it is of interest to examine the effects

that some variables exert (or appear to exert) on others (Draper & Smith, 1998), this is

the general understanding of the term relationship in data analysis. The statistical field

of regression analysis comprises a collection of so-called learning methods to quantify,

(mathematically) describe and understand that relationship between a target variable

(or dependent variable) and one or more input variables (or independent variables).

With a regression analysis it is also possible to make predictions about some unmeasured

events. Usually, learning methods are trained to serve one of the two above goals.

The regression analysis is a technique which is widely employed for the understanding of

numerous real-world problems in the life sciences and environmental sciences, e.g. in the

fields of gene expression analysis (Müller et al., 2008), enzyme kinetics (Duggleby, 1995),

plant physiology (Storch & Zwiers, 1999; Reichstein et al., 2005) or climatology (Drignei

et al., 2008). The principle of ”learning from examples” has not only attracted biologists

and psychologists interested in the interaction of organisms with their environment,

but also mathematicians and computer scientists who are mainly studying learning in

artificial contexts.

This chapter introduces the data domain, including data acquisition methods (Section

2.1.1), a measurement site description (Section 2.1.2) and the according ecosystem data

properties (Section 2.1.3) including a review on the current knowledge about flux data

uncertainties. The following sections focus on the method of regression analysis. In

Section 2.2, linear regression, which is used when a linear relationship between the

target variable and the input varaiables can be assumed. In the situation of a nonlinear

relationship, as often observed in natural science problems, there is a variety of applicable

different methods and approaches ranging from statistical approaches (e.g., nonlinear

least squares, Section 2.3), over Artificial Neural Networks to newer non-parametric

models such as Gaussian Processes and other Machine Learning methods (e.g., Support

Vector Machines). Gaussian Processes are a probabilistic model used for nonlinear

regression, being the key method of this thesis they are separately described in Section
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2.4.

2.1 Data Domain

2.1.1 Eddy Covariance Method

The eddy covariance technique is a micrometeorological method for measuring the tur-

bulent fluxes in the atmospheric boundary layer, thus making it possible to quantify the

turbulent exchange of energy and matter between surface and atmosphere. The word

eddy refers to the turbulent fluxes (short for flux densities) in the air (Fig. 2.1). It was

first published in the mid 20th century by Montgomery (1948), and then benefited a lot

from the development of the sonic anemometer (Bovscheverov & Voronov, 1960) which

enabled high temporal resolution measurements.

WIND

AIR FLOW IN ECOSYSTEM

Figure 2.1: Sketch of the turbulent ecosystem fluxes (eddies) next to a measurement site tower
(Burba & Anderson, 2010).

The fluxes (of e.g., CO2) can be described by the following equation (Foken, 2003)

FC = ρaw′c′, (2.1)

where ρa is the molar density of the air, w is the vertical wind speed and c the substrate

concentration. Overbars denote temporal averages and primes denote short term devi-

ations from the mean. Roughly spoken, this equation states that the net flux can be

calculated from the time averaged covariance between the substrate concentration and
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the vertical wind vector. To determine these covariances, high frequency measurements

of the wind vector are taken using three-dimensional sonic anemometers (Moncrieff

et al., 1996). Before calculating the mean net flux densities by averaging usually over

half-hourly timespans, various data correction steps, such as high-frequency losses, are

necessary (Aubinet et al., 2000).

The eddy covariance method is based on relatively few assumptions such as turbulent

conditions, horizontal homogeneity in the vegetation and a flat terrain. Another ad-

vantage is that in assessing the carbon flux, eddy covariance measurements are scale

appropriate and survey a whole ecosystem, whereas cuvette and chamber systems only

capture a small part of it (Baldocchi, 2003).

It is important to mention that the so-called footprint, the source area of the eddy fluxes,

can vary temporally and is also depending on the installation height of instruments at

the flux tower. This height can be fairly different for e.g. grasslands and forests, re-

sulting in typical footprint ranges between 100 m to 2000 m (Schmid, 1994). Recently,

state-of-the-art footprint models (Goeckede et al., 2006) have been developed also for

sites in more complex, horizontal heterogeneous terrains.

2.1.2 The Hainich Flux Tower Site

One of the measurement sites of ecosystem flux data is the tower in the ”Hainich National

Park” in Central Germany (51◦04’46” N, 10◦27’08” E, 440 m a.s.l.). The forest at this

experimental site was unmanaged for more than 60 years prior to 1997 because of its

history as a military base. Also, in the centuries before, the area was used as a coppice

with standard-systems and therefore not exposed to clearcut. Hence, the Hainich forest

developed basically undisturbed and the trees cover a wide range of age classes with a

maximum of up to 250 years (Knohl, 2003). The dominating species in this deciduous

forest are beech (Fagus sylvatica, 65%), ash (Fraxinus excelsior, 25%) and maple (Acer

pseudoplantanus and Acer plantanoides, 7%).

In the footprint of the tower, the stand density is 334 trees/ha, the typical canopy height

is 33 m the and there are trees with a maximum height of 37 m. In 2010, a completely

new flux tower was set up (Fig. 2.2), which has instruments installed at a measurement

height of 45 m, whereas the measurement height of the old tower was at 43.5 m.

The climate at the tower site is suboceanic/subcontinental, with a long term annual

mean temperature of 7.5 − 8◦C and annual precipitation of 750-800 mm. Please refer

to e.g. Kutsch et al. (2008) or Knohl (2003) for a more detailed site and forest stand

characteristics description.
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Figure 2.2: Montage of a photograph of the new Hainich flux tower (taken in April 2011),
portrayed on the surrounding biosphere and atmosphere.

2.1.3 Ecosystem Data Uncertainties

The measured ecosystem fluxes have various properties which are comprehensively char-

acterized in Moffat (Accepted). For this study, the most relevant of them is the random

error in the measurements. Important other properties shall only be summarized here

briefly:

• Incompleteness: Due to limitations of the eddy covariance technique (e.g., in-

strumentation failure, footprint issues or horizontal advection flow), a considerable

percentage (20 - 60%) of the annual carbon flux measurements needs to be rejected.

Most of these so-called gaps occur during nighttime because of non-turbulent con-

ditions. There are various approaches in the literature for filling these gaps (Falge

et al., 2001; Moffat et al., 2007).

• Multidimensionality: There are numerous other meteorological and ancillary

variables measured, each of them with its own measurement noise and occasional
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gaps.

• Inconsistency: Even for measurements under very similar meteorological condi-

tions, the measured carbon flux can be different due to changes in the state of the

ecosystem (e.g., phenology, soil properties or time lag effects).

In general, the sources of error in the flux data need to be distinguished. On the one

hand, there are random errors, which are due to measurement instruments, stochastic

nature of turbulences and the varying footprint of the towers. On the other hand, flux

data is subject to systematic errors, which are caused by inaccurate calibration, mea-

surements under unfavorable meteorological conditions (e.g., at night) or issues related

to advection and non-flat terrain. The systematic errors are usually difficult to detect

or quantify in data-based analysis (Moncrieff et al., 1996). According to Hollinger &

Richardson (2005), the uncertainties in the flux data are largely due to random mea-

surement error. However, if one is to completely describe the total flux measurement

error, it also requires a quantification of the systematic error or bias (Goulden et al.,

1996).

There are various ways of assessing these uncertainties to find out how much noise is in

the measurements. The most recent findings are listed below:

0) Paired tower method (Hollinger et al., 2004): A second tower in a spruce domi-

nated forest in Maine, USA, was set up very close to an existing flux tower, with

their footprints not overlapping significantly. Thus, the meteorological conditions

including temperature and radiation were almost identical for both towers.

The between tower variability was found to be lower than the interannual vari-

ability in NEP . The standard deviation σ of the flux data uncertainties could

therefore be calculated by estimating the standard deviations of the differences

between the two towers, which correspond to the expected error magnitude. Rele-

vant findings suggest that CO2 flux uncertainty varies with the season and declines

with increasing wind speed. (Note: this method is enumerated as ”0.” because it

is rather an exceptional study and of course not applicable at every site)

1) Paired observation method (Richardson et al., 2006): This approach is analogue

to 0), just with ”time traded for space”, i.e. flux measurements are compared on

two successive days at exactly the same time of the day. Nearly identical envi-

ronmental conditions were assured by fixed thresholds of meteorological variables

such as air temperature and wind speed. Since these constraints are frequently

not met, sample sizes are smaller than in the previous method.
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The results on σ are investigated for seven different (exclusively North Ameri-

can) measurement sites and generally in agreement with 0). A detailed analysis

of the statistical properties of the flux uncertainties is also carried out in this

study, i.e. the first four moments of the error distribution are calculated. The

most relevant reported results are that the random error follows rather a double-

exponential (Laplace) than a normal (Gaussian) distribution and it increases as a

linear function of the flux magnitude.

2) Model residuals method (Richardson et al., 2008): In the subsequent study to the

paired observation approach, again the statistical properties in terms of the first

four moments of the error distributions were investigated. The difference to the

previous study is that these properties were inferred from the model residuals

(the difference between model predictions and measured fluxes) of five different

modeling approaches (e.g., NLR and ANN). The former result of an Laplacian

error distribution that varies with the flux magnitude (i.e., a heteroscedastic error)

could be confirmed. Also, a spectral analysis of the model predictions suggests

autocorrelated model residuals, which exhibit site-specific differences. This study

considered six European measurement sites, including the Hainich forest (Section

2.1.2).

3) Gap-filling algorithm method (Lasslop et al., 2008): In this approach, the random

errors are estimated using the gap-filling algorithm of Reichstein et al. (2005).

The result of heteroscedastic flux data errors that increase with the flux mag-

nitude could be confirmed again. However, this study suggests that the error

distribution is rather a superposition of Gaussian distributions than a Laplacian

distribution. It is recommended by the authors to characterize the normalized

error distribution, i.e. the error distribution scaled to unity, when characterizing

uncertainties. Regarding the autocorrelation of the errors, it was found that it is

usually below 0.6 at a lag of 0.5 h.

In contrast to the three previous methods, this approach also investigated the influ-

ence of systematic errors on parameter and uncertainty estimates. It is suggested

that uncertainties in flux data are underestimated with approaches that neglect

so-called selective systematic errors, that occur only under certain conditions (e.g.,

under unfavorable meteorological conditions).
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2.2 Linear Regression

A linear relationship

Y = β0 + β1X + ε, (2.2)

between a target variable Y and an input variable X, determined by the parameters

β0 and β1 and accounting for some unobservable random noise ε, can be modeled by a

linear regression model of the form

Ŷ = b0 + b1X. (2.3)

Note that the word ”‘linear”’ in linear regression refers to a model which is linear in the

parameters, but still can be nonlinear in the input variable X (e.g. Ŷ = b0+b1X+b2X
2).

However, for notational simplicity, from here on the linear regression model is assumed

to be the standard first-order model with two parameters β0 and β1.

The linear regression model corresponds to fitting a regression line through a set of

observations given by (x1, y1), (x2, y2), ..., (xn, yn), with ŷi being the predicted value of

yi for a given xi. The regression coefficients b1 (the slope of the regression line) and b0

(the intercept with the y-axis) denote the estimates of the true model parameters β1

and β0, which are unknown since the data only represents a finite subset of the truth.

A model residual ei at a location i ∈ {1, 2, ..., n} is defined as the difference between the

observed value and the value predicted by the model:

ei = yi − ŷi = yi − b0 + b1xi. (2.4)

The residuals quantify the amount by which every individual yi falls off the regression

line and are therefore estimates of the true, unobservable error εi.

There are several different methods for estimating the regression coefficients with linear

regression such as Ordinary Least Squares, Generalized Least Squares or Maximum

Likelihood estimation. The Ordinary Least Squares (OLS) approach will be explained

in the following, in order to exemplify the principle of linear regression.

In the OLS method, the measure that is to be minimized is the so-called sum of squared

residual (SSR) which is the sum of the squared model residuals:

SSR =
n∑
i=1

e2i =
∑

(yi − b0 − b1xi)2. (2.5)
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Now differentiating the SSR function first with respect to b0 and then with respect to

b1 results in two equations by which the regression coefficients can be determined easily

(for technical details please refer to Freedman (2009) or Draper & Smith (1998)) and

denoted as:

b1 =
SXY
SXX

=

∑
(xi − X̄)(yi − Ȳ )

(
∑
xi − X̄)2

, (2.6)

and

b0 = Ȳ − b1X̄. (2.7)

with X̄ and Ȳ representing the means of X and Y , respectively.

To demonstrate how the linear regression works in practice one can apply the equations

above to a data sample where the generating function and the noise magnitude is known,

e.g. 20 samples drawn from the linear function f(X) = 2.1 + 0.42X + ε, with distur-

bance term ε being modeled as i.i.d. (identically, independently distributed) Gaussian

noise (Fig. 2.3(a)). Gaussian noise means that the noise follows a normal distribution.

