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Two-Particle Quantum Interference and Bell’s Theorem:

Bell’s theorem is among the most challenging consequences of quantum mechanics.
In this thesis, the connection between Bell’s theorem and quantum interference is in-
vestigated by asking the question, whether Bell’s theorem can be proven on the basis
of two-particle quantum interference. In the first part of this thesis the meaning of
quantum interference and Bell’s Theorem for the discussion about the interpretation
of quantum mechanics is retraced. By considering three major branches of interpre-
tations, the conceptual di�culties, which are encountered in the face of quantum
interference and Bell’s theorem, are discussed. In addition, an epistemological ar-
gument for the inherent indeterminism of certain quantum mechanical phenomena
is presented. In the second part of this thesis a two-particle quantum interference
thought experiment is developed and it is shown that Bell’s theorem can be proven
from two-particle quantum interference, if certain quantum mechanical phenomena
in the experiment are inherently indeterministic.

Zwei-Teilchen-Quanteninterferenz und Bells Theorem:

Bells Theorem ist eine der herausforderndsten Konsequenzen der Quantenmechanik.
In dieser Arbeit wird die Verbindung zwischen Bells Theorem und Quanteninter-
ferenz untersucht, indem der Frage nachgegangen wird, ob Bells Theorem auf der
Grundlage von Zwei-Teilchen-Quanteninterferenz bewiesen werden kann. Im ersten
Teil dieser Arbeit wird die Bedeutung von Quanteninterferenz und Bell’s Theo-
rem für die Diskussion über die Interpretation der Quantenmechanik nachvollzo-
gen. Indem drei Hauptströmungen von Interpretationen betrachtet werden, werden
die konzeptionellen Schwierigkeiten, die sich angesichts von Quanteninterferenz und
Bells Theorem ergeben, besprochen. Außerdem wird ein epistemologisches Argu-
ment für die inhärente Indeterminiertheit von bestimmten quantenmechanischen
Phänomenen präsentiert. Im zweiten Teil dieser Arbeit wird ein Zwei-Teilchen-
Quanteninterferenz Gedankenexperiment entwickelt und es wird gezeigt, dass unter
der Bedingung, dass bestimmte quantenmechanische Phänomene in dem betra-
chteten Experiment von Natur aus indeterministisch sind, Bells Theorem auf der
Grundlage von Zwei-Teilchen-Quanteninterferenz beweisbar ist.
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1 Introduction

The superposition principle and entanglement are at the heart of the disparity be-

tween classical physics and quantum mechanics. The one-particle superposition princi-

ple gives rise to interference phenomena and wave-particle duality, while entanglement,

which might be seen as the superposition principle applied to systems with more than

one variable, implies apparent spooky actions at a distance and leads to the rejection

of local realism. A phenomenon that combines both features is two-particle interfer-

ence. The most prominent example of two-particle interference is the double double-slit

(DDS) experiment, which was introduced in 1993 by Greenberger, Horne and Zeilinger

[1]. The experiment consists of two double-slit arrays and a particle source, which is

placed midway between the two arrays and which emits momentum entangled particles.

It proves to be the case that, while on the scintillation screens behind the individual

double-slit arrays no interference patterns appear, a conditional interference pattern

emerges, if the arrivals of the two particles are monitored in coincidence.

The DDS-experiment has been performed with photons [2] and electrons [3] and has

also been considered for correlated Bose-Einstein condensates [4] and several other

systems [5]. As mentioned in [4], the two particle interference pattern can be utilized

to prove that the two particles are non-classically correlated. Since it is rather di�cult

to proof for massive particles that their correlations have a quantum origin [6], DDS-

experiments with massive particles are especially relevant.

In this thesis, we examine the connection between two-particle interference and Bell’s

theorem [7]. More explicitly, we discuss a thought experiment, which is conceptually

similar to the DDS experiment, and attempt to develop a proof of Bell’s theorem for

this specific setting along the lines of a proof given by Mermin [8].

In the part A of this thesis, we will introduce and develop the basic concepts, which

we will further employ in the part B, where we discuss the thought experiment. The

guiding theme for part A will be the interpretation of quantum mechanics. We have

chosen to enter the subject from this rather conceptual point of departure, since it

naturally connects the DDS-experiment with Bell’s theorem as di↵erent aspects of the

same struggle for a meaningful interpretation of the quantum formalism. Furthermore,

this approach provides a natural context for introducing the necessary assumptions

underlying Bell’s theorem.

In the part B, we will then establish by means of an analogy a direct experimental
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link between two-particle interference and Mermin’s proof of Bell’s theorem. It will be

found that under the assumption that specific events are inherently indeterministic,

Bell’s Theorem can be proven from two-particle interference. At the end, we will

summarize our results and give an outlook on future investigations.

Part A Overview:

Starting from the well-known double-slit experiment (section 2.1 and 2.2), we will

trace our way through to more sophisticated quantum interference experiments, which

will eventually lead us to the DDS-experiment (section 2.3). Then, after considering

various possible interpretations of these experiments (section 2.4), we will focus on

the explicit interpretation of the wave-function (section 2.5), which will guide us to

Einstein, Podolsky and Rosen’s argumentation in favor of hidden variables (section 2.6)

and finally to Mermin’s proof of Bell’s theorem (section 2.7, 2.8, 2.9). We will conclude

the part A with an argument for the existence of indeterministic events (section 2.10)

and a summery (section 2.11).

Part B Overview:

After a description of the proposed experimental setting (section 3.1), we will develop

the algorithm for the numerical determination of the time-evolved wave function for

our experiment (section 3.2). The results of our calculation are presented thereafter:

First we will make some general observations regarding the nature of two-particle

interference in our experiment (section 3.3). Then, we will draw an analogy between

our observations and the observations for a spin-12 particle in a Stern-Gerlach magnet

(section 3.4), which will finally allow us to apply the scheme of Mermin’s proof to our

experiment (section 3.4). We will then discuss the validity of that scheme in the context

of our experiment (section 3.5.3) and say a view words about possible experimental

variations of the presented thought-experiment (section 3.6).

Appendix Overview:

In the Appendix we will introduce our notation for conditional probabilities (section

5.1), proof that it is impossible to detect any signs of determinism in certain quantum

mechanical experiments (section 5.2), which is connected to our discussion about de-

terminism in part A and derive the propagator for the free particle and the particle in

a constant electric field, as well as some other results (section 5.3), which are needed

for our calculation in part B.
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2 Part A: Fundamental Concepts

2.1 Double-Slit Experiment

In the quantum mechanical double-slit experiment a particle source emits particles, one

at a time, which propagate towards a detection screen. Between the particle source

and the detection screen a barrier with two slits is placed (figure 1). While in the early

days of quantum mechanics the double-slit experiment with single particles could only

be considered as a thought experiment, nowadays it has been performed with electrons

[9], neutrons [10], and also with atoms and massive molecules, such as the C60 fullerene

[11].

!

!! source 

Barrier Detection screen

L

R

Figure 1: Schematic representation of the double-slit experiment for single electrons.

The measurement data of interest is the particle distribution on the detection screen

after many emission cycles. We will call this distribution1 P (x). Before measuring

P (x) directly we could carry out the following experiment: First we close the R-Slit so

that each particle, which is detected at the screen, has with certainty passed through

1In an actual experiment the detection screen would be divided into cells xi and the distribution
P (xi) would be obtained by counting the number of particles within each cell.
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the L-slit. We then record the corresponding distribution PL(x). Then we close the

L-Slit and record the distribution PR(x). One could naively expect that, if the particles

pass equally likely through the R-slit as through the L-slit, P (x) can be predicted from

PL(x) and PR(x) by means of the equation

Pcl(x) =
1

2
(PL(x) + PR(x)). (1)

The distributions PL(x) and PR(x) are similar to the distributions shown in figure 2a,

which represents essentially what we would anticipate for some kind of solid, marble-

like objects passing through a slit2. The distribution Pcl(x) is depicted in figure 2b.

However, 2b is not what is found if P (x) is actually measured! The pattern that is

found rather resembles the pattern shown in 2c.

""($)"#($)

!

!

"$%($)

!

"($)

(a)

(b)

(c)

Figure 2: Double-slit distributions: (a) Distributions PL(x) and PR(x) for closed R-slit and closed
L-slit respectively. (b) The sum-distribution: Pcl =

1
2 (PL(x) + PR(x)). (c) The actually measured

interference distribution.

2If a greater portion of the screen would be shown and if the detection would be sensitive enough,
one would actually detect single slit di↵raction patterns. Although the distributions might look like
gaussians, they really are the main lobes of something like sinc squared functions. Accordingly, a
closer look reveals that the classical particle picture does not even work for the single slit detections
(see e.g. [12]).
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Even though nowadays the emergence of interference patterns in the double-slit exper-

iment is a well established scientific fact, the phenomenon itself remains remarkable.

Equation (43) surely is the way to go, if only one makes the classical assumption that

each particle goes either through slit R or slit L. And according to our every-day

experience, this is exactly what particles should do.

Thus the observed interference pattern, which reminds us of waves, emanating from

two slits, interfering constructively and destructively, seems to suggest that something

was wrong with our most reasonable either-or assumption, which led us to (43). To

put it more frankly [13]: We must conclude, that when both holes are open, it is not

true that the particle goes through one hole or the other. For if it had to go through one

or the other, we could classify all the arrivals at x into two disjoint classes, namely,

those arriving through hole R and those arriving through hole L; and the frequency

P (x) of arrival at x would surely be the sum of the frequency PL(x) of particles coming

through hole L and the frequency PR(x) of those coming through hole R. So we are

ready to conclude with Feynman that whenever both slits are open, the particle does

not pass either through the R-slit or through the L-slit. But let us be cautious and

ask whether Feynman’s conclusion is inevitable?

A barrier with two open slits is di↵erent from a barrier with only one open slit and

thus, even if the particles always pass through one slit or the other, the two-slit-barrier

might interact di↵erently with the particles than the one-slit-barrier and this di↵erence

might give rise to the di↵erent distributions 2b and 2c. Following this argumentation

the frequency depicted in 2c could indeed be given by a sum of a frequency P̃L(x) of

particles coming through the L-slit and a frequency P̃R(x) of particles coming through

the R-slit, such that

P (x) =
1

2
(P̃L(x) + P̃R(x)), (2)

only that now P̃L(x) 6= PL(x) and P̃R(x) 6= PR(x). An example of such a theory,

which does actually reproduce all of the described measurement results, is Bohmian

Mechanics [14, 15].
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2.2 Quantum Formalism

In the quantum mechanical formalism the distribution P (x) is determined from the

wave function  (x), which is a superposition of two components, one for each slit3.

Assuming a symmetrical illumination of the slit, we can write

 (x) =
1
p
2
('L(x) + 'R(x)), (3)

where 'L(x) and 'R(x) are complex-valued functions of the independent variable x.

According to Born’s rule PL(x) = ||'L(x)||2 and PR(x) = ||'R(x)||2. Born’s rule also

tell us that P (x) is given by

P (x) = || (x)||2 =
1

2

h
||'L(x)||

2 + ||'R(x)||
2 + 'L(x)'

⇤
R(x) + '⇤

L(x)'R(x)
i

:=
1

2

h
PL(x) + PR(x) + IT

i
.

(4)

The unexpected interference pattern of P (x) thus results from the interference terms

IT , as a direct consequence of the superposition of the two terms 'L(x) and 'R(x).

One way to interpret this wave function formalism as a description of physical reality

in the case of the double-slit experiment looks as follows: Each particle is prepared as a

wave packet. This complex-valued wave packet itself is quite an unfamiliar object, but

we will for now neglect such intricacies. While moving towards the barrier, the packet

spreads out in space. At the barrier, one part of this wave moves through the R-slit and

another part of it passes through the L-slit. The resulting two narrow wave packets

also spread, while they keep on traveling towards the screen and thereby interfere with

each other. Then, at some unpredictable time, this spread-out wave instantaneously

collapses with the probability P (x) to the single point, where the particle is finally

found.

It is common practice to represent the wave function  (x) as a state in abstract Hilbert-

space:

| i =
1
p
2
(|Ri+ |Li), (5)

3In general we should consider a time dependent, three dimensional wave function  (x, y, z, t).
However, doing the calculation, it turns out that one can assume that

 (x, y, z, t) =  x(x, t) y(y, t) z(z, t).

What we are actually considering then is  x(x, t) at the time of the detection of the particle at the
detection screen. For more details about the full mathematical treatment of the double-slit experiment
see [16].
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where |Ri represents 'R(x) and |Li represents 'L(x). Formally |Ri and |Li form a

basis of a two dimensional Hilbert space H, which is connected to the the two-valued

observable which-slit.

