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Supplementary Fig. 1: The bootstrap DIA workflow. This sequence of algorithmic steps
is applied to each DIA sample vs. the whole library. A matching step is usually followed
by a step in which a calibration function (e.g. precursor m/z recalibration function) is
determined from the matches found in the previous step. Then constraints (e.g. m/z
deviation windows) are updated for the next round of matching. The DDA samples
constituting the library are assumed to be retention time (and ion mobility if applicable)
aligned to each other. a, The first matching from the library spectra to the DIA sample is
performed with initial m/z windows for precursor and fragments of 20 p.p.m. by default
and without restrictions on retention times or collision cross sections. b, Based on these
matches, a linear recalibration is calculated to adjust for different total gradient lengths of
library and DIA samples. ¢, After the linear retention time calibration has been calculated
and applied, a time window is calculated from the data, which defines the allowed retention
time difference for the next step. d, The second matching still uses the initial m/z windows
and in addition uses the time window determined in the previous step. e, Based on the
matches of the previous step a linear precursor m/z shift in p.p.m. between the DIA sample
and calculated peptide masses is determined. f, Similarly, a fragment m/z shift is calculated
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from the data. g, Next, precursor and fragment m/z tolerances are calculated based on the
distributions of m/z differences between DIA sample and theoretically calculated masses.
h, The third matching uses adapted m/z and retention time windows which are applied to
the linear calibrated data. i, The elimination of noise achieved by the adapted tolerances
used in the matching in the previous step allows now to perform nonlinear retention tine
calibration. j, A time dependent nonlinear allowed region is determined from the data. k,
The fourth matching uses more stringent retention time constraints than the third matching,
since it is applied to nonlinear calibrated data. I, Now a nonlinear calibration of precursor
m/z values is determined from the data. This is done in a multivariate way, with a model
for the mass error depending at least on m/z and retention time. For TOF data an intensity-
dependent component is added and for timsTOF data another component depending on
1/KO0. This is similar to the ‘software lock mass’ calibration in the DDA MaxQuant
workflow. m. Similarly, fragment m/z are nonlinear recalibrated. n, New, more stringent
precursor and fragment m/z tolerances are calculated from the distributions of mass errors.
0. Another matching step with updated constraints is performed. p, A linear function for
the recalibration of CCS values is calculated from the data, in case of ion mobility
spectrometry. q, A tolerance window for the acceptance of CCS value deviations is
calculated. r, A matching round with constraints on the CCS values is performed. s, A
nonlinear CCS calibration function is determined. t, CCS tolerance is adapted to the
nonlinear calibrated data. u, The final round of matching is performed without constraints
on retention time and CCS values. Instead, these deviations are used as features in the
XGBoost-based machine learning. Precursor and fragment masses are still filtered with
hard windows for the deviations.
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Supplementary Fig. 2: Score distributions along the bootstrap DIA workflow.
Histograms of score distributions, separately for target and decoy hits after the different
matching steps in the bootstrap DIA workflow. Target (blue) and decoy (red) distributions
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are stacked on top of each other. A single run of the HepG2 Orbitrap dataset (DIA 13.raw)
was used. a, Score histogram after the first matching step. (Step a in Supplementary Fig.
1.) No constraints on the retention time are used. Initial tolerances of 20 p,p,m. are applied
to precursor and fragment mass matches. The spikes at integer score values correspond to
matches in which all matching fragments hit exactly the apex of the peak in retention time
direction. The peaks from one to four matching fragments are dominated by false positives,
since these bins have half or even more decoy hits. Score values of six or above indicate
correctness of the match since decoy hits are strongly suppressed. b, Score histogram after
the second matching step. (Step d in Supplementary Fig. 1.) Retention time is filtered after
linear retention time calibration between library and DIA sample and after determining a
tolerance from the distribution of retention time differences. ¢, Score histogram after the
third matching step. (Step h in Supplementary Fig. 1.) Linear ppm shifts are applied to
precursor and fragment masses and mass tolerances are adapted accordingly. Scores larger
than four indicate few false positives, d, Score histogram after the fourth matching step.
(Step k in Supplementary Fig. 1.) e, Score histogram after the fifth matching step. (Step o
in Supplementary Fig. 1.) in which nonlinear mass recalibrations have been applied to the
data. f, Each profile shows the rate of false positive matches after each of the five different
matching steps. The numbers are derived from the bins at integer values in the histograms
of the previous panels. g, After all recalibrations have been applied, the final matching is
done without constraints on retention times, but the mass constraints are kept. (The
corresponding score distribution is displayed.) Instead the deviation from the calibrated
retention time is offered as a feature to the machine learning for calculating an enhanced
score. This strategy (hard mass cutoffs and soft, machine learning based, retention time
cutoff) resulted in the highest number of identifications. Similarly, a soft cutoff is used for
collision cross sections in ion mobility spectrometry data.
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Supplementary Fig. 3: Nonlinear m/z recalibration of precursors. One consequence of
the bootstrap DIA is that masses of precursors and fragments are nonlinearly recalibrated
against theoretically calculated molecule masses. This replaces the software lock mass
strategy used in DDA MaxQuant, which is based on a ‘first search’ with the Andromeda
search engine to produce the recalibration curves. We use the same data as in
Supplementary Fig. 2 to compare mass errors before and after recalibration. In all panels,
data points are color coded according to the conditional data density. For this, the bivariate
density of data points is divided by the marginal distribution on the x-axis. Blue signifies
the region of highest conditional density. a, Mass error in p.p.m. of precursor ions as a
function of m/z. b, Same precursor mass error as in panel a as a function of retention time.
¢,d Mass errors of panels a and b after recalibration through bootstrap DIA. The high-
density regions are centered around O error. e, Histograms of precursor mass errors before
and after recalibration. The medians of the error distributions are at 2.96 p.p.m. before and
at 0.099 ppm after recalibration. The FWHM reduces from 1.92 to 1.61 p.p.m.. f,
Dependency of the precursor mass error on logarithmic intensity. Interestingly, does the
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distribution of mass error not depend much on the intensity, since the lines of constant
density (constant color) run approximately horizontally.
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Supplementary Fig. 4: Nonlinear m/z recalibration of fragments. a, Histograms of
fragment mass errors before and after recalibration. Since in this dataset, the statistical
fluctuations are much larger for the fragment mass errors compared to the precursors, the
correction of systematic errors is of less importance here. b, Dependency of the fragment
mass error on logarithmic intensity. The distribution of mass errors gets wider towards
lower intensities.
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Supplementary Fig. 5: Nonlinear retention time alignment between different
gradients. a, A library of HeLa cell lysate was measured in 16 high-pH reversed phase
peptide fractions with an active gradient time of 25 minutes. b, While analyzing the library
in MaxQuant in DDA mode, retention times are aligned between the LC-MS runs in the
library. ¢, Alignment of library retention times against for DIA samples with active gradient
times of 120, 90, 60 and 30 minutes. d, Heat map views of the MS1 m/z-retention time
planes of the respective DIA samples.
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Supplementary Fig. 6: Nonlinear retention time alignment: LFQ after the alignment.
Triangular matrix of scatter plots showing MaxLFQ quantification results between the four
DIA samples with different gradients. The default value of 0.3 was used for the transfer q-
value. The alignment enables precise quantification even between samples with vastly
different gradients. On the diagonal, technical replicates with same gradients are shown.
Pearson correlation coefficients between logarithmic LFQ intensities range from 0.998 for
120h gradients to 0.979 for 30h gradients. Throughout, quantification between non-equal
gradients results in Pearson correlation values close to the one achieved with equal
gradients of the respective shorter length.
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Supplementary Fig. 7: Scoring library spectra against DIA samples. a, Libraries are
collections of DDA samples analyzed with MaxQuant. MS/MS spectra from the library are
first sub-divided into unique peptide-charge-modification combinations. Each such
combination that has assigned more than one MS/MS spectrum to it is then clustered into
retention time clusters. Prerequisite for this is that all library samples are retention-time
aligned to each other. The idea is that if a peptide is eluting at more than one place in a
gradient, it will be stored as multiple instances in the library with different retention times.
This is feasible, since from the MaxQunat DDA analysis it is known how the peptides elute
from their MS|1 features. For data with ion mobility spectrometry this kind of library feature
clustering is done in the two-dimensional space consisting of retention times and collision
cross sections. A resulting cluster may still contain more than one MS/MS spectrum. In
that case, the one with the highest Andromeda score is chosen. This spectrum is then
filtered to the top-N most intense fragment peaks. These are then scored against the DIA
sample. By default, is N = 7. We visit each retention time in a DIA LC-MS run and
calculate the score which is defined below. The matching position is defined as the
retention time at which the highest score is achieved. This highest value of the score is also
defined as the matching score of this library spectrum to the DIA sample. For ion mobility
spectrometry, this score maximization takes place in the two-dimensional space of all
retention time and ion mobility value pairs. b, For calculating the score of a library
spectrum at a certain retention time (and CCS value) in the DIA sample, one first searches
with a given mass tolerance for 3D/4D features that match the precursor and the N
(typically = 7) top fragment peaks. For each spectrum mass that matches a feature in the
DIA sample we calculate the apex fraction which is the ratio of the intensity at the current
retention time to the maximum peak intensity. To obtain the score, we sum up the apex
fractions for the precursor (in case one was matched) and the matching fragments. ¢, So far
the scoring was done independently for each consolidated library spectrum. This can lead
to multiple usages of a DIA feature in several library matches. d, To prohibit over-
interpretation, we perform a second round of scoring. This time we put the library spectra
in descending order according to the score they achieved in the first round of scoring. The
same procedure is repeated, but now it is remembered which features in the DIA sample
(precursors and fragments) have already been assigned and these will be prohibited from
being assigned a second time. Note that an MS1 precursor match is not required but
contributes the same way to the total score as each fragment does.

