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A CASE STUDY FOR ζ(4)

CARSTEN SCHNEIDER AND WADIM ZUDILIN

Abstract. Using symbolic summation tools in the setting of difference rings, we prove
a two-parametric identity that relates rational approximations to ζ(4).

Kingdom: Mathematical constants
Class: Periods
Family: Multiple zeta values
Genus: Single zeta values
Species: Even zeta values

1. Introduction

The quantity

ζ(4) =

∞
∑

k=1

1

k4
=

π4

90

is a somewhat typical representative of even zeta values— the values of Riemann’s zeta
function at positive even integers. It is shadowed by the far more famous ζ(2) = π2/6,
which was a main subject of Euler’s resolution of Basel’s problem, and ζ(3)—an objet de

l’étude of Apéry’s iconic proof of the irrationality of the latter (and also of ζ(2)) [4, 30].
Though known to be irrational (and transcendental!), ζ(4) serves as a natural guinea
pig for extending Apéry’s machinery to other zeta values. Apéry-type approximations
to the number were discovered and rediscovered on several occasions [8, 29, 33], however
they were not good enough to draw conclusions about its irrationality. An unexpected
difficulty to control the ‘true’ arithmetic of those rational approximations to ζ(4) generated
further research [14, 34], which eventually led to producing sufficient approximations and
establishing a new world record for the irrationality measure of π4 [15].

In this note we turn our attention to a rational side of the coin and prove the following
two-parametric identity.

Theorem 1. For integers n ≥ m ≥ 0, define two rational functions

R(t) = Rn,m(t) = (−1)m
(

t+
n

2

)(t− n)m
m!

(t− 2n+m)2n−m

(2n −m)!

×
(t+ n+ 1)n

(t)n+1

(t+ n+ 1)2n−m

(t)2n−m+1

(

n!

(t)n+1

)2
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and

R̃(t) = R̃n,m(t) =
n! (t− n)2n−m

(t)n+1(t)2n−m+1

n
∑

j=0

(

n

j

)2(2n −m+ j

n

)

(t− j)n
n!

. (1)

Then

−
1

3

∞
∑

ν=n−m+1

dR(t)

dt

∣

∣

∣

∣

t=ν

=
1

6

∞
∑

ν=1

d2R̃(t)

dt2

∣

∣

∣

∣

t=ν

. (2)

The m = n instance of (2) was stated as Problem 1 in [34].
The fact that both sides of (2) are linear forms in 1 and ζ(4) with rational coefficients is

verifiable by standard techniques [14, 33, 34] which employ the partial-fraction decompo-
sition of the rational functions. A remarkable outcome of this identity is the coincidence

of two different-looking rational approximations to the zeta value. Such coincidences are
often a source of deep algorithmic and analytical developments—check [9] for another
exploration of this theme (see also [6]).

The main difficulty in establishing equality (2) (in contrast to tackling, for example,
Apéry’s sums in [21] for ζ(3)) is that its both sides are not hypergeometric functions but
rather derivatives of hypergeometric functions. Another issue is that the summation range
on the left-hand side is somewhat unnatural.

2. Symbolic summation

Denote by Zl(n,m) and Zr(n,m) the left- and right-hand sides of (2), respectively. In
order to prove the identity (2) we proceed as follows.

(A) We compute the linear recurrence

a0(n,m)Z(n,m) + a1(n,m)Z(n,m+ 1) + a2(n,m)Z(n,m+ 2) = 0 (3)

with

a0(n,m) = (2n −m)5,

a1(n,m) = −(4n − 2m− 1)(6n4 − 24n3m+ 22n2m2 − 8nm3 +m4 − 24n3

+ 30n2m− 14nm2 + 2m3 + 8n2 − 10nm+ 2m2 − 4n+m),

a2(n,m) = −(2n −m− 1)3(4n−m)(m+ 2),

(4)

which holds simultaneously for Z(n,m) = Zl(n,m) and Z(n,m) = Zr(n,m) for all n,m ∈
Z≥0 with n − 2 ≥ m ≥ 0. In addition, we observe that a2(n,m) 6= 0 for all n,m ∈ Z≥0

with 0 ≤ m < n.