Besides these properties of the errors and of course a linearity of the underlying rela-

tionship, another important assumption for linear regression is that the variance of the

errors is homogeneous over the whole range of observations (homoscedasticity). These

assumptions should always be checked by an analysis of residuals, which gives insight into

the distribution of the deviations. The regression coefficients calculated with OLS are

b0 = 2.48 and b1 = 0.34, and correspond to the regression line (blue line in Fig. 2.3(b))
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Figure 2.3: Linear regression example. In panel (a) the generating function f(X) = 2.1 +
0.42X + ε and the data sample are shown, in panel (b) the linear regression fit
(blue line) and the corresponding prediction intervals (gray shaded areas) and
confidence intervals (red shaded areas) are depicted.
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which best fits that specific data sample. The reason for the deviation of the regression

coefficients from the true parameters is that with OLS one obtains the regression param-

eters which minimize the sum of the residuals of the data points to the regression line

(in theory that sum is zero). Thus, especially for smaller samples (e.g., n < 100), the

regression line differs to some extent from the true generating function due to the noise

in the data. But since the true generating function is more of interest, it is necessary to

provide confidence intervals for the fitted function. One needs to distinguish confidence

intervals and prediction intervals, the latter can be derived from

s2 =
1

n− p
∑

e2i , (2.8)

with p referring to the degrees of freedom, e.g. in the simple first order model discussed

above p = 2. s2 is an estimate of the true (unknown) variance of the data, σ2. The

square root σ of this value is commonly known as the standard deviation. For normally

distributed data, the 1.96-fold of the estimated error variance s2 corresponds to the

so-called prediction intervals, i.e. the limits in which 95% of predicted data points are

to be expected. The constant 1.96 approximately refers to the bounds by which 95% of

the area under a normal curve are given. The prediction intervals are depicted for the

regression in Fig. 2.3(b) by the gray shaded areas, whereas the red shaded areas show

the confidence intervals for the function predicted by the linear regression. These serve

a different purpose than the prediction intervals, i.e. they provide uncertainty estimates

of the expected value of a given xi. While s2 is assumed to be constant along the x-axis

for homoscedastic noise, the confidence intervals are varying and need to be estimated

separately at every x0 of interest. This can be done by calculating the standard error

se as pointed out in Bates & Watts (1988):

se(ŷ0) = s ·

(
1

n
+

(x0 − X̄)2∑
(xi − X̄)2

)1/2

. (2.9)

If a normal distribution can be assumed, 1.96 standard errors correspond to 95%-

confidence intervals for the predicted linear regression line. Intuitively, the confidence

interval has a minimum when x0 = X̄ and increases as x0 is moved away from the mean.

The prediction and confidence intervals are the key tools in this thesis for estimating

uncertainties in data and relationships, and if technically possible they will always be

provided for any of the regression methods used.

To quantify the general fit performance of a regression model, there are some stan-
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dard statistical measures which are used throughout the whole thesis. The coefficient of

determination (e.g., in Draper & Smith (1998))

R2 =
{
∑

(ŷi − Ȳ )(yi − Ȳ )}2∑
(ŷi − Ȳ )

2∑
(yi − Y )

2 , (2.10)

describes the correlation between the modeled values and the measured values in terms

of how well the regression line fits the given data. It is a fixed value in the range [0,1];

zero indicates that there is no correlation at all, whereas a regression line with an R2 of

1 perfectly fits the data. Note that this is only one equation for the R2 out of several

and it should be used under the assumption of a linear relationship between the modeled

and the observed data points.

The root mean square error (RMSE) is defined as

RMSE =

√
1

n

∑
(ŷi − yi)2. (2.11)

and serves as a single error measure of the model residuals of all (predicted) data points.

It also serves as a statistic for the predictive power of the model and penalizes large

prediction errors more than small prediction errors.

The mean bias error given by

Bias =
1

n

∑
(ŷi − yi), (2.12)

i.e. the mean deviation of the estimated values from the observed values, if it is zero

than the estimator is said to be unbiased.

The standard deviation

SDev =
√

(2) · 1

n

∑
|ŷi − yi|, (2.13)

of a Laplacian distribution is used in two the reference studies (Richardson et al., 2006;

Moffat, Accepted) for model residuals of ecosystem data.
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2.3 Nonlinear Regression

Nonlinear regression models describe a relationship in which at least one of the param-

eters interacts with the other parameters in a nonlinear way. This Section concentrates

on statistical methods to deal with nonlinear regression problems, such as the classical

approach of nonlinear least squares (Section 2.3.1) and a more modern technique yet

making use of the least squares principle, the local linear regression, better known as

LOWESS (Section 2.3.2).

In nonlinear regression analysis, the model is a function that is a nonlinear combination

of the parameters, represented by e.g. exponential functions, logarithmic functions or

power functions. In fact, the possibilities of modeling a nonlinear relationship with such

functions are endless. Thus, nonlinear regression is often applied in situations where

definite information about the form of the relationship is available. This can include

direct knowledge of the true model or might involve differential equations that the model

must satisfy.

2.3.1 Least Squares Nonlinear Regression (NLR)

A nonlinear relationship

Y = f(X, θ) + ε, (2.14)

between a target variable Y and an input variable X is determined by parameters θ =

[θ1, ..., θp] that interact in a nonlinear manner. Typical examples for such a relationship

are

Y = θ1X
θ2 + ε, (2.15)

and

Y =
θ1
θ2
· exp(−θ2X) + ε. (2.16)

Note that the first model can be transformed by simply taking logarithms to the base e

into the form

ln Y = ln θ1 + θ2 lnX + ε, (2.17)
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which is linear in the parameters. Draper & Smith (1998) would call that model ”in-

trinsically linear” since it is a nonlinear model that can be transformed into a linear

form and is thus easier to handle. After transformation into the linear model the least

squares method for linear regression (Section 2.2) can be applied. Note that after re-

transformation into

Y = θ1X
θ2 · exp(ε), (2.18)

the errors are then not additive anymore but multiplicative, also, they are lognormal dis-

tributed. Hence, a transformation should only be applied, when the assumptions about

the errors are still (or even better) fulfilled by the linearized model. The distribution of

the errors should be checked with an analysis of residuals.

The second example (eq. 2.16) cannot be transformed into a linear model, then the

model is called ”intrinsically nonlinear”. Nevertheless, a transformation could still be

applied here to make the fitting more easy.

In classical statistical analysis, the nonlinear regression is performed usually by a direct

minimization of the sum of squared residual (eq. 2.5), which is not as easy as in the

linear case. Differentiating the SSR function with respect to the parameters results in

equations that are not linear and difficult to solve. Thus, estimating the parameters

of a nonlinear regression fit requires heavy iterative calculations. Another problem is

that the optimization algorithms applied sometimes do not find the optimal solution

because of local minima in the parameter search space or because they oscillate around

the optimum. Also, for some methods, it is of importance to provide initial parameter

guesses that are not too far from the desired θ̂.

There are several established iterative techniques to minimize the SSR function of a

nonlinear model, any of them requires such intensive calculations that can only be done

computationally. Three examples shall be outlined here, without going into technical

details. First, the Gauss-Newton algorithm approximates a linear expansion of the sum

of squares function and then uses the results of linear least squares in a succession of

stages. It is a relatively fast and simple method, but in some cases it might not converge,

especially when the initial parameters are too far from the optimum.

The method of steepest descent is based on the idea to approach the minimum of the

sum of squares function following a zig-zag path, where a new search direction is or-

thogonal to the previous one. The information, where the path through the parameter

search space decreases most quickly is obtained by evaluating the partial derivatives

with respect to the parameters. This method is robust when starting at a bad initial
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guess, but may oscillate around an optimum without converging.

The so-called Levenberg-Marquardt algorithm takes advantage of both the strengths of

Gauss-Newton and steepest descent and finds a compromise between them avoiding their

most serious limitations. It is based on the work of Levenberg (1944) and Marquardt

(1963) and probably the most widely applied algorithm for nonlinear estimation. In fact,

when the current solution is far from the optimum, the algorithm behaves like steepest

descent, whereas being close to the solution it becomes a Gauss-Newton method. The

Levenberg-Marquardt algorithm directly makes use of the Jacobian matrix of the first

partial derivatives with respect to p model parameters

J =


∂f(x1,θ)
∂θ1

· · · ∂f(x1,θ)
∂θp

...
. . .

...
∂f(xn,θ)
∂θ1

· · · ∂f(xn,θ)
∂θp

 . (2.19)

The Jacobian Matrix also serves for approximating the confidence and prediction inter-

vals for a nonlinear estimation, which is different than in the linear case. In general, in

the nonlinear case, the confidence intervals are more flexible and do not narrow towards

the ”centre of gravity”of the data. The confidence interval for a nonlinear fitted function

can be denoted as (Bates & Watts, 1988)

τi = s

√
aTi (JTJ)−1ai, (2.20)

with ai being the i-th row of the Jacobian and s being the mean squared error (eq. 2.8).

The prediction intervals can then be derived by

σ̂i =
√
s2 + τ 2i . (2.21)

Note that the prediction intervals are not constant anymore as in the linear regression

on normal distributed data, but can differ at every x.

For illustration of the nonlinear least squares, the nonlinear model

Y = θ1 · exp(θ2X) + ε, (2.22)

with parameters θ1 = 0.8 and θ2 = 0.22 was chosen and 20 data points were sampled,

assuming i.i.d. noise terms again (Fig. 2.4(a)).

The Levenberg-Marquardt method resulted in the fit shown in Fig. 2.4(b) with the

parameter estimates b1 = 0.65 and b2 = 0.24. The deviations of the fitted parameters
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from the generating are, like in the example in Section 2.2, explainable by the noise

in the data and the sample size. Note that for a nonlinear regression, apart from the

above described confidence and prediction intervals, also confidence intervals for the

parameters can be calculated, which will be omitted here for shortness.
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Figure 2.4: Nonlinear regression example. In panel (a) the generating function f(X) = 0.8 ·
exp(0.24X)+ε and the data sample are shown, in panel (b) the nonlinear regression
fit (blue line) and the corresponding prediction intervals (gray shaded areas) and
confidence intervals (red shaded areas) are depicted.

2.3.2 Locally Weighted Scatterplot Smoothing (LOWESS)

An example for a non-parametric regression model is the local regression smoothing

which is referred to as LOESS or LOWESS (Locally Weighted Scatterplot Smoothing,

Cleveland (1979)). The idea is to fit a nonlinear curve by stepwise local linear re-

gressions. LOWESS, the method applied as a benchmark in this thesis, uses a linear

polynomial model for the fit, whereas LOESS uses a quadratic polynomial model. In

some literature, the term ”LOESS” is used to refer to both of the smoothing methods.

LOWESS combines linear and nonlinear regression by performing separate linear re-

gressions at every x in a pre-defined span l, which is given as a fraction. Only the data

points in l, i.e. the (l ·N) nearest neighbours of x are used for the local weighted linear

regression. The regression weights wi are calculated for each data point in the span by

a tri-cube weight function

wi =

(
1−

∣∣∣∣x− xid(x)

∣∣∣∣3
)3

. (2.23)
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x is the predictor value associated with the response value to be smoothed, xi are the

nearest neighbors of x and d(x) is the distance along the x-axis from x to the most

distant predictor value within the span. It follows that the data point to be smoothed

has the largest weight and thus the most influence on the local fit, whereas data points

which are further away have smaller weights (Fig. 2.5(b)). Data points outside the span

are set to zero weight and have no influence on the fit.

Recalling the data sample from the previous Section, the principle how LOWESS works

is demonstrated for one data point x, marked in red in Fig. 2.5. A weighted linear

least squares regression line is fitted through the according nearest neighbours of x, as

depicted in Fig. 2.5(a). This procedure is repeated at every data point of the sample,

resulting in a set of smoothed points, which can then be interpolated to a line that

fits the data. The parameter l corresponds to the smoothness of the fit, for a larger l

(e.g., l = 0.8) more data points are considered at every local regression step resulting

in a smoother fitted curve. A smaller l makes the curve more sensitive to local function

properties and to wiggle more strongly, as shown in Fig. 2.6(a). Often the smoothing

parameter is set to values between 0.25 and 0.5, Cleveland (1979) suggested l = 0.5 as a

reasonable starting value when there is no idea what is needed. There are also iterative

approaches such as the PRESS procedure (Allen, 1974) for optimizing l.

Assumptions for LOWESS are that the errors in the data are independent and normally

distributed. Also it should be checked that the fitted curve follows the pattern of the

data, i.e. produces a nearly unbiased estimate.

