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Sensory-motor cortices shape functional
connectivity dynamics in the human brain
Xiaolu Kong1,2,3, Ru Kong1,2,3, Csaba Orban 1,2,3, Peng Wang 4, Shaoshi Zhang 1,2,3,5, Kevin Anderson 6,

Avram Holmes 7,8, John D. Murray 8, Gustavo Deco 9,10, Martijn van den Heuvel11 &

B. T. Thomas Yeo 1,2,3,5,12✉

Large-scale biophysical circuit models provide mechanistic insights into the micro-scale and

macro-scale properties of brain organization that shape complex patterns of spontaneous

brain activity. We developed a spatially heterogeneous large-scale dynamical circuit model

that allowed for variation in local synaptic properties across the human cortex. Here we show

that parameterizing local circuit properties with both anatomical and functional gradients

generates more realistic static and dynamic resting-state functional connectivity (FC).

Furthermore, empirical and simulated FC dynamics demonstrates remarkably similar sharp

transitions in FC patterns, suggesting the existence of multiple attractors. Time-varying

regional fMRI amplitude may track multi-stability in FC dynamics. Causal manipulation of the

large-scale circuit model suggests that sensory-motor regions are a driver of FC dynamics.

Finally, the spatial distribution of sensory-motor drivers matches the principal gradient of

gene expression that encompasses certain interneuron classes, suggesting that heterogeneity

in excitation-inhibition balance might shape multi-stability in FC dynamics.
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Spontaneous fluctuations in large-scale brain activity exhibit
complex spatiotemporal patterns across animal species1–4.
Inter-regional synchrony of resting-state brain activity

averaged over several minutes (i.e., time-averaged static func-
tional connectivity) has informed our understanding of brain
network organization5–7, individual differences in behavior8,9,
and mental disorders10,11. Recent studies have shown that addi-
tional important insights can be gained from studying moment-
to-moment variation in inter-regional synchrony, i.e., time-
varying dynamic functional connectivity12–16. However, it is
currently unclear how spatial heterogeneity in local circuit
properties contributes to both time-averaged and time-varying
properties of large-scale brain dynamics.

Large-scale spontaneous brain activity is thought to arise from
the reverberation of intrinsic dynamics of local circuits interacting
across long-range anatomical connections17,18. Simulations of
large-scale biophysically plausible models of coupled brain regions
have provided mechanistic insights into spontaneous brain
activity19–22. However, most previous large-scale circuit models
assumed that local circuit properties (e.g., local synaptic strength,
etc.) are identical across brain regions, which is not biologically
plausible. Recent studies in both humans and macaques23–25 have
demonstrated that allowing local circuit properties to vary along
the brain’s hierarchical axis yielded significantly more realistic
static functional connectivity (FC). However, these heterogeneous
models have not been shown to recapitulate time-varying FC
dynamics.

In this study, we developed a spatially heterogeneous mean-
field model (MFM) to realistically capture time-varying FC
dynamics. Local circuit heterogeneity can be informed by in-vivo
structural and functional neuroimaging measures. For example,
T1-weighted/T2-weighted (T1w/T2w) MRI estimates of intra-
cortical myelin and the principal resting-state FC gradient have
been shown to index anatomical26 and functional27 hierarchies,
respectively. Parameterization of local circuit properties with
T1w/T2w maps led to more realistic static FC than a spatially
homogeneous mean-field model24. However, local circuit prop-
erties might be more strongly associated with the principal FC
gradient than the T1w/T2w map25. Thus, we hypothesized that
parameterizing local circuit properties with both the T1w/T2w
map and the principal FC gradient might lead to a more realistic
computational model, which we will refer to as the parametric
mean-field model (pMFM). Using data from the Human Con-
nectome Project (HCP), we demonstrated that pMFM achieved
markedly more realistic static FC and FC dynamics in new out-
of-sample participants.

Both empirical and pMFM-simulated FC dynamics demon-
strated remarkably similar sharp transitions in FC patterns,
suggesting the existence of multiple FC states or attractors. Pre-
vious studies have suggested that multi-stability in nonlinear
brain systems might arise from noise-driven transitions between
dynamic states or attractors22,28,29. These noise-driven transitions
might be reflected in the amplitude of regional brain activity.
Therefore, we further investigated the relationship between the
amplitude of regional fMRI signals and transitions in functional
connectivity dynamics in both empirical and pMFM-simulated
data. We also performed causal perturbations of the large-scale
circuit model to better understand the origins of FC multi-
stability. Finally, the amplitude of regional fMRI signals has been
linked with the gene expression markers of parvalbumin
(PVALB) and somatostatin (SST) inhibitory interneurons30, in
line with rodent studies suggesting that differential interneuron
abundance may underlie regional variability in local cortical
function31. Thus, we also investigated the spatial relationship
among FC dynamics, fMRI signal amplitude, and gene expression
patterns from the Allen Human Brain Atlas (AHBA).

The contributions of this study are multi-fold. First, we showed
that heterogeneous local circuit properties, parameterized by both
anatomical and functional gradients, are important for generating
realistic models of static FC and FC dynamics. Second, in both
pMFM simulations and empirical fMRI data, the regional fMRI
amplitude of sensory-motor regions tracked state transitions
in FCD. Causal perturbations of the pMFM provided further
evidence that sensory-motor regions might be drivers of FCD.
Finally, the spatial distribution of sensory-motor drivers appeared
to match the differential expression of PVALB and SST, as well as
the first principal component of brain-specific genes. Overall, this
suggests a potential link between FC dynamics and heterogeneity
in excitation/inhibition balance across the cortex.

Results
Optimization of the parametric mean-field model (pMFM).
1052 participants from the HCP S1200 release were randomly
divided into training (N = 351), validation (N = 350), and test
(N = 351) sets. The Desikan–Killiany anatomical parcellation32

with 68 cortical regions of interest (ROIs) was used to generate
group-averaged structural connectivity (SC) and static functional
connectivity (FC) matrices from the training, validation, and test
sets separately. Analyses with a functional parcellation yielded
similar conclusions (see “Control analyses” section). For each rs-
fMRI run, time-varying functional connectivity was computed
using the sliding window approach12,33. Briefly, for each rs-fMRI
run, a 68 × 68 FC matrix was computed for each of 1118 sliding
windows. Each window comprised 83 time points (or 59.76 s).
The 68 × 68 FC matrices were then correlated across the win-
dows, yielding a 1118 × 1118 functional connectivity dynamics
(FCD) matrix for each run22,33.

The dynamic mean-field model (MFM) was used to simulate
neural dynamics of the 68 cortical ROIs34. Based on the
simulated neural activity at each ROI, the hemodynamic
model35,36 was then used to simulate blood oxygen level-
dependent (BOLD) fMRI. Details of the model can be found in
the Methods section. Here we highlight the intuitions behind
the MFM. In the MFM, the neural dynamics of each ROI are
driven by four components: (1) recurrent (intra-regional) input,
(2) inter-regional inputs, (3) external input (potentially from
subcortical relays), and (4) neuronal noise. There are “free”
parameters associated with each component. First, a larger
recurrent connection strength w corresponds to a stronger
recurrent input current. Second, the inter-regional inputs
depend on the neural activities of other cortical ROIs and the
connectional strength between ROIs. The inter-regional con-
nectional strength is parameterized by the SC matrices, scaled
by a global scaling constant G. Third, I is the external input
current. Fourth, the neuronal noise is assumed to be Gaussian
with a standard deviation σ.