(B) We show that the following initial values hold:

Zl(n, 0) = Zr(n, 0) for all n ≥ 0, (5)

Zl(n, 1) = Zr(n, 1) for all n ≥ 1. (6)

Combined with (A) this proves that Zl(n,m) = Zr(n,m) holds true for all n ≥ m ≥ 0.

In order to carry out the steps (A) and (B), advanced symbolic summation techniques
in the setting of difference rings are utilized. Among them the following three summation
paradigms play a decisive role, that are available within the summation package Sigma [22].

(i) Creative telescoping. Given a sum F (m) =
∑b

ν=a f(m, ν) and δ ∈ Z≥0, one searches
for polynomials c0(m), . . . , cδ(m), free of ν, and g(m, ν) such that

g(m, ν + 1)− g(m, ν) = c0(n)f(m, ν) + c1(m)f(m+ 1, ν) + · · ·+ cδ(m)f(m+ δ, ν) (7)
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holds for all a ≤ ν ≤ b. Thus summing (7) over ν one obtains the recurrence

g(m, b + 1)− g(m,a) = c0(m)F (m) + c1(m)F (m+ 1) + · · ·+ cδ(m)F (m+ δ). (8)

By specializing a, b further—e.g., to a = 0 and b = m, or sending b to ∞ if the limit
exists—one obtains recurrence relations for more specific sums. The computed creative
telescoping solution (c0(m), . . . , cδ(m), g(m, ν)) is also called a proof certificate for the
recurrence (8) found: usually it allows one to verify that F (m) is a solution of (8) by simple
polynomial arithmetic, without analyzing the usually complicated computation steps of
the underlying summation algorithm. The algorithmic version of creative telescoping has
been introduced in [32, 18] for hypergeometric sums. In order to prove (2), we will employ
a generalized machinery for creative telescoping [26] where the summand can be composed
not only in terms of hypergeometric products, but of indefinite nested sums defined over
hypergeometric products. We emphasize that all recurrences produced below (using the
Sigma-command GenerateRecurrence) are accompanied by such proof certificates which
guarantee the correctness of all the calculations. Since the output is rather large and can
be easily reproduced with Sigma, any explicit printout of the proof certificates is skipped.
(ii) Recurrence solving. Given a linear recurrence of the form (8), one can search
for solutions that are expressible within certain classes function spaces. Using the Sigma-
command SolveRecurrence one can search for hypergeometric solutions [17, 18] and, more
generally, for all solutions that are expressible in terms of indefinite nested sums defined
over hypergeometric products. Such solutions are also called d’Alembertian solutions [2,
19] a subclass of Liouvillian solutions [11].
(iii) Simplification of expressions. Within Sigma the expressions in terms of indefi-
nite nested sums defined over hypergeometric products are represented in the setting of
difference rings and fields [12, 23, 27]. Utilizing this difference ring machinery [24, 28]
(compare also [10]) one can apply, e.g., the Sigma-command SigmaReduce to an expres-
sion in terms of indefinite nested sums. Then the output is a simplified expression where
the arising sums and products (except products such as (−1)m) are independent among
each other as functions of their external parameter. In particular, the input expression
evaluates to zero (from a certain point on) if and only if Sigma reduces the expression to
the zero-expression.

These summation paradigms can be used to transform a definite (multi-)sum to an
expression in terms of indefinite nested sums by deriving a linear recurrence, solving the
recurrence found in terms of indefinite nested sums, and, in case that sufficiently many
solutions are found, combining them to an expression that evaluates to the same sequence
as the input sum. Recently this machinery has been used for large scale problems coming
from particle physics (see, e.g., [1] and references therein). In this regard, also the package
EvaluateMultiSum [25], which automatizes this summation mechanism, has been utilized
non-trivially in the sections below.

In the following sections we present the main steps of our proof for Theorem 1 that is
based on the above summation algorithms. All the necessary calculation steps are collected
in a Mathematica notebook that can be accessed via1

https://www.risc.jku.at/people/cschneid/data/SchneiderZudilinMMA.nb .

