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Abstract. The polarization of photons emitted by astrophysical sources might be altered as
they travel through a dark matter medium composed of ultra light axion-like particles (ALPs).
In particular, the coherent oscillations of the ALP background in the galactic halo induce a
periodic change on the polarization of the electromagnetic radiation emitted by local sources
such as pulsars. Building up on previous works, we develop a new, more robust, analysis
based on the generalised Lomb-Scargle periodogram to search for this periodic signal in the
emission of the Crab supernova remnant observed by the QUIJOTE MFI instrument and 20
Galactic pulsars from the Parkes Pulsar Timing Array (PPTA) project. We also carefully take
into account the stochastic nature of the axion field, an effect often overlooked in previous
works. This refined analysis leads to the strongest limits on the axion-photon coupling for a
wide range of dark matter masses spanning 10−23 eV . ma . 10−19 eV. Finally, we survey
possible optimal targets and the potential sensitivity to axionic dark-matter in this mass
range that could be achieved using pulsar polarimetry in the future.
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1 Introduction

The fundamental nature of dark matter (DM) remains one of the major mysteries of modern
physics [1]. One of the most promising candidates of particle DM is the axion [2–4], whose
first incarnations were predicted as a consequence of the Peccei-Quinn solution to the strong
CP -problem [5–7]. Equally interesting is the larger framework of axion-like particles (ALPs),
pseudoscalar particles with Standard Model (SM) couplings resembling those of the QCD
axion 1, but not necessarily related to the strong CP -problem. As a consequence, their mass
and decaying constant can be decoupled, widely broadening the possible phenomenological
consequences.

A characteristic feature of ALPs is that they can be extremely light (∼ 10−22 eV),
becoming the prototypical example of bosonic Ultra Light Dark Matter (ULDM), also called
fuzzy dark matter or wave dark matter [8–13]. Remarkably, this type of ultra light particles

1Here we employ usual terminology in high-energy physics, where QCD refers to Quantum Chromo-
Dynamics (the fundamental theory of the strong interactions) and CP stands for the combined charge-
conjugation (C) and parity (P ) symmetry transformation.
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is naturally predicted in some extensions of the SM, including string theory [14, 15]. These
dark matter candidates are characterized by a large de Broglie wavelength, which suppresses
structure at small scales. This observation has been used as a further motivation for these
models, as this suppression may address some difficulties of the cold dark matter paradigm
at galactic scales [16]. A prominent example is the core-cusp problem, arising from the
discrepancy between the inferred dark matter density profiles of low-mass galaxies and the
density profiles predicted by cosmological N-body simulations [17]. Other related observables
where ULDM may play a critical role include: the Lyman-α forest [18, 19], the abundance of
high-redshift objects [20], galactic rotation curves [21, 22] and the formation features of the
Milky Way disk [23].

Another remarkable property of these DM candidates is that they can be easily (even
“naturally”) produced at the observed cosmological levels via the misalignment mechanism [2,
3, 24]. This relies on assuming that the field strength has a “natural” amplitude in the early
universe (provided by, e.g., a phase transition) and that after some time (depending on the
mass of the DM particle) they start to oscillate and behave as a cold dark matter fluid.

In this work we will focus on the ULDM parameter space of ALPs. One of the most
interesting handles in their phenomenology is the non-renormalizable interaction of ALPs with
electromagnetic (EM) fields. This interaction might be studied in several kinds of experiments
such as CAST [25], or astrophysical phenomena like the supernova SN 1987A [26]. It also
affects the emission, propagation and detection of EM waves from astrophysical objects (see
e.g. Refs. [27–29] for reviews). In this work, we will describe how the polarization properties
of light are modified in its propagation through an external ALP (pseudoscalar) field. In
particular, we focus on the modulation of the light polarization angle induced by ALPs in
virial equilibrium in galactic structures [13, 30, 31]. This effect has been searched for in, for
instance, pulsars [32], parsec-scale jets in active galaxies [33], protoplanetary disks [34] or
in observations of the CMB [35, 36]. In the present manuscript we improve and refine the
analysis of Ref. [32] using pulsars as light sources. Our analysis is novel in several ways:

• First, we use generalized Lomb-Scargle periodograms. These are standard and power-
ful techniques used in astronomy to search for periodic signals in non-homogeneously
distributed time series. This allows us to perform a robust analysis of the time depen-
dence of the pulsar’s polarization measurements constraining ALP-birefringence effects.
(Similar techniques were applied to active galaxy sources in this context [33]).

• Second, we use a more accurate model of the ULDM configuration. This takes into
account the intrinsic stochastic nature of the amplitude of the field, which is relevant
for the mass range of interest and experimental setup. This is tackled in our work by a
global analysis of the polarization measurements of 20 pulsars observed for∼ 4.5 years
by the Parkes Pulsar Time Array (PPTA) [37]. Furthermore, we include data from
the polarization studies of the Crab Pulsar (and supernova remnant) that span also
∼ 4.5 years, performed by the QUIJOTE MFI instrument [38, 39] to calibrate their
measurements.

• Finally, we investigate the prospects to improve the current sensitivity of this search
strategy. In particular, we indicate the optimal features of potential observational tar-
gets, which might allow us to start probing a larger parameter space of ALP DM in the
near future. Still, our current analysis presents the strongest constraints that have been
obtained so far for the range 10−23 eV . ma . 10−19 eV of ultralight ALP masses.
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Our work is organized as follows: In sec. 2, we introduce the concept of ALP, its relevance
as a cold dark matter candidate, and the birefringence effect. In the last part of the same
section, we discuss the impact of the stochastic nature of the ALP oscillations. In sec. 3 we
describe the datasets while in sec. 4 we explain the techniques–based on periodograms–to
search for ALP effects on the polarization of radio EM waves emitted in pulsars. In the
final part of sec. 4, the individual and combined searches using PPTA and QUIJOTE are
presented. Finally, in sec. 5 we summarize some prospects of our studies.

2 ALPs as Ultra Light Dark Matter and the birefringence of light

2.1 ALPs as cold dark matter

As mentioned above, one of the most appealing features of ALP dark matter is that it can
easily be produced at the right abundance with the misalignment mechanism. The equation
of motion of the ALP field a in an isotropic and homogeneous expanding universe reads

ä+ 3Hȧ+m2
aa = 0, (2.1)

where ma is the ALP mass, H = (ρtot/3M
2
Pl)

1/2 is the Hubble parameter with ρtot being the
total energy density in the Universe. At early times, the ALP field is frozen. Then, when the
Hubble parameter becomes comparable to ma, it starts to oscillate and soon after the ALP
energy density redshifts as cold matter. At the onset of oscillations, which is characterized
by the temperature Tosc, the ALP number density is given by

na(Tosc) =
1

2
maf

2
aθ

2
0, (2.2)

where fa is the axion decay constant and θ0 the initial misalignment angle, defined by the
initial value of the axion field a0 = faθ0. In the conventional cosmological scenario, the ALP
starts to oscillate during radiation domination, and the evolution below Tosc is assumed to be
adiabatic. In this case one can write the axion density parameter as [11, 40–42]

Ωah
2 ' 0.12

( faθ0

6× 1016GeV

)2( ma

2× 10−21eV

)1/2
. (2.3)

The scaling above is easy to understand. A larger decay constant means a larger axion energy
density at the start of the oscillations. Furthermore, the larger the mass, the earlier the axion
starts redshifting as matter (i.e., slower than radiation), allowing for ρa/ρtot to grow over a
longer period.