In the current study, the recurrent connectional strength w,
external input current I, and noise amplitude σ are each
parameterized as a linear combination of the principal resting-
state FC gradient27 and T1w/T2w myelin estimate37, resulting
in 10 unknown linear coefficients. Both FC gradient and T1w/
T2w map were estimated from the training set. We refer to the
resulting model as parametric MFM (pMFM). The 10 unknown
linear coefficients were automatically estimated by minimizing
disagreement between the empirical and simulated BOLD
signal (Fig. 1A).

More specifically, the simulated fMRI was used to compute a
68 × 68 static FC matrix and a 1118 × 1118 FCD matrix. The
agreement between the simulated and empirical static FC
matrices was defined as the Pearson’s correlation (r) between
the z-transformed upper triangular entries of the two matrices.
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Larger r indicated more similar static FC. The disagreement
between the simulated and empirical FCD matrices was defined
as the Kolmogorov–Smirnov (KS) distance between the upper
triangular entries of the two matrices22. A smaller KS distance
indicated a more similar FCD. To optimize both static FC and
FCD, an overall cost was defined as (1 − r) + KS and minimized
in the training set. We considered three different minimization
algorithms, each generating 5000 candidate sets of model
parameters from the training set. Covariance matrix adaptation
evolution strategy (CMA-ES38) performed the best in the
validation set (Supplementary Fig. S1), so the 10 best CMA-ES

parameter sets from the validation set were evaluated in the test
set. The pMFM was compared with other parametrizations using
the same training-validation-test procedure.

The pMFM yielded highly realistic functional connectivity
dynamics. Figure 2A shows a representative empirical FCD from
a participant in the test set. Figure 2B shows a simulated FCD
generated by the pMFM using the best model parameters (from
the validation set) using SC from the test set. Both empirical and
simulated FCD exhibited red off-diagonal blocks representing

Fig. 1 Schematic of parametric mean-field model (pMFM) optimization. A The pMFM comprised ordinary differential equations (ODEs) at each cortical
region coupled by a structural connectivity (SC) matrix. The circuit-level parameters were allowed to vary across cortical regions, parameterized by a linear
combination of resting-state functional connectivity (FC) gradient and T1w/T2w spatial maps. The pMFM was used to generate simulated static FC and
functional connectivity dynamics (FCD). The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) was used to estimate the pMFM by minimizing a
cost function of disagreement with empirically observed FC and FCD. B The CMA-ES algorithm was applied to the Human Connectome Project (HCP)
training set (N = 351) to generate 5000 candidate parameter sets. The top 10 candidate parameter sets were then selected from the 5000 candidate sets
based on the model fit in the validation set (N = 350). Finally, these top 10 candidate sets were evaluated in the HCP test set (N = 351). Comparison of the
pMFM with other parametrizations (Fig. 3 and Supplementary Fig. S3) utilized the same training-validation-test procedure.
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recurring FC patterns. Across the 10 best candidate sets from the
validation set, KS distance between empirical and simulated FCD
was 0.12 ± 0.03 (mean ± std) in the test set.

Across the 10 best candidate sets from the validation set,
correlation between empirical and simulated static FC was 0.66 ±
0.03 in the test set. As a reference, the correlation between SC and
static FC in the test set was 0.28. Figure 2C shows the correlation
between empirical and pMFM-simulated static FC obtained from
applying the best model parameters from the validation set to SC
from the test set.

Figure 2D shows the simulated FCD using the MFM parameters
from our previous study25. The almost constant values in off-
diagonal elements suggest a lack of realistic FC dynamics. KS
distance between empirical and simulated FCD was 0.88. Correla-
tion between static empirical and simulated static FC was 0.48.
Thus, the pMFM was able to generate much more realistic static FC
and FCD than the MFM25.

Combining anatomical and functional gradients generated
more realistic brain dynamics. In the previous section, we
demonstrated that pMFM was able to generate realistic static FC
and FCD. To explore what aspects of pMFM are important for
generating realistic static FC and FCD, we performed a number of
control analyses. First, we investigated the importance of utilizing
both anatomical and functional gradients in generating realistic
static FC and FCD. Most large-scale circuit model studies
assume spatially homogeneous parameters. When recurrent
connectional strength w, external input current I; and noise
amplitude σ were optimized by CMA-ES, but constrained to be
spatially homogeneous (Fig. 3), there was a substantially weaker
agreement with empirical static FC (r = 0.55 ± 0.05) and FCD

(KS = 0.50 ± 0.31) in the test set. Similarly, spatial hetero-
geneity for all three parameters (w, I, and σ) were necessary to
generate the most realistic static FC and FCD in the test set
(Supplementary Fig. S2A–C).

Second, if recurrent connectional strength w, external input
current I; and noise amplitude σ were parameterized with only
T1w/T2w24 or only FC gradient, then the resulting static FC and
FCD were less realistic in the test set (Fig. 3C). Furthermore, if
recurrent connectional strength w, external input current I; and
noise amplitude σ were allowed to be spatially heterogeneous
across brain regions, but not constrained by T1w/T2w or FC
gradient (i.e., non-parametric), then simulations could achieve
realistic static FC, but not FCD in the test set (Supplementary
Fig. S2D). One reason could be the large number of “free”
parameters leading to overfitting in the training set.

Supplementary Table S1 provides summary statistics of the two
metrics (FC correlation and FCD KS statistic) in the training,
validation, and test sets. The pMFM was statistically better than
the spatially homogeneous MFM for both metrics in the test set.
Compared with other alternative parameterizations, pMFM was
statistically better in one metric and statistically comparable in
the other metric.

Finally, instead of fitting to both static FC and FCD in the
training set, we also tried fitting only to static FC. Not
surprisingly, the resulting model yielded unrealistic functional
connectivity dynamics (Supplementary Fig. S3; KS = 0.88 ± 0.01).
On the other hand, correlation between static empirical and
simulated static FC was 0.73 ± 0.01, which was only slightly better
than when optimizing both static FC and FCD (Fig. 2C). This
suggests that the goals of generating realistic static FC and FCD
were not necessarily contradictory.

Fig. 2 Parametric mean-field model (pMFM) generates more realistic static functional connectivity (FC) and functional connectivity dynamics (FCD)
than a previous spatially heterogeneous MFM25. A Empirical FCD from a participant from the HCP test set. B Simulated FCD from the pMFM using the
best model parameters from the validation set using structural connectivity (SC) from the test set. C Agreement (Pearson’s correlation) between
empirically observed and pMFM-simulated static FC using the best model parameters from the validation set using structural connectivity (SC) from the
test set. D Simulated FCD generated by the previously published spatially heterogeneous MFM25. Source data are provided as a Source Data file.
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Overall, these results suggest the importance of parameterizing
recurrent connectional strength w, external input current I; and
noise amplitude σ with spatial gradients that smoothly varied
from sensory-motor to association cortex. Furthermore, T1w/
T2w and FC gradient are complementary in the sense that
combining the two spatial maps led to more realistic static FC and
FCD (Fig. 3).