A big advantage of LOWESS is that no function or model needs to be specified previously

in order to fit a given data sample. Only the smoothing parameter and the degree of
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Figure 2.5: The same data sample as in Fig. 2.4. (a) Local regression span for the data point
marked in red. The span parameter is set to l = 0.3, corresponding to 6 nearest
neighbours. The red line depicts the local linear regression. (b) The according
weights along the data span.
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the local polynomial must be considered for optimization. Also, LOWESS shares the

benefits of linear least squares regression such as given uncertainties for prediction and

calibration. LOWESS is a flexible nonlinear regression method, which can be applied

relatively easy for modeling complex relationships whose structure is rather unknown.

However, to produce good models, LOWESS needs densely sampled data that forms a

good empirical base for the fitted curve. The curve itself cannot be represented by a

mathematical formula, which is another drawback of the model, especially when it comes

to interpolation of incomplete data, although prediction with LOWESS is generally

possible. LOWESS is also vulnerable to effects of outliers, although Cleveland (1979)

provided some robust versions of the method. Another drawback of LOWESS is that the

prediction and confidence intervals can not be calculated as easily as for the parametric

regressions, they need to be assessed with re-sampling methods such as bootstrapping.
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Figure 2.6: LOWESS fits on the data sample in Fig. 2.4 for two different span parameters l.
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2.4 Gaussian Process (GP) Regression

The application of Gaussian Processes as a tool for nonlinear regression is the main

subject of this work. Hence, in this Section a formal definition and an explanation

how it is possible to obtain predictions with Gaussian Processes are given. Also it is

demonstrated how the actual learning process with Gaussian Processes works. Finally

the benefits and drawbacks of Gaussian Processes are outlined. The first studies of

Gaussian Processes date back to the end of the 19th century as documented in Lauritzen

(1981), related models developed in the 20th century include the work of Matheron

(1963), better known as Kriging in Geostatistics, and O’Hagan (1978). More recently,

the Gaussian Process framework was substantially extended by Rasmussen (1996); Neal

(1997); MacKay (1998). This theoretical summary will follow mainly the descriptions

in Bishop (2006) and Rasmussen & Williams (2006).

2.4.1 Definition

Attempting a verbal definition of a Gaussian Process (GP), there are several possibil-

ities. One of the most intuitive ones is given by Bishop (2006), defining a Gaussian

Process as a distribution over functions. One can also say that a Gaussian Process

is a generalization of a multivariate Gaussian distribution to infinitely many variables

(Rasmussen & Williams, 2006). For a better understanding of the latter definition, it is

helpful to imagine a function as an infinitely long vector.

In a more formal way, a GP is defined as following (Rasmussen & Williams, 2006):

A Gaussian Process is a collection of random variables, any finite number of which have

a joint Gaussian distribution.

Putting the formal definition of a GP into mathematical equations a mean function

m(x) and a covariance function k(x, x′) need to be defined, which together completely

specify a GP:

f(x) ∼ GP
(
m(x), k(x, x′)

)
, (2.24)

with

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.25)
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Often the mean function m(x) is assumed to be zero, for notational simplicity, although

it can also be assigned another value. The mean function, together with the covariance

function, expresses the prior beliefs of the distribution over functions and fixes the

properties of the actual functions used for inference. Random samples drawn from a

GP prior are shown in Fig. 2.7, whereas in formal terms a GP prior specifying e.g., the

random variables (y1 · · · y100) is given by
y1
...

y100

 ∼ N
(

m(x1)
...

m(x100)

 ,K

)
, (2.26)

with

K =


k(x1, x1) · · · k(x1, x100)

...
. . .

...

k(x100, x1) · · · k(x100, x100)

 . (2.27)

The values in the covariance matrix K can be calculated by applying a covariance

function of choice. The covariance function specifies the covariance between pairs of

random variables. A very common example for a covariance function is the squared

exponential covariance function, which is in fact a Gaussian kernel:

cov(y) = k(x, x′) = σ2
fexp(−‖x− x′‖2/2σ2

l ). (2.28)

Note that the covariance between e.g. the ouputs y1 and y2 is a function of the inputs

x1 and x2 exclusively. For this particular covariance function, only the signal variance

parameter σf and the length-scale parameter σl, the latter defines the variance of the

function along the x-axis, also have an influence on the final covariance. Another possible

definition of the characteristic length-scale is ”the distance one has to move in the input

space before the function value can change significantly” (Rasmussen & Williams, 2006),

thus characterizing the smoothness of the prior functions and the properties of the

covariance function. Its influence is depicted in Fig. 2.7(b) where samples from the GP

prior above are drawn, but with a varying length-scale parameter.
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Figure 2.7: Random samples drawn from a Gaussian Process prior with mean zero and a
squared exponential covariance function. Panel (a) shows three sample functions
with the same length-scale parameter σl, whereas the red dots show 100 points
actually generated from eq. 2.26 and the two other functions are lines of joint
points. In panel (b) the three sample functions show how different length-scales
influence the smoothness of the functions.

2.4.2 Prediction with GPs

How can this prior distribution over functions be used to predict function values of new

unseen data?

Given some noise-free observations {(xi, yi)|i = 1 · · ·n} with f(x) = y and f following a

Gaussian distribution. Let x be a set of n training points of which the corresponding

set y is known, and x∗ be a set of test points for which the corresponding values y∗ are

to be predicted. Then the joint distribution of the training points and the test points is

[
y

y∗

]
∼ N

(
0,

[
K(x, x) K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
. (2.29)

In order to get the posterior distribution over functions, one needs to restrict that joint

prior distribution to contain only those functions that agree with the observed training

data points. This can simply be done by conditioning the joint Gaussian prior distribu-

tion on the observations, yielding for any test value yn+1 in y∗ a Gaussian distribution

yn+1|xn+1, x, y ∼ N (m(xn+1), σ
2(xn+1)) with the following mean and covariance

m(xn+1) = K(xn+1, x)K(x, x)−1y, (2.30)

σ2(xn+1) = K(xn+1, xn+1)−K(xn+1, x)K(x, x)−1K(x, xn+1). (2.31)
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Note that the covariance of xn+1 is independent from the observed data in y, this is a

property of the Gaussian distribution. However, the targets in y are included in the

calculation of the new mean, which is a linear combination of y. Sampling from the pos-

terior distribution can be realized by evaluating the mean and covariance matrix (which

can simply be calculated by eq. 2.31 when more than one value is to be predicted), and

computing the Cholesky decomposition of the covariance matrix. A Cholesky decompo-

sition L of a positive-definite matrix A is defined as the decomposition of matrix A into

LLT , the product of a lower triangular matrix L and its transpose. The samples can

then be calculated by ysample = m + Lxsample at randomly drawn values xsample. Note

that the samples in Fig. 2.7 were drawn in the same way.

The samples in Fig. 2.8(a) show that by the calculation of the conditional distribution the

functions have been modified so that they fit the observed data, whereas those functions

in the prior distribution that disagree with the observations are in a way excluded in the

posterior distribution. The mean of the functions in the posterior distribution along the

y-axis (as calculated by eq. 2.30) represents (at point xn+1) the actual predicted value

yn+1 whereas the uncertainties of the prediction are represented by the pointwise double

standard deviation for each input value (shaded areas in Fig. 2.8(b)). The uncertainty

of the predictions can also be derived from the variance of the sampled functions just

by visual inspection as one would keep on drawing samples from the posterior distri-

bution as in Fig. 2.8(a). Notice that areas for which there are significant differences in

the samples (such as for x = [0.25, 0.5]) have bigger uncertainties than areas where the

samples are rather similar (such as for x = [1, 1.25]). In general, the predicted uncer-

tainties get larger (magnitude dependent on the length-scale) in areas that are distant

from any training points, which is in agreement with an intuitive understanding of data

uncertainty. In order to approach more realistic scenarios one needs to consider data

with noise, where it is assumed that the data y is created by some process f(x) but

is additionally influenced by some noise ε, as is generally the case when dealing with

measured data. Usually additive noise is modeled as being independent and identically

distributed Gaussian noise with variance σ2
n, giving a model for the actual observations

z = y + ε. Therefore the covariance function of the prior including noise can be written

as

cov(z)= K(x, x) + σ2
nI. (2.32)
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Figure 2.8: (a) Random samples drawn from a joint posterior distribution conditioned on four
data points. (b) The same random samples as in a) (dashed lines) with the black
line showing the mean of the distribution and the shaded areas showing the uncer-
tainties by the two times standard deviation (corresponding to the 95% confidence
region).

From eq. 2.29 one can thus infer the joint distribution of the observed data z and the

function values y∗ which are to be predicted as[
z

y∗

]
∼ N

(
0,

[
K(x, x) + σ2

nI K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
, (2.33)

here also accounting for noise in the measurements, which means in practice that the

data must not necessarily be fit exactly by the predicted functions anymore.

Applying this joint distribution to the predicted mean and covariance in the eq. 2.30

and eq. 2.31 one can define the new predictive equations as

m(xn+1) = K(xn+1, x)[K(x, x) + σ2
nI]
−1y, (2.34)

σ2(xn+1) = K(xn+1, xn+1)−K(xn+1, x)[K(x, x) + σ2
nI]
−1K(x, xn+1). (2.35)

Note that the σ2 here refers to the variance of the predicted function, thus it can be

used to estimate confidence intervals. Based on σ2 the calculation of the prediction

intervals can be performed, by adding the estimated noise variance hyperparameter σ2
n.

Given the example case that the latent function is f(x) =sin(3πx), but the observed data

contains only noisy versions thereof, which is z = f(x)+ ε. The noise follows a Gaussian

distribution again. By variation of the noise level parameter σ2
n (which is added to the

covariance function) one can show its influence on the resulting GPs when attempting to

predict the latent function f(x) (see Fig. 2.9). Whilst in Fig. 2.9(a), depicting a GP with
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Figure 2.9: Influence of a varying noise level parameter on the resulting GP, keeping the length-
scale parameter fixed. The green line depicts the latent function that is to be
learned from noisy observations (x signs). (a) shows the resulting GP with σ2n =
0.05 and (b) with σ2n = 0.15, the black line again showing the mean function and
the shaded areas the uncertainties.

a lower noise level parameter σ2
n, the predicted function is closer to the observations, in

Fig. 2.9(b) the higher noise level results in a GP that is smoother (referring to a slower

variation), but also showing larger error bars for the uncertainties because it explains

the distance of the predicted function to the actual data points by the noise level.

Whereas it might seem reasonable by visual inspection that the function inferred in

Fig. 2.9(a) explains the data more sufficiently than the function predicted in Fig. 2.9(b),

this decision becomes more complicated for more complex or multidimensional data.

Keeping in mind that the two above examples had a fixed length-scale parameter, but

that this parameter can also be varied, it becomes clear that it needs powerful methods

to estimate the parameter set that best explains the given data. Fortunately, one can

use the principle of calculating the marginal likelihood p(y|θ) (eq. 2.36), which is the

likelihood of the data given the (hyper-)parameters θ and refers to the marginalization

over the latent noise-free function values. The marginal likelihood provides a measure

to rank different models and parameter sets and therefore is an essential tool towards

learning with GPs, as will be shown in the next Section.

2.4.3 Learning with GPs

The key idea of learning with Gaussian Processes is to define the covariance function

properties in an appropriate manner to match the required application. This can mainly

be done through optimizing the free parameters of the covariance function. The gen-

erally most important parameters of the squared exponential covariance function, i.e.
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the length-scale σl, the signal variance σf and the noise level σn, have already been

introduced before. Note that these parameters are referred to as hyperparameters by

the GP pioneers Rasmussen and Williams, to stress that they are parameters of a non-

parametric, probabilistic model. Optimizing these free hyperparameters can be done by

e.g. maximizing the marginal likelihood (eq. 2.36) of the GP with a conjugate gradient-

based optimization approach.

Moreover there are numerous covariance functions that can be chosen from, which are

also part of the model selection problem. Some commonly-used covariance functions

such as the Matérn covariance functions, exponential covariance functions or dot prod-

uct covariance functions are introduced in this Section. However, the selection might be

application specific and not complete.

The marginal likelihood forms a central element of learning with Gaussian Processes,

with the term marginal refering to the marginalization of the latent function values.

The probability of the data given the free hyperparameters is given by the log marginal

likelihood (eq. 2.36).

ln p(y|θ) = −1

2
yT (K + σ2

nI)
−1y − 1

2
ln |K + σ2

nI| −
n

2
ln 2π. (2.36)

It might be misleading that the marginal likelihood is conditioned on θ, whereas it does

not appear on the right hand side of the equation. Since θ is a vector containing all free

hyperparameters which can be found in the covariance function, they contribute to the

right hand side implicitly by influencing the final covariances in K.

The marginal likelihood is formed by subtracting the complexity penalty −1
2

ln |K+σ2
nI|

from the data fit term −1
2
yT (K + σ2

nI)
−1y and a normalization constant −n

2
ln 2π. The

complexity term accounts for less complex models depending on the covariance matrix

only, whilst the data fit term includes the observed function values y and decreases

with the length-scale, because the longer the length-scale the less flexible the model

(Rasmussen & Williams, 2006) in terms of fitting the data.