2.2 ALP-induced birefringence

The presence of an ALP relic can lead to important phenomenological consequences. For
example, its presence will modify the propagation of EM waves. In particular, the ALP
medium would rotate the polarization plane of linearly polarized EM waves, such as those
emitted by pulsars [30–32, 43]. The origin of this phenomenon can be understood starting
from the Lagrangian for an ALP field a, including its most relevant interactions to light. The
latter has the following form

L =
1

4
FµνF

µν +
gaγ
4
aFµνF̃

µν +
1

2

(
∂µa∂

µa−m2
aa

2
)
, (2.4)
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where Fµν is the EM stress tensor and F̃µν = εµνρσFρσ/2 is its dual. As follows from
dimensional analysis, the coupling constant gaγ has units of inverse of mass. The field equation
for the ALP field reads (

�+m2
a

)
a+

gaγ
4
aFµνF̃

µν = 0 , (2.5)

and goes together with the modified Maxwell’s equations coupled to the ALP field

∂µF
µν + gaγ∂µ

(
F̃µνa

)
= 0, (2.6)

∂µF̃
µν = 0 . (2.7)

The changes produced by the gaγa term can be considered adiabatic at scales of the order
of the EM wavelength, since we will work only in the limit ∂ta � ω and |∇a| � k, ω being
the frequency of the radio wave and k its momentum (wave-vector). Then, as far as the
propagation of the EM wave is concerned, ∇a and ∂ta are approximately constant. Terms
with first spatial and temporal derivatives squared scale with |∇a|/k and ∂ta/ω, respectively,
so they are also small and neglected. This approach coincides with geometrical optics, where
the EM wavelength does not change appreciably over the characteristic length scale of spatial
variations of a field. In this context, the EM field admits plane wave solutions with angular
frequencies for left and right circularly polarized waves,

ω± ' k ±
1

2
gaγ

(
∂ta+∇a · k̂

)
, (2.8)

to lowest order in gaγ [30, 31]. Hence, the ALP field acts as a birefringent medium due to the
parity-violating nature of the light-axion interaction: a linearly polarized EM wave changes
its polarization plane due to the phase shift induced between left- and right-handed circular
polarization components in Eq. (2.8). When integrated along the trajectory of propagation
of the EM wave, the previous effect yields a modification of the polarization angle by,

∆φ =
gaγ
2

∫ to

ts

da

dt
dt =

gaγ
2

∆a. (2.9)

Two important conclusions follow from this equation. First, this birefringent effect is inde-
pendent of the frequency of the EM wave. Secondly, it is “conservative” in the sense that the
net rotation of the polarization angle depends only on the difference of the values of the ALP
field at the source and observer (labeled by times ts and to respectively) and not on the values
of the ALP field crossed by the EM wave in its trajectory2. We show in Fig. 1 a graphical
representation of this phenomenon.

We now describe the changes of the polarization angle of light caused by the difference
in the ALP field in the Solar system as compared to the local environment of pulsars as a
function of time [32, 33, 43]. In both cases, the dark matter distribution can be considered
as a collection of free waves [11, 46, 47],

a(~x, t) =

∫
d3k a(~k)ei(ωt−

~k·~x) + c.c. , (2.10)

where a(~k) incorporates the virialized properties of the distribution (in particular its coldness)
and includes random phases for each wavenumber. From the dispersion relation derived from

2Note also that the light-axion interaction we are studying does not lead to modifications of the trajectories
of the two helicities at the precision we are studying [44, 45].
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Figure 1: Time-dependent birefringence induced by the axion DM field. Light is emitted
by a given source (point 1) with a given polarization and received (point 2) with a different
polarization ∆φ(t). The effect is “conservative” in the sense that it depends exclusively on
the difference between the values of the axion field at points 1 and 2. The time dependence
is given by the coherent variation of the axion field, with frequency νc. (Artist: Ève Barlier.)

(2.5) at first order in the background fields, and from the fact that the virialized distribution
is non-relativistic (cold), one can write this field configuration at any time t and position ~x
as,

a(~x, t) = a0(~x) cos (mat+ δ(~x)) , (2.11)

where a0(~x) and δ(~x) are the amplitude and phase of the field, respectively, at the location
~x. This description is valid for times smaller than the coherence time

τc = (maσ
2)−1 ' 2× 105

( ma

10−22 eV

)−1 ( σ

10−3

)−2
yr, (2.12)

where σ ∼ 10−3 is the dispersion velocity of dark matter in our Galaxy [48] and for distances
smaller than the coherence length

lc = (maσ)−1 ' 65
( ma

10−22 eV

)−1 ( σ

10−3

)−1
pc, (2.13)

around the position ~x. Both properties hinge on the virialized axion field (2.10) containing
modes with different nonrelativistic velocities and random phases, which interfere and deco-
here the net field. To summarize, within the previous limits, the distribution behaves as a
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coherent field oscillating at the nominal Compton frequency

ν = νc =
ma

2π
. (2.14)

Finally, one can relate the axionic field to the local dark matter energy density as derived
from the stress energy tensor of an oscillating scalar field [33],

ρDM =
1

2
m2
a〈a2〉 , (2.15)

where the average corresponds to time averages at cosmological time scales, which are much
longer than τc in (2.12) for the masses of interest.

In the case of interest in our work, the relevant time scale is set by the duration of
the observations, which is � τc. In this situation, the connection between the axionic field
amplitude and ρDM in (2.15) acquires a stochastic nature, with the amplitude of the axion
field a0,i following a Rayleigh distribution in a given coherence domain (labeled by i) [46, 49].
For the sake of clarity, we write a0,i =

√
2ρim

−1
a αi, where we factored out the dependence on

the local density of dark matter ρi and the ALP mass, and αi is a random variable following
the probability distribution function (PDF) [46]3

p(α) = α exp

(
−α

2

2

)
. (2.16)

With the previous ingredients, we can finally study the effect of the axion dark-matter
field on the polarization of the light received from a given pulsar as a function of time, taking
into account the stochastic nature of the field. From Eq. (2.9), one finds

∆φ(t) =
gaγ√
2ma

[
√
ρoαo cos(mat+ δo)−

√
ρsαs cos(ma(t− T ) + δs)] , (2.17)

where t is the local time measured since the beginning of the observations (which defines
t = 0), T is the time light takes to travel from the pulsar to Earth, and δi, ρi and αi are the
phases, local dark-matter density and stochastic amplitude variable, respectively, at a given
source (i = s) or observer (i = o). The variables δi are random, with a flat PDF in [0, 2π].
The expression (2.17) can be compactly reorganized as

∆φ(t) = φa cos(mat+ ϕa), (2.18)

where
φa =

gaγ√
2ma

(
ρoα

2
o + ρsα

2
s − 2

√
ρoρsαoαs cos ∆

)1/2
, (2.19)

with ∆ = maT + δo − δs. The expression of the phase ϕa in Eq. (2.18) is not relevant,
since it can eventually be considered as a random phase with a flat distribution in [0, 2π] and
uncorrelated with φa4. The argument ∆ in Eq. (2.19) can also be treated as a random phase
even if the pulsar and Earth belong to the same coherence domain (i.e. when δs = δo). In

3Alternatively, one can directly sample the energy density using the distribution [50] p(ρ) = 1
ρ̄

exp(−ρ/ρ̄),
where ρ̄ indicates the average energy density (locally we have ρ̄ ' 0.4 GeV/cm3).

4To be precise, ϕa is a function of the random variables δi and αi (and of ρi), but it can be treated as
uniformly distributed. We have checked this claim numerically for different instances of the parameters in
(2.17).
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this case, the phase only depends on maT , which should also be treated as a random variable
since the uncertainty in the measurement of the distance typically spans several cycles of the
ALP field.