2.3 Which-Way Information

Our interpretation of the quantum formalism seems to tell us that the particles do

not go either through the R-slit or the L-slit, but rather pass through the R-slit

and the L-slit and that this behavior is the actual cause of the observed interference.

However, as we have mentioned before, Bohmian Mechanics is capable of reproducing

the interference pattern and in Bohmian Mechanics the particles obey the either-or

assumption at all times. We thus ask ourselves: Do the particles in reality pass through

either one slit or the other or do they pass through one slit and the other at the same

time?

At the 1927 Solvay Congress in Brüssel, Einstein introduced a thought experiment

[17], where which-way-information, i.e. knowledge about which slit the particles pass

through, is determined from measuring the recoil of the double slit (see figure 3). The

basic idea was that a particle which passes through R and reaches the point xD su↵ers a

di↵erent change in momentum �p than a particle which passes through L and reaches

xD. But every change in the x-component of particle-momentum must be accompanied

by an equal and opposite change in the momentum of the barrier. Therefore, measuring

the momentum of the barrier before and after the passage of the particle is su�cient

to know through which slit the particle has passed.

However, Bohr showed that according to Heisenberg’s uncertainty principle �p�x 

~/2, if we know the momentum of the barrier before the passage of the particle with

great accuracy, we have a correspondingly poor knowledge about the position of the

barrier. This position uncertainty inevitably smears out the interference pattern. As

it turns out, the position uncertainty is su�cient to wash out the interference pattern

completely, such that only a distribution of the kind 2b remains [17, 13].

Somehow, just by detecting through which slit each particle passes, the distribution

P (x) of figure 2c, which reminded us of waves going through both slits at the same

time, is replaced by the distribution Pcl(x) of figure 2b, which is what we expected

for marble-like tiny particles. Thus, even though we have found that every particle

either takes one way or the other in Einstein’s recoiling-slit experiment, we have lost

the interference pattern along the way and it was the interference pattern, which we
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wanted to understand in the first place.

!

!! source 

Recoiling Barrier Detection screen

L

R

Figure 3: Einstein’s recoiling slit experiment

!

!! source 

Barrier Detection screen

Absorber

L

R

Figure 4: Double-slit experiment with absorber be-
hind the L-slit

Within the quantum mechanical formalism the loss of interference can be explained by

the introduction of unpredictable and uncontrollable phase factors ↵, � into the wave

function of individual particles [18], such that it becomes

 0(x) =
1
p
2
('L(x) exp(i↵) + 'R(x) exp(i�)). (6)

In e↵ect, the probability P (x) for individual particles is transformed to

P 0(x) =
1

2

h
||'L(x)||

2+||'R(x)||
2+'L(x)'

⇤
R(x) exp(i[↵��])+'

⇤
L(x)'R(x) exp(i[��↵])

i
,

(7)

where in comparison to (4) only the interference terms have been altered. Because the

terms exp(i[↵ � �]) and exp(i[� � ↵]) will fluctuate in a random and uncontrollable

way from run to run and because the interference pattern is only build up by many

repetitions cycles, the interference terms will eventually average out to zero and no

interference is observed.

In the time after Einstein’s recoiling slit experiment many di↵erent experiments to

gain which-way-information, have been considered and all of these experiments agree

that as long as which-information-information is present, no interference appears. The

quantum mechanical formalism accounts for all of the experimental results.
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However, in 1971 Wootters and Zurek published an in depth analysis of Einstein’s

recoiling slit experiment in which they showed that it is possible to obtain partial which-

way information and at the same time obtain an interference pattern with a reduced

contrast [19]. The contrast of an interference pattern, also called fringe-visibility or

just visibility, is defined by4:

V =
Imax � Imin

Imax + Imin
(8)

A simple way to obtain partial which-way-information in a double-slit experiment is

to place an absorber behind one of the slits (see figure 4). If for example an absorber

behind the L-slit absorbs the particles with a 99%-e�ciency, we will know that 99%

of all particles ending up at the detection screen have come through the R-slit. It

turns out that in this case the visibility of the interference pattern is still about 20%

of it’s original visibility (with no absorber). One can show [20] that for this specific

experiment the fringe-visibility and which-way-information fulfill the trade-o↵ relation

V
2 + P

2 = 1, (9)

where P is called predictability and is defined as P = |P (R) � P (L)| with P (R) and

P (L) being the probabilities to pass through the R and the L-slit respectively. P

is interpreted as an a priori knowledge about which path a particle will take. In

the Hilbert-space representation (5) we can account for the absorber by introducing

variable coe�cients c1 and c2 such that

| i = c1 |Ri+ c2 |Li . (10)

We can then express P and V by the coe�cents c1 and c2 as P = |||c2||2 � ||c1||2| and

V = |c1c⇤2|. It follows that it is not true that interference fringes only occur under

the condition that which-way-information is totally absent. Equation (9) tells us that

there are intermediate cases, where partial which-way-information is compatible with

an interference pattern of a reduced contrast.

Nevertheless, it is important to keep in mind that as long as P 6= 1 we do not know,

which way the particle takes. This means that we do not even know whether the particle

takes one way or the other or whether it takes one way and the other at the same time.

The term which-way-information and its interpretation as a priori knowledge can in

this respect be quite misleading as it seems to suggest that there exists a specific way

4This definition applies especially to the case, where the contrast of the interference pattern is a
constant, which is not true in general.
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the particle takes and that we only have an incomplete knowledge about it. But this

is exactly what seems to be defied by the cropping up of the interference pattern as

soon as we don’t know the way a particle takes with certainty (for related discussions

see [21, 22]).

The double double-slit (DDS) experiment, which we have already mentioned in the

introduction, is capable of demonstrating an even richer trade-o↵ relation than the one

depicted in (9).

Ω
R

L

L

R

"!""

Figure 5: Schematic of the DDS experiment: A particle source ⌦ emits daughter particles, which
individually pass through a double slit array.

In the DDS experiment we consider a mother particle ⌦, which decays into two daughter

particles A and B. A and B then move individually to a double slit ensemble as shown

in figure 5. As discussed in [4], there are essentially two limiting cases:

• If ⌦ is tightly localized, there is no significant momentum correlation between

the two particles: According to Heisenberg’s uncertainty principle, the individual

momentum wave packets have a large spread and measuring through which slit

particle A has passed does not reveal through which slit B has passed and vice

virsa. If neither for particle A nor for particle B a which-way-measurement is

carried out, individual interference patterns emerge on the A and B-detection

screen.

• If ⌦ is large, the individual momentum wave packets are small enough to im-

ply a su�ciently high momentum correlation: If we carry out a which-way-

measurement on the one particle, we also know through which slit the other
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particle has passed. However, if we do not make a which-way-measurement and

only detect A and B behind their respective double slits, we find a conditional

interference pattern for A as well as for B. This means, we do not find an inter-

ference on the A or B-screen. But, if we consider only those A-runs, where B is

detected at a specific spot xBD, we find an A-interference pattern and similarly

if we reverse the rolls.

If we further include the possibility of placing absorbers behind the A-slits and B-slits,

we find the following trade-o↵ relation for the DDS experiment [23]:

P
2
i + V

2
i + V

2
AB = 1, (11)

where i 2 {A,B} and VAB is the visibility of the conditional interference pattern

described above. In terms of our Hilbert-space representation, the most general two-

qubit state can be expressed as

| ABi = c1 |RAi |RBi+ c2 |RAi |LBi+ c3 |LAi |RBi+ c4 |LAi |LBi . (12)

As has been stated in [23] we can then express Pi, Vi, and VAB in terms of the coe�-

cients c1, c2, c3, c4:
PA = |||c3||

2 + ||c4||
2
� ||c1||

2
� ||c2||

2
|,

PB = |||c2||
2 + ||c4||

2
� ||c1||

2
� ||c3||

2
|,

(13)

VA = 2|c1c
⇤
3 + c2c

⇤
4|,

VB = 2|c1c
⇤
2 + c3c

⇤
4|,

(14)

VAB = 2|c1c4 � c2c3|. (15)

The di↵erent experimental arrangements, which will either lead to perfect one particle

predictability, perfect one particle interference, perfect conditional interference or any

kind of intermediate phenomenon, can be modeled by the choice of the coe�cients

c1, c2, c3, c4. In the following, we will consider some special cases:

1. c1 = c2 = 0, c3 = c4 =
1p
2

The two-particle state is given by

| ABi = |LAi
1
p
2
(|RBi+ |LBi) (16)
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and PA = VB = 1, VA = PB = VAB = 0. This case corresponds to a measurement

configuration, where no momentum correlation between A and B exists and where

in addition we have placed a perfect absorber (100%) behind the R-slit of the

A-barrier. We thus have a perfect single-particle interference pattern on the

B-detection screen, but neither a single-particle interference pattern on the A-

screen, nor a conditional interference pattern.

2. c1 = c2 = c3 = c4 =
1p
2

The two-particle state is given by

| ABi =
1
p
2
(|RAi+ |LAi)(|RBi+ |LBi) (17)

and VA = VB = 1, PA = PB = VAB = 0. This is just the general case for a

tightly localized source ⌦, which leads to two single-particle interference patterns

as described above.

3. c1 = c4 =
1p
2
, c2 = c3 = 0

The two-particle state is given by

| ABi =
1
p
2
(|RAi |RBi+ |LAi |LBi) (18)

and VA = VB = PA = PB = 0, VAB = 1. This is the configuration, where

the source ⌦ is large and the momenta of the particles are highly correlated. In

contrast to the cases 1. and 2. all one particle quantities, i.e. VA,VB,PA and PB

vanish and only a two particle quantity, namely VAB, is di↵erent from zero. We

also notice that while in 1. and 2. the wave function | ABi could be written as a

product state, i.e. | ABi = | Ai | Bi, this is not possible anymore for the state of

equation (18), which tells us that it is an entangled state. Interestingly, it turns

out that VAB as defined in (15) coincides with the concurrence CAB for a pure

two-qubit state [23], which has been identified by Wootters as an entanglement

measure [24, 25]. A state with VAB = CAB = 1 is maximally entangled.

Besides the many experimental configurations, which we can capture in terms of cer-

tain values of the coe�cients c1, c2, c3, c4 there are also experimental changes, which
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are not captured in this way. As we have described above, in the case of a su�ciently

large source ⌦ we still have the choice whether we want to gain which-way-information

about the particles by measuring for A or B through which slit the particle goes, or we

can decide to obtain a conditional interference pattern, if our arrangement is incapable

of determining through which slit A and B pass.

Conceptually, all of these experiments tell us that there is a trade-o↵ relation between

several phenomena, which manifest itself under di↵erent experimental conditions. How-

ever, none of these experiments gives us a definite answer to our initial question. We

can either determine through which slit the particles pass, but then we loose all in-

terference phenomena or we can regain the interference at the expanse of loosing our

ability to determine through which slit the particles pass, such that we can not exclude

that they pass through both slits at the same time. It seems as if nature counts the

answer to our initial question to one of her mysteries and she is not willing to reveal

it at any price. With Bohr we could call to the phenomena, which manifest itself

under di↵erent experimental configurations complementary, saying that they mutually

exclude and complement each other5.

2.4 Interpretations

The epistemological limitation, we have been describing at the end of the preceding

paragraph, is a peculiar aspect of quantum mechanics. Bohr [17], Heisenberg [26] and

Feynman [13] beautifully demonstrated the idea that Heisenberg’s uncertainty relation

in combination with the exchange of momentum and energy in the form of quanta

with the energy E = hf and momentum ~p = ~~k, where f is the frequency and ~k

the wave-number of the associated de-Broglie-wave, makes it impossible to gain new

information about a quantum phenomenon (e.g. the interference pattern) without dis-

turbing it substantially. These heuristic considerations, which do not make use of the

full-fledged quantum formalism, still have an important lesson to teach. They illustrate

that in the quantum experiment it is in principle impossible to know certain things:

It is in principle impossible to infer which way the particle takes, when interference

is observed. It is also in principle impossible to predict the position of a particle at a

time t0 +�t, if at the time t0 a position measurement is carried out (and if �t is not

infinitesimally small)6. This situation is fundamentally di↵erent from everything we

5We won’t go into the details of Bohr’s conception of complementary, which is quite complex. For
a short but concise discussion see [21].

6which is just a restatement of Heisenberg’s uncertainty principle
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know in the context of classical physics. In classical physics we might also be unable to

infer or to predict certain properties of a physical system, but there in principle it is

always possible to rearrange our measurement apparata such that we are able to infer

or predict the missing piece of information without disturbing the observed phenomena

substantially.

An epistemological limitation per se does not mean that the world does not have a

well-defined structure beyond that boundary of our knowledge. For Kant for example

it was clear that we could know nothing about the thing in itself. But he neverthe-

less considered the question for the nature of the thing in itself as very meaningful.