11



Mo, | feate | -

L sere P E[P|T]I DIE K

2 Pearson intensity correlation bz b3

3 Spearman intensity correlation Yo Vs \£1 V_Z

4 DIA range index P EJE’ﬁ I D E K

5 Peptide sequence length b 2 b 3

6 Precursor charge

7 Retention time d

8 Retention time error N T
9 1/K0 1 Precursor has isotope pattern 73.1
10 1/KO0 error 2 Score 42.7
11 Number of (unfiltered) library fragments 3 Retention time error 13.4
12 Andromeda score of library spectrum 4 Number of modifications 12.9
13 Number of missed cleavages 5 Number of missed cleavages 11.4
14 Number of modifications 6 Fragment has isotope pattern (1) 10.0
15 Sample fragment overlap 7 Precursor mass error [ppm] 9.0
16 Number of fragments found 8 Precursor charge 7.3
17 Library index (in case of multiple libraries) 9 Sample fragment overlap 7.2
18 Precursor mass (calculated) 10 Fragment has isotope pattern (2) 6.8
19 Precursor match score

20 Precursor mass error [ppm] €

21 Precursor RT peak length (number of scans)

22 Precursor found (yes/no)

23 Precursor has isotope pattern (yes/no)

24 Mass difference to range min é

25 Mass difference to range max § % . —
b Se

1 Fragment match score Fragment has isotope patiem 2

2 Fragment mass error [ppm]

3 Fragment RT peak length (number of scans) 10 Library gain 162
4 Fragment found (yes/no)

5 Fragment has isotope pattern (yes/no)

Supplementary Fig. 8: Feature space for the machine learning-based score. a, 25

‘single’ features for the feature matrix for calculating the machine learning score. Features