In order to learn the hyperparameters that best fit the data, the marginal likelihood

needs to be maximized by seeking the partial derivatives of the log marginal likelihood

w.r.t. the hyperparameters (eq. 2.37).

∂

∂θj
ln p(y|θ) = −1

2
yTK−1

∂K

∂θj
K−1y − 1

2
tr(K−1 ∂K

∂θj
). (2.37)
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The principle of maximizing the marginal likelihood has the advantage that it is analyti-

cally tractable, in contrast to other methods such as Bayesian principles where integrals

over the parameter space are intractable. Of course the gradient based method still

suffers from the possibility of multiple local optima. And in fact every local optimum

corresponds to a different interpretation of the data, making it a crucial goal of learning

with GPs not to get stuck in a local maximum. However, according to Rasmussen &

Williams (2006), this should only occasionally be a problem if datasets are too small.

With data sets of a sufficient size ”‘one often finds that one local optimum is orders of

magnitude more probable than other local optima”’. Another possibility is, nevertheless,

averaging together different explanations of the data.

2.4.4 Heteroscedastic GPs

When it can be assumed that the observations are influenced by input-dependent noise

levels, Heteroscedastic (referring to a non-homogeneous noise variance) Gaussian Pro-

cesses (HGPs) are the method of choice.

The concept of HGPs was first introduced by Goldberg et al. (1998). Assuming that

the noise is a smooth function of the inputs, it can be modeled using a second indepen-

dent Gaussian Process (the z-process), whilst the actual function values are assumed

to be noise-free and modeled with a standard GP (the y-process). Making predictions

with HGPs is not as easy with as with standard GPs, because the predictive posterior

distribution now also accounts for the noise rates as independent latent variables. This,

in turn makes the integral for the predictive posterior distribution difficult to handle

analytically. Therefore Goldberg et al. (1998) proposed a Markov Chain Monte Carlo

approach to sample from the distribution of the latent noise variables. In contrast, Ker-

sting et al. (2007) used a most likely noise approach to approximate the posterior noise

variance.

The principle used by Kersting et al. (2007) is similar to the one underlying the (hard)

Expectation Maximization Algorithm (Dempster et al., 1977): if the values of the noise

levels are actually known, than learning the parameters is easy. The iterative algorithm

for learning the hyperparameters of both the y-process and the z-process concurrently

with the HGP approach can be summarized in 5 steps (Algorithm 2.1).
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Algorithm 2.1 Most likely noise approach for a HGP

1: Estimate a homoscedastic GP G1 that maximizes the likelihood of the
data.

2: The empirical noise levels are estimated for the training data, by minimiz-
ing the average distance between the predictive distribution given by G1
and the prototype value (derived by repeated sampling from the predictive
distribution at a given data point)

3: A second GP G2 is estimated on the empirical noise levels.
4: G1 is combined with G2 to estimate GP G3, with which the noise levels

of interest can be predicted.
5: If not converged, G1 is set to G3 and the steps 2-4 are repeated.

This approach is not guaranteed to improve the likelihood in every iteration, but, in

case of oscillations, will most often stop improving at reasonable parameter estimates.

Regarding noise estimates, it outperformed standard GPs in a variety of examples (Ker-

sting et al., 2007) and is competitive with other heteroscedastic regression approaches

(e.g., Schölkopf et al. (2000)).

A challenging feature of the HGPs is that the parameter nz, which determines the num-

ber of the latent noise variables, needs to be optimized manually. Good picks are usually

in the range of nz = [3,20].

2.4.5 Benefits and drawbacks

Gaussian Processes provide a framework to deal computationally (in terms of tractabil-

ity) with inference along infinite dimensional objects. They can be applied both for

regression and classification evaluate confidence and prediction intervals simply by the

posterior distribution. Moreover, it is trivial to extend the predictions as presented in

2.4.2 to multidimensional inputs, only the covariance function must be adapted so that

it can evaluate several multidimensional x-values. However, since the matrix inversion

of a n× n matrix in eq. 2.30 and 2.31 is only possible in O(n3), GPs can have problems

with huge data sets. Things usually start to get difficult for n > 10000.

Another difficulty with Gaussian Processes is the selection of a suitable covariance func-

tion. There are endless possibilities in combining different covariance functions to com-

posites, which then can model very complex behaviour. There is no automatic way for

finding the ”most appropriate” covariance function for a specific problem. Nevertheless,

covariance functions offer the possibility to incorporate prior knowledge, if available,

into the GP inference.
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Under the assumption of Gaussian observation noise, the computations needed to make

predictions with GPs are analytically tractable (Rasmussen & Nickisch, 2010). In cases

where this not holds true, nonlinear optimizations to find the hyperparameters need to

be applied and one is confronted with the same local minima issues as in other learning

methods.

MacKay (1998) gives an interesting discussion towards the relationship of Gaussian Pro-

cesses to other Machine Learning methods such as Artificial Neural Networks (ANNs),

regarding the definition of Gaussian Processes as ”ANNs with infinitely many hidden

units”. One might argue that Gaussian Processes are just smoothing devices, lacking

the ability to reveal the hidden features of a problem in a mathematically enclosed form.

Thus, e.g., feature discovery is a task that not should be adressed by Gaussian Processes.

On the other hand, there are many real world data problems which can be solved by

sensible smoothing methods, and so with Gaussian Processes (Williams & Rasmussen,

1996; Gao, 2004; Sun et al., 2010; Macke et al., 2011).



3 Results

This diploma thesis is mainly a methodological project, focused on the theory and appli-

cability of Gaussian Processes. To investigate and point out their strengths and weak-

nesses, numerous experiments including different setups have formed the central piece

of work. In this chapter, results on several simulated data sets (Sections 3.2 and 3.4)

are visualized, quantified and discussed. Knowing the expected outcomes beforehand,

the artificial experiments provide a good basis for a comparison to the performance on

the according real world datasets, i.e. actually measured ecosystem data (Sections 3.3

and 3.5). The possibilities of simulating data are endless, this is why the selection of

experiments discussed here represent rather a snapshot of potential simulation work.

3.1 Application Specific Methods

3.1.1 General

Throughout this chapter, the two different GP approaches (described in more detail in

Section 2.4) will be distinguished as ”GPMLs”, if the experiments were performed using

exclusively the MATLAB gpml toolbox (Rasmussen & Nickisch, 2010) and as ”HGPs”, if

code for most likely heteroscedastic GPs developed by Kersting et al. (2007), which is

also based on the gpml toolbox, was applied.

For both GP approaches the squared exponential covariance function, with the initial

hyperparameters set to σl = σf = σn = 1, was used. Since the length-scale parameter

σl is arguably the most essential hyperparameter amongst them, it was modified after

optimization, such that its statistical modelling power could be investigated. Given the

respective optimal GPs as GPMLO and HGPO, their modified counterparts are defined

as GPMLS and HGPS for the optimal σl reduced by e1/2 (”shorter length-scale”) and

GPMLL and HGPL for the optimal σl increased by e1/2 (”longer length-scale”).
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In the following experiments the standard NLR method (Section 2.3.1), with a pre-

scribed function given and learning the optimal parameters directly via nonlinear least

squares, will be referred to as the reference method. The fit routine nlinfit.m from

the MATLAB statistics toolbox was applied here. Knowing the form of the actual data

generating function beforehand, NLR cannot be considered as a benchmark method per

se. Therefore a LOWESS approach (Section 2.3.2) was used as the benchmark method,

to compare the GPML and HGP results with another non-parametric nonlinear regres-

sion method. A weighted linear least squares with a tri-cube weight function and a

first degree polynomial model for accomplishing the smoothing with local regressions is

applied, as implemented in the functions smooth.m and fit.m included in the MATLAB

curve fitting toolbox. Uncertainty esimates for both the NLR and the LOWESS fits are

provided via bootstrapping, with the number of bootstrap samples set to 999.

3.1.2 Light Response Data

The relationship of the carbon exchange between biosphere and atmosphere to its cli-

matic controls has long attracted researchers from different backgrounds (e.g., Smith

(1938), Baldocchi (1997) or Bonan (2002)). In ecophysiology, the carbon exchange is

usually measured as the Net Ecosystem Production (NEP ), which equals the gross pri-

mary production (GPP ) minus the ecosystem respiration (Reco).

Recently, in an extensive Artificial Neural Network (ANN) study (Moffat, Accepted),

NEP was modeled as the response to 25 radiative, meteorological and theoretical driver

candidates. It could be confirmed that PPFD (Photosynthetic Photon Flux Density)

is the most relevant of them for the daytime during the growing season.

The Smith Sigmoid function fSS is known to be a suitable representation for the light

response (Moffat, Accepted):

fSS(PPFD) =
α ·GPPopt · PPFD√
GPP 2

opt + (α · PPFD)2
− ERd. (3.1)

This light response curve is characterized by three parameters (α, NEP ∗sat and ERd).

First the quantum yield parameter

α =
dfSS(PPFD)

dPPFD
at small PPFD, (3.2)
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which represents a linear increase in the light response at low PPFD, before the curve

gradually curves to a maximum photosynthesis rate. α can be estimated by the initial

slope (i.e. the first derivative) of the curve.

dfSS(PPFD)

dPPFD
=

α ·GPP 3
opt

(α2PPFD2 +GPP 2
opt)

3/2
. (3.3)

These values can then be compared to the numerical pointwise derivatives of the pre-

dicted GP functions, approximated by

f ′SS(PPFD) ≈ fSS(PPFD + h)− fSS(PPFD)

h
, (3.4)

with h chosen to be a small number close to zero, since the derivative of a function f at

x0 is given as (e.g., Burden & Faires (2000))

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (3.5)

Next, the respiration parameter

ERd = −NEP (0), (3.6)

which is the intercept at zero PPFD when there is no photosynthetical uptake. Third,

the optimum gross primary production parameter

GPPopt = NEPsat + ERd, (3.7)

with

NEPsat = NEP (PPFDsat) = const, (3.8)

is defined as the light saturated photosynthesis rate. It is unknown at what light inten-

sity an ecosystem saturates, hence there can be different characterizations of NEPsat.

For instance the Smith sigmoid function saturates at PPFD towards infinity, hence it

models the saturation of photosynthesis asymptotically. For reasons of simplification

NEPsat is set to NEP at the maximum measured light intensity here:

NEP ∗sat = NEP at maximum PPFD. (3.9)



46 Results

This assumption also provides a good basis for comparing non-parametric with para-

metric models, since NEP ∗sat can be inferred from the (fitted) curve.

3.1.3 Algorithm for Rb estimation

The ecosystem respiration Reco can be modeled by the Lloyd-Taylor model

Reco = Rb · exp
(
E0 ·

( 1

Tref − T0
− 1

Ta − T0

))
. (3.10)

For the estimation of the Rb parameter (base respiration at reference temperature Tref ),

the following simple 5-step algorithm was developed:

Algorithm 3.1 Reco via Rb estimation

1: Train a HGP on (incomplete) annual flux measurements
with drivers [PPFD, Ta, timed].

2: Predict annualNEP using the annual meteorological time
series from the golden file.

3: Estimate the Rb parameter at PPFD = 0, Ta = 15◦ along
annual timed.

4: Set the parameters in the Lloyd-Taylor model to:
Tref = 15◦C
T0 = −46.02◦C

Incorporate the E0 estimates of Reichstein et al. (2005)
into the model.
Calculate annual Reco for the measured whole year Ta time
series from the golden file.

5: Calculate GPP = Reco +NEP .

3.2 Simulated Light Response Data (SLR)

3.2.1 Data

To simulate data that resembles the light response of a beech forest and has known

properties, the Smith Sigmoid function fSS (eq. 3.1) was used as a generating function.