However, one might also take the position that the epistemological boundary of the

world coincides in some sense with the ontological boundary of the world and that it

is meaningless to speak of properties, which can in principle not be known. This is

essentially the perspective Bohr and Heisenberg had on quantum mechanics. Accord-

ing to this interpretation, it is meaningless to ask whether the particle went through

one slit or the other or whether it went through one slit and the other at the same

time. Nature simply does not have an answer to that question. The appeal of that

position in the context of quantum mechanics stems from delivering a kind of expla-

nation for the unfamiliar epistemological limitations inherent to quantum mechanical

observations. For if there exists no representable and analyzable structure beyond it

becomes obvious that we are unable to find such a structure.

Including our previous remarks, we can essentially distinguish three di↵erent branches

of possible interpretations of quantum mechanics7:

• Formalistic Interpretations (IF): Interpretations, which interpret the quan-

tum formalism as some kind of description of physical reality. This includes

especially all interpretations, which consider the wave function as a description

of the actual state of the physical system.

• Hidden Variables Interpretations (IHV): Interpretations, which assume that

there is a more detailed description of physical reality than given by the wave-

function, e.g. Bohmian Mechanics.

• Epistemic Interpretations (IE): Interpretations, which state that it is mean-

ingless to speak of properties, which can not be known in principle.

7With interpretation we mean theories, which lead to the same experimental predictions (as quan-
tum mechanics), but di↵er on their meta-level and therefore in their conceptual understanding of the
predictions. For a similar account see [27].
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Note that (IE) does not necessarily imply that the wave function is nothing more but

a representation of knowledge. For David Bohm for example (IE) implied that [28] the

wave function is an abstraction, providing a mathematical reflection of certain aspects

of reality, but not a one-to-one mapping, which is quite a di↵erent conception.

2.5 The Problem with the Wave Function

Since the wave function accounts for all possible predictions, (IF) seem to be promising

candidates for an appropriate interpretation of quantum phenomena. However, taking

the wave function as a description of physical reality turns out to be problematic for

several reasons. According to the standard formulation of quantum mechanics along

the lines of von Neumann [29], there exist two dynamical laws for the time evolution

of the wave function:

1. Linear dynamics:

As long as no measurement is carried out, the state | i evolves in a linear and

deterministic way. That is | (t1)i = U(t1, t0) | (t0)i, where U(t1, t0) is a unitary

operator, given by:

U(t1, t0) = exp
⇣
�

i

~H(t1 � t0)
⌘

(19)

with H being the Hamilton-operator of the system.

2. Nonlinear collapse dynamics:

If a measurement is carried out at the time t the wave function | (t)i collapses

with the probability P (ai) = || hai| (t)i ||2 nonlinearly and instantaneously to an

eigenstate |aii of the observable A being measured.

The most straight forward reason, why these two dynamical laws are problematic is

the measurement problem: According to the linear dynamics of the wave function, two

physical systems, which interact with each other, become entangled. If one assumes,

that measurement devices are physical systems8 this is problematic. According to the

first dynamical law, by interacting with the object under observation, a measurement-

device should end up in an entangled state with the observed object, where neither the

measuring device nor the object under investigation is in a well-defined state. But this

directly contradicts the prediction of the second dynamical law. Thus, as long as no

8Given that we normally think of measurement devices as conglomerates of physical systems,
namely electrons, protons and neutrons, this is a reasonable assumption.
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criterion is given, which tells us why measurement-devices are distinct from ordinary

physical systems, standard quantum mechanics leads to contradictory predictions.

It was this contradiction, which led Everett to the formulation of his theory of the

universal wave-function [30]. Everett’s strategy to avoid the measurement problem is

essentially to keep the wave-function as a description of physical reality, but to drop

the collapse dynamic. However, Everett’s theory and it’s successors have their own

problems with explaining why we have determinate experiences in a wavefunction-

universe [31]. The same holds true for all considerations, which try to explain the

classical appearance of the macroscopic world by invoking decoherence. Decoherence

simply does not solve the measurement problem [32].

Note however that the problem arises in the first place from interpreting the wave

function as a description of physical reality. If we rather consider the wave function as

a tool to calculate the probabilities for well-defined observable phenomena, the problem

disappears; no collapse is needed then.

There is also another problem with the collapse dynamic: It is not Lorentz-covariant.

When an electron is found on the detection screen, its wave function instantaneously

goes to zero everywhere except at the point where it is found. However, in special

relativity di↵erent observers have di↵erent standards of simultaneity, such that what

is simultaneous in one frame of reference is not simultaneous in another frame and

thus a wave-function, which instantaneously goes to zero everywhere, but at a single

point, can not exist in special relativity [33, 34]. Again, the problem lies not in the

quantum mechanical probabilities, but rather in the interpretation of the wave function

as physically real. We will return to this issue later.

These considerations make clear that it is desirable to find alternatives to (IF). One

way to try to find a way out of these a↵airs, is to hypothesize that real particles

are characterized by properties, which have specific values at all times and that the

indefiniteness of the wave function, the collapse postulate and all of the follow-up

problems are just artifacts of an incomplete formalism. This strategy, which matches

the (IHV) type of interpretation, is basically what Einstein, Podolski and Rosen (EPR)

had in mind when they presented their argumentation in favor of hidden variables.

2.6 EPR

In their seminal paper [35] EPR argue that quantum mechanics does not provide a

complete description of physical reality. More concretely, EPR show that according
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to a specific reality criterion the wave function does not provide complete informa-

tion about the values of all in reality existing physical quantities of a physical system.

EPR’s reality criterion (RC) reads:

(RC): If, without in any way disturbing a system, we can predict with certainty (i.e.

with probability equal to unity) the value of a physical quantity, then there exists an

element of reality corresponding to that quantity.

If we carry out a measurement on a physical system, which is prepared in the state

|aii, where |aii shall be an eigenstate to some observable A, we find with certainty

(probability equal to unity) the eigenvalue ai. However, if an observable B, which does

not commute with A ([A,B] 6= 0) would be measured, no definite prediction for the

outcome of the measurement could be made. According to (RC), while the physical

quantity A has to be considered an element of physical reality, the physical quantity

B can not be predicted with certainty from the wave function and therefore fails to

meet the criterion, if the wave function is a complete description of reality. EPR thus

conclude: From this follows, that either

1. the quantum mechanical description of reality given by the wave function is not

complete or

2. when the operators corresponding to two physical quantities do not commute the

two quantities cannot have simultaneous reality.

EPR’s paper is about showing that 1. is true. Their strategy to achieve this is to prove

that 2. must be wrong and therefore 1., being the only alternative, must be true. To

show this EPR consider a system composed of two particles A and B. They assume

that after a time t0 there is no interaction between A and B and at a time t1 (t1 > t0)

the two particles are described by the entangled wave function

 (xA, xB, t1) =

Z 1

�1
dp exp

⇣ i

~p(xA � xB)
⌘
= 2⇡~

Z 1

�1
dx�(xB � x)�(x� xA), (20)

where we have expanded the wave-function in two di↵erent bases, namely the basis of

momentum eigenstates and the basis of position eigenstates. From this wave function

two pieces of information can be obtained.

• If at t1 particle A is found to have the momentum p, a momentum measurement

on particle B at t1 gives with certainty the result �p and vice virsa.
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• If at t1 particle A is found at the position x, a position measurement on particle

B at t1 will with certainty find the particle at �x.

According to (RC) the position of B at t1 is an element of reality, if the position

of A is measured at t1 and the momentum of B at t1 is an element of reality, if the

momentum of A is measured at t1. But since there is no interaction between A and

B, whether momentum or position is measured on particle A can have no influence on

particle B and therefore, EPR conclude, both properties must be elements of reality,

which contradicts 2. and therefore proves 1.

There are a few comments in place about EPR’s argumentation. First note that if

one rejects (RC) the whole argumentation becomes invalidated. In the same year

that EPR published their paper Bohr wrote a response defending (IE) against EPR’s

argumentation [36]. Bohr’s main point was that any experimental arrangement suited

to measure one of the two non-commuting observables p and x, makes it impossible to

have any knowledge about the value of the other observable, which for Bohr meant that

any statement about the other observable is meaningless. Thus for Bohr (RC) failed

to be a su�cient reality criterion, which allowed him to reject EPR’s line of reasoning.

Besides (RC) the probably most important assumption in EPR’s argumentation is that

no interaction takes place between A and B after the time t0. How can we know that

two particles are not interacting with each other? Even if we would be able to exclude

any kind of mechanical or electromagnetic coupling between A and B, how could we

exclude that the particles are not interacting by means of some unknown kind of force

or field? Surely, in general we can not exclude such interactions. However, as long

as we adhere to SR we can argue that events, which are space-like separated, can not

exert any influence on each other.

Consider for example the spacetime-diagram in figure 6. If the A-measurement is

carried out at t1 and the B-measurement at t3 a signal, traveling with the speed of

light, could inform particle B about the A-measurement outcome, such that it could

behave correspondingly. But if, for example, the B-measurement is carried out at t2

no subluminal or luminal signal could transmit such information. Thus, by choosing a

proper spacetime-configuration one can exclude (given that SR is valid) any information

exchange between the two particles, which is su�cient to justify EPR’s no interaction

assumption.

Being more precise, the spacetime-configuration should not only exclude the possibility

that information about a measurement outcome is transmitted to the other particle

before it is detected, it should also exclude the possibility that information about the
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measurement configuration is transmitted. Thus, even if we only set the A-measurer

at t1, we want to detect particle B at t2 or earlier, such that no information about the

choice of measurement configuration can be transmitted.

!

+

+"

+#

+!

-.

Figure 6: Spacetime-diagram of possible measurement scenarios: The blue lines represent the world
lines of the particles. The dashed yellow lines symbolize the world lines of light-signals and the red
dots mark possible measurement events.

2.7 Hidden Variables and Bell’s Theorem

If one accepts (RC) and EPR’s no interaction assumption, their argumentation is valid

and there should exist a more fine-grained formalism than standard quantum mechan-

ics. Technically, all hidden variable (HV) interpretations (IHV) share the following

characteristics [37]:

• The elements of physical reality are represented by hidden variables �.

• The ensemble of identical systems is in the same macrostate, but the individual

systems on the ensemble might be in di↵erent microstates, labelled by di↵erent

values �.
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• The outcome of a measurement on an individual system is determined by the

values of �, directly in the so-called deterministic HV theories, or by means of a

probability distribution in the stochastic HV theories.

Note that according to this characterization standard quantum mechanics as discussed

in section 2.5 is a stochastic HV theory. Let us call for now all HV theories, which do

not conflict with SR, local HV theories. In 1964 Bell proved that local HV theories are

not compatible with quantum mechanics [7]. This result is known as Bell’s Theorem.

Bell proved it, by deriving an inequality (Bell’s inequality), which must be fulfilled

by all local HV theories, which however is violated by quantum mechanics. In a

series of experiments during the early 80s Alain Aspect and coworkers gave the first

experimental verification of Bell’s theorem [38, 39, 40], demonstrating that nature fully

agrees with the quantum mechanical predictions. By refining the experiments in 2015

three groups separately achieved a ”loop-hole free” experimental verification of Bell’s

Theorem [41, 42, 43]. In the following section we will consider Mermin’s proof of Bell’s

theorem [8], which will also be essential for the B-part of this thesis.

2.8 Mermin’s Proof of Bell’s Theorem

2.8.1 The Setting

Ωv
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Figure 7: Experimental set-up for Mermin’s proof of Bell’s theorem: A source ⌦ emits two spin 1
2 -

particles A,B in the singlet-state, which fly to detectors DA, DB , where the particles are measured in
one of three possible measurement-configurations ↵1,↵2,↵3 (�1,�2,�3), which are chosen freely by the
experimentalists. If spin-up is found the zero-light flashes, if spin-down is found the one-light flashes.

Mermin considers a particle source ⌦, which produces two spin 1
2 -particles (A,B) in

the singlet state:

| ABi =
1
p
2
(|0Ai |1Bi � |1Ai |0Bi), (21)
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where we have identified spin-up along some perpendicular axis to the propagation

direction with 0 and spin-down along the same axis with 1. As depicted in figure 7 the

particles fly apart to two di↵erent detectors DA and DB . The experimentalists can

choose between three di↵erent measurement settings, which are denoted by ↵1,↵2,↵3

(�1, �2, �3). Each measurement configuration corresponds to a specific orientation of a

Stern-Gerlach magnet. By turning the Stern-Gerlach magnet about 2⇡/3 in the plane

perpendicular to the axis of propagation one can switch from one setting to another.

For each measurement-configuration A and B will either be found to have spin-up

or spin-down. If spin-up is found, the detector flashes the zero-light, if spin-down is

found, the detector flashes the one-light. We will assume with Mermin that the detector

settings are chosen completely random, such that p(↵i) = p(�i) = 1/3 for all i.