2 and 3 are correlations between the fragment intensities found in the DIA sample and the

library fragment intensities. Feature 9 specifies the collision cross section value, in case

ion mobility data is available. Feature 11 is the number of fragments in the library spectrum
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before filtering for the top intense peaks. Feature 15 is explained in panel c. Feature 19
quantifies how close to its apex the precursor was hit. Feature 22 defines if the precursor
was found in the MS1 data and feature 23 specifies whether an isotope pattern was seen.
Features 24 and 25 quantify how close the peptide m/z is to the edges of the isolation
window. b, Machine learning features derived from fragments. Feature 1 quantifies how
close to its apex the fragment was hit. Feature 4 defines if the fragment was found and
feature 5 specifies whether an isotope pattern was seen for it. By default, 7 top intense
fragments are considered for identification which results in a 25 + 7 * 5 = 60 dimensional
feature space in total. ¢, Explanation of the fragment overlap feature. The first peptide has
a fragment overlap of 0 since the y and b ion series are not overlapping. The second peptide
has overlapping y and b series and hence is its fragment overlap greater than 0. d, List of
the top 10 features ranked by importance according to XGBoost ‘gain’. Even more
important than the score is whether the precursor had an isotope pattern or is a single
feature. Interestingly, the absence or presence of the MS1 precursor did not make it into
the top ten most relevant features. e, Log-log scatter plot of feature importance according
to XGBoost ‘gain’ for library against discovery mode. To guide the eye, we drew a straight
line from the cloud of non-important features in the lower left corner to the raw score,
which is expected to be of high relevance for the classification. Whether the precursor
feature has an isotope pattern became much less important in the discovery mode. Features
that are correlated with peptide length and charge became more important in discovery
mode, presumably since the length and charge distributions of predicted spectra in the in
silico library are significantly different from these distributions for peptides that are
detectable in the DIA samples.
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Supplementary Fig. 9: Comparison between different classification methods. We
compared XGBoost, random forests, AdaBoost and fully connected multi-hidden layer
neural networks to using the raw score. We tuned meta-parameters to its optimal value if
applicable. a, ROC curves for the five classification methods. XGBoost has the highest
area under the curve. b, Number of identified peptides when using each of the four
classification Methods or the raw score in MaxDIA. XGBoost results in the highest number
of peptide identifications. ¢, Number of identified protein groups when using each of the
four classification Methods or the raw score in MaxDIA. XGBoost results in the highest
number of peptide identifications. d, Optimal values of classification algorithm parameters
found in grid searches.
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Supplementary Fig. 10: Comparison of peptide properties. We compare different
properties of identified peptides in the benchmark datasets between MaxDIA and
Spectronaut. a, Logarithmic distribution of the MaxQuant intensities of all peptides found
by MaxDIA is shown (light blue). Peptides uniquely found by MaxDIA are highlighted in
dark blue. These are biased towards lower intensites. b, Logarithmic distribution of the
Spectronaut intensities of all peptides found by Spectronaut (orange) with the ones found
uniquely by Spectronaut highlighted in brown. Unique peptides are biased towards lower
intensities here as well, but they are less in total compared to panel a. Note that the intensity
ranges in panels a and b differ, since these are computed differently in the two programs.
For instance, peptide intensities in MaxDIA are calculated from MS1 features. (Please note
that this is not the case for the protein-level MaxLFQ intensities, which are by default
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hybrid MS1-MS2.) ¢, Distributions of retention times of peptides identified by MaxDIA
and Spectronaut. d, Distributions of precursor mass-to-charge ratios of peptides identified
by MaxDIA and Spectronaut. e, Distributions of precursor mass errors in p.p.m. of peptides
identified by MaxDIA and Spectronaut. f, Distributions of charges of peptides identified
by MaxDIA and Spectronaut. g, Detailed comparison of identification results between
MaxDIA, Spectronaut 13 and Spectronaut 14. For the latter we tested the impact of
changing a set of parameters one by one from their default values on the result. In
particular, we used the inverse database, we set profiling strategy to ‘on’ and we used 10
precursors and 10 peptides. None of these settings had a major impact on the results or
changed the overall conclusions.
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Supplementary Fig. 11: Comparison of identification results in discovery mode
obtained with DeepMass:Prism, wiNNer and PROSIT. In order to study the sensitivity
of identification results in discovery mode towards the machine learning algorithm used
for predicting the MS/MS spectra, we repeated all calculations using the predictions of two
other state of the art prediction models, winner and PROSIT, both used with default
settings. In PROSIT the optimal collision energy was determined and found to be 32.
Instructions for preparing in-silico libraries with DeepMass:Prism, winner and PROSIT
can be found at https:/github.com/cox-labs/DIAtools/blob/main/Misc/MLprediction/README.md#MLprediction. a,
Comparison of results on gene level. For better comparability, we mapped the identified
protein groups of the three approaches to Entrez gene identifiers. The vast majority of genes
(protein groups) has been identified in all three approaches with a very slight lead in the
collision energy-aware PROSIT identifications. b, Same as a but with comparison on the
peptide level.
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Supplementary Fig. 12: MaxLFQ algorithm for DIA. The conventional MaxLFQ
algorithm for DDA consists of two parts, feature intensity normalization and protein
quantification. While in the adaptation to DIA the normalization part did not change, the
quantification was adapted to accommodate signals contributing from precursor and
fragment features. a, As an example we use the protein sequence of UniProt entry P07327.
Three peptides were identified, Peptide 1, unmodified with charge 2 and 3, Peptide 2,
unmodified and with an oxidation of methionine, and Peptide 3, only unmodified with
charge 2. These five peptide, charge and modification combinations are treated as
independent intensities in the protein quantification, as was already the case in the DDA
version of MaxLFQ. In DIA, also the different types of ions, precursors and fragments, are
treated as separate signals. Feeding these as independent ‘channels’ into MaxLFQ is a
natural way of implementing hybrid precursor-fragment quantification. For every
combination of peptide, charge and modifications, we take the top N intense fragment
peaks over the whole dataset. These N annotations are then used in every spectrum of this
type for quantification. In the example we chose N = 3 for simplicity, although N is a user-
definable parameter and much larger by default. (See Supplementary Fig. 13a for the
influence of N on the quantification accuracy.) b, In the example from panel a with five
peptide-charge-modification combinations and N = 3 we end up with 20 peptide-charge-
modification-ion combinations. We assume that data for four samples was acquired. Then
we have for this protein 20 intensity profiles over the four samples. Those intensities in
this matrix which are zero we call missing, since they cannot be used for calculating ratios
between samples. ¢, Next we calculate protein ratios between all pairs of samples to fill the
lower triangular matrix indicated in the figure. ‘Ratio 2,1’ is the median of all ratios
calculated from the intensities in the columns ‘Sample 1’ and ‘Sample 2’ in panel b. These
are 20 if all values are present but can be less due to missing values. If the number of
peptide-charge-modification combinations for which ratios can be calculated is less than
the parameter ‘LFQ min. ratio count’ the corresponding ratio in the triangular matrix will
be missing. d, For each ratio in panel c that is not missing we obtain one equation for the
determination of the four LFQ intensities. (One for each sample.) This system of equations
is usually over-determined and a least-squares best fit is obtained. e. Result of this
operation is the profile of non-negative LFQ intensities over the four samples.
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Supplementary Fig. 13: Optimization of number of top fragments and peptides. a,
Summed inter-quartile ranges for the four-species benchmark dataset by Bruderer et al. as
a function of the number of top intense fragments used for quantification. The accuracy is
increasing with rising number of fragments and plateauing around seven fragments after
which no noticeable improvement happens. The default value of 0.3 was used for the
transfer g-value. b, Same as in panel a but optimizing the number of top intense peptides
used for quantification. The more peptides are taken, the higher is the quantification
accuracy. ¢, Same as in panels a and b but filtering for top 3 intense peptides and top 3
intense fragments simultaneously.
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Supplementary Fig. 14: Comparison to Avant-garde filtered quantification. In order