Technical considerations and interpretations. It is worth
emphasizing that the different parameterizations were com-
pared with the same training-validation-testing procedure
(Fig. 1B), which automatically controls for model complexity or
degrees of freedom. A more complex model will generally fit
the training data better but might not perform well in the
test set. For example, when recurrent connectional strength
w, external input current I; and noise amplitude σ were allowed
to be spatially heterogeneous across brain regions, but not
constrained by T1w/T2w or FC gradient (i.e., non-parametric),
then simulations could achieve realistic static FC, but not FCD
in test set (Supplementary Table S1). This is an example, where
a more flexible model (205 free parameters) yielded an excellent
fit in the training and validation sets but a significantly worse fit
in the test set.

In all the previous analyses, the overall cost was defined as (1
− r) + KS, which placed equal weights on fitting FC and FCD.
When the relative weights of FC and FCD were altered,
combining both T1w/T2w map and FC gradient still yielded
better test set performance than either T1w/T2w map or FC
gradient alone (Supplementary Fig. S4). Although the original
analysis (Fig. 3) suggested that T1w/T2 map explained FCD
better than FC gradient, this was no longer the case when the
relative weights were altered (Supplementary Fig. S4). On the
other hand, FC gradient was better than T1w/T2w map at
explaining static FC across the three experiments (Figs. 3 and
Supplementary Fig. S4), which made intuitive sense given that
FC gradient was derived from static FC. However, we note that
the analyses were not circular given that the FC gradient was
derived from the training set and performance was evaluated on
the test set.

Opposite gradient directions in recurrent connection strength,
noise amplitude, and external input. Figure 4B–D illustrates the
spatial distribution of recurrent connection strength w, external
input current I, and noise amplitude σ based on the best para-
meter estimate from the validation set. The black lines indicate
seven resting-state network boundaries (Fig. 3A39). While the

Fig. 3 Importance of multiple spatial gradients for generating realistic static functional connectivity (FC) and functional connectivity dynamics (FCD).
A Simulated FCD from a mean-field model (MFM) optimized using the same algorithm as pMFM, but with model parameters constrained to be the same
across cortical regions. B Agreement between empirically observed and simulated static FC from MFM optimized using the same algorithm as pMFM, but
with model parameters constrained to be the same across cortical regions. C Agreement (Pearson’s correlation) between simulated and empirically
observed static FC, as well as disagreement (KS distance) between simulated and empirically observed FCD across different conditions in the test set. Each
boxplot comprises 10 correlation values (left) or 10 KS statistic (right) based on the 10 best candidate sets from the validation set. The boxes show the
inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers. The pMFM utilizing both anatomical and functional
gradients (FC gradient and T1w/T2w spatial maps) performed the best, suggesting that T1w/T2w and FC gradient provided complementary contributions.
* indicates statistical significance after correcting for multiple comparisons with a false discovery rate (FDR) of q < 0.05. All p values are reported in
Supplementary Table S1. Source data are provided as a Source Data file.
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Fig. 4 Spatial distribution of recurrent connection strength w, external input current I, and noise amplitude σ, and their relationships with resting-
state networks. A Seven resting-state networks39. B Strength of recurrent connection w in 68 Desikan–Killiany cortical ROIs (left) and seven resting-
state networks (right). C Strength of external input I in 68 Desikan–Killiany cortical ROIs (left) and seven resting-state networks (right). D Strength of
noise amplitude σ in 68 Desikan–Killiany cortical ROIs (left) and seven resting-state networks (right). The boxplots comprised values obtained by
“transferring” the parameter estimates from the 68 Desikan–Killiany parcels to all vertices (from the underlying cortical meshes) comprising each
anatomical parcel. The vertex wise parameter values were then segregated based on the seven resting-state networks. Therefore, there were 3203,
2478, 1523, 1520, 1067, 1438, and 2886 values comprising the boxplots for somatomotor, visual, dorsal attention, ventral attention, limbic, control,
and default networks, respectively. The boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent
outliers. Recurrent connection strength and noise amplitude increased from sensory-motor to association (limbic, control, and default) networks.
On the other hand, external input current was the highest in sensory-motor networks and decreased towards the default network. Source data are
provided as a Source Data file.
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resting-state network boundaries do not exactly align with the
anatomically defined parcels, there was a striking correspondence
between the resting-state networks and estimated pMFM para-
meters. Given the parameterization of pMFM by a linear com-
bination of FC gradient27 and T1w/T2w spatial maps24, it was not
surprising that the parameter estimates exhibited a hierarchical
gradient of values monotonically changing from sensory-motor to
association networks (right column of Fig. 4B–D).

However, the gradient directions were different across the three
parameters. In particular, both recurrent connection strength and
noise amplitude appeared to increase from sensory-motor to
association (limbic, control, and default) networks. On the other
hand, external input current was the highest in sensory-motor
networks and decreased towards the default network. The
directionalities of noise amplitude and external input current
were consistent across all the top ten parameter estimates from
the validation set. In the case of recurrent connection strength,
one of the ten parameter sets exhibited the opposite direction (i.e.,
decrease from sensory-motor regions to association networks;
Supplementary Fig. S5), suggesting potential degeneracy in the
case of recurrent connection strength.

The previous analysis was “biased” to find degeneracy given
that the top 10 parameter sets were selected to ensure diversity
(see “Methods” section). To further explore the degeneracy issue,
the recurrent connection strength map of the top parameter set
(from the validation set) was correlated with the recurrent
connection strength maps of the remaining 4999 candidate
parameter sets (Supplementary Fig. S6). In general, parameter
sets with good validation cost were strongly correlated with the
top parameter estimate from the validation set. Similar conclu-
sions were obtained for external input and noise amplitude,
although external input appeared to be less stable than recurrent
connection strength and noise amplitude.

Time-varying amplitude of regional fMRI time courses tracks
time-varying functional connectivity. Given that the pMFM was
able to generate realistic FCD, we now seek to use the pMFM
to provide further insights into mechanisms underlying FCD.
Previous studies have suggested that FCD might arise from
switching between multi-stable states22,29. Indeed, a magnified
portion of the FCD matrix from a HCP test participant (Fig. 5A)
suggests the presence of at least two distinct states. In one state
(white asterisk in Fig. 5A), the sliding window FC pattern
appeared to be coherent over a time period. In a second state
(black asterisk in Fig. 5A), the sliding window FC patterns were
incoherent over another time period, so the high correlations
within the block were restricted to the diagonals, and likely driven
by autocorrelation in the fMRI signals and overlapping sliding
windows. We hypothesized that fMRI signals might be dominated
by large coherent amplitude fluctuations during the coherent state
and dominated by noise during the incoherent state (right panel
in Fig. 5A; see ref. 40 for a review of multi-stability). If our
hypothesis were true, we would expect large regional fMRI signal
amplitude during the coherent state and small regional fMRI
signal amplitude during the incoherent state.