Since there is always some systematic and some random noise in measured data (Section

2.1.3), the values given by eq. 3.1 (parameterized following Moffat (Accepted), see text
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box in plot) would not be observed in real world ecosystems. To simulate noise with a

realistic magnitude σ, disturbance terms derived from ANN model residuals binned by

the NEP flux magnitude in steps of 5 µmol CO2 m−2 s−1 (Moffat, Accepted) with the

standard deviation

SDevANN = 2.5(±0.3) + 0.11(±0.02) ·NEP. (3.11)

This was added to NEP as

σ = 2.5(±0.3) + 0.11(±0.02) · fSS, (3.12)

resulting in

NEP = fSS(PPFD) + σ. (3.13)

First, to keep things simple, Gaussian white noise was simulated, which can be done by

repeatedly drawing normally distributed pseudorandom numbers. The sampled data is

not equally distributed but more sparse with increasing flux magnitude. The non-equal

distribution of the total of 721 data points was simulated by using the frequencies of the

data points derived from a measured daytime data set from three successive summers

(sample used in Section 3.3), with frequencies taken over an input range of 200 PPFD.
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Figure 3.1: Setup of simulated data. (a) Smith sigmoid light response function, parameterized
with ANN derived parameters as shown in the box, (b) linear regression on the
standard deviation of the ANN model residuals binned over a NEP magnitude of
5 µmol CO2 m−2 s−1, used as a noise model (c) resulting simulated data sample.
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3.2.2 Performance

All GP and HGP runs as well as NLR and LOWESS had an R2 performance of

79%(±1%), the corresponding value of the generating function was 79% (see Table

3.1). Some of the algorithms such as GPMLS and HGPO even did slightly better than

the generating function, which might be due to fitted noise levels. The maximum devi-

ation of ±0.03 in the RMSE between all methods suggests that all of them have a very

similar performance in terms of a statistic quantity and provided a good fit of the data.

method R2 RMSE bias α ERd NEP∗sat
data 0.79 3.99 -0.12524 0.0501 3.26 21.67
NLR 0.79 3.98 -0.00000 0.0491 3.20 22.14

0.0010 (± 0.0044) 0.06 (± 0.63) 0.47 (± 0.70)
2.1 (± 9.0)% 2.0 (± 19.0)% 2.2 (± 3.0)%

LOWESS 0.80 3.96 -0.10006 0.0444 2.92 22.35
0.0057 0.34 (± 0.66) 0.69 (± 1.53)
11.4 % 10.4 (± 20.0)% 3.2 (± 7.0)%

GPMLS 0.80 3.98 -0.00253 0.0481 3.05 21.97
0.0020 0.21 (± 1.15) 0.30 (± 2.61)
4.1 % 6.6 (± 35.0)% 1.4 (± 12.0)%

GPMLO 0.79 3.98 -0.00026 0.0462 2.81 22.58
0.0039 0.45 (± 0.94) 0.91 (± 2.11)
7.8 % 13.8 (± 29.0)% 4.2 (± 10.0)%

GPMLL 0.79 4.00 0.00156 0.0429 2.23 22.57
0.0072 1.03 (± 0.79) 0.90 (± 1.65)
14.3 % 31.7 (± 24.0)% 4.2 (± 8.0)%

HGPS 0.80 3.98 -0.00006 0.0461 2.91 21.99
0.0040 0.35 (± 1.21) 0.33 (± 1.02)
7.9 % 10.9 (± 37.0)% 1.5 (± 5.0)%

HGPO 0.80 3.98 0.00396 0.0471 2.77 22.00
0.0030 0.49 (± 0.99) 0.34 (± 1.52)
6.0 % 15.0 (± 30.0)% 1.5 (± 7.0)%

HGPL 0.79 4.00 0.00992 0.0458 2.31 22.20
0.0043 0.95 (± 0.83) 0.53 (± 2.26)
8.6 % 29.3 (± 25.0)% 2.5 (± 10.0)%

Table 3.1: Fit performance and physiological parameter estimates of all methods. Absolute
deviations and deviations as a percentage are listed for each method in the rows
below. Uncertainties are given in brackets by the double standard deviation referring
to 95% confidence intervals. For NLR and LOWESS, the standard deviation was
estimated by bootstrapping with a sample size of 999. Note, no GP uncertainties
for α can be listed due to methodological limitations.



3.2 Simulated Light Response Data (SLR) 49

GPMLS

0 500 1000 1500
−10

−5

0

5

10

15

20

25

30

35

PPFD

N
E

P

Predicted function and uncertainties, GPML_S

 

 

data
true function
true noise level
predicted function
95% prediction intervals
95% confidence intervals

0 500 1000 1500
−5

−4

−3

−2

−1

0

1

2

3

4

5

PPFD

de
lta

 N
E

P

deviation from truth GPML_S

 

 
GPML_S − f

SS

GP confidence interval

0 500 1000 1500
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

numerical derivatives

PPFD

dN
E

P
/d

P
P

F
D

 

 
true derivatives
derivatives GP

GPMLO

0 500 1000 1500
−10

−5

0

5

10

15

20

25

30

35

PPFD

N
E

P

Predicted function and uncertainties, GPML_O

 

 

data
true function
true noise level
predicted function
95% prediction intervals
95% confidence intervals

0 500 1000 1500
−5

−4

−3

−2

−1

0

1

2

3

4

5

PPFD

de
lta

 N
E

P

deviation from truth GPML_O

 

 
GPML_O − f

SS

GP confidence interval

0 500 1000 1500
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

numerical derivatives

PPFD

dN
E

P
/d

P
P

F
D

 

 
true derivatives
derivatives GP

GPMLL

0 500 1000 1500
−10

−5

0

5

10

15

20

25

30

35

PPFD

N
E

P

Predicted function and uncertainties, GPML_L

 

 

data
true function
true noise level
predicted function
95% prediction intervals
95% confidence intervals

0 500 1000 1500
−5

−4

−3

−2

−1

0

1

2

3

4

5

PPFD

de
lta

 N
E

P

deviation from truth GPML_L

 

 
GPML_L − f

SS

GP confidence interval

0 500 1000 1500
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

numerical derivatives

PPFD

dN
E

P
/d

P
P

F
D

 

 
true derivatives
derivatives GP

Figure 3.2: GPML prediction on the data sample shown in Fig. 3.1 for three different length-
scale parameters.
Left: Fit performance, confidence and prediction intervals. Center: deviation
of the predicted function towards the true function and the predicted confidence
intervals. Right: First derivative of the Smith sigmoid function and the numerical
pointwise derivatives of the respective GPML.
For an explanation of lines and shaded areas refer to the legends inside the axes.
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Figure 3.3: NLR fit on the data sample in Fig. 3.1. For the full caption of this plot refer to
Fig. 3.2.

There are some fundamental differences in the actual fitted curves that can only be

revealed when taking a closer look at the predicted functions and its derivatives. These

will also be of importance when evaluating the GP’s ability to estimate the physiological

parameters and their uncertainties.

In this analysis, the parameters of the data generating set-up (cf. row ”data” in Table

3.1) are referred to as the ”truth”. Arguably, one might also consider the parameters

estimated by the NLR (Fig. 3.3) as the true parameters, since there is in fact no better

predictor than the NLR which makes use of the generating function as prior knowledge.

In other words, the NLR parameter set is the one that best fits the data sample drawn.

However, the interest in this study is more in the underlying variance than in the sample-

induced bias, which results in this understanding of the true parameters.

Analyzing the predicted functions, the magnitude of deviations from the true generating

function is different for some of the fitted curves (Fig. 3.2). Whereas GPMLO and

GPMLS show small deviations ([−0.3, 0.8]NEP and [−0.2, 0.6]NEP , respectively), the

deviations of GPMLL ([−0.8, 1.1]NEP ) are higher and are even outside the confidence

intervals. This can be explained by the longer length-scale parameter of GPMLL which

results in less freedom for the predicted function and in combination with a smaller

predicted confidence interval this causes the largest deviations. In contrast, the shorter

length-scale parameter (GPMLS) gives a higher predictive freedom and results in a

function that shows the most frequent turning points. In general, all of the predicted

GPML functions ”wobble” to some extent around the true underlying function. The

LOWESS fit (Fig. 3.4) is generally comparable to GPMLO and GPMLS, showing only

small deviations around [−0.2, 0.6]NEP and a very similar curve. However, it becomes

apparent that the fit is not as smooth as the GPML fits, as caused by the piecewise
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Figure 3.4: LOWESS fit on the data sample in Fig. 3.1. For the full caption of this plot refer
to Fig. 3.2. The derivative cannot be calculated from the LOWESS fit.

local linear regressions.

Note that all the three GPML approaches have a positive deviation from the truth

towards zero PPFD and towards maximum PPFD. At zero PPFD, GPMLS shows

small deviations (0.1 NEP ), GPMLO shows medium deviations (0.6 NEP ) and GPMLL

has the largest deviations (1 NEP ). Also at high PPFD, GPMLS proves to have the

smallest deviations (0.2 NEP ) among all GPMLs. Therefore, it is suggested that NEP

is overestimated in these areas, a valuable information for parameter estimation of ERd

and NEP ∗sat. Looking at the derivatives of the predicted GPs and comparing them with

derivative of the Smith sigmoid function (eq. 3.3) the results are likewise. In contrast

to the derivative of the generating function, which shows a plateau at low PPFD, the

pointwise numerical GPML derivatives are not constant in that region. Moreover, they

also do not level off towards maximum PPFD. This indicates that the GPML method

shows weaknesses in capturing certain local features of the function. GPMLS has the

derivative that intersects the true derivative the most often, with five interSections it is

”more wobbly” than its two counterparts that only cross the true derivative three times.

Again, the more frequent changes in the slope of the predicted function can be explained

by the different length-scales. Accordingly, the first derivative demonstrates the impact

of the length-scale in a coherent way, i.e. with a longer length-scale parameter also

the curvature of the first derivative gets smoother. In contrast, a shorter length-scale

corresponds to a more unstable first derivative, showing that there is more variance

along the x-axis of the predicted function.

As would be expected from a methodological point of view, the fit performance and

the fitted functions of the according HGP fits, depicted in Fig. 3.5, resemble the ones

of the GPML method, showing comparable length-scale effects and suffering similar
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drawbacks concerning local features of a function. Hence, the HGP results are not

discussed separately in this Section.
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Figure 3.5: HGP prediction on the data sample shown in Fig. 3.1 for three different length-scale
parameters. For the full caption of this plot refer to Fig. 3.2.
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3.2.3 Physiological Parameters

Like decribed in Section 3.2.1, the three parameters of the Smith sigmoid function can

be inferred from the curve of the (predicted) function. This is necessary in particular

for the Gaussian Process methods, since they are a non-parametric model doing pre-

dictions based on the posterior distribution rather than on a mathematical closed term

expression. In this Section, the parameters predicted by the GPs will be compared with

the true parameters of the generating function based on Table 3.1. Note that in Table

3.1 the parameters for the NLR are derived accordingly (for better comparability) and

are not the directly estimated regression parameters.

The initial quantum yield parameter α is underestimated within the range of 15% by

all methods. Whereas GPMLL estimates the parameter with the highest deviation of

14.3%, all other GP approaches are between 4 − 9% error and in a similar range as

LOWESS (Fig. 3.3, 11.4% error). As can be expected, the NLR (2.1% deviation) as the

reference method outperforms all other methods.

The respiration at daytime, ERd, is also underestimated by all methods, which is not

surprising since α and ERd are both parameters estimated at zero PPFD and therefore

related. The expectation that was confirmed for the two parameters. Again, the NLR

(2.0% deviation) outperforms the other methods.

The values in Table 3.1 suggest that the GPs do a better job for the estimation of

NEP ∗sat, the approximated net ecosystem exchange at light saturation. All methods

overestimate the parameter with at most 4.5% error towards the true parameter. Both

GPMLS and HGPS have the smallest error with 1.4% and are even slightly better than

the reference method (2.2%) and the benchmark method (3.2%). However, this result

needs to be treated carefully, since the predicted function does not saturate at high

PPFD (Fig. 3.2 and Fig. 3.5) as indicated by a first derivative that does not level off

to zero. In the regions beyond available data, there is a very different behaviour in the

predicted function for e.g. HGPOand HGPS. Thus, the good parameter estimates are

to a high extent dependent on the (most sparse along the x-axis) data distribution in

that area and sensitive to small changes in the length-scale parameter of the GP. In fact,

a larger number of data points in that region would probably give a fit which is more

robust.

Here, the values of the estimated parameters prove to be a good example of why it is

better to compare NEP ∗sat instead of the parameter GPPopt, which parameterizes the

generating Smith sigmoid function. When underestimating ERd and concurrently over-

estimating NEP ∗sat, the resulting compensation of errors might give misleading results.



54 Results

Notably, the result of GPMLS and HGPS indicate that there could be a better fit ”some-

where between e.g. GPMLO and GPMLS”. However, if the selected model class is chosen

too big, this might lead to overfitting. On the other hand, the modified GPs with a longer

length-scale give usually the worst results.

In general, both the GPML method and HGP method did a reasonable job in estimating

the introduced parameters and overall there are only marginal differences towards the

LOWESS approach. Consequently, the predicted confidence intervals of the estimates

will be of interest, which is the subject of the next Section.

3.2.4 Confidence Intervals

The confidence intervals of the GP prediction (represented by the light red shaded areas)

correspond to confidence bounds for the predicted mean function and are calculated by

substracting the noise variance hyperparameter σn needs from the predictive variance

(eq. 2.31) at every point of interest.

To evaluate the reliability of the confidence intervals, they were compared with the

actual deviations from the true function, as shown in the right plots in Fig. 3.2. By this,
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Figure 3.6: Binned GPML confidence intervals compared with the mean binned deviation of
the predicted function to the true function.
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areas where the predicted function exceeds the confidence intervals can be detected.