In summary, one can indirectly search for the interaction of light with the dark-matter
waves of the ALP field by looking for periodic variations in ∆φ(t), Eq. (2.18). There are two
important caveats to this strategy. First, periodic variations in polarization measurements
may be caused by more prosaic mechanisms, such as seasonal effects at Earth (e.g., Faraday
rotation in the ionosphere [37, 51]), astrophysical phenomena or even instrumental systematic
effects. Some of these contributions are, in principle, well known and can be corrected for, like
the ionospheric corrections or some of instrumental origin. Others are potentially unknown
and would need to be modelled and subtracted before using ∆φ(t) effectively to search for
DM. Secondly, the analysis depends on unknown environmental variables such as ∆ or the
stochastic amplitudes αi. This may cause a loss of sensitivity to the ALP birefringence effect
in the unlucky situation of near-zero field amplitudes or cancellations in Eq. (2.19) during
our measurements.

Both problems can be circumvented by performing a global analysis of several sources
measured, ideally, at different frequencies and with independent experiments. Using several
sources allows one to discard astrophysical periodic effects, as the ALP-induced periodic
changes in the polarization of the EM wave should have the same period for all sources, while
those of astrophysical origin are expected to have source-specific periods and patterns. On the
other hand, different frequencies and experiments allow us to eliminate frequency-dependent
changes (e.g. Faraday rotation [51]) and instrumental effects, respectively. Finally, a global
analysis enables us to tackle the lack of knowledge about the environmental variables by
effectively sampling them statistically from their PDF, such as Eq. (2.16) for the stochastic
amplitudes.

Before moving to the bulk of the analysis, it is important to stress that the stochastic
behavior of the axion field is a crucial ingredient to obtain realistic bounds, often overlooked
in previous analysis. In the following, to further stress this point, we refer to results both
assuming a fixed αi = 1 (“deterministic” scenario, applicable only for Tobs � τc, where the
experiment explores the whole distribution of the field values) or by sampling it from the
Rayleigh distribution in Eq. (2.16) (“stochastic” scenario, correct for Tobs � τc).

2.3 Birrefringence searches and UV models of ALP DM

As discussed in Sec. 2.1 and shown in Eq. (2.3), the cosmological abundance of ALP DM is set
by its mass and decay constant. The latter is, in turn, related to the axion-photon coupling
via an equation of the type

gaγ = κ
αem

2π

1

fa
, (2.20)

where αem is the EM fine structure constant and κ is a model-dependent coefficient. Therefore,
once fa is adjusted for a given mass ma to provide for the relic DM abundance, one can
interpret our search for ALP DM in terms of the sensitivity to different models. In typical
QCD-axion models κ receives two contributions: an infrared (low-energy) contribution of
O(1) coming from mixing between axion and QCD mesons, and an ultraviolet (high-energy)
contribution which usually depends on the electromagnetic and QCD anomaly coefficients.
The latter is usually also taken to be of O(1); however, it can be, in principle, much larger
than the infrared contribution, leading to an enhanced axion-photon coupling. This occurs
in several scenarios, including the photophilic axion of Ref. [52], where the axion has an
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exponentially large coupling to photons thanks to the “clockwork” mechanism, the generalized
Kim-Nilles-Peloso (KNP) alignment scenarios discussed in Ref. [53], or through a kinetic
mixing of abelian gauge fields, as considered in Ref. [54], where the axion-photon coupling
inherits the (potentially large) dark photon gauge coupling. Therefore, searches of axion
DM probing their coupling with photons gaγ can always be reinterpreted as measurements or
upper limits of the κ coefficient (see [42] for a related discussion).

3 Data

As discussed in Sec. 2.2, in order to perform a robust search of ultra-light axion DM through
its birefringence effects, it is crucial to combine many different sources and, if possible, dif-
ferent experiments observing at different wavelengths. In this work we use an ensemble of
observations of the polarization angle of 21 Galactic sources measured by the Parkes Pulsar
Time Array (PPTA) at about 1.4 GHz [37] and by the QUIJOTE experiment between 10 and
20 GHz with its MFI instrument.

In Table 1 we show the list of the pulsars used in this work and the parameters relevant
to our analysis. In particular, knowing the location of the pulsars with respect to Earth and
within the Milky Way allows us to estimate the local dark matter density at each source and
also determine whether the distance between the source and the observation point is smaller
than the coherence length lc. In Table 1 we show the distance of all the pulsars used in our
analysis to Earth [55–59] and to the Galactic center. We also show the corresponding ρDM at
the pulsar estimated using a Navarro-Frenk-White (NFW) profile [60] with the parameters
extracted from Ref. [61]. Note that the pulsar distances to Earth, which are crucial to
locate them in the Galaxy, are determined by different methods and in some cases have large
uncertainties. Nonetheless, even in the most extreme cases this is translated in an uncertainty
never larger than 5% in ρDM by taking the 1σ band in the corresponding distance. Given that
the birefringence effect is ∝ ρ

1/2
DM, Eq. (2.17), this uncertainty leads to changes of ∼ 2 − 3%

that we neglect in our analysis. We omit for the same reason assigning errors to the values
of the distances quoted in Table 1.

Our goal is to combine long-time measurements of the polarization angle of these pul-
sars to search for a global modulation ∆φ(t) produced by the axion field oscillations, scanning
its frequency νc in a certain range that we will determine from the structure of the obser-
vation windows below. In the next two subsections we describe the PPTA and QUIJOTE
measurements on these sources.

3.1 PPTA data

The Parkes Pulsar Timing Array (PPTA) started in 2005 and uses the Parkes 64 m antenna
(Parkes, Australia) to perform continuous observations of a sample of 20 ms pulsars in three
radio frequency bands centred at 0.7 GHz, 1.4 GHz and 3.1 GHz, with intervals from two to
three weeks, with the primary goal to detect the background of gravitational waves in the
pulsar timing band [62]. In this work we use PPTA data released in Ref. [37] that include
polarization measurements of 20 pulsars at 1.4 GHz. These data span a total observation
time of ∼ 4.5 years with a precision that can be as high as O(0.1◦) for some pulsars. Further
technical details about these observations can be found in [37].

At 1.4 GHz changes in the Faraday rotation arising in the Earth’s ionosphere lead to
variations of the polarisation angle in scales of one day that are way larger than the data sta-
tistical error bar. This effect must be modeled and subtracted from the data [37]. The PPTA
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datasets implement two models to treat ionospheric corrections: the 2007 International Refer-
ence Ionosphere (IRI) model-GETRM−IONO [63] and the FARROT (Faraday Rotation) software.
The latter was developed by the Dominion Radio Astrophysical Observatory (DRAO), Pen-
ticton, Canada. FARROT uses three Chapman layers and a semi-empirical model for variations
in these based on the 10.7-cm solar radio flux measured by DRAO. Instead, IRI uses the
model from the International Union of Radio Science (URSI) [64]. FARROT and IRI models
incorporate the International Geomagnetic Reference Field2 to take into account the effects
from Earth’s magnetic field [65]. These models allow one to study the changes in the rotation
measure and in the polarization angle of our signal due to ionospheric variations. In this work
we analyze the PPTA data corrected by the IRI model because it gives better results than
FARROT [37] (see discussion below).