To test our hypothesis, the standard deviation of the average
fMRI signal of each cortical ROI within each sliding window was
computed. Figure 5B (top panel) shows the FCD matrix of a
single participant from the HCP test set. Figure 5C (top panel)
shows the simulated FCD matrix from the pMFM using the best
model parameters from the validation set and structural
connectivity (SC) from the test set. The middle panels of Fig. 5B,
C show the FCD mean time course obtained by averaging the
rows of the FCD matrices from the top panels. Sharp transitions
in the FCD mean time course reflected sharp transitions in the

FCD matrix. The bottom panel shows the sliding window
standard deviation (SW-STD) of empirical and simulated fMRI
signals. There was striking correspondence between sharp
transitions in the FCD mean time course and SW-STD time
courses in both empirical and simulated data (red dashed lines in
Fig. 5B, C).

Consistent with our hypothesis, there was a large signal
amplitude during the coherent state and low signal amplitude
during the incoherent state (Fig. 5B). To quantify this
phenomenon, for each run of each participant in the HCP test
set, we fitted a mixture of two Gaussian distributions to the
histogram of the FCD mean28. The cross-over point of the two
Gaussian distributions was used to threshold the FCD mean.
Time points with FCD mean greater than the threshold were
designated as the coherent state (high FCD mean), while time
points with FCD mean lower than the threshold were designated
as the incoherent state (low FCD mean). The SW-STD was then
averaged across all cortical regions and all runs of each
participant. As shown in Fig. 5D, the SW-STD was significantly
higher during the coherent state than the incoherent state (p =
6.9e–150). Similar results were obtained for the pMFM
simulations (Fig. 5E). The dwell time distributions of the two
states were also similar between the empirical and simulated
data (Supplementary Fig. S7). The two distributions appeared to
follow an exponential distribution (as opposed to a Gamma
distribution), suggesting the presence of multi-stability rather
than meta-stability40.

Sensory-motor regions drive switching behavior in functional
connectivity dynamics. In the previous section, we found a
striking correspondence between the FCD mean time course and
the regional SW-STD time courses (Fig. 5B, C). We note that the
FCD mean time course reflected cortex-wide fluctuations in FC
patterns, while SW-STD time courses were region-specific.
Therefore, to investigate regional heterogeneity of FCD-STD
correspondence (Fig. 5) across the cortex, the correlation between
the first derivative of the FCD mean time course and the first
derivative of the SW-STD time course was computed for each
cortical region. In the case of empirical observations, the FCD-
STD correlations were averaged across all runs of all participants
in the test set yielding a final FCD-STD correlational spatial map
(Fig. 6A). In the case of pMFM simulations, the correlations were
averaged across 1000 random simulations using the best model
parameters from the validation set using structural connectivity
(SC) from the test set, yielding a final FCD-STD correlational
spatial map (Fig. 6B).

Statistical significance was established using a permutation
test (see “Methods” section). Almost all cortical regions were
significant after correcting for multiple comparisons (FDR q <
0.05; Fig. S8). Across both pMFM simulations and empirically
observed data, FCD-STD correlations were the highest in
sensory-motor regions and lowest in the association cortex.
There was strong spatial correspondence between simulated and
empirical results (r = 0.87; Fig. 6C). We note that the pMFM
was optimized to yield realistic FCD with no regard for spatial
correspondence, so the high level of spatial correspondence
suggests that the pMFM was able to generalize to new unseen
properties of FCD.

To explore the causal relationship between sensory-motor regions
and FCD, we tested whether perturbation of sensory-motor regions
could “kick” the system from an incoherent FCD state to a coherent
FCD state. Among 1000 random simulations of pMFM, time
segments in the incoherent state (low FCD mean) lasting for at least
200 contiguous fMRI time points were selected. The neural signals
of the top five FCD-STD regions (sensory-motor drivers; Fig. 6B)

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26704-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6373 | https://doi.org/10.1038/s41467-021-26704-y |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Fig. 5 Correspondence between functional connectivity dynamics (FCD) and time-varying amplitude of regional fMRI time courses. A Inspection of
FCD from a HCP test participant suggests at least two states. The first state (white asterisk) exhibits coherent FC patterns over a period of time. The
second state (black asterisk) exhibits incoherent FC patterns over a period of time. The right panel illustrates our hypothesis that the coherent state might
be characterized by large coherent amplitude in regional fMRI signals, i.e., high standard deviation (STD), while the incoherent state might be characterized
by noise in regional fMRI signals, i.e., low standard deviation (STD). B Top panel shows empirical FCD matrix of a HCP test participant. The middle panel
shows the FCD mean time course obtained by averaging the rows of the FCD matrix from the top panel. The bottom panel shows the standard deviation of
each regional fMRI time course within each sliding window (SW-STD). The color of the lines corresponds to the correlation between the first derivative of
the FCD mean time course and the first derivative of the SW-STD time courses. Sharp transitions in SW-STD corresponded to sharp FCD transitions (red
dashed lines). C Same as B, but simulated from pMFM using the best model parameters from the validation set and structural connectivity from the test
set. D SW-STD during coherent (high FCD mean) and incoherent (low FCD mean) states. Boxplots illustrate the variation across HCP test participants.
Coherent states were characterized by large amplitude (STD) in fMRI signals (p = 2.4e−168). The p-value was computed from a two-sided t-test and
survived the false discovery rate (q < 0.05). E Same as D, but simulated from pMFM. There are 349 and 1000 independent samples for the boxplots in
D and E, respectively. The boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Red crosses represent outliers. Source
data are provided as a Source Data file.
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were then perturbed to increase their amplitude. The perturbation
led to the successful transition of the FCD into a more coherent state
with a higher FCD mean (p = 6e–14; Fig. 6D). Perturbation of the
bottom five FCD-STD regions (Fig. 6B) did not lead to an increase
in FCD mean. Figure 6E illustrates the example results of the
perturbation experiment. Similar results were obtained if we
perturbed the top 10 and bottom 10 regions. Overall, this suggests
that sensory-motor regions were a driver of switching behavior
in FCD.

Parvalbumin–somatostatin and first genetic principal compo-
nent correlate with sensory-motor drivers of time-varying
functional connectivity dynamics. Results from the previous
sections suggest that time-varying amplitude of sensory-motor
regions tracks switching behavior in time-varying functional

connectivity. A recent study30 demonstrated that the difference in
the spatial distribution of molecular markers of parvalbumin and
somatostatin interneurons (PVALB-SST) is linked with the
amplitude of regional fMRI signals (Fig. 7A). This intriguing
finding is in line with data in rodents documenting the impor-
tance of these interneuron classes in local cortical circuit
function31. Inspection of the cortical distribution of PVALB-SST
transcripts from the Allen Human Brain Atlas (AHBA) dataset
(Fig. 7A) suggests a strong similarity with the FCD-STD corre-
lational spatial maps (Fig. 6).