In the experiment here, such areas occur only for the GPMLL prediction and not for

GPMLO and GPMLS. However, for the latter two, the deviations are sometimes close to

the boundaries of the 95% confidence intervals, suggesting that the confidence intervals

might not be reliable.

Another way of assessing the reliability of the predicted confidence intervals is to compare

them with the mean deviation of the binned differences between the predicted and the

generating function, as shown in Fig. 3.6. For GPMLO and GPMLS, the mean deviations

are always about half or less than the value of the predicted 95% confidence interval.

Only in the bins [600, 800] PPFD and [800, 1000] PPFD the mean deviations exceed

half the value of the predicted uncertainties. From this point of view, the confidence

intervals do not necessarily need to be treated as unreliable. Nevertheless, it became

apparent that they are very sensitive to the optimized length-scale parameter.

The confidence intervals for the HGP method are not part of the original HGP code.

They were implemented to be simply the confidence intervals of the first, homoscedastic

GP. This results in confidence intervals very similar to their GPML equivalents and for

brevity they are not discussed separately here.

3.2.5 Prediction Intervals

The GPML and the HGP method can provide prediction intervals by calculating the

variance of the predictive posterior distribution. For normal distributed data, the double

standard deviation refers to 95% confidence intervals for predicted data, which will

be called the ”predictive uncertainties” and corresponds to the boundaries in which

predicted data is to be expected. The prediction intervals for NLR was calculated as

described in Section 2.3, whereas the LOWESS method cannot provide these intervals.

Predictive uncertainties are depicted as gray shaded areas in all plots.

In the following the term ”true residual” will be used to describe the difference between

a sampled datapoint and the generating function value at that point (cf. the definition

of a residual in eq. 2.4). Residuals are of interest here to assess the model error and for

comparison with the GP prediction intervals.
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Figure 3.7: GPML predictive uncertainty analysis on the data sample shown in Fig. 3.1.
Left: The modeled errors (i.e. the noise standard deviation σ) compared to the
predictive variances σGPML against PPFD. Center: Scatterplot of the modeled
noise vs. the predicted noise. Right: Binned model residuals compared to binned
predictive variances and binned true residuals.
For an explanation of lines and bars refer to the legends inside the plots.
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Unlike in the previous Sections, it is clearly distinguished between the GPML results

from the HGP results since GPML and HGP behave differently.

The predicted standard deviation of all three GPMLs is nearly constant along the x-axis

at 4 µmol CO2 m−2s−1 (Fig. 3.7, left), which is very close to the mean of the previously

added noise at 3.94 µmol CO2 m−2s−1. The varying noise level could not be captured

at all, with an R2 ≤ 0.05 in the relationship between modeled errors and predicted

variances for the three GPML approaches, but also for the NLR. The discrepancies

are also depicted in the performance plots (Figures 3.3 and 3.2, left) as the differences

between the blue dotted lines and the gray shaded areas. However, the mean noise

magnitude could be reproduced, what becomes apparent when comparing the gray bars

to the straight black line depicted in the right plot(s) in Fig. 3.7. This is an interesting

result and further investigation should be done, e.g. it needs to be shown if the result

can be generalized along different noise magnitudes or types of noise.

There are no visible differences between GPMLO, GPMLS and GPMLL, thus, a varying

length-scale parameter seems to have no effect on the predicted noise variance.

Next, it is of interest to compare the GPML residuals to the true residuals. The bars in

Fig. 3.7 indicate a good similarity of the standard deviation of their respective binned

residuals (blue vs. red bars), due to the good fit performance of the GPML method. On

the other hand, the nonlinear regression fit of the GPML residuals (red line) shows the

discrepancy towards the simulated noise level (black dashed line). Ideally, the previously

added noise level could be assesesed by the (binned) prediction intervals (gray bars),

which is also not the case here.

Generally, the GPML method has the limitation that it assumes a nearly constant noise

level along the x-axis. The results on data with a locally varying noise level, like in this

experiment approve that the GPML method does not have the ability to capture this

noise. Hence, it is more suitable to apply a method that can account for locally varying

noise levels, such as the HGP method.

It was found that the HGP method shows a completely different behaviour concerning

the prediction intervals. The predictive standard deviation of the HGP method is able

to vary along the x-axis (Fig. 3.8, left), capturing the simulated noise level more than

reasonable. The pointwise standard deviations ”wobble” around the previously modeled

noise, a behaviour comparable to the one observed for the pointwise derivatives of the

fitted curves. With an R2 of 0.96 (Fig. 3.8, center), all three HGPs are able to capture

the underlying noise level in the data.
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Figure 3.8: HGP predictive uncertainty analysis on the data sample shown in Fig. 3.1. For the
full caption of this plot refer to Fig. 3.7.
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Besides, the gray bars in Fig. 3.8 on the right prove to be a better estimator for the

simulated noise level (black bars and dashed line) than the binned model residuals (red

bars and line). Arguably, the predictive variance is a better estimator of the uncertainty

σ than binned model residuals because the variance is estimated at every separate x

by using information along the whole x-axis. In fact, the predictive variance estimated

with a HGP provides a different information about the uncertainties than the binned

model residuals. Binned model residuals are more dependent on the sampled noise (i.e.,

the true residuals depicted by the blue bars) in the respective bins and are therefore

more sensitive to local noise properties in particular regions along the x-axis. They

serve a different purpose by providing information about uncertainties in certain data

ranges from a more local point of view. Moreover, the HGP method can provide data

uncertainty estimates by the evaluation of a posterior distribution at every input point of

interest in areas where data is available, which is a feature that is especially useful when

it comes to applications such as uncertainty estimation for temporal aggregates (Section

3.5). Hence, a comparison to methods applied previously for that kind of application

(Lasslop et al., 2008) seems worthwhile.

3.3 Ecosystem Light Response Data (ELR)

After having pointed out particular strengths and weaknesses of the GP predictions on

a simulated light response data set where the expected outcome is in fact already known

beforehand, the methods were then run on comparable real world data. In this Section,

the ecosystem light response is studied with respect to either one or two light variable(s)

as a driver, built upon a measured data set described in the following.

3.3.1 Data

GP predictions were run on daytime data from three successive summers measured at the

flux tower in Hainich, Germany (DE-Hai). The data set (”sample p0268”) was quality

checked and filtered by different criteria such as implausible or unbiological values and

outlier data points (Moffat, Accepted). NEP was available as a response variable and

PPFD, its diffuse fraction fdif and the two derived variables PPFDdif and PPFDdir

as input variables.

The Smith sigmoid function (eq. 3.1) is deployed as a reference function for the GP fits,

since it is known to be a good representation of the light response. Hence, the parameter
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set given by NLR on the data sample will be used to estimate the parameters and draw

the reference function in the plots.

3.3.2 Light Response to one driver (PPFD)

First, both the GPML and the HGP method were run with PPFD as a single input

driver, investigating the NEP (PPFD) relationship. The results are shown in Fig. 3.9

and are comparable to the results in the previous Section on the simulated data. Con-

sidering the fit performance, both GP methods gave an R2 of 0.79, which equals the

performance of comparable methods such as ANNs (Moffat, Accepted) on the same

data. Also for runs with one of the other three variables as a single input variable,

i.e. PPFDdif , PPFDdir and fdif , the R2 coefficients were very similar to the ones de-

rived from the ANN model (results not shown). Another positive result is that the Smith

sigmoid function is always within the estimated GPML confidence intervals, despite the

GPML drawbacks pointed out in Section 3.2.4. The regression line of the standard de-

viations of the binned model residuals against NEP resembles the one derived from the

ANN model residuals (eqn. 3.12 or Moffat (Accepted)):

SDev∗ = 2.47 + 0.14 ·NEP (PPFD). (3.14)

Next, the binned predictive variances by an HGP on the same dataset (Fig. 3.10(b))

were analyzed, since the experiments in Section 3.2 suggest that these are more suitable

to estimate uncertainties than the model residuals. The linear regression on the binned
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Figure 3.9: GPML and HGP prediction for the light response measured at the flux tower
in Hainich, previously filtered daytime summer data from the years 2000-2002
(p0268).
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Figure 3.10: Uncertainty analysis on sample p0268: (a) Standard deviation of binned residuals.
(b) Predictive variance suggested by the HGP.

predictive variances is

σHGP = 1.76 + 0.16 ·NEP (PPFD), (3.15)

indicating a noise level with a comparable slope but a smaller offset. It is interesting to

note, that this result is closer to the uncertainty estimates of an ANN that ran on the

same dataset with 25 drivers (slope of 1.37(±0.04), Moffat (Accepted)). Thus, when

analyzing residuals only, the uncertainties could be overestimated, especially at low light

intensity.

One more result is a steadily increasing HGP uncertainty prediction, meaning that

whereas the binned residual standard deviations (Fig. 3.10(a)) are fairly distant from

the noise trend for two bins, the HGP predicts a noise level that increases continuously

with the flux magnitude.

3.3.3 Light Response to two drivers (PPFDdir,PPFDdif)

It was found by Moffat et al. (2010) that the diffuse radiation is the most relevant

secondary control of the daytime NEP response at Hainich forest. Thus, the subsequent

step is to run the GPs on data including the diffuse proportion of PPFD as a second

driver and compare the results with previous studies. Since total PPFD is the sum

of its diffuse and direct proportion, the variables PPFDdir and and PPFDdif were

selected as input drivers.

In higher dimensional spaces it is useful to apply covariance functions with automatic
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Figure 3.11: GPML prediction for the light response measured at the Hainich flux tower, pre-
viously filtered daytime summer data from the years 2000-2002 (p0268) (a) The
observed data with a green color gradient indicating NEP . (b) The predicted
GPML mean hyperplane. The following length-scale hyperparameters have been
optimized for the input variables [PPFDdir, PPFDdif ] : σl = [2.83, 2.40]. The
gray transparent hyperplanes show the predictive uncertainties.

relevance determination (ARD), i.e. every input dimension has its own length-scale

parameter.

There is a similarity of the predicted hyperplane (Fig. 3.11(b)) to the one predicted by

an ANN on a comparable data sample, since it shows equal features such as a steeper

initial slope for PPFDdif than for PPFDdir. Also the NEP response on the diffuse

light does not saturate. Moreover, it is a notable result that the length-scale parameter

of PPFDdif is smaller than the one of PPFDdir (σl = [2.83, 2.40]), suggesting that

the diffuse fraction of PPFD is more important than the direct proportion of PPFD.

These results are in agreement with previous studies, such as Moffat et al. (2010) and

Gu et al. (2002). They can be finally interpreted when the results on artificial data

with two input drivers are completed and included in Section 3.4. In the future, it

would also be worthwhile to scatter the predictions against the predicted hyperplane of

Moffat (Accepted) on the same data set and test if that hyperplane is always within

the confidence intervals of the GP. When comparing the binned predictive variances

(Fig. 3.12), the HGP prediction shows steadily increasing noise levels again, with a

regression line of

σHGP = 1.59 + 0.1045 ·NEP (PPFDdir, PPFDdif ). (3.16)

Notably, the offset in eq. 3.16 is even smaller and thus closer to the aforementioned

comparison run with 25 drivers.
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Figure 3.12: HGP Uncertainty analysis on sample p0268 with input drivers PPFDdir and
PPFDdif : (a) Standard deviation of binned residuals. (b) Predictive variance
suggested by the HGP.

The binned predictive variances also increase if compared against either PPFDdif or

PPFDdir separately (bars not shown). The predictive uncertainty planes (Fig. 3.13)

suggest that the noise levels increase with an increasing flux magnitude. Fig. 3.13(b)

shows that darker data points usually overlay a darker (and thus higher) HGP predictive

uncertainty.

Figure 3.13: Predictive uncertainties for the light response NEP (PPFDdir, PPFDdif ) mea-
sured at the Hainich flux tower. (a) σGPML. (b) σHGP . The green color gradient
for the data points is the same as in the previous figures
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3.4 SLR including Temperature

The experiments presented in this Section are the sequel to the runs in Section 3.2. The

difference here is that air temperature (Ta) was added as a second input driver.

3.4.1 Data

The response of NEP to light and temperature (Fig. 3.14) was simulated by the Lloyd-

Taylor model (eq. 3.10) for the temperature response and a Smith sigmoid function

(eq. 3.1) as the light response, parameterized again following Moffat (Accepted):

NEP =
α ·GPPopt · PPFD√
GPP 2

opt + (α · PPFD)2
−Rb · exp

(
E0 ·

( 1

Tref − T0
− 1

Ta − T0

))
. (3.17)

GPPopt is the gross primary production at light saturation and α the initial quantum

yield, both parameters had the same value as in the 1D input experiment in Section 3.2.

In the respiration model, T0 was set to −46.02◦C and the activation energy parameter

E0 to −68.15◦C (Reichstein et al., 2005; Lasslop et al., 2010). For simplification, the

parameter Rb (base respiration at reference temperature) was fixed at 4 µmol CO2 m−2

s−1, with the according reference temperature Tref set to 15◦C as in Reichstein et al.