If we would carry out many runs of this experiment and noted down for every run the

configuration of DA and DB, as well as which light has flashed, quantum mechanics

tells us that the data should exhibit the following two features:

• If the settings of DA and DB are the same, i.e. if i = j for ↵i and �j, the results

of the two measurers always disagree, i.e. whenever DA flashes the 0-light, DB

flashes the 1-light and whenever DA flashes the 1-light, DB flashes the 0-light.

• If one considers an arbitrary run of the experiment, the probability P (+) that

DA and DB flash the same light is given by P (+) = 1
2 .

As we will see, local HV theories can not be rendered compatible with these two

features.

2.8.2 The Quantum Mechanical Point of View

Let us start by deriving the quantum mechanical prediction. We can represent the

states of a spin-12 particle by points on the Bloch-sphere (figure 8). Let us choose to

place the spin-up state along the z-axis |0i at the north pole and the spin-down state

along the z-axis |1i at the south pole. Then, any other state can be represented by

|✓,'i = cos
⇣✓
2

⌘
|0i+ exp(i') sin

⇣✓
2

⌘
|1i , (22)

which allows a unique identification of states and points on the sphere.
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Figure 8: Bloch-sphere: Each qubit state
can be represented as a point on the Bloch-
sphere.
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Figure 9: Relevant points on the Bloch-sphere for
Mermin’s proof of Bell’s theorem. All of the points
are separated from their neighbor points by 2⇡

6 .

Preparing a spin-12 particle in the state |✓,'i and measuring the spin along the z-axis

yields spin-up with probability

P (0) = cos2(✓/2) =
1

2
(1 + cos(✓)) (23)

and spin-down with probability

P (1) = sin2(✓/2) =
1

2
(1� cos(✓)). (24)

For any state which lies on the equator it holds that P (0) = P (1) = 1
2 . Rather than

expressing all states in terms of |0i and |1i, one could choose any other two opposite

points on the sphere, which would represent the spin-up |"i and the spin-down |#i

along the axis connecting both points. We could then define angles ✓0 and '0 in order

to express all states by an expression similar to (22).

As one can verify by direct calculation, two spin-12 particles (A,B), which are initialized

in a singlet-state according to one basis (e.g. {|0i , |1i}), also form a singlet state

according to any other basis (e.g. {|"i , |#i}), such that

| ABi =
1
p
2
(|0Ai |1Bi � |1Ai |0Bi) =

1
p
2
(|"Ai |#Bi � |#Ai |"Bi). (25)
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We know that in the quantum mechanical formalism the probability P (aj, bk) to obtain

in a joint measurement the A-result aj and the B-result bk is given by:

P (aj, bk) = || haj, bk| ABi ||
2. (26)

The conditional probability P (aj|bk) to obtain aj given bk is defined by9:

P (aj|bk) =
P (aj, bk)

P (bk)
, P (bk) =

NX

j=1

P (aj, bk). (27)

Applying these laws to the singlet state directly reproduces the first feature of our

data, i.e. the perfect anti-correlation for measurements along the same axis (for the

notation see figure 9):

P
�
0[↵i]

��0[�i]
�
= P

�
1[↵i]

��1[�i]
�
= P

�
0[�i]

��0[↵i]
�
= P

�
1[�i]

��1[↵i]
�
= 0,

P
�
0[↵i]

��1[�i]
�
= P

�
1[↵i]

��0[�i]
�
= P

�
0[�i]

��1[↵i]
�
= P

�
1[�i]

��0[↵i]
�
= 1.

(28)

In order to derive the second feature of the data, note that we can define the probability

P (+) that DA and DB flash the same light by

P (+) = P (0A, 0B) + P (1A, 1B) = P (0A|0B)P (0B) + P (1A|1B)P (1B). (29)

We can then define the conditional state | Aki of particle A given that B is found in

the state |bki by the equation

| Aki :=
hbk| ABip

P (bk)
. (30)

If for example the B-spin is found to be in the state spin-up up along the axis �2 (0[�2]),

according to (30) the conditional A-spin state is spin-down along ↵2. As can be seen

in figure 9, the point on the Bloch-sphere, which represents the spin-down along ↵2

(1[↵2]) lies
2⇡
6 away from the spin-up state along ↵1 (0[↵1]) and the spin-up state along

↵3 (0[↵3]). Thus, from our discussion above, we know that the conditional probability

P (0[↵1]|0[�2]) to find spin-up for A along ↵1 under the condition that for B we have

found spin-up along �2 is given by

P
�
0[↵1]

��0[�2]
�
=

1

2
(1 + cos

⇣2⇡
6

⌘
) =

3

4
(31)

9See Appendix 5.1 for the definition of conditional probabilities
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and similarly for P (0[↵3]|0[�2]). Thus, if we take into account that all ↵i measurement

configurations are equally likely, we obtain

P
�
0A

��0[�2]
�
=

1

3

n
P
�
0[↵1]

��0[�2]
�
+ P

�
0[↵2]

��0[�2]
�
+ P

�
0[↵3]

��0[�2]
�o

=
1

3
(
3

4
+ 0 +

3

4
) =

1

2
.

(32)

But, due to the symmetry of the experiment, we obtain the same result, if we exchange

�2 with �1 or �3. We can thus conclude that P (0A|0B) = 1/2. Carrying out the same

calculation for P (1A|1B), we also find that P (1A|1B) = 1/2. Thus from equation (29)

we can conclude that

P (+) = P (0A|0B)P (0B) + P (1A|1B)P (1B) =
1

2
(P (0B) + P (1B)) =

1

2
, (33)

which reproduces the second feature of the data.

2.8.3 The Hidden Variables Point of View

The first feature of our data tells us that we know with certainty (probability equal

to unity) the spin-value of the A particle given the spin-value of the B-particle and

vice virsa, if we measure the A-spin and B-spin along the same axis. Thus, given an

appropriate spacetime-configuration, (RC) tells us that the spin-values for all three

measurement configurations are elements of reality. These elements of physical reality

should then be represented by hidden variables �.

Let us see how we come to the same conclusion even without taking (RC) for granted.

Using the notation of figure (9) we know, for example, that the conditional probability

that DA flashes the 0-light in the configuration ↵i (particle A has spin-up along the

axis ↵i) under the condition that the hidden variables are given by � and that DB also

flashes the 0-light in the configuration �i (particle B also has spin-up along the same

axis �i) is given by:

P
�
0[↵i]

���, 0[�i]
�
= 0. (34)

However, since we are only considering local hidden variables, nothing which happens

with particle B can have any influence on the A-measurement (given an appropriate

spacetime-configuration) and thus it must hold that

P
�
0[↵i]

���, 0[�i]
�
= P

�
0[↵i]

���
�
= 0 () P

�
1[↵i]

���
�
= 1. (35)
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But equation (35) tells us that the value of the A-spin along the axis ↵i is completely

determined by the hidden variables �, which is just another way of saying that the spin-

value must be encoded in the hidden variables. It doesn’t matter for our argumentation

in what kind of physical incarnation this information is encoded and we will simply say

that the particles carry instruction sets, which determine the spin-values. We might

for example write a certain instruction set for particle A as 110 saying that for ↵1 the

answer is 1, for ↵2 1 and for ↵3 0. This A-instruction set implies the B-instruction 001.

For if A and B are measured along the same axis, they must be anti-correlated. The

instruction sets can be classified into two classes:

• Class 1:

All instructions with two equal numbers: 101, 110, 011, 001, 010, 100.

• Class 2:

All instructions with three equal numbers: 111, 000.

Let us now consider the probability P (+) that DA and DB flash the same light. It

turns out that P (+) has the same value for all instructions in the same class, so it will

su�ce to consider two exemplary cases.

Let us start with the instruction (001A, 110B). For each of the nine possible joint

measurement configurations we have a certain outcome, which is determined by the

given instruction:

Configuration (DA, DB) ↵1�1 ↵1�2 ↵1�3 ↵2�1 ↵2�2 ↵2�3 ↵3�1 ↵3�2 ↵3�3

Flashing lights (DA, DB) 01 01 00 01 01 00 11 11 10

These are four cases in which A and B flash the same light and five cases in which

they flash di↵erent lights. The nine measurement configurations of DA and DB are

chosen completely random. Thus we determine that P (+) = 4
9 . This result holds true

for all other instructions from the class 1. For the class 2 we consider (000A, 111B). As

can be directly seen P (+) = 0. This implies

P (+) < 4
9 (36)

for all local HV theories. The Bell inequality (36) is violated by quantum mechanics,

which (as we have seen above) predicts that P (+) = 1
2 > 4

9 . Note that the violation of
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the inequality (36) depends strongly on the angles between the di↵erent measurement

configurations. If we would have chosen e.g. three right angled orientations of the

Stern-Gerlach magnets, we would not have found any violation.

2.9 Assumptions Underlying Bell’s Theorem

Our derivation of Bell’s inequality crucially relied on a cluster of three assumptions,

which we will now discuss in some more detail. These assumptions are statistical

independence, parameter independence and outcome independence:

• Parameter Independence:

Parameter independence states that for a given microstate � the probability for

a DA-outcome an is independent from the experimental setting �j of the device

DB:

P (an|�j,�) = P (an|�k,�) = P (an|�). (37)

We have already mentioned this condition verbally in our discussion about EPR’s

no interaction assumption in section 2.6. We said that, as long as SR is not

violated, this assumption can be assured by a proper spacetime-configuration

of the experiment. Given such a proper spacetime-configuration, equation (37)

leads to the following no-superluminal-signalling condition10:

P (an) =

Z
d�

X

m

P (an, bm|�j,�)P (�) =

Z
d�

X

m

P (an, bm|�k,�)P (�). (38)

If (38) were not true, one could send superluminal messages just by changing the

B-measurement configuration. However, note that (37) is a stronger condition

than (38), i.e. (37) can be violated, while at the same time (38) is not. Bohmian

Mechanics, for example, violates (37), but does not violate (38). This is due

to the fact that in Bohmian Mechanics it matters whether the B-measurement

or the A-measurement is carried out first [44]. The dynamic of the particles

depends on this order, which contradicts (37) and special relativity. However, as

it is impossible to know the exact state of the particles to a better degree than

10One derives (38) from (37) by the use of the equation:

X

m

P (an, bm|�j ,�) = P (an|�j ,�)
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the wave function allows, still no superluminal signaling is possible in Bohm’s

theory [45].

• Outcome Independence:

Outcome independence states that the measurement-outcomes at DA are inde-

pendent from the outcomes at DB:

P (an|bm,�) = P (ai|bl,�) = P (an|�). (39)

We have also discussed this assumptions in section 2.6. We came to the con-

clusion that special relativity assures the validity of (39) for proper spacetime-

configurations. Note that if we treat the wave function as a description of physical

reality, quantum mechanics violates (39): The probability to find ai under the

condition that particle B is measured to have the property bj and that � is given

by | ABi depends crucially on bj. The violation of (39) is directly connected to

the clinch between the collapse postulate and SR, which we discussed in section

2.5.

Parameter independence and outcome independence taken together are often referred

to as factorability or Bell locality-condition [37]. Mathematically, we can express the

factorability condition by combining (37) and (39):

P (ai|bj, �k,�) = P (ai|�). (40)

Equation (40) is the general expression of (35), which we applied in the previous

section 2.8.3. However, even if (35) is fulfilled, there is still a way to surpass our

conclusion that local HV theories must specify three-valued instructions sets in the

context of the presented experiment. The remaining loophole is a violation of statistical

independence.

• Statistical Independence:

Statistical independence states the the hidden variables � are independent from

the detector settings. We may express this condition mathematically as:

P (�|↵i, �j) = P (�) (41)
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By means of Bayes’ Theorem11 we can rewrite this assumption as:

P (↵i, �j|�) = P (↵i, �j) (42)

Let us focus on two special cases, which represent possible violations of (41) and

(42). One way to read equation (41) would be to understand it as expressing that

hidden variables (�(t)) can not be influenced by a posterior choice (at t0 > t) of

the measurement-configuration. On this interpretation a violation of (41) would

mean the existence of retrocausality. Retrocausality does not directly violate SR,

as the direction of causality does not follow from the light-cone-structure. How-

ever, retrocausality leads to various paradoxes, which would have to be resolved

by additional assumptions. Another way to understand statistical independence,

which is more explicitly expressed in (42), is that it assures that the measurement-

configurations are chosen freely. More concretely, this means that the choice of

measurement configuration does not depend on the hidden variables �. Note that

in contrast to parameter and outcome independence, which are based on an ex-

perimentally tested physical theory (SR), statistical independence is a plausability

assumption. The reason why statistical independence is assumed is simply that

most physicists deem it unlikely that the measurement configuration depends on

�. Theories, which violate statistical independence are often referred to as su-

perdeterministic theories. For a recent discussion in favor of superdeterminism

see [46].