1In case that the reader does not have access to Mathematica, we supplement the pdf file
SchneiderZudilinMMA.pdf (same www-path!) that contains all the calculations in printed form.

https://www.risc.jku.at/people/cschneid/data/SchneiderZudilinMMA.nb
https://www.risc.jku.at/people/cschneid/data/SchneiderZudilinMMA.pdf
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3. A linear recurrence in m for the left-hand side

In order to activate the summation package Sigma, the sums arising in (2) have to be
tailored to an appropriate input format. As it turns out below, one can carry out the
differentiation by introducing additionally the harmonic numbers

Sa(n) =

n
∑

k=1

1

ka

of order a ∈ Z≥0. Though we see no natural way to obtain such a representation for
the full summation range ν with n −m + 1 ≤ ν, splitting it into the ranges over ν with
n−m+1 ≤ ν ≤ 2n−m− 1 and 2n−m ≤ ν makes the job well. More precisely, we split
the left-hand side of (2) into the two subsums

W1(n,m) =
∞
∑

ν=2n−m+1

dRn,m(t)

dt

∣

∣

∣

∣

t=ν

=
∞
∑

ν=1

dRn,m(t+ 2n−m)

dt

∣

∣

∣

∣

t=ν

and

W2(n,m) =

2n−m
∑

ν=n−m+1

dRn,m(t)

dt

∣

∣

∣

∣

t=ν

=

n
∑

ν=1

dRn,m(t+ n−m)

dt

∣

∣

∣

∣

t=ν

,

so that

Zl(n,m) = −
1

3

(

W1(n,m) +W2(n,m)
)

. (9)

Observe that

Rn,m(t+ 2n −m) = (−1)m
(

t+ 2n−m+
n

2

)(t+ n−m)m
m!

(t)2n−m

(2n −m)!

×
(t+ 3n−m+ 1)n
(t+ 2n−m)n+1

(t+ 3n−m+ 1)2n−m

(t)2n−m+1

(

n!

(t+ 2n−m)n+1

)2

and

Rn,m(t+ n−m) = (−1)m
(

t+ n−m+
n

2

)(t−m)m
m!

(t− n)2n−m

(2n−m)!

×
(t+ 2n−m+ 1)n
(t+ n−m)n+1

(t+ 2n−m+ 1)2n−m

(t+ n−m)2n−m+1

(

n!

(t+ n−m)n+1

)2

.

By definition all Pochhammer symbols in the former expression are of the form (t + x)k
for some x ∈ Z>0 and k ≥ 0. Thus, we can apply the formula

d

dt
(x+ t)k

∣

∣

t=ν
= (x+ ν)k

(

S1(ν + x+ k − 1)− S1(ν + x− 1)
)

(10)
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for ν ∈ Z with x + ν ∈ Z>0 which follows from the product-rule of differentiation. Em-
ploying this formula we get for all ν = 1, 2, . . . the following representation:

F1(n,m, ν) =
d

dt
Rn,m(t+ 2n−m)

∣

∣

∣

∣

t=ν

=
(−1)mn!2(1 + ν)−1−m+2n(−m+ n+ ν)m(1−m+ 3n+ ν)n(1−m+ 3n+ ν)−m+2n

2m!(−m+ 2n)!(−m+ 2n+ ν)31+n(−m+ 2n+ ν)1−m+2n

×

(

− 6ν + ν(−2m+ 5n + 2ν)
(

− S1(ν)− S1(−m+ n+ ν) + 5S1(−m+ 2n+ ν)

− 5S1(−m+ 3n + ν)− S1(−2m+ 4n + ν) + S1(n+ ν) + S1(−m+ 4n+ ν)

+ S1(−2m+ 5n + ν)
)

+
5n(m− 2n)

m− 2n− ν
+

n(−2m+ 3n)

n+ ν
+

3n(m− n)

−m+ n+ ν

)

.

Further, we prepare the summand ofW2(n,m). Notice that the rule (10) cannot be applied
to the arising factor (t− n)2n−m. However we can easily overcome this issue by using the
following elementary identity: For ν ∈ Z>0 with 1 ≤ ν ≤ n and any differentiable function
f(t), we have

d

dt

(

(t− n)2n−mf(t)
)

∣

∣

∣

∣

t=ν

= (−1)n−νf(ν)(ν + n−m− 1)!(n − ν)! . (11)

Therefore, for all ν ∈ Z>0 with 1 ≤ ν ≤ n we get

F2(n,m, ν) =
dRn,m(t+ n−m)

dt

= (−1)m
(

ν + n−m+
n

2

)(ν −m)m
m!