(2005). Heteroscedastic noise with a standard deviation σ that increases with the flux
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Figure 3.14: Simulated data setup for the 2D experiment. (a) Data sample. (b) Underlying
(heteroscedastic) noise hyperplane calculated by eq. 3.12.
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magnitude was added (Fig. 3.14(b)). The data distribution is similar to sample p0268

(measured summer data from DE-Hai years 2000-2002) as described in Section 3.2.1,

resulting in a total of 451 data points (Fig. 3.14(a)). Here, the prediction was also

extended to a regular data grid of 100× 100 data points mapping the whole data range

along the two input drivers. The grid is required to visualize the predicted function and

noise hyperplanes.

3.4.2 Performance

One standard Gaussian Process (GPML) and one heteroscedastic Gaussian Proces (HGP)

were optimized on the data set, the local linear regression (LOWESS) was employed as

a benchmark method and a nonlinear regression (NLR) as the reference method (based

on the model function in eq. 3.17). The GPML (Fig. 3.15, center) and the HGP had an

R2 performance of 73%, compared to LOWESS (Fig. 3.15, bottom) with 72% and the

corresponding generating function with 71%. Thus, the fit performance was the highest

possible, even slightly fitting the noise levels in some areas.

Specific weaknesses of the GPML and HGP method in capturing local features are visible

at the edges again, similar as in the experiment with 1D input. This is indicated for the

GPML by the overlapping planes in the right plots in Fig. 3.15, and for HGP when the

predicted mean function values overlay the data generating hyperplane (Fig. 3.16(a)).

By rule-of-thumb, the more the data points stand out from the underlying plane, the

worse is the fit in that area. If data points are not visible at all, this indicates consis-

tency. Note that this rule must not be overstrained, i.e. if there would be no data points

visible at all this would rather indicate overfitting than a good fit. The LOWESS fit

was more wobbly at medium PPFD range than GPML and HGP, but more stable next

to the edges. Clearly, the light saturation at high PPFD is only captured by the NLR

reference method (Fig. 3.15, top).

All the fitted planes show a slight gradient with increasing Ta. However, the variability

originating from this driver is low, as indicated by an R2 of 0.05 for all methods when

run with Ta as a single input variable only. In contrast, if run with PPFD as the only

driver, 68% of the variability could be captured. The influence of Ta is more pronounced

(but still at the same order of magnitude) when some parameters of the Lloyd-Taylor

model vary over time (in particular Rb and E0), which will be one of the subjects in

Section 3.5.
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NLR

GPML

LOWESS

Figure 3.15: NLR, GPML and LOWESS performance on the 2D input data sample shown in
Fig. 3.14.
Left: The predicted hyperplane slicing through the data sample. The color gra-
dient from brown to green indicates NEP in µmol CO2 m−2 s−1. Center: Mean
predicted function and the corresponding confidence intervals as transparent hy-
perplanes above and below. Right: Deviation of the predicted function towards
the true function and the predicted confidence intervals (transparent hyperplanes).
The level of deviation is quantified by a color gradient from white to red.
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The confidence intervals, depicted by the gray hyperplanes in the central and right plots

in (Fig. 3.15), seem to be underestimated by both GPs and LOWESS similarly as in the

1D input experiment. The deviations from the true generating function are beyond the

confidence intervals particularly close to the edges of the function. It remains unclear if

these overlaps are supposed to be within the 95% confidence intervals for the function

or are mainly caused by the bad fit performance of the predicted mean function in these

regions. Regarding the experiment here and the application experiment in Section 3.5,

the focus is on the estimation of the predictive uncertainties, which is the subject of the

following section.

(a) data (b) noise

Figure 3.16: Visual HGP prediction evaluation. (a) The predicted mean values at the data
points overlay the simulated function hyperplane. (b) The predictive uncertainties
(σHGP ) at the data points overlay the simulated noise hyperplane (σ).

3.4.3 Prediction Intervals

For this 2D input experiment, the predictive uncertainties σHGP are depicted no longer

as gray shaded areas as in the 1D input experiment, but either as gray transparent

hyperplanes overlaying the predicted mean function (e.g., in Fig. 3.17, left), or as 2D

hyperplanes with a color gradient from white to red (e.g., in Fig. 3.17, center). In the

latter plot it is shown that the predicted noise levels increase with the flux magnitude,

i.e. the hyperplane changes it color towards red the higher the NEP .

Another way of looking at it is to project the predicted noise levels directly on the noise

generating hyperplane, as depicted in Fig.3.16(b). The less noise points visible on that
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Figure 3.17: HGP fit and analysis of predictive uncertainties.
Left: The predicted mean hyperplane and the corresponding prediction intervals
as gray transparent hyperplanes above and below. The color gradient from brown
to green indicates NEP in µmol CO2 m−2 s−1. Center: The scattered data
points overlays the predictive uncertainty hyperplane. Right: Scattered noise
levels, HGP prediction uncertainty σHGP versus simulated σ.

hyperplane, the better the noise prediction. The deviations peak in the order of 2-3

NEP in medium PPFD ranges from 400-1000 µmol photon m−2 s−1 and in Ta ranges

between −5− 10◦C, and close to the corners of the plot.

The R2 in the noise comparison (Fig. 3.17, right) indicates that 71% of the noise level

could be captured by the HGP. Fig. 3.18 shows that the predictive variances of the HGP

are a better estimator of the noise levels than binned model residuals. This result holds

true when investigating the noise relationships both towards PPFD and Ta. Despite

some exceptions where the blue bins (model residuals) are closer to the black bins (σ)

than the gray bins (HGP predictive uncertainties), the sum of the differences of the

binned σHGP is always smaller than the sum of the binned model residual differences.

If the uncertainties are compared against NEP (Fig. 3.18, bottom), even every single

binned HGP uncertainty bar is less distant to the true noise bin than the corresponding

model residual bin.

Notably, the explained variability in the noise levels (71%) is worse than the correspond-

ing value for the 1D input experiment (96%), but still a good result given that the noise

levels varies along both input dimensions. Moreover, the ten outlier points in the scat-

terplot (Fig. 3.17, right) with a highly overestimated σ are exclusively caused by values

with very low PPFD and a concurrent high Ta (Fig.3.16(b), ”upper left corner”).
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Figure 3.18: Comparison of binned residuals with HGP predictive uncertainties against
PPFD, Ta and NEP .
Left: Binned model residuals compared to binned predictive uncertainties; and
binned true residuals compared to HGP residuals. Center: Direct, pointwise
comparison of simulated noise levels σ and predicted noise levels σHGP . Right:
Binned predictive uncertainties against binned previously uncertainties.
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3.5 ELR: Uncertainty Estimates for Annual Sums

This experiment is designed to estimate the random error in annual NEP sums, which

has recently been a topic of high interest (Baldocchi, 2003; Hollinger & Richardson, 2005;

Baldocchi, 2008). The possible sources of random error and the latest studies about the

uncertainties associated with eddy flux measurements are described in Section 2.1.3.

The typical range of annual uncertainties in the net exchange of CO2 reported in the

literature is between 30 and 100 gCm−2yr−1 (Baldocchi, 2008). When the site condi-

tions are nearly ideal, the bound is regarded to be less than ±50 gCm−2yr−1 (Baldocchi,

2005).

A key result of the studies of random error in flux data is a heteroscedastic error dis-

tribution, i.e. a distribution with an inhomogeneous variance. Heteroscedastic Gaussian

Processes (HGPs, Section 2.4.4) have been shown to have a good ability to estimate

predictive uncertainties for such data sets, both in the literature (Kersting et al., 2007;

Quadrianto et al., 2009) as well as in the experiments on simulated data in this work

(Sections 3.2 and 3.4). This section reports on a pilot study testing and evaluating the

performance of HGPs on annual ecosystem measurements.

3.5.1 Data

Here, the ecosystem CO2 exchange will not only be modeled as a response to light

(PPFD) and air temperature (Ta) as in the previous section, but also to a time variable

(timed) to account for the autocorrelation, which has been shown to be present both in

the flux measurements and the associated random erros (Goulden et al., 1996; Lasslop

et al., 2008). To make model predictions on highly temporal resoluted data, the bench-

mark data set from the gap-filling comparison study of Moffat et al. (2007) was used. It

contains half-hourly flux measurements according to Papale et al. (2006) and has gap-

filled meteorological variables PPFD and Ta, with the gaps filled by interpolation or

Artificial Neural Networks (for details refer to the Appendix of Moffat et al. (2007)). A

complete annual meteorology is crucial for the HGP model in order to make predictions

over the whole year. Unplausible PPFD values smaller than zero, as they occur often

during nighttime, were set to zero.

Measurements from the Hainich forest (DE-Hai, cf. Section 2.1.2) were picked to be able

to compare the error models to the results in Section 3.3. Also, another site in Hesse,

France (FR-Hes), was chosen, because with 78% it had the highest annual data avail-
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ability of all sites of the benchmark set (90% during daytime, 43% during nighttime).

Since it is a forest dominated by Fagus sylvatica, same as the Hainich forest, similarities

might be detectable. Data from the year 2001 was picked for both sites.

The first runs were performed on training data sets with the maximum available amount

of data, i.e. n = 13744 for Hesse and n = 11731 for Hainich. However, runtime issues

caused by the necessary matrix inversion which is bound by O(n3) were found to be

inacceptable, especially with regard to maintain a realistic possibility to apply the HGP

runs to other sites. The runtime for the above sample sizes were up to one week, not

only caused by the matrix inversions, but also by the optimization runs for the HGPs.

Consequently, the sample size was reduced to n/3, by selecting only every third half-

hourly measurement, independent of occuring gaps. Two subsamples were taken, the

first starting at the first half-hour of the year (denoted as HGP I from here on), and

the second subsample starting at the second half-hour of the year (HGP II). Since these

subsamples start at different indices, they do not share any data point at all (i.e., they

are disjunct). In turn, the resulting runtimes with samples of dimension n/3 were re-

duced to one day or less. Moreover, this approach offers the possibility of comparing

the two runs and evaluating the robustness of the HGP method; also, averages over the

two models can be calculated (HGP∗). The approach can easily be extended to a third

subsample for each siteyear, which is due to time constraints not part of this thesis.

3.5.2 Annual Aggregates

The two trained HGPs were employed for prediction over the whole annual time series

on a half-hourly basis, on a previously gap-filled data set. To evaluate the predicted

annual NEP course predicted by the HGP, it was compared to the measured NEP

with gap-filled values following Reichstein et al. (2005), which is denoted as NEPF .

Moreover, the NEP predicted with a hyperbolic light response curve (NEP HBLR) by

Lasslop et al. (2010) was available.

A quality check of the filled annual sums was performed by comparing the HGP gap-

filled NEP values to the results of Reichstein et al. (2005). The R2 of 87% for DE-Hai

indicates good agreement between the two modeling approaches (Fig. 3.19(a)), and thus,

a reasonable HGP annual sum. The gap comparison in FR-Hes shows some outliers

with an apparent overestimation for NEPHGP (in the range [-2,2] NEPF ), which are

exclusively resulting from 4 summer days with Ta > 15 and average PPFD > 800. This

could be an artifact of the HGP prediction or an indicator for measurement problems in

either the fluxes or the meteorology around that time. However, nearly identical outliers
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were observed independent from the training data subsample.

The results of the annual NEP sums are summarized in Table 3.2. For both sites, the

HGP runs on the two samples resulted in very similar annual aggregates, each within

the 95% prediction intervals of one another. The HGP∗ annual NEP sum of DE-Hai is

in a comparable magnitude to the HBLR prediction, whereas the pendant for FR-Hes

is rather similar to NEPF .

The averaged NEP along the two model runs, HGP∗ should be the more plausible

option to use for reporting sums and uncertainties compared to single runs, which is

for two reasons. First, the marginal likelihood is a relative measure, and can thus not

be compared between the two different samples in order to select the supposedly better

model. Second, by averaging over the two models HGP I and HGP II, more information

is included into the prediction.
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Figure 3.19: Gap-filling comparison: HGP II vs. Reichstein et al. (2005)

DE-Hai 2001 FR-Hes 2001

NEP HGP I 520.53 (±14.35) 580.17 (±24.76)
NEP HGP II 531.19 (±13.83) 593.02 (±22.28)
NEP HGP∗ 525.86 (±14.09) 586.60 (±23.52)
NEPF 608.13 (±12.99) 599.21 (±21.52)
NEP HBLR 511.18 574.91

Table 3.2: Annual aggregates of NEP [gCm−2yr−1] for the sites in Hainich and Hesse. 95%
annual uncertainties are given in brackets by the 1.96-fold prediction interval (NEP
HGP I and HGP II) and the 1.96-fold standard deviation (NEPF ).