PVALB-SST (Fig. 7A) was averaged within each cortical ROI
and correlated with the FCD-STD correlational spatial maps
(Fig. 6). The correlations were 0.72 and 0.65 for the empirical
(Fig. 7B) and simulated (Fig. 7C) data, respectively. As shown in
Fig. 7D, both correlations were significant based on spin-tests
preserving spatial autocorrelation41,42. To test for specificity of

Fig. 6 Sensory-motor regions drive sharp transitions in functional connectivity dynamics (FCD). A FCD-STD correlations obtained by correlating the
first derivative of the FCD mean time course and the first derivative of the SW-STD time course of each cortical region. These correlations were performed
for each HCP test participant and averaged across all runs and participants. B Same as A but simulated from pMFM using the best model parameters from
the validation set and structural connectivity from the test set. The correlations were averaged across 1000 random simulations. C Correlation between
empirical and simulated FCD-STD correlation spatial maps from B and C, showing strong correspondence between empirical and simulated results.
D Casual perturbation of top 5 FCD-STD correlated regions (B) during the incoherent state (low FCD mean) led to a transition into the coherent state (high
FCD mean). As a control analysis, perturbation of the bottom 5 FCD-STD correlated regions (B) during the incoherent state (low FCD mean) did not lead
to a state change (FCD mean remains low). There are 297 independent samples for each boxplot in D. The boxes show the inter-quartile range (IQR) and
the median. Whiskers indicate 1.5 IQR. Red crosses represent outliers. E Example FCD from the perturbation experiments. (Left) original incoherent state.
(Middle) perturbation of top 5 FCD-STD correlated regions (sensory-motor drivers). (Right) perturbation of bottom 5 FCD-STD correlated regions. Source
data are provided as a Source Data file.
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PVALB-SST, a null distribution was also generated based on
random pairs of brain-specific genes. Both correlations were
again significant (Fig. 7D). Overall, this suggests that the spatial
distribution of sensory-motor drivers was associated with the
differential expression of PVALB and SST

Given that previous studies have suggested the existence of
multiple similar gene expression gradients, the first principal
component of AHBA brain-specific gene expression data26,43 was
correlated with the FCD-STD correlational spatial maps (Fig. 6).
The first gene expression principal component was also correlated
with both empirical and simulated FCD-STD spatial maps,
although the correlations were slightly weaker than the correlations
with the PVALB-SST gene expression map (Fig. 7D).

The recurrent connection strength w and noise amplitude σ
were also correlated with the PVALB-SST gene expression
map under the spin-test, but not the random-gene-pair tests.
This suggests a lack of specificity to PVALB-SST (Fig. 7D). The
external input I was not correlated with any gene expression
pattern.

Specificity of T1w/T2w map and FC gradient. We have shown
that combining T1w/T2wmap and FC gradient led to more realistic
brain dynamics than using either no gradient or only one gradient
(Fig. 3). To further explore the specificity of the parameterization,
we repeated the training-validation-test procedure (Fig. 1B) using
randomly rotated versions of T1w/T2w map and/or FC gradient.
Despite having the same degrees of freedom as the original pMFM,
the rotated parameterizations led to a worse fit to static FC and/or
FCD in the test set (Supplementary Fig. S9).

We also repeated the training-validation-test procedure with
alternate gradient maps, including the second FC gradient27, inter-
subject functional connectivity variability map44, first structural
covariance gradient45, and the first genetic principal component
(Supplementary Fig. S10). To provide additional context, Supple-
mentary Fig. S10 shows the correlations among the different
gradient maps and the top estimated model parameters (w, I, σ)
from the original pMFM (Fig. 4).

The estimated model parameters were most strongly correlated
with the first principal gradient, although we note that the first

Fig. 7 Correlations between the spatial distribution of sensory-motor drivers (FCD-STD correlational spatial maps) and gene expression spatial maps.
A Difference in normalized expressions of parvalbumin and somatostatin (PVALB-SST) from the Allen Human Brain Atlas (AHBA). Panel is a re-rendering
of ref. 30. B Correlation between empirical FCD-STD correlational map (Fig. 6B) and PVALB-SST gene expression map. C Correlation between simulated
FCD-STD correlational map (Fig. 6C) and PVALB/SST gene expression map. D Table of correlations between FCD-STD correlational spatial maps and two
gene expression maps: PVALB-SST and first principal component of gene expression26,43. The “spin test” tested the significance of the correlations while
controlling for spatial autocorrelation. The “random gene pair” tested for the specificity of PVALB-SST by randomly sampling pairs of brain-specific genes.
P-values that survived the false discovery rate (q < 0.05) are bolded. Standard deviations reported in the table were obtained by bootstrapping. Source data
are provided as a Source Data file.
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principal gradient alone did not lead to the best performance in
the test set (Supplementary Fig. S10). Instead, the best single
parameterization was the T1w/T2w map. Combining T1w/T2w
map with the first FC gradient (i.e., original pMFM) led to the
best performance in the test set, but the improvement was not
statistically significant when the T1w/T2w map was replaced with
inter-subject FC variability, the first genetic principal component
or second FC gradient. However, we note that in these cases, the
resulting FCD-STD correlation maps remained highly similar to
the original FCD-STD map (Fig. 6B) with correlations >0.9,
suggesting that these cortical features may index similar under-
lying mechanisms.

Control analyses. To ensure the robustness of results, we per-
formed several control analyses. First, we note that the simulation
of pMFM utilized 10 ms time step. To ensure that this time step
was sufficiently small, the best model parameters from the vali-
dation set were applied to the test set using 1 ms time step. KS
distance between empirical and simulated FCD in the test set was
0.11 ± 0.05. The correlation between empirical and simulated
static FC was 0.66 ± 0.03.

Second, the previous analyses utilized a sliding window
comprising 83 time points for computing FCD. To ensure the
model parameters generalized to different window lengths, empirical
and simulated FCD was computed in the test set using window
lengths of 43 and 125. KS distance between empirical and simulated
FCD in the test set was 0.15 ± 0.07 and 0.14 ± 0.04 for window
lengths 43 and 125, respectively.

Third, we investigated whether the FCD-STD correlation maps
(Fig. 6) might be influenced by global signal fluctuation. We
repeated the analysis by restricting to 50 test participants with the
lowest global signal fluctuation. The resulting FCD-STD correla-
tion map was very similar to the original results (r = 0.82).

Fourth, although time-varying FC was represented using the
FCD matrix (Fig. 2A), other representations could be possible.
Zalesky and colleagues explored time-varying FC by computing
time-varying network efficiency for each sliding window13. They
found high and low-efficiency states, which appeared to
correspond to the high and low coherent states in the FCD
matrix (Supplementary Fig. S12A). The pMFM also captured
these high and low-efficiency states in test set (Supplementary
Fig. S12B). On the other hand, the spatially homogeneous MFM
could generate high and low-efficiency states in the training set,
but not the test set (Supplementary Fig. S12C, D).

Fifth, we replicated our results with a higher resolution
parcellation with 100 cortical ROIs46. Consistent with our main
results, we found that pMFM yielded more realistic simulated
FC and FCD in the test set (Supplementary Fig. S13) compared
with our previous study25. Across all 10 best parameter sets
from the validation set, noise amplitude increased from
sensory-motor to association (limbic, control, and default)
networks, while external input exhibited the opposite direction.
In 8 of the 10 best parameter sets, recurrent connect strength
increased from sensory-motor to association (limbic, control,
and default) networks, thus again suggesting potential degen-
eracy (Supplementary Fig. S14).