(−1)n−ν(ν + n−m− 1)!(n − ν)!

(2n−m)!

×
(ν + 2n−m+ 1)n
(ν + n−m)n+1

(ν + 2n−m+ 1)2n−m

(ν + n−m)2n−m+1

(

n!

(ν + n−m)n+1

)2

.

Because of the factor (ν − m)m, we have F2(ν) = 0 for all ν ∈ Z>0 with 1 ≤ ν ≤ m.
Consequently, W1(n,m) and W2(n,m) can be written as

W1(n,m) =

∞
∑

ν=1

F1(ν) and W2(n,m) =

n
∑

ν=m+1

F2(ν) =

n−m
∑

ν=1

F2(ν +m),

where the summands F1(ν) and F2(ν) are given in terms of hypergeometric products and
linear combinations of harmonic numbers. Since these sums fit the input class of Sigma, we
can apply the command GenerateRecurrence to both sums and compute for 0 ≤ m ≤ n
the recurrences

a0(n,m)Ws(n,m)+a1(n,m)Ws(n,m+1)+a2(n,m)Ws(n,m+2) = rs(n,m) for s = 1, 2,

where the coefficients are given in (4) and where r1(n,m) = −r2(n,m) is too large to be
reproduced here (verification of the latter equality required an extra simplification step
with Sigma). To compute the recurrence for the hypergeometric sum W2(n,m) one can
alternatively use the Mathematica package fastZeil [16] based on [32].

Thus, Zl(n,m) given in (9) is a solution of the recurrence (3). For this part we needed
15 minutes to compute both recurrences and to combine them to (3).
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4. A linear recurrence in m for the right-hand side

In order to calculate a linear recurrence for Zr(n,m) we follow the same strategy as for
Zl(n,m) in Section 3 by utilizing more advanced summation tools of Sigma. Collecting
all products in (1) to

Gn,m,j(t) =
n! (t− n)2n−m

(t)n+1(t)2n−m+1

(

n

j

)2(2n−m+ j

n

)

(t− j)n
n!

,

the right-hand side of (2) can be rewritten as

Zr(n,m) :=
1

6

∞
∑

ν=1

n
∑

j=0

d2

dt2
Gn,m,j(t)

∣

∣

∣

∣

t=ν

.

Similarly to the previous section, we split the sum further into subsums (see (13) for the
final split) such that the differential operator acting on the summands can be replaced by
modified summands in terms of harmonic numbers. On the first step, we write

Zr(n,m) =
1

6

(

C1(n,m) + C2(n,m)
)

with

C1(n,m) =
∞
∑

ν=1

n
∑

j=0

d2

dt2
Gn,m,j(t+ n)

∣

∣

∣

∣

t=ν

and C2(n,m) =
n
∑

ν=1

n
∑

j=0

d2

dt2
Gn,m,j(t)

∣

∣

∣

∣

t=ν

and apply, as before, formula (10) and its relatives to get a monster summand of C1(n,m)
(that fills two pages) in terms of the harmonic numbers of order 1 and 2. For illustration
we print out only a few lines:

G1(n,m, j, ν) =
d2

dt2
Gn,m,j(t+ n)

∣

∣

∣

∣

t=ν

=

(

n
j

)2(j−m+2n
n

)

(ν)−m+2n(−j + n+ ν)n

(n+ ν)1+n(n+ ν)1−m+2n

(

· · ·

+ S1(−j + n+ ν)2 + S1(−j + 2n+ ν)2 + S1(−m+ 2n+ ν)2

+ S1(n+ ν)
4(−j2mn+ 2j2n2 + · · ·+mν3 − 7nν3 − 2ν4)

ν(n+ ν)(−j + n+ ν)(−j + 2n+ ν)(−m+ 2n+ ν)

+ · · ·

)

.

In order to tackle the summand of C2(n,m), we have to differentiate Gn,m,j(t) twice. With
p(t) = (t− n)2n−m and

q(t) =
Gn,m(t)

p(t)
=

n!

(t)n+1(t)2n−m+1

(

n

j

)2(2n−m+ j

n

)

(t− j)n
n!