to judge how the accuracy of protein quantification with MaxLFQ for DIA compares to

methods that explicitly filter the data for interfered transitions we use a dataset from Vaca

Jacome et al. (Nature Methods, 2020) called ‘Extended benchmarking DIA dataset’ in the

publication. There it was analyzed with the Skyline software and curated by Avant-garde.

We analyzed the same data with MaxDIA and for comparison mapped MaxLFQ intensities
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to Entrez gene identifiers. For the Avant-garde results taken from the publication, the
median was taken over all peptide-level logarithmic ratios that were mapped to a gene
identifier. All ratios were globally normalized such that the median of all the human log
ratios is at zero. All box plots indicate the median and the first and third quartile as box
ends. Whiskers are positioned 1.5 box lengths away from the box ends. a, Gene level ratios
derived from the peptide-level ratios provided in the Avant-garde publication as a function
of log(Intensity). 18 sub-populations of proteins (genes) exist with a defined expected ratio.
Several outlier ratios are present at large deviations and some of the sub-populations show
systematic trends with Log(Intensity). b, Same as in panel a but for MaxLFQ ratios. ¢,
Comparisons of performance measures between Avant-garde and MaxDIA results. For all
18 sub-populations. The population-wise standard deviations are about half as low in
MaxQuant results for the H. sapiens ratios. For the S. cerevisiae ratios tend to have a lower
standard deviation with Avant-garde while there is no clear trend in the standard deviations
of the E. coli ratios.
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Supplementary Fig. 15: Scanning through values for the transfer q.value. We analyzed
the Bruker timsTOF pro three-species benchmark data using a range of values for the
transfer g-value between 0.01 and 1. We provide summed inter-quartile ranges of species-
specific ratio distributions as a measure of variability. Summed absolute errors are the
deviations of the expected value for each species. The box plots are based on the numbers
of data points given in the tables below the respective plot (Valid LFQ ratios). All box plots
indicate the median and the first and third quartile as box ends. Whiskers are positioned
1.5 box lengths away from the box ends.
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Supplementary Fig. 16: Single-shot BoxCar samples. a, Venn diagram of protein
identifications mapped to Entrez gene identifiers for the single shot BoxCar DIA samples
using three different library approaches. In particular, comparing protein identifications
between fractionated library and discovery approach shows good agreement of results. b,
Same as in panel a but comparing peptide-level identifications. ¢, Venn diagram-like
comparison of replicate-specific identifications in the fractionated BoxCar DIA samples
analyzed in discovery mode. Only very few protein groups were not identified in all three
replicates.
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Supplementary Fig. 17: Dependence of identifications on the number of fractions. a,
DIA samples were fractionated into one, two, four and eight fractions and analyzed with
single-shot, fractionated and discovery library, similarly as in Figure 6. The number of
identified protein groups is indicated for each of these cases. While the number of protein
groups is not increasing much with the fractions when using a single shot library, there is
a linear increase with the discovery library. b, Same as a but showing the number of
identified peptides.
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Supplementary notes to ‘MaxDIA enables library-based and
library-free data-independent acquisition proteomics’ by

Sinitcyn et al.

How to run MaxDIA in library mode

Summary: In order to enable MaxDIA for your DIA runs, after loading your mass
spectrometry output data (raw data) into MaxQuant and setting your experiment design
and the number of threads you’d like to utilize for your MaxQuant run, you can select either
“Max DIA”, “TIMS MaxDIA” or “BoxCar MaxDIA” from the “Type” menu within the
“Group-specific parameters”. Doing so will bring up a menu where you can specify your
library files. These files include the peptide, evidence and msms text files from your DDA
MaxQuant runs.

Note: To be able to run MaxQuant, .NET Core 2.1 needs to be installed. Please visit
https://dotnet.microsoft.com/download/dotnet-core/2.1 and install the SDK x64."

Steps:

1. Using your internet browser, navigate to https://maxquant.org/

Q“ MaxQuant Perseus Per
e

MaxQuant

MaxQuant is a quantitative proteomics software package designed for analyzing large
mass-spectrometric data sets. It is specifically aimed at high-resolution MS data. Several
labeling techniques as well as label-free quantification are supported. MaxQuant is
freely available and can be downloaded from this site. The download includes the
search engine andromeda, which is integrated into MaxQuant as well as the viewer
application for inspection of raw data and identification and quantification results. For
statistical analysis of MaxQuant output, we offer the Perseus framework.