In the Schaefer parcellation, time-varying amplitude of sensory-
motor time courses tracks switching behavior in time-varying
functional connectivity (Supplementary Figs. S15 and S16). Causal
perturbation analysis also confirmed that sensory-motor regions
appeared to drive transitions in FCD (Supplementary Fig. S16).
Both simulated and empirical FCD-STD correlation maps were
correlated with PVALB-SST gene expression maps (Supplementary
Table S2). Both correlations were significant under the spin-test and
random gene-pair tests. The simulated, but not the empirical, FCD-
STD correlation maps were correlated with the first principal
component of gene expression.

Finally, to explore the possibility of individual-level pMFMs,
we considered 12 participants from the HCP test-retest dataset
that overlapped with our test set. There were four MRI sessions
for each participant. The first two sessions and the last two
sessions were on average 3.8 ± 1.5 months apart. Similar to
previous analyses, the pMFM was optimized using group-level FC
gradient and group-level T1w/T2w map from the training set.
The main difference is that the model was optimized using group-
level SC from the test set, as well as static FC and FCD from the
first two sessions of individual participants. The top 10 parameter
sets from the first two sessions were then evaluated in the
remaining two sessions. We found that combining T1w/T2w map
and FC gradient yielded more realistic static FC and FCD than
using T1w/T2w map or FC gradient alone at the individual level
(Fig. 8). Future studies will explore whether individual-level FC
gradient, T1w/T2w map, and SC could bring further benefits to
individual-level MFMs.

Discussion
By incorporating anatomical and functional gradients into the
parameterization of local circuit properties, the resulting large-
scale circuit model generated realistic time-averaged (static) and

Fig. 8 At the individual-level, pMFM parameterized by both group-level FC gradient and T1w/T2w map yielded more realistic static FC and FCD than
FC gradient or T1w/T2w map alone. A Agreement (Pearson’s correlation) between simulated and empirically observed static FC in the test sessions of
individual participants. B Disagreement (KS distance) between simulated and empirically observed FCD in the test sessions of individual participants.
C Total cost in the test sessions of individual participants. Each boxplot comprises 12 FC correlation values, 12 FCD KS or 12 total cost values of the 12
individual participants. The boxes show the inter-quartile range (IQR) and the median. Whiskers indicate 1.5 IQR. Black crosses represent outliers.
*Indicates statistical significance after correcting for multiple comparisons with a false discovery rate of q < 0.05. Source data are provided as a
Source Data file.
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time-varying (dynamic) properties of large-scale spontaneous
brain activity. Both empirical and simulated fMRI data exhibited
multi-stable properties, in which there was spontaneous switching
between a high coherent state and a low coherent state. The
multi-stability was tracked by the time-varying amplitude of
regional fMRI signals. By performing causal perturbations of the
large-scale circuit model, we demonstrated that spontaneous
amplitude fluctuations of sensory-motor regions were a driver of
the observed switching behavior. Furthermore, the relationship
between regional fMRI amplitude and functional connectivity
dynamics was also associated with PVALB-SST and the first
principal component of gene expression, suggesting that hetero-
geneity in excitation-inhibition balance might shape multi-
stability in FC dynamics.

Anatomical and functional gradients contribute to sponta-
neous brain dynamics. Previous studies have proposed a
dominant gradient of cortical organization with sensory-motor
and association regions at opposing ends47. Supporting this
idea of a dominant axis, many studies have emphasized simi-
larities among gradients estimated from diverse sources,
including resting-state FC principal gradient, T1w/T2w myelin
estimate, gene expression data, functional task activation, and
computational modeling25–27,48,49. Yet, there are clear differ-
ences among the gradients and a growing number of studies
have suggested dissociations among multiple spatially similar
gradients45,50,51. Here, we showed that by parameterizing local
circuit parameters with both anatomical (T1w/T2w) and
functional (FC) gradients, the resulting mean-field model was
able to generate dramatically more realistic static FC and FC
dynamics than either gradient alone (Fig. 3).

Our control analysis with alternate gradient maps suggests
that combining the T1w/T2w map with the first FC gradient led
to the best performance, but T1w/T2w could be replaced with
inter-subject FC variability, first genetic principal component,
or second FC gradient without statistically significant loss in
performance. Furthermore, while it made intuitive sense that
utilizing the resting-state FC gradient would help to explain
resting-fMRI dynamics, the training-validation-test scheme
ensured the analysis was not circular.

The optimized mean-field model exhibited opposing gradient
directions across local circuit parameters (Fig. 4). Across all top
ten parameter sets, noise amplitude increased from sensory-
motor to association cortex, while external input decreased from
sensory-motor to association cortex. The higher external input in
sensory-motor regions might reflect the flow of sensory
information from the external environment via subcortical relays.
In the case of the recurrent connection strength, nine of the ten
best parameter sets exhibited increasing values from sensory-
motor to association cortex, but one parameter set exhibited the
opposite direction. Thus, recurrent connection strength might
exhibit potential degeneracies in mean-field models, thus
explaining contradictions in the literature24,25.

Multi-stability in spontaneous brain dynamics. The sponta-
neous ebb and flow observed in FC dynamics is an intriguing
property that has fascinated the field12,14,22,33,52,53. As shown in
Fig. 5A, there are periods of brain activity with strong coherent
FC and periods with incoherent FC. We found that the coherent
FC state was characterized by larger fMRI signal amplitude across
brain regions, while the incoherent FC state was characterized by
smaller fMRI signal amplitude (Fig. 5). Intriguingly, transitions in
the regional amplitude of sensory-motor regions appeared to
track switching behavior in FC dynamics (Fig. 6). Perturbations

of the mean-field model suggest that this relationship might be
causal.

Regional fMRI amplitude has been previously linked with the
differential expression of PVALB and SST across the cortex30.
PVALB and SST interneurons preferentially target perisomatic
regions and dendrites of pyramidal cells, respectively, and are
thought to regulate synaptic outputs and inputs, respectively54.
Thus the spatially heterogeneous distribution of PVALB and
SST interneurons31 might modulate regional neural signal
amplitude30. Here, we found that PVALB-SST gene expression
map correlates with the spatial distribution of sensory-motor
drivers whose time-varying amplitude tracks functional con-
nectivity dynamics (Fig. 7).

However, we note that this association cannot be solely attributed
to PVALB-SST given that the gradients of PVALB-SST expression
are embedded within a broader pattern of gene expression variation
across the cortex26,43. Indeed, the spatial distribution of sensory-
motor drivers was also correlated with the first principal component
of cortical genes (Fig. 7). The first gene principal component has
been shown to strongly correlate with the spatial distribution of
genes coding for different excitatory and inhibitory neurons26,
which might reflect spatial heterogeneity in excitation-inhibition
balance55. Overall, this suggests a potential link between FC
dynamics and heterogeneity in excitation/inhibition balance across
the cortex.

