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ABSTRACT: We show that the surface of ice is scratch healing:
micrometer-deep scratches in the ice surface spontaneously
disappear by thermal relaxation on the time scale of roughly an
hour. Following the dynamics and comparing it to different mass
transfer mechanisms, we find that sublimation from and
condensation onto the ice surface is the dominant scratch-healing
mechanism. The scratch-healing kinetics shows a strong temper-
ature dependence, following an Arrhenius behavior with an
activation energy of AE = 58.6 + 4.6 kJ/mol, agreeing with the proposed sublimation mechanism and at odds with surface
diffusion or fluid flow or evaporation—condensation from a quasi-liquid layer.

B INTRODUCTION scratch made in a pristine surface of ice with submicrometer
1-1 precision, under precisely controlled experimental conditions.
We find that the scratch heals spontaneously over time, and
that eventually the ice surface becomes completely smooth
again. By comparing the data quantitatively to models for the
different proposed healing mechanisms, we determine which
mechanism dominates the healing process. We conclude that
scratch healing of ice occurs by the detachment and
reattachment of surface molecules. Since the transport of
water molecules in the ambient phase is limited by diffusion,
this process is dominated by local sublimation from and
condensation onto the surface.”® The obtained activation
energy corresponds to the known value for sublimation, which
is significantly higher than the energy barrier for liquid
evaporation. This settles the long-standing debate on the origin
of the sintering dynamics of ice and explains why healing
occurs relatively quickly in ice with its high vapor pressure.

Ice is one of the most actively studied solids,' " and many of
its physical properties are still poorly understood. In particular,
the structure and dynamics of the topmost layer of water
molecules in ice has been the subject of intense debate for
more than 150 years. Already in 1860, Faraday observed that
ice cubes sinter together, and he concluded that there is always
a liquid layer present on the ice surface, even at atmospheric
temperatures far below the melting temperature.'”"> Tt took
more than 100 years until detailed measurements of the speed
of sintering finally ruled out the idea that the flow of a liguid
layer was at the origin of the sintering dynamics.'*”"”
Explanations of the mass transfer phenomenon underlying
ice sintering included highly mobile surface molecules
undergoing surface diffusion,'® bulk lattice motion,” and
condensation from the vapor phase.”' ~** Although these three
forms of thermal relaxation were studied thoroughly in the
1950s and 1960s, the mechanism that dominates the sintering
process of ice has never been quantitatively established. Hence, B METHODS

angews expla_nation by surface diff}lsign is freq.uer%tly Measurements were carried out with a confocal profilometer
considered as being correct, even though it yields an activation (Keyence VK-X1100), with a lateral resolution of 212 nm and
energy of more than twice the latent heat of sublimation. a vertical resolution of 12 nm,” in a temperature and humidity

More recent researc.h suggests thgg_tgf outermost njlolecular controlled chamber. The humidity was regulated by an inflow
layer of an ice crystal is disordered. However, this one to of dry nitrogen into the chamber and monitored by a thermal

two molecules thick layer cannot simply be coggg((i)ered as a hygrometer (Testo 645, error of 0.1% relative humidity).
liquid since it exhibits viscoelastic properties.””” General

crystal growth theory is insufficient to describe the diffusion
limited dynamics of ice crystals since it does not account for
the ambiguous disordered interface, cooperative intermolecular
hydrogen bonding, and the degree of supercooling. Moreover,
no model has been proposed that completely describes the
unique growth behavior of ice thus far.”' ™

To shed new light on the complex molecular dynamics of
the surface of ice, we investigate the temporal evolution of a

Furthermore, to reach low humidities, a controlled flow of
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Figure 1. Evolution of a scratch in ice (initial depth ~2.5 ym) healing in time under controlled conditions, with constant ice temperature of 247 K

and vapor pressure at equilibrium.

liquid nitrogen (Norhof Microdosing LN2, 900 series) through
a copper element acted as a cold trap to remove remaining
water vapor by condensation. Hence, a theoretical equilibrium
between the vapor pressure of the flat ice surface and the air
could be achieved, which was calculated with the parameters of
Murphy and Koop.”® When the measured humidity deviated
from the theoretical equilibrium by a larger value than the
error margin of the hygrometer, the inflow of nitrogen was
adjusted. Apart from the healing of scratches, no sign of
sublimation or condensation was observed on the horizontal
surfaces, confirming the stability of the equilibrium in the
chamber.