Download Documentation

max planck institute

of biochemistry

2. Click on the blue “Download” button to navigate to the download form.
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https://maxquant.org/

),

e}

Download MaxQuant

Name:!

Required

Email:

Required

Company /
Institution:

Required
Department:
Country:
Street:
City:
Zip:
Phone:

Fax:

Comment:

"1l agree with license terms.
| agree that Max-Planck Institute of Biochemistry,
Computational Systems Biochemistry may process
entered data for the purposes in accordance with the
MaxQuant Privacy Policy .

Download

max planck institute a
of biochemistry

Capyright © Max-Planck-Institule of Biochemisiry 2019 Privacy Policy

3. Fill in the form with your details and click on the check box at the end of the form to
confirm your agreement with the MaxQuant license terms.

4. Click on the blue “Download” button to download MaxQuant.

5. Navigate to your downloads folder on your PC, where the zipped MaxQuant folder
has been downloaded to.
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| MaxQuant.zi p

Open

Open in new window

Extract All...
Open with >

Restore previous versions

Send to >

Cut
Copy

Create shortcut
Delete

Rename

Properties

6. Extract the contents of the zipped MaxQuant folder you downloaded.

bin
= Changelog.txt
&] MaxQuant.exe

File description: MaxQuant
Company: Max Planck Institute of Biochemistry
Size: 195 KB

7. After extraction, open the extracted MaxQuant folder and double click on
MaxQuant.exe to run MaxQuant.
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| Jsession1 - MaxQuant

Fle  Tools Window Help
Raw data  Group-specifi Global Peformance Visualization Configuration Server
Remove Write template Set experiment  No fractions  Set PTM
Load folder  Change folder Read from file Set fractions  Set parameter group  Set reference channels
Input data Zxpenmental design fil Edit expenmental design
File Exists  Size Dataformat  Parameter group | Experiment Fraction | PTM Reference channels
Oitems 100% v
Number of processors. Send exmasl when done:
4 = Start Stop Partial processing | [] Details
: “« ”
8. Click on the “Load” button to load your mass spectrometry output data (raw data)
into MaxQuant.
| Jsession1 - MaxQuant - O X

Fle  Tools Window Help
Raw data  Group-specii Global Peformance Visualization Corfiguration
Lload Remove Write template Mo fractions ~ Set PTM
Load folder  Change folder Read from file Set fractions ~ Set parameter group  Set reference channels
Input data Zxpenmental design filk Edit expenmental design
File Exists | Size Data format | Parameter group  Experiment Fraction PTM
1 DADIADIA_1.raw True 46GB Thermora... | Group 0 False
2 D:ADIADIA_2.raw True 46GB Thermora... | Group 0 False
2items
Numbes of processars Send email when dane
4 = Start Stop Partial processing O Details

Reference channels

9. Now you can set the experiment design and the number of threads to be utilized by
MaxQuant. Most PCs have two threads per core. You can simply press the Windows
key on your PC and type “System Information”, press enter and look at the number
of “Logical Processors” to find out the maximum number of threads you can set. It is
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recommended to have at least 4 GB of Ram per utilized thread (e.g. 4 threads would
need 16 GB of Ram).

[ session1 - MaxQuant - ] X
Fle Tools Window Help
Raw data Global parameters  Performance  Visualization Configuration
load Remove Write template Set experiment  No fractions ~ Set PTM
Load folder  Change folder Read from file Setfractions  Set parametergroup  Set reference channels
Input data Zxpenmental design filk Edit expenmental design
File Exists  Size Dataformat Parameter group  Experiment Fraction PTM Reference channels
1 DADIADIA_1.raw True 46GB Thermora... | Group 0 condition 1 False
2 D:ADIADIA_2 raw True 46 GB Thermora...  Group 0 condition 2 False
2items 100% | T
Numbes of processars Send email when dane
4 = Start Stop Partial processing O Details
« el ”
10. Next move on to the “Group-specific parameters” tab.
[} session1 - MaxQuant - [m] X
File  Tools Window Help
Raw data Group-specific parameters  Global parameters  Performance  Visualization ~Configuration
Modffications  Instrument  First search
Digestion Labelfree quantification Misc.
Jarameter ;rsuE Parameter section
Type Standard 9|is
Standard
Reporterion M52
Reporterion M53
NeuCode
BoxCar
TIMS-DDA
TIMS MaxDIA
BoxCar MaxDIA
| DimethLys0
O DimethLys2
M reara
v
Numibes of processars ‘Send email when dane:
4 = Start Stop Partial processing O Details

11. Here you can select the type of your mass spectrometry runs. There are three
different MaxDIA algorithms available, MaxDIA, TIMS MaxDIA and BoxCar MaxDIA.
Depending on your runs, choose the appropriate one.
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[77) session1 - MaxQuant

File  Tools Window Help

Raw data Group-specific parameters  Global parameters  Performance  Visualization  Configuration

Modificaﬁons Instrument  First search

Digestion Labelfree quantification Misc.

Jarameter grouf Parameter section

Type MaxDIA
Library type MaxQuant
tsv
Evidence files Add file(s) Remove file
Msms files Add file(s) Remove file
Number of processors. Send exmasl when done:
4 = Start Stop Partial processing | 7] Details

12. Next, you can choose the “Library type”. Choose “MaxQuant” for DDA library runs
which have been processed with MaxQuant and “tsv” for other third party software

which support a tsv output format.

(@ Gpen

« v > ThisPC » DATA(D) » DIA

Organize = Mew folder

&3 Dropbox
& OneDrive
= This PC

B 30 Objects

evidence.trt msms.xt
B Desktop

peptides.oit

[E pocuments

& Downloads

b Music

=] Pictures.

g Videos

L, SVSTEM (C:)

— DATA (D)

= hamzeiy (\samba-home hamzeiy bischemmpg.de]

v

Filename: | peptides.et

| [Peptice file (~.na)

O Search DIA

- m @

Maxuant

laization  Configuration

Pophide flca

[ adafisty) ]| Ramovetia

Evdancs files

- MeTsies

Panial processing

Aodfiels) | Removefle

A fiets)

Remove fle

FR——

[m}

Detals.