Methods
Data. We considered 1052 participants from the Human Connectome Project (HCP)
S1200 release56. All participants were scanned on a customized Siemens 3T Skyra
using a multi-band sequence. Four resting-state fMRI (rs-fMRI) runs were collected
for each participant in two sessions on two different days. Each rs-fMRI run was
acquired with a repetition time (TR) of 0.72 s at 2 mm isotropic resolution and lasted
for 14.4 min. The diffusion imaging consisted of 6 runs, each lasting ~9 min and 50 s.
Diffusion weighting consisted of 3 shells of b = 1000, 2000, and 3000 s/mm2 with an
approximately equal number of weighting directions on each shell. Details of the data
collection can be found elsewhere56. The 1052 subjects were randomly divided into
training (N = 351), validation (N = 350) and test (N = 351) sets.

Data collection was approved by a consortium of institutions institutional
review boards (IRBs) in the United States and Europe, led by Washington
University (St Louis) and the University of Minnesota (WU-Minn HCP
Consortium). The current study was approved by the IRB of the National
University of Singapore.

Preprocessing. Details of the HCP preprocessing can be found in the HCP S1200
manual. We utilized rs-fMRI data, which had already been projected to fsLR surface
space, denoised with ICA-FIX and smoothed by 2 mm. For each run of each
participant, the fMRI data were averaged within each Desikan–Killiany32 ROI to
generate a 68 × 1200 matrix. Each 68 × 1200 matrix was used to compute 68 × 68
FC matrix by correlating the time courses among all pairs of time courses. The FC
matrices were then averaged across runs of participants within the training (or
validation or test) set, resulting in a group-averaged training (or validation or test)
FC matrix.

Functional connectivity dynamics (FCD) was computed as follows. For each
run of each participant, FC was computed within each of 1118 sliding windows.
The length of each sliding window was 83 time points (60 s) as recommended
by previous studies33,57. We note that our results were robust to window length
(see “Control analysis” in the Results section). Each sliding window FC matrix
was then vectorized by only considering the upper triangular entries. The
vectorized FCs were correlated with each other generating a 1118 × 1118 FCD
matrix.

In the case of diffusion MRI, generalized Q-sampling imaging (GQI) was used
to reconstruct the white matter pathways, allowing for complex diffusion fiber
configurations and streamline tractography58. A 68 × 68 structural connectivity
(SC) matrix was generated for each subject, where each entry corresponded to the
number of streamlines between two ROIs. To generate a group-level SC matrix, a
thresholding procedure was employed to remove false positives. More specifically,
if <50% of participants had a non-zero value in a particular entry in the SC matrix,
then the entry is set to zero in all individual-level SC matrices. For each SC entry,
the number of streamlines was averaged across participants with non-zero
streamlines. Separate group-level SC matrices were computed for the training,
validation, and test sets.

Dynamic mean-field model (MFM). The MFM was derived by the mean-field
reduction of a detailed spiking neuronal network model34. For each cortical ROI,
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the neural activity obeys the following nonlinear stochastic differential
equations:

_Si ¼ � Si
τs

þ rð1� SiÞHðxiÞ þ σviðtÞ ð1Þ

HðxiÞ ¼
axi � b

1� expð�dðaxi � bÞÞ ð2Þ

xi ¼ wJSi þ GJ∑
j
CijSj þ I; ð3Þ

where Si; HðxiÞ, and xi denote the average synaptic gating variable, population
firing rate, and total input current of the ith cortical ROI. The total input current xi
is the superposition of three inputs. The first input, the intra-regional input, is
controlled by the recurrent connection strength w. The second input, the inter-
regional input, is controlled by the SC matrix (Cij is the SC between regions i and j),
as well as a global scaling factor G. The third input is the external input current I,
which might include inputs from subcortical relays. Following previous studies25,34,
the synaptic coupling J was set to 0:2609 ðnAÞ. The parameter values of the input-
output function HðxiÞ were set to a ¼ 270ðn=CÞ, b ¼ 108ðHzÞ, and d ¼ 0:154ðsÞ.
The kinetic parameters for synaptic activity were set to r ¼ 0:641 and τs ¼ 0:1ðsÞ.
viðtÞ is uncorrelated standard Gaussian noise and the noise amplitude is controlled
by σ.

The simulated neural activities Si were fed to the Balloon–Windkessel
hemodynamic model35,36 to simulate the fMRI BOLD signals for each ROI.
The equations and parameters were exactly the same as our previous study25.
More specifically, the MFM and hemodynamic model were simulated using Euler’s
integration with a time step of 10 ms. The starting values of Si in the MFM were
randomly initialized. Simulation length for the fMRI signals was 16.4 min. The first
2 min of the fMRI signals were discarded and the time series were downsampled to
0.72 s to have the same temporal resolution as the empirical fMRI signals in the
HCP. The simulated fMRI signals could then be used to generate simulated FC and
FCD matrices.

Parametric mean-field model (pMFM). In our previous study25, the recurrent
connection strength w, external input current I, global constant G and noise
amplitude σ were optimized by fitting to static FC. The recurrent connection
strength w and external input current I were allowed to vary independently across
cortical ROIs, while G and σ were assumed to be constant. On the other hand24,
parameterized the recurrent connection strengths with the T1w/T2w myelin map.

In this study, recurrent connection strength w, external input current I and
noise amplitude σ were allowed to vary across brain regions, while G was kept as a
constant. Instead of allowing w, I and σ to vary independently25, we parameterized
w, I and σ as linear combinations of group-level T1w/T2w myelin maps37 and the
first principal gradient of functional connectivity27:

wi ¼ awMyei þ bwGradi þ cw ð4Þ

Ii ¼ aIMyei þ bIGradi þ cI ð5Þ

σ i ¼ aσMyei þ bσGradi þ cσ ; ð6Þ
where wi , Ii , and σ i denoted the recurrent connection strength, external input
current, and noise amplitude, respectively, of the ith cortical region. Myei and
Gradi were the average values of the T1w/T2w myelin map and the first FC
principal gradient within the ith cortical ROI. Both T1w/T2w myelin maps and
first principal gradient of functional connectivity were computed from the HCP
training set. Therefore, there are a total of 10 unknown parameters: G and linear
coefficients (aw; bw; cw; aI ; bI ; cI ; aσ ; bσ ; cσ ). These unknown parameters were be
estimated from the HCP training set (see next section).

Cost function to minimize disagreement with empirical static FC and FCD. The
10 unknown parameters in the pMFM were estimated by maximizing fit to static
FC and FCD in the HCP training set. For a particular set of parameters, the pMFM
could be used to generate simulated FC and FCD matrices. The agreement between
the simulated and empirical static FC matrices was defined as the Pearson’s cor-
relation (r) between the z-transformed upper triangular entries of the two matrices.
Larger r indicated more similar static FC. Pearson’s correlation was chosen given
its popularity in the literature. However, we note that Pearson’s correlation ignored
scale differences between empirical and simulated static FC, which led to pMFM-
simulated static FC values being systematically larger than empirical FC values
(Fig. 2C). In future studies, we will explore an additional cost term that penalizes
absolute differences between empirical and static FC.