3.2 QUIJOTE data

PPTA data are supplemented by observations of the Tau A supernova remnant (Crab Nebula)
performed with QUIJOTE [38, 39] (hereafter Crab-QUIJOTE), an experiment dedicated to
observe the cosmic microwave background polarization between 10 and 40 GHz from the
Teide Observatory (2400 m a.s.l., Tenerife, Spain). In particular we use data at 11, 13, 17
and 19 GHz taken with the QUIJOTE Multi-Frequency Instrument (MFI) [66], which was
operative between 2012 and 2018. Owing to it being the brightest polarised compact source
on the sky in this frequency range, Tau A was the main reference calibrator of the MFI.
As such, this source is observed on a regular (virtually daily) basis, using observations in
raster-scan mode, lasting ∼ 25 min to produce maps of size ∼ 8◦ × 8◦ around the source to
reach deep sensitivities. Tau A was also observed during the QUIJOTE-MFI wide-survey of
the full northern sky [67], using the so-called “nominal mode”. In this case the telescope is
continuously rotated in azimuth at a constant elevation, resulting in a map of a large area of
the Northern sky after a full day. Due to its declination (22.0◦) being very close to Tenerife’s
latitude (28.3◦) Tau A was detected in all these observations.

In Figure 2 we show two examples of QUIJOTE-MFI 11 GHz maps of Stokes Q and
U of Tau A, using individual observations in raster and nominal mode. Due to differences
in the two scanning strategies, the former leads to a higher integration time per unit area,
which results in an improved map sensitivity that is apparent by eye. We gathered a total of
1363 and 685 Tau A observations between November 2012 and December 2018, respectively
in these two modes, for a total of 2048 Tau A maps of Stokes Q and U. In each individual
map we apply an aperture photometry technique, consisting in integrating the Q and U flux
densities enclosed by the solid circle in Figure 2 and subtracting a median background level
calculated in the region inside the two concentric dotted circles. The polarisation direction is
then obtained as γ = 0.5 arctan(−U/Q)5. Analogous maps are produced for the other MFI
frequencies, so that for each observation we have four estimates of the Tau A polarisation
angle at 11, 13, 17 and 19 GHz. MFI has four horns, each of which observe a pair of frequency
bands. In this analysis we have used the 11 and 13 GHz frequency bands of horn 3, and the
17 and 19 GHz frequency bands of horns 2 and 4. The 11 GHz provides the best sensitivity,
while, due to the combined effect of the decay of the Tau A flux density with frequency
(spectral index α ∼ −0.3) and to the proximity to the atmospheric 22 GHz water vapour line,
the signal-to-noise gradually worsens at higher frequencies. We compute for each observation
a weighted average of the four polarisation angle estimates, justified by the fact that the

5The QUIJOTE maps use the COSMO convention, and a minus sign in front of U in order to preserve the
same definition of the polarisation angle as in the IAU convention.
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Figure 2: QUIJOTE-MFI 11 GHz maps of Stokes Q and U at the position of Tau A, in
raster-scan mode (left; performed on 17 May 2017) and in nominal model (right; performed
on 22 December 2017), in Galactic projection. The concentric circles depict the regions that
are used to derive Q and U flux density estimates (see text for details).

ALP birefringence effect is frequency independent (see Sec. 2.2). We reach sensitivities in the
determination of the polarisation angle of O(1− 2◦) for each observation in raster mode, and
a bit worse in the case of the nominal mode.

The QUIJOTE-MFI calibration on Tau A consists in setting the global polarization
direction, by combining many individual observations. The instrument polarization direction
is stable during large periods of time (∼ 1.5 years), and therefore variations of the observed
polarization angle within these periods could only be due to real on-sky variations. Possible
variations in time scales larger than these ∼ 1.5-year long periods were checked through
comparison with the polarization direction measured by WMAP at 22.8 GHz and Planck at
28.4 GHz on the diffuse Galactic emission, and were found to be smaller than ∼ 0.5◦. Further
details on this study will be provided in different upcoming papers ([67] and [68]).

The QUIJOTE-MFI instrument underwent different technical modifications during its
6-year lifetime, leading to differences in the effective instrument sensitivity as a function
of time. In this study we decided to remove data taken before April 2014, which was less
precise due to the lack of a reference calibration diode, and we end up with a sample of 1099
QUIJOTE-MFI estimates of Tau A polarisation direction, spanning a period of 4.5 years.

4 Data analysis and results

4.1 Generalized Lomb-Scargle periodograms

The best approach for our endeavor and, in general, to search for periodic signals in unevenly
distributed time series is the Lomb-Scargle (LS) periodogram [69, 70]. This is a standard tool
in astronomy based on a combination of techniques of signal analysis: Fourier methods, least
squares, phase-folding, and Bayesian approaches [71]. The central element of the method,
the LS periodogram, which we label PLS(ν) in the following, can be regarded as the analog
of the power spectrum in continuous Fourier analysis (see Ref. [71] for subtleties of this
interpretation). It can also be understood as the result of a least-square minimization process,
which can be extended to include the uncertainties of the data. This leads to the generalized
LS periodogram [71, 72], which is the version that we use in our work. In Appendix A we
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Pulsar DEarth [pc] DGC [kpc] ρDM [GeV/cm3] OT [yr]
J0437-4715 156 8.16 0.35 4.40

Crab-QUIJOTE 2000 10.11 0.23 4.56
J0613-0200 990 8.98 0.29 4.71
J0711-6830 110 8.11 0.35 4.78
J1022+1001 640 8.39 0.33 4.60
J1024-0719 1200 8.49 0.32 4.66
J1045-4509 590 8.03 0.36 4.78
J1600-3053 1870 6.44 0.53 4.78
J1603-7202 3400 6.22 0.56 4.66
J1643-1224 1200 7.02 0.45 4.60
J1713+0747 1310 7.13 0.44 4.78
J1730-2304 470 7.67 0.39 4.55
J1732-5049 1875 6.45 0.52 3.61
J1744-1134 410 7.73 0.38 4.78
J1824-2452 5500 2.85 1.90 4.45
J1857+0943 1180 7.08 0.45 4.66
J1909-3744 1157 7.04 0.45 4.70
J1939+2134 4800 6.86 0.47 4.12
J2124-3358 440 7.83 0.37 4.78
J2129-5721 7000 6.21 0.56 4.56
J2145-0750 710 7.79 0.38 4.56

Table 1: List of pulsars used in our work including parameters relevant for our analysis:
Central value of measured distances to Earth, DEarth, distance to the Galactic center, DGC,
and local dark matter density, ρDM, calculated with a NFW profile with parameters extracted
from [61] and observation time (time difference between last and first observation), OT, for
each pulsar used in the analysis. See the main text for a discussion related to the impact in
our analysis of the uncertainties in the distance measurements.

provide a brief description of the generalized LS periodogram, the standard procedure we
follow to calculate it and its relation to a statistical minimization procedure.

The significance of any peak appearing in PLS(ν) can be assessed by a False Alarm
Probability (FAP). The FAP quantifies the probability that a data set with no periodic signal
leads to such peak by coincidental alignment of random fluctuations [71]. The most robust
method to compute the FAP is the bootstrap approach, which resamples the time series by
keeping the temporal coordinates but with observations randomly distributed using Monte-
Carlo (MC) simulations [73]. The maximum peaks obtained in these MC simulations form a
distribution, which can be used to directly compute the FAP.