2.10 Determinism

In the terminology of above it can be said that a HV theory is deterministic, if the

conditional probability P (ai| ↵m,�) is either equal to 0 or 1 for all possible measure-

ment outcomes ai [47]. Since physics is an empirical science one can ask under what

circumstances observational data suggest an underlying deterministic structure.

Given a repeatable experiment it might be said that determinism is suggested when-

ever two pieces of data ai and bj appear to fulfill the relationship12 P (ai|bj) is equal to

0 or 1. On the other hand, if for an event ai no event bj is found, such that P (ai|bj) is

equal to 0 or 1, this might suggest that the event ai has no deterministic origin.

The measurement results in quantum mechanical experiments come in both types. The

11See Appendix 5.1.
12The observational data in classical mechanical experiments are exactly of that type.
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singlet-state, which we considered in section (2.8) gave rise to perfectly anti-correlated

measurement results, which (as we have seen in equation (28)) fulfill the property

”P (ai|bj) equal to 0 or 1”. On the other hand, we noticed in section (2.8.2) that

pure single electron states, which are initialized in the spin-up state along the z-axis

(| (t0)i = |0zi) and measured along the x or y-axis, give spin-up 0x, 0y with probability

P (0x) = P (0y) = 1/2, such that e.g. no correlation of the form ”P (0x|bj) equal to 0 or

1” is found.

However, quantum mechanics even goes beyond that by saying that it is in principle im-

possible to prepare an experiment with the outcome probabilities P (0x) = P (0y) = 1/2,

P (0z) = 1 (as in the case of | (t0)i = |0zi) and to observe in the same experiment an

event bj such that ”P (0x|bj) equal to 0 or 1” is fulfilled. As is shown in Appendix 5.2,

this is a consequence of the trade-o↵ relation (11), which for the present case can be

rewritten as

(2PA(0x)� 1)2 + (2PA(0y)� 1)2 + (2PA(0z)� 1)2 + C
2
AB = 1, (43)

where CAB is the concurrence, which was introduced in our discussion of the DDS-

experiment in section 2.3. This means that in a world, where (43) holds, it is impossible

to find any sign of determinism for certain quantum mechanical events13, which, from an

empirical point of view, strongly suggests that these events inherently indeterministic.

To make our point more clear, let us consider the above spin-12 particle experiment with

outcome probabilities P (0x) = P (0y) = 1/2, P (0z) = 1 in a HV theory setting. For

deterministic HV theories it holds that P (0x| ↵x,�) is either equal to 0 or 1. It follows

from our above considerations that in a world, where (43) holds, this implies that

deterministic HV theories are either wrong or can not be distinguished experimentally

from (partially) indeterministic HV theories for which P (0x| ↵x,�) is not equal to 0

or 1. The crucial point here is the mentioned observation that the trade-o↵ relation

(43) entails that the two statements:

1. P (0x| ↵m,�) is either equal to 0 or 1.

2. P (0x) = P (0y) =
1
2 , P (0z) = 1.

are incompatible, if � is experimentally available. From this follows that either � can

be determined experimentally, which would imply that P (0x| ↵x,�) can not be equal

13For example, the event 0x in an experiment, which is characterized by outcome probabilities
P (0x) = P (0y) = 1/2, P (0z) = 1.
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to 0 or 1 and thus prove deterministic HV theories to be wrong, or � can not be

determined experimentally, which would make deterministic HVs theories empirically

indistinguishable from (partially) indeterministic ones as defined above. This is just

another way of saying that in a world, where (43) holds, it is impossible to find any

signs of determinism for the event 0x and it was argued above that in such a world it

would be reasonable to assume (at least from an empirical point of view) that the event

0x is indeed inherently indeterministic. In general, for inherently indeterministic events

ai, it would hold that there exist no elements of reality, which could be represented by

hidden variables �, such that � determines whether ai is found or not, i.e. such that

P (ai|↵i,�) is equal to zero or one.

While the trade-o↵ relation (43) for electrons has to our knowledge not been examined

experimentally, several related trade-o↵ relations have been verified experimentally

[48, 49, 50] and there is no reason to believe that the quantum mechanical prediction

(43) would be violated. Accordingly, the given argumentation would suggest that

the event 0x in the considered experiment is an inherently indeterministic event. If

the argumentation for the spin-12 particle example can be generalized to arbitrary

quantum systems, it would furthermore be suggested that all measurement outcomes

ai, for which according to quantum mechanics in a given experiment no event bj is

found such that P (ai|bj) is equal to 0 or 1, are inherently indeterministic events.

2.11 Summary Part A

In figure 10 we have summarized the content of this chapter graphically. We started by

considering the double-slit experiment and one-particle quantum interference, which

seemed to be at odds with the idea of particles traveling on a single well-defined path,

even though we could not exclude that possibility completely. With the aid of the wave

function  (x) and Born’s rule we were able to predict the characteristic statistical be-

havior of the particles.

By considering more sophisticated experiments, such as Einstein’s recoiling-slit exper-

iment and the DDS experiment, we were confronted with certain trade-o↵ relations,

which told us that there is a certain complementarity between several phenomena,

which manifest itself under di↵erent experimental conditions. They also raised our

awareness of the fact that there ist an epistemological limitation in quantum mechan-

ics completely foreign to classical physics, which makes it impossible to answer certain

questions, such as whether the particle goes through one slit or the other or whether
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it goes through one slit and the other in the presence of interference.

By interpreting this epistemological limitation as a manifestion of the absence of an

analyzable and describable world beyond, we were led to a branch of interpretations of

quantum mechanics, which holds that it is meaningless to speak of properties, which

can not be known in principle. We referred to this branch with (IE). Since the

quantum mechanical formalism and in particular the wave function  (x) is capable of

predicting the statistical behavior of quantum particles, we introduced another branch

of interpretations (IF), which incorporated all those interpretations, which took the

wave function as a representation of physical reality.

By going into the details of (IF) we were faced with the measurement-problem and

the failure of Lorentz-covariance. We tried to overcome the problem by assuming, in

conformity with our third branch of interpretation (IHV), that the problem arises in

the first place as an artifact of an incomplete formalism. However, while non-local

HV theories as Bohmian Mechanics have their own problem with Lorentz-covariance,

Bell’s theorem tells us that local HV theories are not compatible with the predictions

of quantum mechanics. It follows that as long as the predictions of special relativity

and quantum mechanics are considered to be valid, it seems like neither (IF) nor (IHV)

can lead to a satisfactory explanation of quantum phenomena.

In principle many worlds interpretations might be able to save (IF), however, until now

no satisfactory many worlds interpretation has been found [31]. On the side of (IHV),

superdeterministic theories have the potential to incorporate the predictions of SR and

QM into a meaningful interpretation. But our argumentation in section 2.10 shows

that (super)deterministic theories are not only unsupported by present-day empirical

evidence, but also by all possible empirical evidence, as long as the relevant quantum

mechanical predictions agree with experiment.

Another way to walk the fine line between quantum non-locality and SR is (IE). By re-

fraining from the question when the values of the spins become definite, (IE) evades to

make any statements, which could contradict SR. Accordingly, (IE) essentially amounts

to saying that it is meaningless to speak of a particular time, when the values of the

spins become definite. However, most physicists would probably assume that in reality

the values of the spins become definite at a certain time (if they accept in accordance

with Bell’s theorem that they were not definite all the time). But if one assumes that

in reality the values of the spins become definite at a certain time, the contradiction

with SR is there and it does not really matter whether we can know that time or not.
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Experiment Theory
Double-Slit Experiment
Recoiling-Slit Experiment
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non-local local EPR

Complementarity

Born‘s rule

?

Superdeterminism Many Worlds
Interpretations

Figure 10: Representation of the part A content: Detailed description of the figure is given in the text
above.
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3 Part B: Results

3.1 Two-Particle Interference Thought Experiment

We consider the dissociative photoionization of an atom (or molecule) by means of a

two-color laser. According to [51] a two-color laser can be created with the help of

an optical arrangement as depicted in figure 11. A fundamental beam with a central

frequency !2 passes through a beamsplitter. Half of the beam is directed to a non-linear

optical medium, such as a BBO-crystal14, where by means of harmonic generation n

photons with the frequency of the central beam create a photon with the frequency

!1 = n ·!2. The remaining laser-light with the frequency !2 is then filtered out with a

dichroic mirror and the beam with photons of the frequency !1 is combined with the

other half of the fundamental beam of frequency !2.

Beamsplitter

Mirror

BBO crystal

Dichroic mirror

Source laser

Two-color laser

One-way
mirror

Figure 11: Schematic representation of a Mach-Zehnder interferometer for the production of two-color
laser light.

14For high harmonic generation other techniques would have to be applied, see e.g. [52, 53]
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The two-color laser is then directed towards the atom, which is assumed to be at rest

with respect to the laboratory system. In e↵ect the atom can undergo a number of

possible dissociative ionization channels. For our purpose, we want to consider a dis-

sociation, which leads to two charged, distinguishable fragments A and B.

Note that we can not distinguish a priori between the two ionization-alternatives (ion-

ization by high or by low energetic photons). Only by carrying out measurements on

the fragments of the ionization in a suitable basis15, we can know whether the atom has

been ionized by a photon with energy E1 = ~!1 or by a photon with energy E2 = ~!2.

Consequently, before the measurement the two alternatives interfere and the wave func-

tion of the ionization-fragments A and B is a superposition of two components, one

for each energy.

If we only consider the motion of the fragments perpendicular to the laser propaga-

tion axis, due to momentum conservation A and B fly in opposite directions with

approximately equal momenta. Assuming a gaussian profile for the individual A and

B wave packets and reducing our analysis to one dimension, which is chosen to be

the propagation direction of the two fragments in the plain perpendicular to the laser

propagation axis, we can model the entangled AB-wave function at a time t0 shortly

after dissociation by:

 AB(xA, xB, t0) =
1
p
2

n
'1(xA, t0)'̃1(xB, t0) + '2(xA, t0)'̃2(xB, t0)

o
(44)

with

'j(xA, t0) = (2⇡�2
0)

�1/4 exp
⇣
�

(xA � xA0j)2

4�2
0

⌘
exp

⇣
ik0j(xA � xA0j)

⌘
,

'̃j(xB, t0) = (2⇡�2
0)

�1/4 exp
⇣
�

(xB � xB0j)2

4�2
0

⌘
exp

⇣
� ik0j(xB � xB0j)

⌘
,

(45)

where the di↵erent energies E1 and E2 (with E1 > E2) are encoded in k01 and k02, which

are connected to the momenta of the particles by p01 = ~k01 and p02 = ~k02 (such that

p01 > p02). The wave function (45) can thus be understood as a superposition of two

components '1(xA, t0)'̃1(xB, t0) and '2(xA, t0)'̃2(xB, t0), whereas the first component

'1(xA, t0)'̃1(xB, t0) represents two wave packets, which travel in opposite directions

with a ”high” momentum p01, while the second component '2(xA, t0)'̃2(xB, t0) repre-

15If E1 and E2 are chosen appropriately, a simple position measurement of the fragments at a later
time t could distinguish between E1 and E2. This follows from the proportionality of energy and
momentum and the fact that if t is chosen large enough position measurements at t can be seen as
momentum measurements at t0 [54].
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sents two wave packets, which travel in opposite directions with a ”low” momentum

p02.

From the high and low momentum wave packets '1(xA, t0) and '2(xA, t0) associ-

ated with particle A and the high and low momentum wave packets '̃1(xB, t0) and

'̃2(xB, t0) associated with particle B, we can calculate the distributions ||'j(xA, t0)||2,

||'̃j(xB, t0)||2, which are normal distributions with xA0j and xB0j as mean values and

�0 as standard deviation (see figure 13a). If E1 and E2 are chosen appropriately, the

corresponding momentum distribution16 P (pA, pB, t0) = || AB(pA, pB, t0)||2 implies a

perfect AB-correlation for the two-valued momentum observables OA and OB, which

can either have the value high (H) or low (L) as explained in the caption of figure 12.

3.&

3.&

Figure 12: Density plot of momentum distribution P (pA, pB , t0) = || AB(pA, pB , t0)||2: If we define
momentum observables OA, OB , which either have the value high (H), when the momentum is found
in between the two yellow bars or low (L), when the momentum is found in between the two green
bars, OA and OB are perfectly correlated, i.e. OA = H , OB = H and OA = L , OB = L.
The parameters, which were used for the plot, are the same as the parameters given at the begin-
ning of section 3.3. The standard deviation s0 for the initial momentum distributions ||'j(pA, t0)||2,
||'̃j(pB , t0)||2 is given by: s0 = 1

2�0
.