The disagreement between the simulated and empirical FCD matrices was
defined as the Kolmogorov–Smirnov (KS) distance between the probability
distribution functions (pdfs) constructed from the upper triangular entries of the
two matrices22. The pdf of an FCD matrix was constructed by collapsing the upper
triangular entries of the matrix into a histogram and normalized to have an area of
one. A smaller KS distance indicated a more similar FCD. To optimize fit to both

static FC and FCD, an overall cost was defined as (1 − r) + KS. Thus lower cost
implies a better fit to static FC and FCD.

To minimize the cost function in the training set, we seek to compute an
“average” FCD matrix. We note that FCD matrices could not be directly averaged
across rs-fMRI runs and participants because there was no temporal
correspondence across runs during the resting-state. Because the goal here was to
compute the KS distance, we simply averaged the pdfs from the FCD matrices all
the runs of all participants within the training set, which we referred to as average
FCD pdf. When evaluating KS distance in the validation and test sets, average FCD
pdfs were also computed using the same approach.

Optimization procedure. To optimize the cost function, we considered three
algorithms: covariance matrix adaptation evolution strategy (CMA-ES38), self-
organizing migrating algorithm (SOMA59) and hyperparameter optimization using
radial basis functions and dynamic coordinate search (HORD60).

Given a particular random initialization of the 10 unknown parameters, the
three algorithms (CMA-ES, SOMA, HORD) were applied to the HCP training set.
Each algorithm was iterated 500 times, generating 500 candidate parameter sets.
This procedure was repeated 10 times, yielding 5000 candidate parameter sets. For
each algorithm, the 5000 candidate parameter sets were evaluated in the validation
set to obtain the top 10 candidate parameter sets. To ensure diversity among the
parameter sets, the procedure to select the top 10 parameter sets was as follows.
First, the parameter set with the lowest validation cost was selected. Then, the
parameter set with the lowest validation cost and whose parameter maps exhibited
less than 0.98 correlation with the current selected parameter set(s) was selected.
This procedure was repeated until 10 parameter sets were selected. Across the three
algorithms, CMA-ES performed the best in the validation set (Supplementary
Fig. S1), so this study focused on CMA-ES.

The top 10 candidate parameter sets from CMA-ES were then applied to the
HCP test set SC. For each parameter set, 1000 simulations were performed, yielding
1000 simulated static FC and FCD matrices. The 1000 simulated FC and FCD pdfs
were then averaged, yielding an average simulated FC and an average simulated
FCD pdf. Pearson’s correlation was then computed between the average simulated
FC and the average empirical FC from the HCP test set. Similarly, KS statistics was
computed between the average simulated FCD pdf and the average empirical FCD
pdf from the HCP test set.

We note that by collapsing the entries of the FCD matrix into a pdf, we were
ignoring the recurrent structure in the FCD matrix. Supplementary Fig. S17 shows
the FCD pdfs of empirical and simulated data. At the individual-level, the FCD pdf
exhibited a bimodal distribution. Because the FCD pdfs were shifted across
participants, the group-level FCD pdf was unimodal. Although the pMFM was
fitted to the group-level FCD pdf, the resulting FCD distribution exhibited hints of
bimodality and recurrent structure similar to empirical FCD (Fig. 2).

Statistical test of correlation between first derivatives of FCD mean and SW-
STD. To quantify the correspondence between FCD mean and SW-STD (Fig. 5),
the correlation between the first derivative of the FCD mean time course and the
first derivative of the SW-STD time course was computed for each cortical region
(Fig. 6). To compute the statistical significance of the correlations, fMRI runs were
permuted across participants. For each ROI, the FCD-STD correlations were
recomputed and averaged across runs and participants, yielding a single null
correlation value. This permutation procedure was repeated 10,000 times, so that a
null distribution of correlations was obtained for each ROI.

Causal perturbations of pMFM. To more directly link sensory-motor regions with
FCD, we tested whether perturbation of sensory-motor regions can “kick” the
system from an incoherent FCD state to a coherent FCD state. Among 1000
random simulations of the pMFM, time segments in the incoherent (low FCD
mean) state lasting for at least 200 contiguous fMRI time points (TRs) were
selected, yielding 300 time segments. Low FCD mean was defined as being <0.6.

Perturbation was applied to the neural signals (synaptic gating variable Si) of the
top 5 regions whose SW-STD correlated with FCD (Fig. 6B). We note that during
the incoherent state, the values of the synaptic gating variables could be low or high.
To increase the amplitude of the neural signals, we would decrease (or increase) the
synaptic gating variables if they were high (or low). More specifically, let Smax and
Smin be the maximum and minimum synaptic gating variable values across all
cortical regions. When the neural signal was low, we set Stþδt ¼ St þ 0:8 ðSmax � StÞ,
where δt corresponded to the resolution of the simulations, which is 0.01 s in the
current study. When the neural signal was high, we set Stþδt ¼ St � 0:8 ðSt � SminÞ.
The perturbations were applied for 72 iterations, corresponding to 1 TR in the
simulated fMRI signal.

Gene expression analysis. Publicly available human gene expression data from six
postmortem donors (1 female), aged 24–57 years (42.5 ± 13.4) were obtained from the
Allen Institute61. Processing followed the pipeline from Anderson and colleagues30

(https://github.com/HolmesLab/2020_NatComm_interneurons_cortical_function_
schizophrenia), yielding 17,448 brain-expressed genes and 1683 analyzable cortical
samples. Our analyses in turn focused on 2413 brain-specific genes26,62. Z-normalized
gene expression values of parvalbumin (PVALB) and somatostatin (SST) were
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averaged within each cortical region and the difference was computed. The FCD-STD
correlation maps (Fig. 6) were correlated with the PVALB-SST spatial map (Fig. 7).

To establish statistical significance, we considered two approaches. First, we
considered the spin test. The parcellations were randomly rotated. For each rotated
parcellation, we recomputed the PVALB-SST difference and correlated the
resulting gene expression maps with the FCD-STD correlation maps, yielding a
single null correlation value. This was repeated 1000 times yielding a complete null
distribution.

To test the specificity of PVALB-SST, we performed random-gene-pair tests. A
random pair of genes were selected from the 2413 brain-specific genes26. Gene
expression difference between the random gene pairs was computed and correlated
with the STD-FCD correlation maps generating a null correlation value. This was
repeated 10,000 times yielding a complete null distribution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The group-level FC, SC, and FCD cumulative distribution functions used in this study have
been deposited in the Zenodo63 database under accession code 5518257. The raw diffusion
MRI, rs-fMRI, and T1w/T2w data are publicly available (https://www.humanconnectome.org/
study/hcp-young-adult/document/1200-subjects-data-release). Source data are provided with
this paper.

Code availability
The code used in this paper is deposited in Zenodo63 database under accession code
5518257. The code was reviewed by one co-author (S.Z.) to reduce the chance of coding
errors. The software dependencies are MATLAB (2018b); Python (3.6); Pytorch (1.0.1).
From time to time, the code might be updated. The most updated version of the code can
be found on GitHub (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_
projects/fMRI_dynamics/Kong2021_pMFM).
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