To apply the LS technique and extract reliable bounds, it is important to consider the
frequency limits and the grid spacing of our data [71]. For a pulsar observation spanning
a total time Tobs, a signal with frequency 1/Tobs will complete exactly one oscillation cycle,
providing a suitable minimum frequency νmin for the LS periodogram6. For the maximum
frequency νmax we choose the inverse of the folding time (i.e., resolution time for observations)
that we identify with the pseudo-Nyquist frequency (see [71] for more details). Taking as a
reference the observations of J0437-4715 by PPTA [37], νmax ' 20 days−1 is determined
by the folding time of ∼ 1 hour and νmin ' 6 × 10−4 days−1 by Tobs ∼ 4.4 yrs. As a

6For lower frequencies, the periodic harmonic signal can be confused with a polynomial fit.
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Figure 3: Generalized LS periodograms for the time series of polarization measurements for
four of the pulsars in our analysis and including the IRI ionospheric corrections in the case of
PPTA observations. We also show FAPs at 32% (solid line), 5% (dashed line) and 1% (dotted
line) false-positive rates estimated using a bootstrap method with a 1000 random resamplings
of the data set at the same temporal coordinates.

result, the range of ALP masses that can be probed spans about four orders of magnitude,
10−23 . ma . 10−19 eV.

Once the frequency interval is identified, one must choose a frequency resolution. The
grid must have enough resolution to avoid the possibility of losing peak power. However, a
large number of points may make the search for peaks–and hence the production of bootstraps–
prohibitive in computational cost. To ensure a frequency grid of good resolution for each peak,
we over-sample by a factor n0 = 5 per peak, and use a grid of spacing νmin/n0. With this
choice, the total number of required periodogram evaluations is N = n0Tobsνmax [73, 74].

4.2 Searching for peaks in the power spectrum

After adjusting the range and density of the grids, we compute the generalized LS peri-
odograms corresponding to the polarization time series of the 20 PPTA pulsars (implement-
ing the IRI ionospheric corrections) and of Crab-QUIJOTE. In each case we also compute
the FAPs with false-probability rates of 32%, 5% and 1%, using 1000 MC bootstraps of the
data. For the PPTA pulsars we observe that the highest values of PLS(ν), and those of the
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FAPs, are smaller when the data set is more precise. In general, we do not find peaks with
FAPs smaller than 1% (or even smaller than 5% in most cases). There are two exceptions:
J1730-2304 and Crab-QUIJOTE, for which we find peaks with false-rate probability similar
or smaller than 1%. This is illustrated in Fig. 3, where we show the periodograms for two of
the statiscally most powerful7 PPTA pulsars, J0437-4715 and J1643-1224, and for the two
pulsars where prominent peaks appear. It is important to note that the periodograms of the
time series without ionospheric corrections show prominent peaks at ν ∼ 1 day−1 and ν ∼ 1
yr−1 for almost all the PPTA pulsars. This is precisely the type of seasonal pattern that is
expected to be produced by ionospheric effects. Therefore, subtracting them is important for
our analysis, albeit at the cost of introducing some dependence on the corresponding mod-
elling. In particular, the peak found in J1730-2304 seems to be spuriously introduced by
these models as it does not appear in the uncorrected data (see Appendix B for details about
a LS analysis of these ionospheric corrections). In the case of Crab-QUIJOTE, we observe
two peaks surpassing FAPs significance of 1%. This indicates the presence of periodic signals,
the most significant of which corresponds to ∼ 5 day−1.

The absence of similar peaks in the power-spectrum of all the other pulsars, especially
in the statistically most powerful ones, such as J0437-4715 and J1643-1224, suggests that
the peaks observed with low FAP are not produced by the oscillations of the ALP field. In
order to address this question precisely we first need to translate the absence of peaks for
a given source into an upper limit on the value of the amplitude of the oscillation. Finally,
comparing and combining different pulsars requires expressing this bound as an upper limit
on the axion-photon coupling gaγ .

4.3 Constraints from single sources

Next, we perform a new set of MC simulations generating 3000 pseudo-experiments, as done
in the bootstrap method for the calculation of the FAPs, but injecting a harmonic oscillation
in the time series

∆φsim = φ cos (2πν t+ ϕ) , (4.1)

with a given frequency ν and amplitude φ, and a random phase ϕ sampled from [0, 2π]
with a flat PDF. With this population of pseudo-experiments, we compute the PDF of the
corresponding LS periodograms PLS(ν, φ) and find the value corresponding to the lower 5%
tail of the distribution (i.e., such that the probability of obtaining a PLS(ν, φ) larger than
that value is 95%) that we call P̄LS(ν, φ). We then find numerically the value φ95 for which
P̄LS(ν, φ95) is equal to the experimental PLS(ν). Hence, φ95 can be interpreted as an upper
bound on φ at 95% confidence level for the given frequency ν8. To smear out the fluctuations
related to the MC realizations over the LS periodograms, we smooth out the limits considering
segmentation of the bound using a rolling mean method9: at a given frequency νj , the new
output for φ95(νj) is the average of the φ95 within a window centered at νj , where we take as

7In the sense of smallest nominal errors and dispersion of the data around the mean.
8Important aspects of this method are similar to the techniques used to detect tertiary companions-

exoplanets in binary systems, see Ref. [75].
9In the context of nonlinear signal processing, Ref. [76] gives a general discussion of the rolling mean

method (RMM). On the other hand, it is also possible to relate the fluctuations to statistical variances of the
periodograms using Barttlet’s method [77], which gives a smoothing of the LS periodograms through averaging
with some filters over the neighbouring power spectrum frequencies ending in a method similar to RMM. In
MC-LS periodograms lower points arise in different frequencies (windows) yielding stronger bounds of φ95,
hence the most accurate method to treat the under-fluctuations is one with dynamical windows as given by
the RMM.
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Figure 4: (Preliminary) Bounds for φ95 for four competitive PPTA pulsars (violet and blue)
with the strongest limits. In addition, we consider two marginal PPTA pulsars (red) with the
weakest limits. Remaining pulsars from PPTA have bounds among these extreme cases. We
also show the results of the Crab pulsar (cyan).

the reference the φ95 at the frequencies νj−1 and νj+1. Now the output for φ95(νj+1) is the
average of the φ95(νj) and φ95(νj+2) within the window centered in νj+1. This procedure is
repeated for all j with the same window size for all grid frequencies and all pulsars. Thus, at
each frequency νj , the rolling mean computes a new estimate for φ95.

Figure 4 shows individual φ95 bounds for seven pulsars from Table 1, corresponding to the
four PPTA pulsars with the most competitive bounds (J0437-4715, J1600-3053, J1643-1224,
and J1824-2452), two PPTA pulsars with the weakest limits (J1024-0719, J1730-2304) and
Crab. At low frequencies, the pulsar J1600-3053 gives the strongest bound in the range of 6×
10−4 day−1 . ν . 10−3 day−1. Instead, for frequencies greater than 10−3 days−1, the pulsar
J0437-4715 bounds dominate over those of the other pulsars, giving the strongest constraint
on φ95. The rest of pulsars from PPTA have constraints among these limits. Finally, the
analysis of Crab-QUIJOTE leads to bounds in the ballpark of those from the weakest PPTA
pulsars. Nonetheless, the difference of the bounds obtained from the statistically stronger
and weaker pulsars is not dramatic and is generally not larger than a factor ∼ 5.