16 AB(pA, pB , t0) is obtained from  AB(xA, xB , t0) by the application of a two-dimensional Fourier-
transform.
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If k01 and k02 are positive, the mean values of ||'j(xA, t)||2 travel in the negative x-

direction for increasing t, while the mean values of ||'̃j(xB, t)||2 travel in the positive

x-direction. Simultaneously the width of all distributions increases with t.

!

"!" "!""!# "!#

#$!" #$!# #%!# #%!"

! = !!

(a)

!

E-field chamber A E-field chamber B

"!"-∆"%"!# "!# %&%%&$"!"-∆"$

(!′ > !!)! = !′

#$!" #$!# #%!# #%!"

(b)

!

E-field
chamber A 

E-field
chamber B

(!′′ > !′)! = !′′

(c)

Figure 13: Illustration of the wave function at di↵erent times. Since the wave function  AB(xA, xB , t0)
is entangled, it is impossible to give a representation of the individual particle states, which is why
we have used the norm-square distributions ||'1(xA, t0)||2 [blue], ||'2(xA, t0)||2 [cyan], ||'̃1(xB , t0)||2

[red], ||'̃2(xB , t0)||2 [orange] to illustrate the situation. The blueish distributions are associated with
particle A, the reddish distributions with B. (a) At the time t = t0. The arrows represent the momenta
of the maxima of the distributions. (b) At t = t0 (t0 > t0). The high momentum wave packets '1(xA, t)
and '̃1(xB , t) are within the E-field chambers, while the low momentum wave packets '2(xA, t) and
'̃2(xB , t) are outside of the E-field chambers. The E-field chambers act decelerating on the wave
packets '1(xA, t) and '̃1(xB , t) with forces FEA and FEB (red arrows), while the motion of the
other two wave packets is unaltered. (c) At t = t00 (t00 > t0). The distributions ||'1(xA, t0)||2 and
||'2(xA, t0)||2 as well as ||'̃1(xB , t0)||2 and ||'̃2(xB , t0)||2 overlap.
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As shown in figure 13b, the experimentalists can apply a constant electric field of

variable strength within specific regions of space, which we will call E-field chambers.

It is possible to apply the E-fields in a small enough time window, such that only the

wave-function components '1(xA, t0) and '̃1(xB, t0) are e↵ected, while the components

'2(xA, t0) and '̃2(xB, t0) are not altered by the E-fields, where t0 (t0 > t0) is a time

within the considered time window. It follows that at a later time t00 (t00 > t0) after the

E-fields have been turned o↵ again, the components '1(xA, t00) and '2(xA, t00), as well as

'̃1(xB, t00) and '̃2(xB, t00) overlap (see figure 13c). By choosing E and t00 appropriately,

one can achieve the special case of a perfect overlap, such that

||'1(xA, t
00)||2 = ||'2(xA, t

00)||2,

||'̃1(xB, t
00)||2 = ||'̃2(xB, t

00)||2.
(46)

Conceptually, the experiment is quite similar to the DDS-experiment with a large

source ⌦ and highly correlated momenta, which we discussed in section 2.3. By

measuring whether particle B has a high or low momentum, we immediately know

whether particle A has a high or low momentum and vice virsa, which is similar to the

way which-slit-information about one particle implied which-slit-information about the

other particle. If we express the wave function (44) symbolically as

| ABi =
1
p
2
(|HAi |HBi+ |LAi |LBi), (47)

where HA, LA and HB, LB correspond to the possible values of OA and OB, equation

(47) is completely analogous to equation (18) of the DDS experiment. We only have

exchanged the slit-observables right and left with the momentum observables high and

low.

In the DDS experiment we could decide whether we wanted to determine through which

slit the particles pass or whether we would like to observe a conditional interference

pattern. Similarly, in our experiment we can erase all information about whether the

initial momentum of the particles was high or low by applying constant electric fields

such that equation (46) is satisfied and we expect to find a conditional interference

pattern, if we carry out position measurements on A and B at the time t00.
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3.2 Time Evolution

3.2.1 Methods

The time evolution of the wave function (44) can be calculated with the aid of the

corresponding two-particle propagator17 K(yA, yB, t; xA, xB, t0). As we assume that A

and B are not interacting for t � t0, the propagator factorizes and we can write:

 AB(yA, yB, t) =

Z 1

�1
dxAK(yA, t; xA, t0)

Z 1

�1
dxBK(yB, t; xB, t0) AB(xA, xB, t0).

(48)

It follows that we can first calculate the individual terms

'j(yA, t) :=

Z 1

�1
dxAK(yA, t; xA, t0)'j(xA, t0),

'̃j(yB, t) :=

Z 1

�1
dxBK(yB, t; xB, t0)'̃j(xB, t0)

(49)

and then assembly the wave function  AB(yA, yB, t) from these individual terms, such

that

 AB(yA, yB, t) =
1
p
2

n
'1(yA, t)'̃1(yB, t) + '2(yA, t)'̃2(yB, t)

o
. (50)

For the free particle (F ) and a charged particle in a constant electric field (E) the

propagators are given by18:

KF (y, t1; x, t0) =

r
m

2⇡~i�t
exp

⇣ i

~
m(y � x)2

2�t

⌘
, (51)

KE(y, t1; x, t0) =

r
m

2⇡~i�t
exp

⇣ i

~

nm(y � x)2

2�t
+

F�t(y + x)

2
�

1

24
F 2�t3

o⌘
, (52)

where m is the mass of the particle. It turns out that for a gaussian wave packet of

the form

'(x) = (2⇡�2
0)

�1/4 exp
⇣
�

(x� x0)2

4�2
0

⌘
exp

⇣
� i

p0
~ (x� x0)

⌘
, (53)

the group velocity of the packet coincides (for the free particle as well as for the particle

in the constant electric field) with the velocity of a classical particle. The classical

velocities for a free particle (vF ) and a particle in a constant electric field (vE) are

17The propagator and its basic properties are introduced in the Appendix 5.3.
18These expressions are derived in the Appendix 5.3
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given by:

vF =
p0
m
, vE =

qE

m
�t+

p0
m
, (54)

where m is the mass of the particle and q the charge. In both cases the spread of the

packets is determined by:

�(�t) = �0

s

1 +
~2�t2

4m2�4
0

. (55)

For our calculation we are only considering such cases, where for the whole time interval

during which the E-field chambers produce an electric field, the maxima of the small

momentum wave packets ('2(yA, t) and '̃2(yB, t)) are more than 3�(�t) away from the

E-field chambers, while the maxima of the high momentum wave packets ('1(yA, t) and

'̃1(yB, t)) are within the chambers and more than 3�(�t) away from the field-free outer

space. We consider the following order of events:

1. At t0 the initial state is given by (44).

2. At t1 the E-field chambers are turned on.

3. At t2 the E-field chambers are turned o↵.

4. At t3 the final position measurement is carried out.

Then, the wave function  AB(wA, wB, t3) can be assembled according to equation (50)

from the individual terms:

'1(wA, t3) =

Z 1

�1
dzAKF (wA, t3; zA, t2)

Z 1

�1
dyAKE(zA, t2; yA, t1)·

Z 1

�1
dxAKF (yA, t1; xA, t0)'1(xA, t0),

'2(wA, t3) =

Z 1

�1
dxAKF (wA, t3; xA, t0)'2(xA, t0),

'̃1(wB, t3) =

Z 1

�1
dzBKF (wB, t3; zB, t2)

Z 1

�1
dyBKE(zB, t2; yB, t1)·

Z 1

�1
dxBKF (yB, t1; xB, t0)'̃1(xB, t0),

'̃2(wB, t3) =

Z 1

�1
dxBKF (wB, t3; xB, t0)'̃2(xB, t0).

(56)

It has been proven to be useful for the numerical evaluation of the integrals to rewrite

the integral transforms in terms of a Fourier-transform (F) and a subsequent back-

transform (F�1). This allows the implementation of fast-Fourier-transforms (FFTs) in
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the numerical integration. We find that19

'j(yA, t) = F
�1
n
exp

⇣
� i~ k2

2mA
�t

⌘
F('j(xA, t0))

o
,

'̃j(yB, t) = F
�1
n
exp

⇣
� i~ k2

2mB
�t

⌘
F('̃j(xB, t0))

o (57)

for the free particle propagator and

'j(yA, t) = g(�t)F�1
n
exp

⇣
� i

h F

mA
k�t2 + ~ k2

2mA
�t

i⌘
F

n
exp

⇣
�

i

2~xF�t
⌘
'j(xA, t0))

oo
,

'̃j(yB, t) = g(�t)F�1
n
exp

⇣
� i

h F

mB
k�t2 + ~ k2

2mB
�t

i⌘
F

n
exp

⇣
�

i

2~xF�t
⌘
'̃j(xB, t0))

oo

(58)

for the constant E-field propagator, where g(�t) is given by:

g(�t) = exp
⇣ i

~

h3
2
yF�t�

13

24m
F 2�t3

i⌘
. (59)

We can thus determine the wave function  AB(xA, xB, t3) by means of the algorithm

of figure 14. From  AB(xA, xB, t3) we can determine the probability

P (xA, xB, t3) := || AB(xA, xB, t3)||
2, (60)

which is the probability to find A at xA and B at xB at the time t3. The single

particle probabilities P (xA, t3) and P (xB, t3) to find A at xA at t3 and to find B at xB

at t3 are given by:

P (xA, t3) =

Z 1

�1
dxBP (xA, xB, t3),

P (xB, t3) =

Z 1

�1
dxAP (xA, xB, t3)

(61)

and the conditional probabilities P (xA, t3|xB, t3) to find A at xA at t3 under the con-

dition that B is found at xB at t3 and P (xB, t3|xA, t3) to find B at xB at t3 under the

condition that A is found at xA at t3 are given by:

P (xA, t3|xB, t3) =
P (xA, xB, t3)

P (xB, t3)
, P (xB, t3|xA, t3) =

P (xA, xB, t3)

P (xA, t3)
. (62)

19See Appendix 5.3
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3.2.2 Algorithm

Figure 14: Algorithm for the determination of  AB(xA, xB , t3).
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3.3 Interference

For illustration purposes, we numerically evaluated our algorithm using the parame-

ters

mA = mB = me = 9.1094 · 10�31 kg,

�0 = 10µm,

xA01 = �xB01 = �100µm,

xA02 = �xB02 = �100µm,

k01 = 3.25 · k02 = �0.52 1
µm ,

t0 = 0, t1 = 2 · 10�5 s,

t2 = 2.04 · 10�5 s,

t3 = 8.14 · 10�5 s,

where t1 is the time the E-fields are turned on, t2 the time the E-fields are tuned o↵ and

t3 the time of a position measurement on particle A and B (see also the previous section

3.2). As we have already seen in figure 12, these values assure that the momentum

observablesOA andOB with the possible valuesH and L can be unambiguously defined.

The time interval �12 = |t2� t1| = 4 · 10�7 s for which the E-field chambers are turned

on, has been chosen to be rather small for computational convenience. As we will see,

this implies high E-field values, which might be di�cult to achieve in real experiments.

However, none of our results depends on this particular choice. All results could be

produced with significantly lower E-fields, which are applied over a longer period of

time. For convenience, we have also set xA01 = xA02 and xB01 = xB02 and assumed

that A and B have the same mass me.

By setting the E-fields to E = 803.605 V
µm , we satisfy equation (46) for the time t3,

leading to
||'1(xA, t3)||

2 = ||'2(xA, t3)||
2,

||'̃1(xB, t3)||
2 = ||'̃2(xB, t3)||

2.
(63)

If we now consider the two-particle position distribution || AB(xA, xB, t3)||2 for po-

sition measurements at t3, we obtain the perfect two-particle interference pattern of

figure 15.

The fringes of the interference pattern run at a 45� diagonal such that when they

are sliced vertically (fixed A-position) we obtain a conditional B-interference pattern

and when they are sliced horizontally (fixed B-position) we obtain a conditional A-

interference pattern. It has to be kept in mind that neither the A-position distribution

P (xA) nor the B-position distribution P (xB) shows any interference. They are stan-
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dard gaussian distributions. Only by considering the appropriate data-subsets, the

interference becomes visible.

Figure 15: Density plot of position distribution P (xA, xB , t3) = || AB(xA, xB , t3)||2.

In figure 16 we have plotted a conditional A-interference pattern for the fixed B-position

xB1 = 1538µm. The gaussian shape blue curve represents what we would obtain, if we

would measure for each particle whether it has a high or a low momentum before the

electric fields are applied to the system. It corresponds essentially to what we would

classically expect, if each particle either had a high or a low momentum.

By setting the electric fields of the A-chamber and B-chamber to di↵erent values,

e.g. EA = 803.605 V
µm and EB = 500 V

µm , we can regain partial information about the

initial momenta of the particles and in analogy with the DDS-experiment, we obtain

an interference pattern with a reduced visibility20. This is illustrated in figure 17.