The ice layers were formed by cooling 3 mL of ultrapurified
water from a Milli-Q system on a copper plate (560 X 380 X
40 mm). Cooling was done by a Peltier element in direct
contact (using thermal paste) with the copper plate to ensure
an isothermal and homogeneous layer of ice. The induced heat
on the opposite side of the Peltier element was extracted from
the system by flow from a temperature bath. Ice temperatures
were in the range from 243.0 to 272.6 K (measured by a
Voltcraft PL-125-T2USB VS temperature probe). Micrometer-
sized scratches were manually created with a sharp razor blade
(Derby extra Paslanmaz Celik) and positioned in such a way
that the measured area of 212 X 283 um contained only one
defined crystal orientation, so grain-boundary dynamics could
be excluded. Since different grains do not exhibit wide
variations in molecular organization at the surface, we were
enabled to collect an ensemble of measurements performed
under similar experimental conditions, as the effective diffusion
coefficients are expected to be similar.’” The profile of the ice
was regularly monitored by a 50X magnification Plan Apo
objective (NA 0.95, WD 0.35 mm, 404 nm wavelength
reflection) for the period of scratch healing. For a detailed 3D
model of the setup, see Figure SI.

B RESULTS AND DISCUSSION

Our measurements provide highly detailed images of the ice
scratch profile as it slowly heals in time. As illustrated in Figure
1, the initially sharp-edged scratch evolves into a smooth
profile and eventually disappears altogether. To quantify these
dynamics and to avoid measuring local impurities in the ice, we
average scratch cross sections over a length of 220 ym; see
Figure 2 (solid points). The resulting data allow us to
experimentally test the four ice-healing mechanisms proposed
thus far: (1) a fluid flow of liquidlike water molecules from the
outermost layer, (2) displacement by local sublimation and
condensation, (3) movement by volume diffusion as a bulk
process, and (4) a rearrangement of the topmost loosely bound
molecules by surface diffusion. To this end, we numerically
solve the differential equation of each model and compare the
results to the experimentally observed time-dependent scratch
profile.
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Figure 2. Self-healing of a micrometer-sized scratch in ice (T, = 247
K). For each time step, dots depict data taken by profilometry,
whereas solid lines are fits by the sublimation—condensation model.
For clarity, seven time steps are shown of the 22 recorded in total.

The theoretical basis for each of the four mechanisms was
given for the one-dimensional case by Mullins.*”*' The
Mullins model assumes that the attachment and detachment of
molecules can occur everywhere on the surface, which is valid
for ice with its disordered interface. He derived that, in the case
of an initial sinusoidal profile with wavelength 4, only the
overall amplitude of the profile changes with time, so the time-
dependent distance of the ice surface with respect to the
unscratched surface is given by U(x, t) = u(t) sin(2mx/4),
where «x is the direction perpendicular to the scratch and t is
time. The evolution equation for the amplitude u(t) depends
on the mechanism and is given by

» —cn(T)(z—”)nu
ot A (1)

where C,(T) is a temperature-dependent prefactor and # is an
integer depending on the model: n = 1 for fluid flow, n = 2 for
sublimation—condensation, n = 3 for volume diffusion, and n =
4 for surface diffusion. Mullins also showed that the equations
governing the mass diffusion are linear in the sense that the
sum of any two solutions is again a solution.”’ Hence, the
evolution of an arbitrary initial profile can be obtained from a
Fourier analysis, and this is how we calculate the time-
dependent profiles for each of the four models: we decompose
the initial experimental profile as a Fourier sum (using the 90
lowest-spatial-frequency Fourier components) and propagate
each component independently in time. We apply a correction
for a small overall slope of the initial profile if necessary. Our
analysis involves the following simplifying assumptions: (i) the
measurements are carried out in a closed system where the
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vapor pressures of the flat ice surface and air are in equilibrium, 1 I T T T
(ii) the mass transfer coefficients are not affected by the crystal —31.0 I )
orientation of the ice lattice, and (iii) the slope of the profiles is —315F -
small enough to apply the small-slope approximation (? < 1). 390

x —32.0F —

We test each mass transfer model by comparing the = I
theoretical prediction with the data of 30 independent g -3251 ) .
measurements using y* minimization, with C,(T) as the only - _330- R _
free parameter. We find that the sublimation—condensation '
process exhibits the lowest * and thus best agreement with the -33.5F -
measurements (Figure S2). In Figure 2, we show this I I
agreement for the scratch of Figure 1; the least-squares fits —34.0 . . | | s
to the other models are shown in Figure S3. The differences 0.0037 0.0038 0.0039 0.0040 0.0041
T (1/K)

among the four models are further illustrated by plotting the
absolute maximum depth of the ice scratch profile developing
in time for the best fitting parameters C,(T) in Figure 3.
Clearly, the best description of the dynamics is given by the
sublimation—condensation model.
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Figure 3. Maximum depth of an ice scratch as a function of time.