(12)

we conclude that for all 1 ≤ ν ≤ n we have

G̃(ν) =
d2

dt2
Gn,m,j(t)

∣

∣

∣

∣

t=ν

= q(t)
d2p(t)

dt2
+ 2

dp(t)

dt

dq(t)

dt
+ p(t)

d2q(t)

dt2

∣

∣

∣

∣

t=ν

= q(t)
d2p(t)

dt2
+ 2

dp(t)

dt

dq(t)

dt

∣

∣

∣

∣

t=ν

;
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the last equality follows since p(t)|t=ν = 0 for all 1 ≤ ν ≤ n. Similarly to (11), we can use
in addition the following calculation: For ν ∈ Z>0 and 1 ≤ ν ≤ n, we have

d

dt
(t− n)2n−m

∣

∣

∣

∣

t=ν

= h(t)

∣

∣

∣

∣

t=ν

and
1

2

d2

dt2
(t− n)2n−m

∣

∣

∣

∣

t=ν

=
d

dt
h(t)

∣

∣

∣

∣

t=ν

with

h(t) =
(−1)n−νΓ(t+ n−m)(ν − t+ 1)n−ν

Γ(t− ν + 1)
.

In particular, if ν > j, we can apply the rule (10) to all Pochhammer symbols in (12):

G2(n,m, j, ν) = G̃(ν)

= 2q(t)
d

dt
h(t) + 2h(t)

d

dt
q(t)

∣

∣

∣

t=ν

=
2(−1)n+ν

(

n
j

)2(j−m+2n
n

)

(1)n−ν(2)−1−m+n+ν(1− j + ν)−1+n

ν3(−m+ n+ ν)2(1 + ν)n(1 + ν)−m+2n

×

(

ν(−j + ν)(−m+ n+ ν)
( 1

j − n− ν
− S1(−j + ν) + S1(−j + n+ ν)

)

+ ν(−j + ν)(−m+ n+ ν)
(

− S1(−m+ 2n+ ν) + S1(ν)
)

+ ν(−j + ν)(−m+ n+ ν)
(

S1(ν)− S1(n + ν)
)

− ν(−j + ν) + ν(−m+ n+ ν)

+ 2(j − ν)(−m+ n+ ν) + ν(−j + ν)(−m+ n+ ν)

+ ν(−j + ν)(−m+ n+ ν)
(

− 1 + S1(−m+ n+ ν)
)

− ν(−j + ν)(−m+ n+ ν)S1(n− ν)

)

.

For 1 ≤ ν ≤ j, we use q(ν) = 0 and apply the rule

d

dt

(

(t− j)nf(t)
)

∣

∣

∣

∣

t=ν

= f(ν)(ν − j)j−ν(n+ ν − j − 1)!

(compare with (11)) valid for any differentiable function f(t), in place of (10), to (12). It
follows that

G3(n,m, j, ν) =G̃(ν) = 2

(

n

j

)2(2n −m+ j

n

)

×
(−1)n+ν(n+ ν −m− 1)!(n − ν)!(n+ ν − j − 1)!(ν − j)j−ν

(ν)1+n(ν)2n−m+1
.

Therefore,

C2(n,m) =

n
∑

ν=1

n
∑

j=0

d2

dt2
Gn,m(t)

∣

∣

∣

∣

t=ν

=

n−1
∑

j=0

n
∑

ν=j+1

G2(n,m, j, ν) +

n
∑

j=1

j
∑

ν=1

G3(n,m, j, ν),
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hence

Zr(n,m) =
1

6

(

C1(n,m) + C2(n,m)
)

=
1

6

( n
∑

j=0

∞
∑

ν=1

G1(n,m, j, ν) +

n−1
∑

j=0

n
∑

ν=j+1

G2(n,m, j, ν)

+

n
∑

j=1

j
∑

ν=1

G3(n,m, j, ν)

)

. (13)

Denote by A1(n,m), A2(n,m) and A3(n,m) the three resulting sums in (13) and use Sigma
to compute three linear recurrences of As(n,m) with s = 1, 2, 3. A routine calculation
demonstrates that each of the recurrences found can be brought to the form

a0(n,m)As(n,m) + a1(n,m)As(n,m+ 1) + a2(n,m)As(n,m+ 2) = us(n,m), (14)

where the coefficients are given in (4) and where only the right-hand sides us(n,m) for
s = 1, 2, 3 differ. As an illustration, we provide with details about how we treat

A1(n,m) = C1(n,m) =
n
∑

j=0

∞
∑

ν=1

G1(n,m, j, ν).