20The interference pattern does not only have a reduced visibility, it also becomes unsymmetrical
in dependence of the di↵erence between the two E-fields EA � EB .
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Figure 16: Position distribution P (xA, xB1, t3) = || AB(xA, xB1, t3)||2. The electric field-strengths
are set to EA = EB = 803.605 V

µm . The fixed B-position is given by xB1 = 1538µm.

Figure 17: Position distribution P (xA, xB1, t3) = || AB(xA, xB1, t3)||2 with EA = 803.605 V
µm and

EB = 500 V
µm . The fixed B-position is given by xB1 = 1538µm.
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3.4 An Analogy

In order to tackle Bell’s theorem by means of our experimental arrangement, we will

focus solely on the E-field configuration, which satisfies (46), where no information

about whether the initial particle momentum was high or low is present. We can

determine the period T of the interference pattern in figure 16 by dividing the distance

between two distant interference maxima by the number of cycles between the two

maxima. We obtain T = 51.83µm. For the A-interference pattern in figure 16 we

chose the point xB1 := 1538µm as fixed B-point. If we choose a di↵erent point we will

obtain a shifted A-interference pattern with the same period. If we set, for example,

xB4 := xB1 + T/2, we obtain the anti-fringes to the interference pattern in figure 16,

i.e. maxima are shifted to minima and minima to maxima (see figure 18).

Figure 18: Fringes of P (xA, t3|xB1, t3) [orange] and and anti-fringes of P (xA, t3|xB4, t3) [blue], whereas
xB4 is defined by xB4 := xB1 + T/2.

But we can also switch the roles by considering B-interference patterns for fixed A-

positions. If we call one of the central maxima of the A-interference in figure 16 xA1

(xA1 = �1515.82µm) and define xA4 := xA1 + T/2, we can also consider the two B-

interference patterns for xA1 and xA4 respectively. As can be seen in figure 19, where we

have zoomed into the B-interference patterns, one finds again fringes and anti-fringes

and the maxima (minima) of the interference patterns coincide with our previously

considered fixed B-points xB1 and xB4!
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Figure 19: Position distributions P (xB , t3|xA1, t3) [blue] and P (xB , t3|xA4, t3) [orange]. The values
xB1 and xB4 are marked by red dashed lines.

From this follows our first observation:

Observation 1:

If we consider only those runs, where A is found at xA1 or xA4 and B is found at xB1

or xB4:

If A is found at xA1, B is found at xB1 and vice virsa.

If A is found at xA4, B is found at xB4 and vice virsa.

This observation follows from the fact that if e.g. particle A is found at xA1 the

B-interference will have a maximum at xB1 and a minimum (equal to zero!) at xB4.

Thus particle B must be found at xB1 and so on.

We can obviously also consider other pairs of points, which are seperated by T/2 and

could make the same observation. If we define, for example, the points x0
A1, x

0
A4 by (see

figure 20):

x0
A1 = xA1 +

T

4
,

x0
A4 = xA4 +

T

4
= xA1 +

3T

4

(64)
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and the points x0
B1, x

0
B4 by (see figure 21):

x0
B1 = xB1 +

T

4
,

x0
B4 = xB4 +

T

4
= xB1 +

3T

4
,

(65)

x0
A1 and x0

A2 as well as x
0
B1 and x0

B4 are separated by T/2 and observation 1 holds true

for the points x0
A1, x

0
A4, x

0
B1, x

0
B4.

!%!

!%$

!′%!!′%$
-
4

Figure 20: The points xA1, xA4, x0
A1, x

0
A4

placed on a circle with 2⇡ ⌘ T .

!&!

!&$

!′&!!′&$
-
4

Figure 21: The points xB1, xB4, x0
B1, x

0
B4

placed on a circle with 2⇡ ⌘ T .

However, what happens, if we consider e.g. the points xA1, xA4, x0
B1, x

0
B4? Mathemati-

cally, the probability21:

P↵1(xA1|x
0
B1) :=

P (xA1, t3|x0
B1, t3)

P (xA1, t3|x0
B1, t3) + P (xA4, t3|x0

B1, t3)
(66)

gives the conditional probability that A is found at xA1 under the condition that B

is found at x0
B1 and that A is found either at xA1 or xA4. Some care has to be taken

here, since the probability to find an event at an exact position is zero. However, from

an experimental point of view one would consider a grid with small bins and make

the calculation for each bin of the grid, which agrees with our numerical approach and

which is how all considered events should be understood. We can thus consider the
21Our terminology with the ↵1 in P↵1(xA1|x0

B1) will become clear in the next section.
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four probabilities P↵1(xA1|x0
B1), P↵1(xA1|x0

B4), P↵1(xA4|x0
B1) and P↵1(xA4|x0

B4). As can

be seen from figure 22, where we have plotted the A-interference patterns for fixed

points x0
B1 and x0

B4 and marked xA1 and xA4 by blue dashed lines, it holds that

P↵1(xA1|x
0
B1) = P↵1(xA1|x

0
B4) = P↵1(xA4|x

0
B1) = P↵1(xA4|x

0
B4) =

1

2
. (67)

!$" !$#

Figure 22: Position distributions P (xA, t3|x0
B1, t3) [red], P (xA, t3|x0

B4, t3) [orange]. The values xA1

and xA4 are marked by blue dashed lines.

And if we would reverse the roles of A and B, we would naturally obtain the same

result. This leads us to our second observation:

Observation 2:

If we only consider those runs, where A is found at xA1 or xA4 and B is found at x0
B1

or x0
B4:

If A is found at xA1, B is equally likely to be found at x0
B1 and x0

B4.

If A is found at xA4, B is equally likely to be found at x0
B1 and x0

B4.

If B is found at x0
B1, A is equally likely to be found at xA1 and xA4.

If B is found at x0
B4, A is equally likely to be found at xA1 and xA4.

Let us now consider a pair of spin-12 particles in the singlet-state. For particle A
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let us call the spin-up and spin-down along the x-axis xA1 and xA4 and along the y-

axis x0
A1 and x0

A4. For particle B let us call the spin-up and spin-down along the x-axis

xB4 and xB1 and along the y-axis x0
B4 and x0

B1. With this terminology we see that the

pair of spin-12 particles in the singlet-state reproduces exactly the observations 1 and 2,

whereas observation 1 corresponds to measurements along the same axis (x-axis), and

observation 2 to measurements along orthogonal axis (x and y-axis).

In analogy to the spin-12 particle, we can thus arrange all points xA, xB lying in the

intervals [xA1, xA1+T ) and [xB1, xB1+T ) on the circles in figure 20 and 21 and it is to

be expected that all predictions for two spin-12 particles in the singlet state, which are

measured along an arbitrary axis in the xy-plane, are reproduced in our experiment.

3.5 Bell’s Theorem from Quantum Interference

3.5.1 The Setting

In Mermin’s prove of Bell’s theorem we considered three A-measurement configura-

tions, ↵1,↵2,↵3 and three B-measurement configurations �1, �2, �3. In our experiment,

we will say that the configuration ↵1 is present, whenever A is found at either22 xA1

or xA4. In most repetitions of the experiment, this will not be the case, since the

A-particle will be found at some other location xA. However, every now and then the

particle will be found at xA1 or xA4 and always, when this happens, it will be said that

the measurement configuration was ↵1 and that the measurement result was 0[↵1], if A

was found at xA1 and 1[↵1], if A was found at xA4 (see figure 23). By further making

the definitions:

xA2 := xA1 +
T

6
, xA3 := xA1 +

T

3
,

xA5 := xA1 +
2T

3
, xA6 := xA1 +

5T

6
,

(68)

we can say that the configuration ↵2 is present, whenever A is found at xA3 or xA6 and

that the configuration ↵3 is present, whenever A is found at xA5 or xA2. Furthermore,

we will say that the measurement outcome is 0[↵2], if A is found at xA3, and 1[↵2], if

A is found at xA6, and that measurement outcome is 0[↵3], if A is found at xA5, and

1[↵3], if A is found at xA2 (see figure 23).

22Again, the positions xA1 and xA4 are understood as small bins in a position grid.
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Figure 23: Possible measurement settings and measurement results: Opposite points on the circle
belong to the same measurement configuration and represent di↵erent possible measurement results.

Similarly, we can define the configurations �1, �2, �3 and the corresponding measure-

ment results. We now see that the probability P↵1(xA1|xB) in (66) is the conditional

probability to find A at xA1 under the condition that B is found at xB and that the

configuration is ↵1. In the same way, we can e.g. define the probabilities P↵2(xA3|xB)

and P↵3(xA5|xB) by the equations

P↵2(xA3|xB) :=
P (xA3, t3|xB, t3)

P (xA3, t3|xB, t3) + P (xA6, t3|xB, t3)
,

P↵3(xA5|xB) :=
P (xA5, t3|xB, t3)

P (xA5, t3|xB, t3) + P (xA2, t3|xB, t3)
.

(69)

The probability P (↵1) that the configuration ↵1 is present, is given by:

P (↵1) = P (xA1) + P (xA4). (70)

Since we have chosen the values xA1 � xA6 and xB1 � xB6 such that they all lie in a

small neighborhood around the maximum of the gaussian distributions P (xA, t3) and
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P (xB, t3), we can state to a good approximation that

P (↵1) = P (↵2) = P (↵3),

P (�1) = P (�2) = P (�3).
(71)

Equation (71) says that all measurement configurations occur with the same likelihood,

which agrees with the setting in Mermin’s proof. However, while in Mermin’s proof

there is an external agent, who freely chooses a specific measurement configuration, in

our experiment the configuration is directly generated by the quantum process under

consideration. As we will see in section 3.5.3, this di↵erence to Mermin’s original pro-

posal is significant.

We also note that in our experiment no event � exists, such that the probabilities

P (↵i|�) and P (�i|�) are equal to 0 or 1. According to our discussion about deter-

minism in section 2.10 this suggests that the events ↵1,↵2,↵3, �1, �2, �3 are inherently

indeterministic. We will return to this observation in sections 3.5.3 and 4.

By adapting Mermin’s phrasing of the setting in terms of detectors DA and DB, which

can flash two di↵erent lights associated with the outcomes 0 and 1, we can formulate

in analogy to section 2.8 the following two predictions:

• If the settings of DA and DB are the same, i.e. if i = j for ↵i and �j, the results of

the two measurers always agree, i.e. whenever DA flashes the 0-light, DB flashes

the 0-light and whenever DA flashes the 1-light, DB flashes the 1-light.

• If one considers an arbitrary run of the experiment, the probability P (+) that

DA and DB flash the same light is given by P (+) = 1
2 .

Note that while in Mermin’s prove in section 2.8 the first feature expressed a perfect

anti-correlation, we are now considering a perfect correlation. If we can show that the

quantum mechanical prediction for our experiment reproduces these two features and

that the local HV prediction does not, we have proven Bell’s theorem in the context of

our experiment.

3.5.2 The Quantum Mechanical Point of View

We have already proven in section 3.4 that the first feature is fulfilled (this was ob-

servation 1). So we need only to show that the second feature is fulfilled as well. In

analogy to section 2.8.2, we will consider the individual case that for particle B we
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find 0[�2] ⌘ xB3 and generalize from there. In figure 24 we see the A-interference

pattern for fixed position xB3. We have indicated xA1 (0[↵1]) and xA4 (1[↵1]) by blue

dashed lines (configuration ↵1) and xA5 (0[↵3]) and xA2 (1[↵3]) by green dashed lines

(configuration ↵3). One can see that

P↵1(xA1|xB3) = P↵3(xA5|xB3) (72)

by noting that the red line of the interference pattern crosses the blue dashed line to

the left of the figure (indicating xA1) at the same y-value as it crosses the green dashed

line to the right of the figure (indicating xA5).

!$" !$% !$# !$&

Figure 24: Position distribution P (xA, t3|xB3, t3): xA1 and xA4 are indicated by blue dashed lines and
xA5 and xA2 by green dashed lines.

The calculation yields

P↵1(xA1|xB3) = P↵3(xA5|xB3) =
1

4
. (73)

According to our identification in figure 23 this is equivalent to

P
�
0[↵1]

��0[�2]
�
= P

�
0[↵3]

��0[�2]
�
=

1

4
. (74)

Equation (74) states that the probability thatDA flashes the 0-light in the configuration
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↵1 under the condition that DB flashes the 0-light in the configuration �2 is equal to

1/4 and similarly for the configuration ↵3. Since all of our configurations ↵1,↵2,↵3 are

equally likely, it follows that

P
�
0
��0[�2]

�
=

1

3

n
P
�
0[↵1]

��0[�2]
�
+ P

�
0[↵2]

��0[�2]
�
+ P

�
0[↵3]

��0[�2]
�o

=
1

3
(
1

4
+ 1 +

1

4
) =

1

2
.