3.5 ELR: Uncertainty Estimates for Annual Sums 73

3.5.3 Annual Predictive Uncertainties

The 95%-prediction intervals calculated from the posterior of the HGP have been used

to estimate the random error in the annual NEP sums. The 17520 uncertainty values

for each site have been aggregated by a standard Gaussian error propagation.

The good quality of the uncertainty estimates for the annual sums is plausible, because

they make the annual sums overlap with one of the two reference methods for both

sites(Table 3.2). Moreover, the order of magnitude of the aggregated random errors is

the same as reported in Lasslop et al. (2008). In this approach, random error estimates

(σLasslop) were derived from the gap-filling algorithm of Reichstein et al. (2005), comput-

ing the expected value of the flux using data measured under the same meteorological

conditions in a time window of ±7 days.

Differences become apparent when directly scattering the two approaches against each

other (Fig. 3.20). Whereas σHGP shows slight signs of saturation in the range of 6-8

NEP , σHGP does seemingly not saturate. The outliers at site FR-Hes for σHGP > 8

are exclusively from winter data between day 27 and 37 and could either be an HGP

artifact or indicate problems with the measurements.

Analyzing the binned predictive variances σHGP as in the earlier Sections of this Chap-

ter, typical error properties of CO2 flux measurements are revealed again (Fig. 3.21).

First, the noise level is increasing with the flux magnitude (heteroscedasticity), it is

steadily increasing, as shown when the binned variances are plotted against NEP . This

is in agreement with the results in the literature (Lasslop et al., 2008; Richardson et al.,
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Figure 3.20: Noise comparison: σHGP vs. σLasslop. The latter is reported in the study of
Lasslop et al. (2008).
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2006, 2008). FR-Hes shows a considerably higher uncertainty bar for -5 NEP than for 0

NEP , which is a result especially supporting the idea of errors increasing with the flux

magnitude. For the site DE-Hai, there is also large agreement with the corresponding

studies in Section 3.3, where uncertainties in NEP were derived from previously filtered

summer daytime data.

Similar noise patterns between the two sites were found, which become evident when

comparing σHGP binned against PPFD and Ta, even solely by visual inspection. The

magnitude of the random error estimates is higher for FR-Hes constantly for all bins

in the three columns for binning against PPFD, Ta and NEP , which might be due to

more unfavorable site conditions than at the Hainich site.

Different theories exist about whether the random errors in flux measurements are Gaus-

sian or Laplacian distributed (Section 2.1.3). An analysis of the distribution of the

predicted noise levels here would not provide surprising information, since Gaussian

Processes are constraint to the assumption of Gaussian observation noise. However, it

is an interesting finding that characteristic flux data noise properties can be captured

when assuming the random errors to be Gaussian.
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Figure 3.21: Predictive uncertainty analysis for DE-Hai and FR-Hes, year 2001. The binned
predictive variances σHGP are plotted against PPFD (Left), Ta (Center) and
NEP (Right)
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3.5.4 Flux partitioning

For flux partitioning of NEP into its components GPP and Reco, the latter was modeled

by the Lloyd-Taylor model (eq. 3.10, Lloyd & Taylor (1994)). The estimation of the Rb

parameter (base respiration at reference temperature) of this model was performed by

the algorithm described in Section 3.1.3, with the subsequent steps of partitioning the

fluxes. The results for the Rb estimation can be compared with two different bench-

marks. First, with the study of Reichstein et al. (2005), providing continuous time series

of Reco for E0 = 100. With this information, Rb could be calculated analytically from

the Lloyd-Taylor model. Second, the flux partitioning study of Lasslop et al. (2010)

provided Rb estimates and associated standard errors (SE).

Fig. 3.22 shows a general agreement between the HGP predictions and the two reference

partitioning models, as indicated by the fraction of corresponding data points within the

HGP confidence intervals. On a daily basis, for DE-Hai, 4.8% (HGP I) and 3.9% (HGP

II) of the Rb estimates of Reichstein et al. (2005) are beyond the HGP 95% confidence

intervals, for FR-Hes: 5.9% (HGP I) and 4.7% (HGP II). However, the HGP predic-

tions seemingly do not capture the full variability of the Rb parameter. It is relatively

well estimated only in average. If one would be interested in more precise Rb param-

eter estimates with an HGP or GPML model, more sophisticated covariance functions

accounting e.g. for the diurnal cycle or a periodicity in the data might be a solution.

Two more interesting observations can be inferred here. First, the confidence intervals

of the HGP prediction are considerably higher during winter than during summer. An
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refer to the box inside the axis.
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interesting next step would be to include a fixed number of preceding and following

days (e.g., 50) from the neighbouring years into the prediction and then compare the

confidence intervals, but also the prediction intervals. This is, however, beyond the

scope of this diploma thesis. Second, the prediction intervals in summer are by far lower

for Hainich than for Hesse, which suggests a lower random error in the measurements

during night at the Hainich site compared to Hesse. This also contributes to the lower

annual uncertainty in the NEP sum for Hainich.

This approach was used to test the HGP ability to infer a respiration model parameter

directly from the data. The Rb parameter is neither required to predict NEP , nor

the corresponding uncertainties. Nevertheless, it adds further information regarding the

quality of the model, e.g. implausible models could be detected in the case of very un-

likely partitioned annual sums of GPP and Reco. The comparison of the inferred annual

aggregates of the partitioned fluxes are summarized in Table 3.3.

DE-Hai 2001 FR-Hes 2001

Reco HGP I 1104.42 1379.73
Reco HGP II 1137.40 1291.06
Reco HGP∗ 1120.91 1335.39
Reco Reichstein 979.28 1274.75
Reco Lasslop 995.61 1348.06

GPP HGP I 1624.96 1959.91
GPP HGP II 1668.60 1884.09
GPP HGP∗ 1646.78 1922.01
GPP Reichstein 1587.41 1873.96
GPP Lasslop 1506.79 1922.98

Table 3.3: Annual aggregates of GPP [gCm−2yr−1] and Reco [gCm−2yr−1] for the sites in
Hainich and Hesse. Reco / GPP Reichstein following Reichstein et al. (2005), Reco
/ GPP Lasslop following Lasslop et al. (2010),



4 Conclusion and Outlook

The main objective of this methodological thesis was to estimate uncertainties in ecosys-

tem data with Gaussian Processes, a modern Machine Learning method. The key chal-

lenges were the nonlinear and complex character of the underlying biosphere-atmosphere

interactions and the properties of noisy, multidimensional and fragmented ecosystem

flux measurements (Moffat, Accepted). Gaussian Processes offer the necessary model-

ing power to approach these questions under relatively few assumptions and without a

prescribed mathematical function, directly from a data perspective.

To provide insight into how Gaussian Processes work and to evaluate their benefits and

drawbacks, the experiments ranged from simple, artificial scenarios to more demanding,

real-world data sets:

1. Simulated data with additive noise, imitating a NEP (PPFD) light response.

2. Previously filtered, summer, daytime light response data from the Hainich forest.

3. Simulated data with additive noise, imitating a NEP (PPFD, Ta) light response

4. Half-hourly, annual, but incomplete time series from the Hainich forest and Hesse

forest. PPFD, Ta and information about time were employed as input drivers.

The main results of the first, most comprehensive artificial data experiment (1.) revealed

that GP confidence intervals tend to be underestimated, whereas prediction intervals

for assessing data uncertainties are the most outstanding ability of the Heteroscedastic

Gaussian Process (HGP) approach. Another finding was that weaknesses in capturing

local features of a function contrasted good overall fits.

In the subsequent experiment (2.) on the according measured summer daytime data

from the Hainich forest, the HGP predictive uncertainties suggested that random er-

rors in NEP are overestimated if assessed with a traditional method (binning model

residuals). This finding could be approved for the residuals of five different modeling

approaches (LOWESS, NLR, GPML, HGP and ANN), indicating that model residuals
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should rather be used for quantifying the noise properties in more local regions of a

function. Also, a trained GP model suggested agreement with the existing theory that

the diffuse fraction of PPFD is a more relevant driver of the light response than the

direct proportion of PPFD. In the future, it would be good to confirm these results

with an analysis from data at other flux towers.

The 3. experiment was built on the first runs, with Ta added as a second input driver

and it could confirm the initial results: the noise levels in the artificial data set were still

well captured, despite some expected performance losses. Here, the noise simulation was

varied along 2 input dimensions, therefore forming a basis for applying HGPs in higher

dimensional data sets.

The final experiment (4.) aimed at estimating uncertainties in annual sums of frag-

mented carbon flux measurements. After two HGPs were trained on two disjunct sam-

ples, aggregates could be calculated using the according, previously gap-filled meteoro-

logical time series for prediction. Estimates of annual uncertainties in NEP in the year

2001 of ±14.1 gCm−2yr−1 for Hainich and ±23.5 gCm−2yr−1 for Hesse were calculated.

These are similar to the reported random error quantifications in the literature. The

GP assumption of Gaussian observation noise is a limiting, but reasonable assumption,

as indicated by the predicted noise patterns, which are both consistent between sites as

well as with existing studies (Lasslop et al., 2008; Richardson et al., 2008).

The modern Machine Learning method of Gaussian Process method was shown to be

a suitable framework for nonlinear regression in various experimental set ups, reveal-

ing very particular strengths and drawbacks. The GP approach is recommended to be

applied in situations of Gaussian observation noise and if the sample size n does not

largely exceed 10000 data points.

In the future, it will be worthwhile to estimate uncertainties in annual NEP sums with

HGPs for more measurement sites of the FLUXNET observation network. Supporting

work in this direction does include further artificial experiments on data sets with sim-

ulated pink noise, i.e. a simulated autocorrelation in the noise levels. Moreover, the

results obtained in this work suggest that there is room for improved strategies in train-

ing HGPs for annual aggregates with e.g., 50 surrounding days of each the preceding

and the following year.
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Appendix

Software

This study and the associated experiments are exclusively implemented in MATLAB 7.10.

The following toolboxes have been included:

GPML toolbox: Gaussian Processes for Machine Learning. A very comprehensive soft-

ware package, which contains the main Gaussian Process algorithms described in

the according book (Rasmussen & Williams, 2006). Here the version GPML 3.0 has

been used, which can be downloaded from http://gaussianprocess.org/gpml/code.

Curve Fitting Toolbox: A licensed toolbox by Mathworks for various regression and

interpolation methods. Here, it was employed for NLR and LOWESS.

Furthermore, a software package called mlhgp, for the heteroscedastic Gaussian Process

regression (HGP), has been used (Kersting et al., 2007; Quadrianto et al., 2009). This

code directly builds on top of the GPML toolbox.

The interfaces for running experiments with the above toolboxes and for visualizing the

results were implemented for the purpose of this diploma thesis. Also, a simple GP

regression script (sandbox ) which I wrote in the very beginning of this work.

The reader is encouraged to try the above toolboxes on his own, making use of the

scripts which I added. For instruction, the functionalities of the most important imple-

mentations are summarized briefly in the following:
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Functions Description

GPML/start_gpfit.m Interface for (multiple parallel) runs of Gaussian

Process Regression using the GPML toolbox by

C.E. Rasmussen and H. Nickisch (2010). Calls the

function GPML/gp_experiment.m with seven pa-

rameters.

GPML/gp_experiment.m Performs the actual GPML run, using several pa-

rameters such as the initial hyperparameters, the

covariance function and an optimization flag.

HGP/start_mlhgpfit.m Interface for running a Heteroscedastic Gaussian

Process Regression (HGP) using the GPML tool-

box by C.E. Rasmussen and H. Nickisch (2010)

and the mlhgp code by K. Kersting (2007). Calls

the function HGP/mlhgp_experiment.m with seven

parameters. Written by Kristian Kersting (2007),

extended by the author.

HGP/mlhgp_experiment.m Performs the actual HGP run, using several pa-

rameters such as the initial hyperparameters, the

number of latent noise variables and an optimiza-

tion flag. Written by Kristian Kersting (2007), ex-

tended by the author.

HGP/plot_mlhgp.m Plotting routine for a HGP experiment with

1D Input dimensionality. Makes use of

the functions HGP/binned_residuals.m and

HGP/binned_residualsX.m
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Functions Description

HGP/plot_mlhgp_2D.m Plotting routine for a HGP experiment with

2D Input dimensionality. Makes use of

the functions HGP/binned_residuals.m and

HGP/binned_residualsX.m.

sandbox/simple_gp.m Gaussian Process Regression script following solely

the descriptions and equations in Bishop (2006)

and Rasmussen & Williams (2006). Infers the pos-

terior distribution, makes predictions and calcu-

lates the marginal likelihood, including a plotting

routine. Makes use of a squared exponential co-

variance function (eq.2.28).

All the scripts documented here, as well as the open source toolboxes and an example

dataset, are available on the enclosed CD. For further documentation, please refer to

the README.txt file on the CD.
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