13. After choosing the library type, the library files should be added to each relevant

section. The “peptides.txt”, “

, “evidence.txt” and “msms.txt” files can be found in the

“txt” folder of the “combined” folder of your DDA library runs with MaxQuant.
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Dsessiom - MaxQuant
File  Tools Window Help
Raw data Group-specific parameters  Global parameters  Performance  Visualization Configuration

- | Type Modffications

Digestion Labelfree quantification Misc.
1

Sarameter groug Parameter section
DIA initial precursor mass tolerance [ppm] 20
DIA initial fragment mass tolerance [ppm] 20
DIA co. threshold for feature clustering 0.85
DIA prec. mass tol. for feat. clustering [ppm] |2
DIA frag. mass tol. for feat. clustering [ppm] |2
DIA score N 7
DIA min. score 199
DIA quant method Mixed, LFQ split
DIA feature quant method Sum
DIAtop N fragments for quant 10
DIA top msms intensity quantile for quant 0.85
DIA min. msms intensity for quant 0
DIA precursor fiter type None
DIA min. fragment overlap score 1
DIA min. precursor score 05
DIA min. profile comelation 0
DIA global ML =
DIA adaptive mass accuracy |
DIA mass window factor 13
DIA background subtraction |
DIA background subtraction quantile 05
DIA background subtraction factor n
DIA LFQ weighted median |
DIA XGBoost Base Score 04
DIA XGBoost Sub Sample 09
DIA XGBoost leaming objective Binary logistic raw
DIA XGBoost Min child weight g
DIA XGBoost Maximum Tree Depth 12
DIA XGBoost Estimators 580
DIA XGBoost Gamma 09
DIA XGBoost Max Detta Step 3
DIAno ML

4 = Start Stop Partial processing | [] Details

14. In the “Instrument” section, you can find many DIA related parameters. These
parameters are further explained within the table at the end of this document.
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[) session1 - MaxQuant — m] X

Fle  Tools Window Help

Raw data Group-speciic | Global Performance  Visualization ~Configuration
Type Modffications Instrument  First search
Digestion || Labelfree quantification ||Misc.

Jarameter ;':\u;‘ Parameter section

Labelfree quantification | None » ||
None I

Numbes of processors Send emasl when done:

4 < Start Stop Partial processing | [] Details

15. MaxQuant's label free quantification algorithm can be used for DIA samples too. To
enable this, navigate to the “Label-free quantification” section and select “LFQ” from
the drop-down menu.

@ sessiont - MaxQuan - O X

File Tools Window Help

Raw data Group-specific parameters | Global parameters | Peformance  Visualization Configuration

S Protein quantification Tables MS/MS analyzer Advanced

Identfication ~Label free quantification ~Folder locations ~ MS/MS fragmentation

Parameter section

Fastafiles o @o »
pen
Variation rule
Fastd 5 v 4[> TisPC > DATA(D) > DIA v o O Search DIA
Organize » New folder =~ 1 @
o
&2 Dropbox
@ OneDrive
Oems | @ ThisPC

Include contaminant '
e contamnants B 3D Objects UPDODDOS640.960  UPODODOS640_960
Min. peptide length 7 B Deskiop 6.fasta 6_additional.fasta

Max. peptide mass [Da] 4600 | Documents
Min. peptide length for unspecfic search 5 3 Downloads

Max. peptide length for unspeciic search 25 b Musi
usic
Variation mode
Nene [&] Pictures
B Videos
i SYSTEM (C)
4 3 Start Stop DATA (D)

= hamzeiy (\\samba-home-hamzeiy.biochem.mpg.de)

= pool-cox-projects-dia (\\samba-pool-cox-projects-d ,

File name: | "UP0000D03640_9606.fasta" "UP000005640_9606_additional.fasta" V‘ Fasta file (*fasta) v

Cancel

16. On the “Global parameters” tab, you can choose the appropriate FASTA files for your
data under the “Sequences” section. You can download FASTA files for different
organisms from the UniProt ftp server (ftp.uniprot.org) under:
/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes
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| ) session1 - MaxQuant

Fle Tools Window Help

Raw data Group-specifi Global Performance  Visualization ~Configuration

Proteinquantlficatlon Tables MS/MS analyzer Advanced

Identification Label free quantification Folder locations  MS/MS fragmentation

Parameter section
Fasta files Add Remove Change folder Identifier rule Description Taxonomy rule Taxonomy D o
Variation rule Test
Fasta file path Exists  Identifier rule Description rule  Taxonomy rule  Taxonomy ID Organis
1 D:ADIAVWUP000005640_9606 fasta True =N =) 9606 Homo ¢
2 D:ADIA\WUP000005640_9606_additional fa... | True =N =(*) 9606 Homo ¢
Ditems 100 % ‘; T
Include contaminants
Min. peptide length |7 ‘
Max. peptide mass [Da] |4SGD ‘
Min. peptide length for unspecific search |3 ‘
Max. peptide length for unspecific search |25 ‘
Variation mode None v
v
Nesnber Sernd il when e
4 = Start Stop Partial processing O Details

17. You can now start your analysis.

How to run MaxDIA in discovery mode

Summary: Running MaxDIA in discovery mode is identical to the library mode in every
step except for the library files used (step 13 of library mode). Use in silico generated
library files to run MaxDIA in discovery mode and the relevant FASTA files. Follow the
steps below to download in silico libraries for most common species.