We emphasize at this point that, for each pulsar, φ95 is just an experimental limit on the
amplitude of a harmonic signal that is assumed to appear overlaid on a random resampling of
the data. An upper limit on the axion-photon coupling gaγ can be obtained by assuming that
this harmonic signal is entirely produced by the ALP DM field oscillations; namely, φa = φ
in Eq. (2.18). This is a conservative assumption at the level of setting constraints, as we
are allowing the ALP to saturate any possible periodic signal in the data. We can then use
Eq. (2.19) to extract a bound on gaγ from the one on φa. The amplitude φa is a random
variable whose PDF can be extracted from the MC studies and the data as described above.
For simplicity, we model this PDF for each source and frequency as a Rayleigh distribution
with a scale parameter σ(ν) adjusted to match optimally the PDF obtained directly from
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MCs10. The PDF of gaγ then follows from the one of φa and from those of the environmental
variables: ∆ in the deterministic case or ∆, αo and αs in the stochastic case. Surprisingly,
we find that in our setup the sensitivity to gaγ improves in the stochastic analysis compared
to the deterministic one. We refer the reader to Appendix C, where we perform a toy MC
study of this comparison. In the following, we derive the bounds on gaγ using the stochastic
analysis.

For each PPTA pulsar and Crab-QUIJOTE, we generate 105 MC pseudo-experiments.
In each one we draw a measurement of φa, with the corresponding distributions adjusted
above, and a value of the environmental variables ∆, αo and αs. Here we assume that the
source and Earth are in different spatial coherence patches (DEarth � lc). By comparing the
data in Tab. 1 and Eq. (2.13), one can see that this assumption is valid for all pulsars and
the whole mass range except for J0437-4715 and J0711-6830 in the mass region close to the
lower end ma ' 10−23 eV. Given that these pulsars do not lead to the strongest constraints in
that region, see Fig. 4, we neglect the effect of spatial Earth-source coherence in our analysis.

Using Eq. (2.19) and the values of ρDM displayed in Tab. 1, we obtain the individual
PDFs of gaγ as a function of ma. The strongest bounds are derived from the four statistically
most powerful PPTA pulsars, J0437-4715, J1600-3053, J1643-1224, and J1824-2452 shown
in Fig. 4. The relatively weaker bound derived on φa from J1824-2452 is compensated by
the higher ρDM density estimated at source. In the end, these four pulsars lead to relatively
similar bounds in all the considered mass range. For instance, at ma = 10−22 eV one obtains
gaγ . 10−12 GeV−1 at 95% C.L., which is in the same ballpark as the limits derived from
other astrophysical probes (see below).

Finally, note that the discussion here is purely statistical and assumes not only that we
can repeat the experiments for a given pulsar (φa), but also that we can draw different values
for the environmental variables ∆ and the αi. Since these are unknown but fixed parameters,
the only way to sample their distributions in our given Universe is by performing a global
analysis including many sources, as done below.

4.4 Constraint from a combined analysis

We are now ready to derive the combined bounds from the PPTA and Crab-QUIJOTE pulsars.
In order to do this we carry out a MC analysis, as in the previous section. In each pseudo-
experiment (or MC run) we obtain a value of gaγ for each PPTA pulsar and Crab-QUIJOTE.
The global value gaγ is obtained as a weighted mean. By running several pseudo-experiments,
we are able to construct its PDF.

To be more precise: Under the Rayleigh model for the distributions of φa obtained in
the previous subsection, we compute the scale σi(νj) for each pulsar (i = 1, ..., Npulsars) and
each frequency we are probing. We then generate 105 MC pseudo-experiments drawing a
value of φa,i for each pulsar. We also draw a value of the environmental variables αo (for the
ALP amplitude at Earth) and the αs,i and ∆i for the pulsars. Using Eq. (2.19) we obtain
the values of gaγ,i for each pulsar. The weights for the weighted mean of the gaγ (or global
average) are found by propagating the root squares of the variances of φa,i, which are directly
related to the scale factor in the Rayleigh distribution. We report our upper limit on the
axion-photon coupling as the 95% C.L. value obtained from the resulting distribution of the
global gaγ .

10This model works quite accurately in all the cases in which we have tested it and is only improved
marginally when using more complex distributions, such as the Rice or Weibull distributions, featuring addi-
tional parameters with the Rayleigh distribution as a limiting case [78].
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Figure 5: Effect of combination of different pulsars for the stochastic case. We start with one
source here: J0437-4715. The remaining pulsars considered are J1600-3053, J1643-1224,
and J1824-2452.

As an illustration of the impact of combining several pulsars, in Fig. 5 we show the
combination of the 4 pulsars with the strongest individual φa bounds (see Fig. 4). We ob-
serve that as more pulsars of similar sensitivity are added into the combined analysis, the
reach of the bound increases. The pulsar J1824-2452 contributes in a significant way to the
combination due to its higher ρDM, despite not being as statistically powerful as the others.

We are also now in the position to analyse the peaks in the periodogram discussed
in Sec. 4.2, appearing in J1730-2304 and Crab-QUIJOTE with FAPs overpassing (or close
to) 1% significance. In particular, for a given peak we compare the PDF of gaγ at the
given frequency and pulsar with the global PDF of gaγ at that same frequency and obtained
excluding that same pulsar. In so doing, we find that the hypothesis that the peak observed
by J1730-2304 at ν ' 3 days−1 or by Crab-QUIJOTE at ν ' 5 days−1 is produced by the
interactions of the photons with the ALP field is excluded by the global analysis in both cases
with a significance larger than 99.999% 11.

In Fig. 6 we show the final bound including all 20 pulsars from PPTA and Crab-
QUIJOTE. The 95% C.L. upper combined limit for the ALP coupling is comparable to other
bounds obtained by searching for the same effect either in parsec-scale jets from active galaxy
nuclei by MOJAVE VLBA [33] or from CMB by BICEP-Keck [79] (for the origin of these
acronyms see the corresponding references). The bound on gaγ derived in this paper is the
strongest for all the masses in the range 3× 10−23 eV ≤ ma ≤ 2× 10−21 eV. In particular, in
the mass regions aroundma ' 3×10−23 eV andma ' 10−22 eV, our limit is stronger than the
other ones by a factor ∼ 5. For masses approximately above 2× 10−21 eV the strongest limit
is set by supernova SN 1987A cooling via Primakoff effect, via a null search of γ rays [26]. The

11More precisely, the value that we are excluding is the median of the PDF.
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Figure 6: Bounds on the axion-photon coupling as a function of the ALP mass. The blue
area indicates the excluded region at 95% C.L. obtained in this work from the combination of
PPTA and Crab-QUIJOTE pulsars including stochastic effects. The darker gray dot-dashed
line indicates the region excluded by CAST experiment [25]. The gray solid line is the limit
from supernova SN 1987A [26]. The orange area indicates the region excluded by MOJAVE
VLBA. The green region is the excluded zone by BICEP-Keck (smoothed bound) [79].

strongest limit by a direct experimental search is set by the CAST experiment, by searching
for axions emitted by the Sun [25].

It is important to stress that neither the analysis of VLBA-MOJAVE nor BICEP-Keck
incorporate the stochastic nature of the ULDM field amplitude. As we have discussed in our
analysis, this might have a significant impact in the quoted upper limits. Finally, we also
note that our bounds are considerably weaker (and extend over a shorter range of masses)
as compared to those derived from J0437-4715 in [32] by some of the authors of this paper,
using the same dataset. The main reasons for this difference are: (i) the robust statistical
treatment provided by the FAPs in a periodogram analysis of time series with large dispersion
of central values and small nominal errors, in contrast to a standard frequentist analysis; and
(ii) a proper treatment of the environmental variables in a global analysis of data from
different pulsars. In Appendix D we present a more detailed discussion of this comparison.
In summary, the limits from the PPTA and Crab-QUIJOTE pulsars on the axion-photon
couplings presented in this work update and improve (in terms of quality and robustness of
analysis) those presented in [32].