Green dots indicate experimental data; solid lines indicate best fits of
the four different candidate models.

In the sublimation—condensation driven healing process, the
smoothening of the profile is driven by an increased vapor
pressure for curved surfaces (i.e., the Kelvin equation; for the
full derivation see the Supporting Information). This scratch-
healing process is relatively fast in the first few minutes and
slows down as the surface becomes less curved, as observed in
Figure 3.

To obtain more insight into the healing mechanism, we
investigate the temperature dependence of the effective
diffusion coefficient. To this end we perform similar least-
squares fit analyses for 30 measurements (five scratches
profiled at six different temperatures from 243.0 to 272.6 K).
The effective sublimation—condensation coefficients C,(T)
obtained from the fit follow an Arrhenius temperature
dependence with an activation energy of AE = 58.6 + 4.6
kJ/mol, as shown in Figure 4. For comparison, the latent heat
for the sublimation of water molecules is approximately 51.1
kJ/mol.>® The sublimation activation energy of water was
found to be in the range 53.1-57.3 kJ/mol,*~* in good
agreement with our result. Moreover, the energy barrier for
condensation is significantly lower: 43.35—45.1 k_]/mol.45’46
These results are strong indications that the scratch healing of
ice is driven by local sublimation instead of local evaporation,
before condensation occurs.
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Figure 4. Arrhenius behavior of the sublimation—condensation
coefficient C,. Each data point in blue represents five measurements
on five different scratches; a linear fit yields an activation energy of AE
= 58.6 + 4.6 kJ/mol.

The above results indicate that the scratch healing of ice
occurs through a sublimation—condensation mechanism. We
now discuss earlier experimental results that were previously
interpreted in terms of the other proposed scratch-healing
mechanisms. First, consider the liquid layer interpretation of
Faraday. This concept received widespread acclaim by rather
precarious comparisons between the physical 4properties of thin
liquid layers and the topmost layer of ice.*’~*” However, none
of the sintering experiments could be quantitatively repro-
duced by the liquid layer model.’

Second, the research that concluded that volumetric bulk
diffusion is responsible for the sintering of small ice beads was
conducted in a liquid kerosene saturated environment.*’ This
inhibited the movement of the molecules along the surface
and, more importantly, completely prevented mass diffusion
via the vapor phase. Hence, this specific experiment on ice
sintering is not generally applicable.

Third, the research on surface diffusion, done by Kingery,
matched the theoretical predictions of the neck growth
between two touching ice spheres. However, the obtained
activation energy of approximately 115 kJ/mol is more than
twice the latent heat of sublimation.'® Remarkably, when we
force the model for surface diffusion onto the data of our
scratch-healing experiments, we obtain a similar activation
energy of AE = 100.0 + 11.1 kJ/mol. Weber et al. used friction
experiments and molecular dynamic simulations on the
topmost layer of solid water molecules to demonstrate that
the activation energy of surface diffusion is roughly 11.5 kJ/
mol: 1 order of magnitude lower.>’

B CONCLUSION

To conclude, we find that the detachment and reattachment of
highly mobile water molecules on the ice surface causes
scratches in the ice surface to heal spontaneously. By
quantitatively studying the scratch-healing behavior of micro-
meter-sized scratches, and comparing the results with four
models proposed for the transport of molecules on the ice
surface, we conclude that the main mechanism of transport is
through sublimation and condensation. We propose that the
efficient scratch healing of ice compared to other materials
might be due to the water molecules in ice being connected by
hydrogen bonds: in contrast to the attractive interactions in the
crystals of most other materials, hydrogen bonding is highly
cooperative, meaning that breaking four hydrogen bonds in the
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bulk requires much more than 2 times the energy required for
breaking two hydrogen bonds at the interface. As a
consequence, the water molecules at the surface can detach
relatively easily, even though the bulk crystal phase is
completely stable.
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