Steps:

1. Navigate to http://annotations.perseus-framework.org/.

Add to your ownCloud [l & Download

2568 an hour ago

- PerseusAnnaotation 159G8 3 deys ago

2. Click on “DiscoveryLibraries”.
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http://annotations.perseus-framework.org/

Add to your ownC\oudl + Dowmoadl

#* DiscoveryLibraries

. bos_anrs BALE M1 5 haurs agn
. caenorbandi s elsgans 850 M n hour
. dario_rerio 257 M £ hours age
- drasophila_melanopaster 1904 MB hours
- escherichia_col 2A9MB 7 hours ago
B oo sepens 2505/ Fours ago
- mus musculus 207MB fhours ago
B oo oo 06 ME 7 hours ago
- saccharomy SOIME  Fhours ago
M o= SME 7

/:'- DataShare Add to your ownCloud l ¥ Download l
+* Dise oweryl ibraros homo_sapiens
. misser 5.0 2141 # honrs agn
B oo 3 s g
. W_acietitinnl 3
. 137 M
4. First download the relevant FASTA files. Then depending on the number of missed
cleavages choose the relevant folder.
{('- DataShare Add to your ownCloud l J.anmuadl
% Discoveryl ibrar es W0mo_sapiens missed_cleavages_0
[~ paTYY 5 hours agn
[~ H1sE B housage
B e &ML B hoursago

5. Here you can find the three library files needed for the discovery mode. You should
unzip these files before use in MaxQuant.

How to submit results to the PRIDE repository

Summary: The PRIDE database has two main types of submissions “Complete
Submission” and “Partial Submission”. The main different between both types of
submissions is that in Complete Submissions the results (e.g. peptide and protein
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evidences) are provided in a standard file format such as mzTab or mzIdentML. In addition,
Complete submissions received a DOI. MaxQuant supports the mzTab file format to store
its results, which is needed for the PRIDE complete submission. To generate the mzTab
file, simply enable it from the “Tables” menu of the “Global parameters”.

Steps:

| ) session1 - MaxQuant

Fle  Tools Window Help

Raw data Group-specific parameters Global parameters  Peformance  Visualization Configuration
Sequences Protein quantification MS/MS analyzer Advanced

Identification Label free quantification  Folder locations  MS/MS fragmentation

Parameter section

Write msScans table O
Write msmsScans table
Write ms3Scans table
Write allPeptides table
Write mzRange table
Write mzTab |
Write DIA fragments table O
Write pasefMsmsScans table
Nusnbes of processars Sere exnail when dne
4 = Start Stop Partial processing O Details

1. To enable the mzTab output file, simple enable it from the “Tables” menu of the
“Global parameters”. It is disabled by default.
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[} session1 - MaxQuant

File | Tools  Window  Hel
[2]  Load parameters... ers Global parameters  Performance  Visualization Corfiguration  Server
H Save parameters... Write template Set experiment  No fractions ~ Set PTM
(O Read from file Set fractions ~ Set parameter group  Set reference channels
Input data Zxpenmental design fik Edit expenmental design
File Exists | Size Dataformat  Parameter group  Experiment Fraction PTM  Reference channels
1 DADIA_1.raw True |4.6GB Thermora... | Group 0 ‘ False ‘
Titem 100% v T
Number of processars ‘Sl exmasl when dane
4 = Start Stop Partial processing O Details
| session1 - MaxQuant - O X
Fle  Tools Window Help
Start [43 |2 End [45 |2
‘ Job name -
SU SELUNU pepuue sedicn
31 ‘ Reading search engine results (SP) ‘
32 Finish search engine results (SP)
33 | Filtering identifications (SP) |
34 Applying FDR (SP)
35 ‘ Re-quantification ‘
36 Reporter quantification
37 | Prepare protein assembly |
38 Assembling proteins
39 ‘ Assembling unidentified peptides ‘
40 Finish protein assembly
41 | Updating identifications \
42 Estimating complexity
[ e |
44 Writing tables
45 | Finish writing tables \ -
45 tems 100% ; T
Cancel 0K

Number of processars

4 = Start Stop

Send email when done

Partial processing Details

Note: You can also enable the mzTab option as described in step one and use “Partial

processing” to simply only generate the mzTab file format for previously processed files

by loading the relevant mqgpar.xml file within the folder containing your raw mass

spectrometry data.

Prepare the Pride Complete submission:
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Summary: To make a complete Pride submission, you should download the submission
tool from ProteomeXchange and follow the steps.

Steps:

1. Navigate to http://www.proteomexchange.org/submission/index.html.

Data submission

ProteomeXchange supports submission of experiments coming from all prateomics data workflows.

PRIDE - PRateomics IDEntifications Database

BHIRE
PRIBE
The GUI based PX Submission Taol can b downloaded fo start data upload

PeptideAtlas - PASSEL
- 5D
)r)v) Y
SRM/MRM data can be submitted to PASSEL

MassIVE

Shorgun proteomics data can be submitted o Masgs|VE.

This page was developed by ProteomeXchange Team Contact Us

2. Download the submission tool and extract the contents of the zip file. Make sure to
have java installed on your PC. The latest version of java can be downloaded and
installed from https://www.java.com/en/download/.

aspera
config
help
keyFiles
lib
log
| checksum.txt

[] px-submission-tool-2.4.18.jar

[ ] RealType: JAR File
Size: 1.89 MB

Date modified: 2020-08-12 17:10

3. Double click on the jar file or refer to the README file for instruction on running the
tool from the command line. Follow the steps accordingly.

4. After adding the title, sample and protocol description in the first two panels of the
ProteomeXchange submission tool, the user will arrive to a panel where files should
be provided:
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MAEM RO
MHRM_RO218
MAHRM_ROS

DiANs 1 MBI 1 30mmin-30KMS 1 25W30

ot fovark G DiA-submi DIA WS 1 30k feombined ap.

For MaxDIA Complete submissions the following files should be provided:

The mzTab File (File Type RESULT): The mzTab contains the peptide and protein
identifications in a standard file format including the references to the spectra use for
the identification and the reference spectral library. The mzTab file is located in
.../combined/txt/.

RAW files (File Type RAW): The RAW files contain the original spectra capture by the
mass spectrometer.

Protein FASTA database (File Type FASTA): Protein database used in MaxDIA to
map the peptides from the spectral library to the protein sequences.