In the first step, Sigma is used to compute a linear recurrence of the inner sum

c(n,m, j) =

∞
∑

ν=1

G1(n,m, j, ν) (15)

in j,

(j − n)2(j − n+ 1)2(j −m+ 2n+ 1)(j −m+ 2n+ 2)c(n,m, j)

− (j − n+ 1)2(j −m+ 2n+ 2)
(

2j3 − 2j2m+ 2jmn− 3jn2 +mn2 − 2n3

+ 8j2 − 5jm− 2jn + 4mn− 7n2 + 11j − 3m− 4n+ 5
)

c(n,m, j + 1)

+ (j + 2)3(j − 2n+ 1)(j −m+ n+ 2)2c(n,m, j + 2) = r(n,m, j), (16)

and one additional recurrence with one shift in m and one shift in j,

(j − n)2(j −m+ 2n+ 1)
(

j3 + jm2 − j2m−m3 − 2jmn + 4m2n− 4mn2

+ 2j2 − jm− 2jn + 2mn− 4n2 + j − 2n
)

c(n,m, j)

− (j + 1)3(j − 2n)(j −m+ n+ 1)2c(n,m, j + 1)

− (j − n)2(j −m+ 2n)(j −m+ 2n + 1)(m+ 1)(m− 2n)c(n,m+ 1, j) = s(n,m, j);
(17)

here the right-hand sides r(n,m, j) and s(n,m, j) are large expressions in terms of hy-
pergeometric products and the harmonic numbers S1(n), S1(2n), S1(n − j), S1(2n− j),
S1(2n −m), S1(3n−m). Finally, we use new algorithms that are described in [5] and that
are built on ideas from [20, 3]. Activating these new features of Sigma we can compute the
linear recurrence (14) with s = 1 where the right-hand side u0(n,m) is an expression in
terms of the harmonic numbers S1(n), S1(2n), S1(2n −m), S1(3n −m), the infinite sums

c(n,m, 0), c(n,m, 1), c(n,m, n + 1) (18)
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and the definite sums

n
∑

i=0

(

n

i

)2(2n−m+ i

n

)

(n− i+ 1)n
(2n− i)k

for k = 0, 1, 2,

n
∑

i=0

(

n

i

)2(2n−m+ i

n

)

(n− i+ 1)n
(2n− i)k

S1(n− i) for k = 0, 1,

n
∑

i=0

(

n

i

)2(2n−m+ i

n

)

(n− i+ 1)n
(2n− i)k

S1(2n − i) for k = 0, 1.

(19)

Note that all these definite sums in (19) are not expressible in terms of hypergeometric
products and indefinite nested sums defined over such products. For example, the lin-
ear recurrence for the last sum in (19) with k = 0 computed with Sigma has order 5
and has not even a hypergeometric product solution. We further remark that the above
approach is connected to the classical holonomic summation approach [31] and their im-
provements given in [7, 13]. In all these traditional versions one needs systems composed
by homogeneous recurrences. However, the transformations of (16) and (17) to such a
form would lead to gigantic recurrence systems and the computation of the desired linear
recurrence (3) would be out of scope.

Using this refined holonomic summation approach with Sigma, we needed in total 10
minutes to derive the recurrence for A1(n,m) which holds for all 0 ≤ m ≤ n. Similarly,
one can compute for the other two double sums A2(n,m) and A3(n,m) the recurrence (14)
in 15 and 2 minutes, respectively, which hold for all 0 ≤ m ≤ n− 2. Here the right-hand
sides u2(n,m), u3(n,m) consist of similar definite sums as given in (19). Adding up (14)
corresponding to s = 1, 2, 3, results in a linear recurrence for Zr(n,m) with (3) on the
left-hand side and

u(n,m) =
1

6

(

u1(n,m) + u2(n,m) + u3(n,m)
)

on the right-hand side which holds for all 0 ≤ m ≤ n − 2. It remains to show that the
inhomogeneous part evaluates to zero, u(n,m) = 0 for 0 ≤ m ≤ n − 2. As indicated
earlier, the expression u(n,m) is composed by

• the infinite sums (18) with (15);
• finite definite sums like those given in (19).