5 Future prospects

Let us finally comment on future directions and possible ways in which our analysis can be
further improved. One simple extension would be to consider data from pulsars closer to the
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Figure 7: Bounds on the axion-photon coupling as a function of the axion mass at 95% C.L.
for 20 Galactic pulsars, as presented in Fig. 6 (blue), and for the future prospect of observing
10 pulsars with similar precision to J0437-4715 during a span of 5 years located at the same
distance to the Galactic center as J1745–2900 (green). The black dashed line is the limit
from supernova SN 1987A [26]. In orange the values of gaγ for an axion that makes up 100%
of the DM density following Eqs. (2.3) and (2.20), for a fixed value of θ0 = 1.

Galactic center region such as J1745–2900 [80]. This pulsar would be immersed in an ALP
DM medium with density ρDM of 46.75 GeV/cm3, assuming a distance to Earth of 8.3 kpc
as in [81] and using the same DM profile as above. One of the problems with this strategy is
that the presence of hot, ionized gas in the central part of our Galaxy may lead to a decrease
in the observed flux density from neutron stars residing in this region. Nevertheless, future
surveys such as the Square Kilometre Array (SKA) [82] and Next Generation Very Large
Array (ngVLA) [83] are expected to probe a sizable population of pulsars in the Galactic
center. This should provide better constraints because of the larger DM density in those
regions (the limit on gaγ scales linearly with the square root of the density), and also robust
ones because of the large number of expected detections. In Fig. 7 we show a forecast of
the potential reach of an analysis of 10 pulsars, each including 500 observations spanning 5
years with a dispersion and precision similar to the J0437-4715 data, and with ρDM = 46.75
GeV/cm3.

Another intriguing possibility is to consider polarization data from pulsars hosted by
globular clusters. At the moment there is no consensus on the DM profiles of globular clusters,
see e.g. [84–86]. Nevertheless, it is plausible that order 1% of their content is still made of
DM today [87], after being drastically reduced because of tidal stripping and dark matter
thermalization [88]12 . Even if only O(1)% of the total amount of matter in globular clusters
is dark matter, its density in the inner cores may be O(102 − 103) larger than the local

12More aggressive scenarios assume more significant profiles for some globular clusters, see e.g. [89, 90].
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one. This would imply again a sensitivity to an ALP-photon coupling 10− 30 times smaller
than the one probed in the present work, assuming the same precision on the measurements.
Furthermore, globular clusters provide a natural environment for pulsars to form, see [91]. In
both cases, it is very likely that future bounds will reduce the allowed parameter space by
more than an order of magnitude in the coupling gaγ , an achievement hard to foreseen with
any other probes for this range of masses.

6 Conclusions

We have studied the effects of ULDM on the polarized radio waves that we detect from
pulsars. We focused on the coupling gaγ in (2.4), which makes the ULDM behave as a
chiral medium harmonically affecting the polarization angle of photons while they are in
transit from the astronomical source to Earth. Our work improves on previous analyses in
several ways. First, we use techniques based on periodograms to analyze the time series of
the polarization measurements. The calculation of the false-alarm probability rates, using
bootstrap (Montecarlo sampling) techniques, provide us with robust upper limits on the
strength of harmonic signals in the data. Second, we include systematically the environmental
variables in the analysis, see Eq. (2.19). In particular, we carefully considered the intrinsic
degree of stochasticity of this signal, arising from the virialized state of ULDM in the Milky
Way’s dark matter halo. At the practical level, this transforms the local energy density ρDM

into a random variable Rayleigh-distributed with scale parameter given by the standard value
in WIMP DM models, with a different value in each coherent patch of size lc in Eq. (2.13).
And, finally, we perform a global analysis of 20 pulsars measured by the Parkes PTA and
of the Crab pulsar measured by the experiment QUIJOTE for ∼4.5 years. This allows us
to circumvent statistically our lack of knowledge of the exact values of the environmental
variables by sampling their known probability distributions. In addition, it allows us to
exclude possible harmonic signals of a more prosaic origin, such as source-specific astrophysical
phenomena. Including two different experiments in the analysis is also important, to search
for effects appearing at different frequencies and for excluding possible signals of instrumental
origin.

All in all, our analysis leads to the strongest combined constraints on the ALP ULDM
scenario for the range of masses 10−23 . ma . 2× 10−21 eV, as shown in Fig. 6. In sec. 2.3
we discussed the role of these bounds for models of ALP DM, where the relation between the
coupling gaγ and the mass ma (connected to the ALP decay constant fa), is encapsulated by
κ, considered a free parameter.

Finally, by using an idealized model of a pulsar near the Galactic center in a region with
a high energy density of DM (and also pulsars in globular clusters), we have highlighted some
prospects for probing further the ALP parameter space.

The code to reproduce these analyses can be found at https://github.com/jorgetc16/
ALP_meter.
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A Generalized Lomb Scargle Periodogram

Here we define the Lomb-Scargle periodogram PLS(ν). Consider a time series with N ob-
servations, where y = {yi}, σ = {σi} and t = {ti} are the data, errors, and time “vectors”
respectively. The normalized errors weights are

wi =
1

W

1

σ2
i

,

where W =
∑

1/σ2
i , and with

∑
wi = 1. We denote for each frequency C = {ci} =

{cos (2πνti)} and S = {si} = {sin (2πνti)}. In addition, we define the products [33, 72]

Y = w · y, C = w ·C, S = w · S, and D = CC · SS − CS · CS .
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where

YY =

N∑
i=1

wiy
2
i − Y · Y

YC =
N∑
i=1

wiyici − Y · C,

YS =
N∑
i=1

wiyisi − Y · S,

CC =

N∑
i=1

wic
2
i − C · C,

SS = 1−
N∑
i=1

wic
2
i − S · S,

CS =
N∑
i=1

wicisi − C · S.

The generalized LS periodogram with errors weights is then determined as

PLS(ν) =
1

YY ·D
(SS · YC · YC + CC · YS · YS − 2CS · YC · YS) ,

where 0 ≤ PLS(ν) ≤ 1. Note that the dot product between two “vectors” (in bold face)
expresses their scalar product and between two scalars it expresses their multiplication.

An alternative way to understand the LS periodogram is as a statistical minimization
analysis given by fitting an harmonic model [71, 72]

y = aν cos(2πνt), (A.1)

where the amplitudes aν are determined by a χ2 minimization process for the different fre-
quencies ν considered (one can also add an offset cν to the fit [71]). With this procedure, one
can recover the generalized LS periodogram, PLS(ν) as

PLS(ν) =
1

2

(
χ̂2

0 − χ̂2
ν

)
, (A.2)

where χ̂ν is the minimum value for that frequency ν and χ̂0 is the minimum value for a
non-relevant reference model.

B Effects of the ionospheric corrections

As an example of the impact of FARROT and IRI models of the ionospheric corrections, in Figure
8 we show the LS periodograms (see sec. 4.1) for pulsars J1713-0747 and J1730-2304 without
ionospheric corrections and with the two models of corrections discussed above, FARROT and
IRI, and the corresponding FAPs at 32% and 5%. One can observe that in the case of
J1713-0747 without corrections there are two clear peaks over the 5% FAP line at frequencies
corresponding to periods of around one year and one day and some of its aliases that are over
the 32% FAP line, indicating a clear observation of seasonal effects and daily effects. Both
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Figure 8: Lomb-Scargle periodograms for the time series of polarization measurements for the
pulsars J1713-0747 (top) and J1730-2304 (bottom) without ionospheric corrections (left),
with FARROT ionospheric corrections (center) and with IRI ionospheric corrections (right).
We also show FAPs at 32% (red solid line) and 5% (red dashed line) false-positive rates
estimated using a bootstrap method with a 1000 random resamplings of the data set at the
same temporal coordinates.

peaks clearly disappear once the corrections are applied. Instead in the case of J1730-2304,
the modelling of ionospheric corrections seems to introduce “spurious” peaks over FAPs of
5%, which are absent in the original data without ionospheric corrections. Although this
affects the background model for the pulsar J1730-2304 and its individual bound on φ95, the
combined bound exclude these “fake” peaks effects in the ALP signals searches. Since the IRI
method gives better results in modelling ionospheric corrections (lower seasonal peaks and
less spurious ones), we use the data implementing this model in our analyses.