Parameters file mqpar.xml (File Type Other): The mqgpar.xml contains all the
parameters of the experiment including search parameters such as enzyme,
modifications and statistical thresholds such FDRs. This file can be found where you
have stored your RAW files.

Spectrum library references (File Type Spectrum Library): MaxDIA generates with
the mzTab a list of spectrum library files (extension MSP) which contains all the
identified spectra from the original spectral library generated with the DDA data or
the in-silico libraries. The MSP files are located in .../combined/msp/.
combined.zip (File Type Other): In complete submissions it is important to provide
also the MaxDIA combined folder in a compressed format. This folder contains
additional information not included in the mzTab that are important for the users to
understand the full experiment. This folder can be found where you have stored your
RAW files.

Note: PRIDE recommends to perform two separate submissions for DDA and DIA data

even if they are part of the same study. The user can cite or mention both accessions in the

main manuscript. In this way, the DDA data used to generate the spectrum libraries can be

submitted as one project and the DIA data with the resulting spectrum libraries from the

DDA experiment can be submitted as a different project.
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Table of all MaxDIA parameters

Parameter name
(GUI)

Type

Library type ("Type"
must be set to
"MaxDIA", "TIMS
MaxDIA" or
"BoxCar MaxDIA")

Peptide files
("Library type"
must be set to

"MaxQuant")

Evidence files
("Library type"
must be set to
"MaxQuant")

Msms files ("Library
type" must be set
to "MaxQuant")

Libraries ("Library
type" must be set
to "tsv")

Min. DIA peak
length

DIA initial precursor
mass tolerance
[ppm]

DIA initial fragment
mass tolerance
[ppm]

DIA corr. threshold
for feature
clustering

Location in
GUI Tabs

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Location
within GUI
Tab

Type

Type

Type

Type

Type

Type

Instrument

Instrument

Instrument

Instrument

40

Parameter
name
(mgpar.xml)

IcmsRunType

diaLibraryTy
pe

diaPeptidePa
ths

diaEvidenceP
aths

diaMsmsPat
hs

diaLibraryPat
hs

diaMinPeakL
en

dialnitialPrec
MassTolPpm

dialnitialFrag
MassTolPpm

diaCorrThres
holdFeature
Clustering

Description

This parameter can now be set
to "MaxDIA", "TIMS MaxDIA"
and "BoxCar MaxDIA" to turn on
the MaxDIA algorithm for both
library-based DIA and discovery
DIA proccesing of LC-MS/MS-
based proteomics runs.
This parameter can be set to
"MaxQuant" or "tsv",
depending on the source of the
library to be used for the
MaxDIA algorithm
By clicking "Add file(s)",
MaxQuant peptides.txt output
file(s) or in silico peptides files
in the MaxQuant output format
can be defined
By clicking "Add file(s)",
MaxQuant evidence.txt output
file(s) or in silico evidence files
in the MaxQuant output format
can be defined
By clicking "Add file(s)",
MaxQuant msms.txt output
file(s) or in silico msms files in
the MaxQuant output format
can be defined
By clicking "Add file(s)", library
files in the tsv format can be
defined
Minimum number of MS1 or
MS2 scans for defining a 3D
peak in DIA data

Indicates the mass tolerence for
the initial search



DIA prec. mass tol.
for feat. clustering
[ppm]

DIA frag. mass tol.
for feat. clustering

[ppm]
DIA score N

DIA min. score

DIA quant method

DIA feature quant
method
DIAtop N
fragments for quant

DIA top msms
intensity quantile
for quant

DIA min. msms
intensity for quant

DIA precursor filter
type

DIA min. fragment
overlap score

DIA min. precursor
score
DIA min. profile
correlation

DIA global ML

DIA adaptive mass
accuracy

DIA mass window
factor
DIA XGBoost Base
Score
DIA XGBoost Sub
Sample

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters
Group-specific
parameters

Group-specific
parameters

Group-specific
parameters
Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters
Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters
Group-specific
parameters
Group-specific
parameters

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

41

diaPrecTolPp
mFeatureClu
stering
diaFragTolPp
mFeatureClu
stering

diaScoreN

diaMinScore

diaQuantMet
hod

diaFeatureQ
uantMethod
diaTopNForQ
uant
diaTopMsms
IntensityQua
ntileForQuan
t
diaMinMsms
IntensityFor
Quant
diaPrecursor
FilterType
diaMinFragm
entOverlapSc
ore
diaMinPrecu
rsorScore
diaMinProfil
eCorrelation

diaGlobalMI

diaAdaptive
MassAccurac
Y
diaMassWin
dowFactor
diaXgBoostB
aseScore
diaXgBoostS
ubSample

Indicates the quantification
method used for DIA data

Indicates the top MS/MS
intensity quantile to be used for
guantification

Indicates whether to perform

the machine learning on a per

run basis or on the entire data
set (global)

XGBoost base score parameter

XGBoost sub sample parameter



DIA XGBoost
learning objective

DIA XGBoost Min
child weight

DIA XGBoost
Maximum Tree
Depth
DIA XGBoost
Estimators
DIA XGBoost
Gamma
DIA XGBoost Max
Delta Step

DIA no ML

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters
Group-specific
parameters
Group-specific
parameters
Group-specific
parameters

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

Instrument

42

diaXgBoostL
earningObjec
tive
diaXgBoostM
inChildWeigh
t
diaXgBoostM
aximumTree
Depth
diaXgBoostEs
timators
diaXgBoostG
amma
diaXgBoostM
axDeltaStep

diaNoMI

XGBoost learning objective
parameter

XGBoost minimum child weight
parameter

XGBoost maximum tree depth
parameter

XGBoost estimators parameter

XGBoost gamma parameter

XGBoost maximum tree depth
parameter
Parameter to turn off the
machine learning



	SpringerNature_NatBio_968_ESM.pdf
	SpringerNature_NatBio_968_ESM.pdf
	How to run MaxDIA in library mode
	How to run MaxDIA in discovery mode
	How to submit results to the PRIDE repository
	Table of all MaxDIA parameters