A verification for all n− 2 ≥ m ≥ 0 looks rather challenging. However, using the toolbox
of Sigma, this task can be accomplished automatically in 16 minutes of calculation time.
First, we treat the infinite sums by merging them to one big infinite sum and then compute
a linear recurrence for it, which happens to be completely solvable in terms of indefinite
nested sums. This reduces all the infinite sums to indefinite nested sums. The finite
definite sums are a tougher nut to crack. Internally, all sums (including (19)) are first
considered as indefinite nested versions (with a common upper bound, say a). Then
a finite subset of the sums arising is calculated with the command SigmaReduce such
that there are no dependences among them and such that all the remaining sums can
be represented in terms of these independent sums. It turns out that all sums (with a
now replaced by the ‘synchronized’ upper bound n− 3) cancel and only one definite sum
remains. Activating the package EvaluateMultiSums [25] (that combines automatically
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the available summation tools of Sigma) this remaining sum simplifies to

n−3
∑

i=1

(−1)i

i

(

n

i

)(

2n −m+ i

n

)

=
(−1)n

(3n−m−2
n−2

)

2(n − 2)(n − 1)2n2

(

− 4m− 4m2 + 12n+ 30mn + 6m2n− 54n2 − 43mn2 − 7m2n2

+ 70n3 + 40mn3 + 4m2n3 − 54n4 − 19mn4 −m2n4 + 22n5 + 4mn5 − 4n6
)

−

(

2n−m

n

)

(

S1(2n−m) + S1(n)− S1(n−m)
)

.

In a nutshell, u(n,m) can be reduced to an expression given purely in terms of indefinite
nested sums, which after further simplifications collapses to zero. This shows that not
only the left-hand side but also the right-hand side of (2) satisfies the same recurrence (3).
The verification of this fact took in total 43 minutes.

5. Dealing with the initial values

In order to verify (2), it remains to show (5) and (6). For (5) we proceed as follows.
First, we compute for Zl(n, 0) the recurrence

− 16(2n + 1)4Zl(n, 0)− (n+ 1)4Zl(n + 1, 0)

= −
(−1)nn!8(1 + 2n)2n(1 + 4n)

(

831 + 5265n + 12601n2 + 13499n3 + 5460n4
)

48(2n + 1)!5
. (20)

Internally, we follow the strategy in Section 3: we use the representation from (9) to get

Zl(n, 0) = −
1

3

(

W1(n, 0) +W2(n, 0)
)

and, for W1(n, 0) and W2(n, 0), compute two recurrences, where both have the same ho-
mogeneous part. Thus adding the inhomogeneous parts and simplifying the result further
leads to (20). Solving this recurrence leads, for any n ≥ 0, to the closed form

Zl(n, 0) =
(−1)n

30720

(

105U9(n) + 955U8(n) + 3095U7(n) + 2045U6(n)

− 12140U5(n)− 27300U4(n) + 12288ζ(2)2
)

(

2n

n

)4

+
(−1)n(4n + 1)(5460n4 + 13499n3 + 12601n2 + 5265n + 831)

(4n
2n

)

768(2n + 1)9
(2n
n

)4 (21)

in terms of indefinite nested sums

Uk(n) =
n
∑

i=0

(4i
2i

)

(2i + 1)k
(2i
i

)8 with k = 1, 2, . . . . (22)
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Similarly to Section 4, we use the sum representation in (13) with m = 0 encoded by
A0(n, 0) + · · ·+A3(n, 0) to compute the recurrence

16(n + 1)3(2n + 1)4(4n + 3)(4n + 5)(5460n4 + 35339n3 + 85858n2 + 92804n + 37656)Zr(n, 0)

+ (357913920n13 + 5716680688n12 + 41762423804n11 + 184637211081n10

+ 550778114541n9 + 1169740743051n8 + 1818232366245n7 + 2092705983417n6

+ 1782121652067n5 + 1108272850929n4 + 488951050619n3

+ 144869028586n2 + 25833166356n + 2094206184)Zr(n + 1, 0)