C Comparison Stochastic vs. Deterministic analysis

In general, one might expect a degradation of the bounds on gaγ in the stochastic case
compared to the deterministic one. In order to understand this effect quantitatively, we
perform toy MC simulations in two limits that are relevant in our analysis: (i) homogeneous,
where the DM density at source and observer are the same ρs = ρo, which is the configuration
we approximately have in our dataset (see Tab. 1); and (ii) overdense, when the DM density
at the source is much higher than the one at Earth, ρs � ρo, which is relevant for our
forecasts13. The amplitude of the ALP-induced oscillation in Eq. (2.19), in these two cases

13This case also covers the scenario ρs � ρo, since the important quantity in (2.18) is the maximum of the
energy densities.
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and implementing the stochasticity of the ALP field, simplifies as

φhom
a =

gaγ√
2ma

ρ
1/2
DM

(
α2
o + α2

s − 2αoαs cos ∆
)1/2

, (C.1)

φover
a =

gaγ√
2ma

ρ
1/2
DMαs. (C.2)

In the deterministic case (αi = 1) this simplifies further to

φhom
a =

gaγ
ma

ρ
1/2
DM (1− cos ∆)1/2 , (C.3)

φover
a =

gaγ√
2ma

ρ
1/2
DM. (C.4)

We perform several pseudo-experiments where we sample a measurement of φa, ∆ and
of the αi and we derive the limits in the deterministic and stochastic cases to compare them.
For this toy MC we assume observations φi over i = 1, . . . , Ns sources all featuring the same
precision (that is, the same scale factor for the Rayleigh distribution) and with the same ρDM.

Surprisingly, we find that the upper limit on gaγ improves in the stochastic analysis by
a factor 2.6 in the homogeneous case, while it worsens (as expected) by a factor 0.55 for the
overdense one. The improvement in the homogeneous limit seems to be due to a nontrivial
interplay between the random ∆ and αi variables. The impact of stochasticity is intuitively
more severe for the overdense case, as the sensitivity of a given pulsar to gaγ hinges only on
the particular value of αs (compared to the former where both αs and αo are relevant). If we
neglect the effect of ∆ by e.g. taking the root mean square value of Eq. (2.19) (as often done
in the literature [34, 43]) then we would obtain a limit that is worse by a factor 0.92 also in
the homogeneous case.

Expanding on the toy example, we repeat the pseudo-experiments for Ns sources, ob-
taining a “global” value of gaγ as the weighted average of those measured at each source. In
the stochastic case, gaγ ∝ (α2

o + α2
s − 2αoαs cos ∆)−1/2, and a larger αs or αo will translate

into a smaller gaγ . When this happens, the variance of gaγ that determines the weight in
the average also shrinks, giving a higher weight to that measurement. Moreover, in the case
of ∆ → π, the interference with the cos ∆ term will be constructive and its effect become
greater. It is not likely to get a high value of αs and a ∆ close to π for a single pulsar;
however, as we add more sources the probability of getting at least one with a high value of
αs increases. In the deterministic case, gaγ ∝ (2 − 2 cos ∆)−1/2 is bounded by 2, but as Ns

increases these larger denominators (and therefore smaller gaγ and variances) will dominate
the weighted average, making the resulting PDF thinner and closer to the stochastic one.

In the overdense scenario, for the stochastic case, we have gaγ ∝ α−1
s (the interference

term is subleading). In the deterministic case, the environmental variables have no effect
and the PDF will be constant no matter how many pulsars one adds. This is why we see a
stronger bound in the deterministic case for a small number of Ns while, as Ns increases, the
probability of getting a high value of αs increases, and the stochastic bound will eventually
overcome the deterministic one.

All these effects are seen in Table 2, where we show the size of the bounds at 95% C.L.
obtained in the deterministic scenario relative to those obtained in the stochastic one as a
function of Ns in the two cases discussed above. Interestingly, in the homogeneous case the
difference becomes small as more sources are added to the analysis. For the overdense case,
which is relevant in the forecasts presented in Sec. 5, a boost in the sensitivity could be
achieved by studying many sources with similar statistical power.
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Ns 1 2 3 4 5 10 25 100
Homogeneous 2.60 1.30 1.16 1.13 1.12 1.12 1.12 1.11
Overdense 0.56 0.91 1.05 1.14 1.19 1.33 1.44 1.52

Table 2: Ratio of the bounds at 95% C.L. obtained in the deterministic scenario over the
ones obtained in the stochastic scenario for different number of sources, Ns.

D Comparison between periodograms and the frequentist method

The frequentist method used in [32] relies on the comparison between the χ2 obtained for a fit
to a function with some parameters, in this case to an harmonic oscillating function, and the
χ2 of the null hypothesis, i.e., assuming any fluctuation in the data is due to statistical noise. A
value of the parameters of the fit will be ruled out at certain C.L. when ∆χ2 ≡ χ2

null−χ2
fit > N ,

with N depending on the number of parameters of the fit.
As discussed in Appendix A, the value of the periodogram at a given frequency is equiv-

alent to the result of a minimization of a χ2 with also a harmonic function at that frequency.
However, in the periodogram approach the C.L. regions are derived by using the FAP pro-
cedure, and not assuming a χ2 distribution given by the statistical nominal errors of the
data. This is certainly not the case as the χ2/d. o. f found for both the null hypothesis and
the periodic function are extremely large (e.g. χ2/d. o. f is 488.6 for the polarization angle
of J0437-4715 measurements using IRI corrections), indicating that none of them is a good
fit to the data. Namely, for some combination of the parameters, one finds that the χ2

fit is
significantly smaller than χ2

null, from which one could deduce that the presence of a periodic
signal is favoured by the data with a very high frequentist C.L. Still, both fits are disfavoured
by the large χ2/d. o. f, which should be taken into account in the final bounds. On the other
hand, the periodogram approach, with FAPs estimated using bootstrap methods, provides a
robust estimate of the C.L. for the presence or absence of harmonic signals in the time series
of the polarization measurements.

In Fig. 9 we compare the deterministic limits reported for the J0437-4715 using the
frequentist approach in [32] with the ones that we obtain using the periodograms. One can
see that the frequentist interpretation of the C.L. can lead to limits an order of magnitude
stronger than the more realistic ones given by the FAPs.

In terms of the range of frequencies considered, for J0437-4715 the range of masses
studied in [32] goes down to ma = 5 × 10−24 eV, which is equivalent to a frequency of
ν = 10−4 days−1 or a period of T = 26.6 years. As discussed in Sec. 4.1, periodic harmonic
signals with such low frequencies can be confused with a linear signal. Since our method
critically relies on the study of periodic signals in the data, it is not possible for us to explore
the ultra low mass regime with periodograms, as we can see in Fig. 9.

Finally, in [32], only one of the available pulsars was taken into account. As discussed in
the main text, using several sources is important, not only because the signal of ULDM at a
given frequency should appear in all sources, but because it diminishes the stochastic effects
that affect the constraint.
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