+ 8(n + 2)4(2n + 3)5(5460n4 + 13499n3 + 12601n2 + 5265n + 831)Zr(n+ 2, 0) = 0
(23)

which holds true for all n ≥ 0. Furthermore, we verify that Zl(n, 0) is also a solution of this
recurrence by plugging its representation (21) into the recurrence and checking that the
expression simplifies to zero. Finally, we verify that the first two initial values of Zl(n, 0)
and Zr(n, 0) agree:

Zl(0, 0) = Zr(0, 0) =
2

5
ζ(2)2, Zl(1, 0) = Zr(1, 0) =

277

16
−

32

5
ζ(2)2;

to determine these evaluations again Sigma has been utilized. Together with the fact that
the leading coefficient in (23) is nonzero for all n ≥ 0, this implies that (5) holds.

To verify (6), we repeat the same game for Zl(n, 1) and Zr(n, 1): namely, we find the
closed form representation

Zl(n, 1) =
3n(−1)n

40960

(

105U9(n) + 955U8(n) + 3095U7(n) + 2045U6(n)

− 12140U5(n)− 27300U4(n) + 12288ζ(2)2
)

(

2n

n

)4

−
(−1)n

(4n
2n

)

1024n3(2n + 1)9
(2n
n

)4 (16n
9 + 116544n8 + 398115n7 + 587145n6

+ 490329n5 + 255555n4 + 86016n3 + 18432n2 + 2304n + 128) (24)

valid for all n ≥ 1. In addition, we compute a recurrence of order 2 for Zr(n, 1) and,
as above, verify that Zl(n, 1) is also its solution (by plugging in the representation (24)).
Together with the initial values

Zl(1, 1) = Zr(1, 1) = −13 +
24

5
ζ(2)2, Zl(2, 1) = Zr(2, 1) =

4090247

1944
−

3888

5
ζ(2)2

this implies that (6) holds as well and completes the proof of (2). We note that the
verification of each initial value problem, (5) and (6), took about 25 minutes.

6. Summary

Summarizing, the full proof of (2) took in total around 2 hours (excluding all the human
trials and errors to find the tailored paths described above, and days to physically write
this paper).

The initial values (21) and (24) are given through 2ζ(2)2/5 = ζ(4), hypergeometric
products and the indefinite nested sums (22) with k = 4, 5, 6, 7, 8, 9. Thus, feeding the
recurrence (3) with all this stuff we get the following corollary.
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Theorem 2. For any n ≥ m ≥ 0, both sides of Zl(n,m) = Zr(n,m) can be expressed

(and computed in linear time) in terms of ζ(4) and U4(n), . . . , U9(n) in (22).

The project [15] implicitly suggests that there can be further—more general(!)— forms
of (2), with more than two independent parameters. We have tried (unsuccessfully) to
find some but cannot even figure out how to adopt (2) to the case m > n.
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[5] Blümlein, J., Round, M., Schneider, C.: Refined holonomic summation algorithms in Particle Physics.

In: Zima, E., Schneider, C. (eds.) Advances in Computer Algebra (WWCA 2016). Springer Proceed-
ings in Mathematics and Statistics, vol. 226, pp. 51–91. Springer (2018)

[6] Bostan, A., Chamizo, F., Sundqvist, M.P.: On an integral identity (2020). arXiv:2002.10682 [math.CA]
[7] Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math.

217, 115–134 (2000)
[8] Cohen, H.: Accélération de la convergence de certaines récurrences linéaires. Sém. Théorie Nombres
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Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts
and Monographs in Symbolic Computation, pp. 171–194. Springer (2013)
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Nombres Bordeaux 15:2, 593–626 (2003)
[34] Zudilin, W.: A hypergeometric problem. J. Comput. Appl. Math. 233, 856–857 (2009)

Johannes Kepler University Linz, Research Institute for Symbolic Computation, Al-

tenberger Str. 69, A-4040 Linz, Austria

E-mail address: carsten.schneider@risc.jku.at

Department of Mathematics, IMAPP, Radboud University, PO Box 9010, 6500 GL Nij-

megen, Netherlands

E-mail address: w.zudilin@math.ru.nl


	1. Introduction
	2. Symbolic summation
	3. A linear recurrence in m for the left-hand side
	4. A linear recurrence in m for the right-hand side
	5. Dealing with the initial values
	6. Summary
	References