(75)

By repeating the calculation for �1 and �3, we obtain the same result and thus conclude

that P (0A|0B) = 1/2. Carrying out the same calculation for P (1A|1B) we also find that

P (1A|1B) = 1/2 and from equation (29), which we have introduced in section 2.8, we

obtain:

P (+) = P (0A|0B)P (0B) + P (1A|1B)P (1B) =
1

2
(P (0B) + P (1B)) =

1

2
(76)

Equation (76) proves that the quantum mechanical predictions necessary for Mermin’s

proof of Bell’s theorem are reproduced in the context of our experiment.

3.5.3 The Hidden Variables Point of View

In Mermin’s proof of Bell’s theorem in section 2.8.3, we considered instruction sets,

which determined the values for all three measurement configurations ↵1,↵2,↵3 (�1,

�2, �3). By considering the statistics for these three-valued instruction sets, we derived

the inequality P (+) < 4
9 , which is violated by the quantum mechanical prediction

P (+) = 1/2.

We came to the conclusion that local HV theories necessarily imply three-valued in-

struction sets on the basis of the three assumptions: parameter independence, outcome

independence and statistical independence (see section 2.9). Parameter independence

taken together with outcome independence was called factorability. In our experiment

factorability amounts to the assumption that

P↵l
(xAi|�, xBj) = P↵l

(xAi|�), (77)

which says that the location, where particle A is detected, does not depend on the

location, where particle B is detected. Because xBj and xAi are determined at the

same time t3, the A and B-measurement events are space-like separated, such that the

B-value xBj (which also determines the measurement configuration �k) can not have
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any influence on the A-value xAi. We thus conclude that parameter independence and

outcome independence are satisfied in the context of our experiment. It remains to

show that statistical independence is fulfilled as well.

However, as was already foreshadowed in section 3.5.1, statistical independence takes

on quite a di↵erent appearance than in Mermin’s proofs of Bell’s theorem. As we have

discussed in section 2.9, statistical independence is a plausibility assumption, which is

based on the apparent independence of the observer, who determines the measurement-

configuration, and the particle, which is being observed. But since in our experiment

the measurement configuration is generated by the particle itself, this independence

is lost and without any additional argument statistical independence can not be as-

sumed.

But if statistical independence is not a justified assumption in our experiment, the

measurement configurations ↵, � could depend on the hidden variables �, such that

↵ = ↵(�) and � = �(�), and it would be possible to account for the two features of the

quantum mechanical data by assuming for example the existence of two-valued instruc-

tion sets for each particle, where one value determines the measurement configuration

and the other value the measurement outcome. But then the reasoning of section 2.8.3

brakes down and the inequality P (+) < 4
9 can not be derived. We thus see that the loss

of independence between the entity, which determines the measurement-configuration,

and the entity, which is being observed, undermines the plausibility of statistical inde-

pendence and thereby overthrows our attempted proof of Bell’s Theorem.

However, the situation changes completely, if the events ↵i, �j are inherently inde-

terministic: According to our definition of inherently indeterministic events in section

2.10 an event ai is inherently indeterministic, if there exist no elements of reality, which

could be represented by hidden variables �, such that � determines whether ai is found

or not, i.e. such that P (ai|↵i,�) is equal to zero or one. Thus, if ↵i, �j are inherently

indeterministic events, they can not be encoded in the HVs � and in e↵ect local HV

theories must specify at least three-valued instruction sets in order to reproduce the

first feature of the quantum mechanical data23. But then, also the reasoning of section

2.8.3, which led to the inequality P (+) < 4
9 and thereby to the proof of Bell’s Theorem,

can be fully adopted.

As we have already mentioned in section 3.5.1, the argumentation in section 2.10 in-

deed suggests that the events ↵i, �j are inherently indeterministic. However, as we will

discuss in some detail in section 4, the argumentation as it stands is not su�cient.

23See section 2.8.3 for a remainder of the connection between three-valued instruction sets and the
first feature of the quantum mechanical data.
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3.6 Experimental Variation

Our experimental scheme was based on perfect position measurements: At t3 the par-

ticle is found somewhere. It might be rather di�cult to implement such measurements

experimentally. More realistically would be a scenario, where two detectors are placed

at the fixed locations xDA and xDB on opposite sites of the source, as it would e.g. be

the case with a reaction microscope (ReMi) [55]. For this set-up, rather than consider-

ing the xA and xB dependent distribution P (xA, t3|xB, t3), one would like to calculate

the distribution P (xDA, t|xDB, t0) to find the particle A at xDA at the time t under the

condition that the particle B is found at xDB at the time t0, as a function of t and

t0. A necessary condition to adopt our previous argumentation to that case is that

the spatial two particle interference extends to a temporal two particle interference, if

the time of arrival (TOA) at a fixed detector location is measured. That this condi-

tion is fulfilled can be seen in figure 25, where we have plotted the probability density

|| AB((xDA, t), (xDB, t0))||2 with  AB((xDA, t), (xDB, t0)) being given by:

 AB((xA, t), (xB, t
0)) =

1
p
2

n
'1(xA, t)'̃1(xB, t

0) + '2(xA, t)'̃2(xB, t
0)
o
. (78)

Figure 25: Density plot of || AB((xDA, t), (xDB , t0))||2 as a function of t and t0.
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We see that slicing the interference pattern vertically (fixed time t for particle A), as

well as slicing the interference pattern horizontally (fixed time t0 for particle B), leads

to a conditional interference pattern. However, it should be noted that to produce

quantitative results the calculation of || AB((xDA, t), (xDB, t0))||2 does not su�ce. The

problem is that implicitly we are still considering perfect position measurements, only

that now they are carried out at di↵erent times. It turns out that there exist several

inequivalent theoretical approaches to calculate the TOA and there is no universally

agreed-on solution. For a recent approach and further references see [56].

It should also be mentioned that since we now observe the particles at di↵erent times

t, t0, one has to make sure that the detection events are still space-like separated. For

if they are not, factorability can not be assumed anymore.
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4 Summary and Outlook

In this thesis the connection between quantum interference and Bell’s Theorem was

investigated. While in the part A of this thesis, the meaning of quantum interference

and Bell’s Theorem for the discussion about the interpretation of quantum mechanics

was discussed, in the part B of this thesis a two-particle quantum interference thought

experiment was developed and the connection between quantum interference and Bell’s

Theorem was investigated by asking, whether Bell’s Theorem can be proven from the

available two-particle quantum interference in the considered thought experiment.

By constructing an analogy between measurements on spin-12 particles in a Stern-

Gerlach magnet and the position measurements in the considered thought experiment,

it was found that Bell’s theorem can be proven in the context of our thought experiment,

if certain events in the considered thought experiment are inherently indeterministic.

It remains the question in how far this assumption (that the relevant events are in-

herently indeterministic) is justified. While there is certainly no empirical evidence

against it, it is also di�cult (if not impossible) to exclude the possibility of an under-

lying deterministic origin of these events. In this respect the argumentation in section

2.10, which relied on quantum mechanical complementarity and more specifically the

trade-o↵ relation (43), was not able to rule out determinism in principle. However,

by showing that in a world, where (43) holds, it is in principle impossible to observe

any sign of determinism for certain quantum mechanical phenomena, at least from an

empirical point of view a strong argument for the inherent indeterminism of certain

quantum mechanical phenomena has been presented.

But even if it is granted that events, for which in principal no sign of determinism can

be found, are inherently indeterministic, it is not clear, whether the relevant events

in our thought experiment belong to that category. This follows on one hand from

the fact, that the trade-o↵ relation (43) has only been tested for a small number of

physical systems and that further empirical evidence for the correctness of (43) would

be needed and on the other hand from the unproven assumption that the generalization

from spin-12 particles to more general quantum systems in section 2.10 was valid. While

we believe that further experimental tests will not find any violation of the quantum

mechanical prediction (43) and that at least for the relevant events in our thought

experiment the generalization was valid, it is up to further research to close these

loopholes.
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It should also be mentioned that even though the analysis of this thesis was focussed

on a specific experimental configuration, the analogy between spin measurements in

an orientable Stern-Gerlach magnet and position measurements in two-particle inter-

ference experiments should hold for all two-particle interference experiments, which

are conceptually similar to the DDS experiment with highly correlated momenta. One

could, for example, use the same analogy for the DDS-experiments with photons [2] or

electrons [3], which have already been realized experimentally.

Another interesting line of further research in connection to our thought experiment

could be to consider the possibility of active choices in terms of applying E-fields with

di↵erent strengths. Since the main reason for the necessity of invoking indetermin-

ism was the ”static character” of our experiment, which did not involve choices of

measurement configurations by external agents, this could open new doors for a more

traditional proof of Bell’s Theorem, where statistical independence is made plausible

by a proper spacetime configuration and the free choices of external observers.
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5 Appendix

5.1 Conditional Probabilities

This section is meant to clarify our notation for conditional probabilities and to recall

some basic properties.

We express the conditional probability that A is true given that B is true by the

symbol P (A|B) or sometimes also in the more compressed form PB(A). Formally, the

conditional probability P (A|B) is defined by the equation

P (A|B) =
P (A,B)

P (B)
, (79)

where P (B) is the probability, that B is true and P (A,B) is the probability that A

and B are true. From the definition (79) follows the identity

P (A,B|C) = P (A|B,C)P (B|C). (80)

If P (A|B,C) = P (A|B) one might say that the condition B screens o↵ the condition

C with respect to the proposition A, i.e. adding the condition C does not change

anything about the probability of A. In this case (80) simplifies to

P (A,B|C) = P (A|B)P (B|C). (81)

Another important identity, which also follows from the definition (79) is:

P (A|B) =
P (B|A)P (A)

P (B)
. (82)

Equation (82) is known as Bayes’ Theorem.

5.2 Quantitative Complementarity

Considering a spin-12 system, we show that in quantum mechanics it is impossible to

prepare an experiment with outcome probabilities P (0x) = P (0y) = 1/2, P (0z) = 1

and simultaneously fulfill that P (0x|bj) is equal to 0 or 1 for some measurable event bj,

where e.g. P (0x) is the probability to find spin-up along the x-axis.
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In order to show this, we consider a bipartite physical system AB. The result then

follows as a direct consequence of the trade-o↵ relation (11), which was:

P
2
i + V

2
i + C

2
AB = 1, (83)

where CAB is the two qubit concurrence, which as we have mentioned in section 2.3 is

an entanglement measure and fulfills CAB = 0, if and only if the state of the system is

separable. We recall that for the two qubit state

| ABi = c1 |0Ai |0Bi+ c2 |0Ai |1Bi+ c3 |1Ai |0Bi+ c4 |1Ai |1Bi (84)

the predictabilities Pi, visibilities Vi, and the concurrence CAB are given by:

PA = |||c3||
2 + ||c4||

2
� ||c1||

2
� ||c2||

2
|

PB = |||c2||
2 + ||c4||

2
� ||c1||

2
� ||c3||

2
|

(85)

VA = 2|c1c
⇤
3 + c2c

⇤
4|

VB = 2|c1c
⇤
2 + c3c

⇤
4|

(86)

CAB = 2|c1c4 � c2c3| (87)

As one can show by using the above definitions, it holds that P2
A +V

2
A = ||~rA||2, where

~rA is the Bloch vector of the A-system, which can be used to parametrize all reduced

single qubit density matrices ⇢A. Since ~rA can be written as ~rA = 2~PA �~1 [57], where
~PA = (PA(0x), PA(0y), PA(0z)) and ~1 = (1, 1, 1), it follows that

P
2
A + V

2
A = (2PA(0x)� 1)2 + (2PA(0y)� 1)2 + (2PA(0z)� 1)2 (88)

and combining equation (88) with equation (83) we can write

(2PA(0x)� 1)2 + (2PA(0y)� 1)2 + (2PA(0z)� 1)2 + C
2
AB = 1. (89)

A similar relation holds for the B-system. We will assume |0Ai to be the spin-up state

along the z-axis for the system A. The system B we want to treat as an environment,

which (in dependence of the coe�cients c1, c2, c3, c4) is coupled with a specific strength

to A. We know that the above probabilities P (0x) = P (0y) = 1/2, P (0z) = 1 are

65



produced, if the two-particle system is initialized in the separable state

| AB(t0)i = exp(i') |0Ai | Bi , (90)

where ' is an arbitrary phase factor and | Bi is an arbitrary state of the environment

B. However, in this case quantum mechanics predicts that no event bj can be found

such that P (0x|bj) is equal to 0 or 1. We thus ask for a state | ̃AB(t0)i such that both

conditions are fulfilled and we will show that such a state can not exist.

First we note that no separable state can su�ce. For any A-state preparation, which

we could identify24 with bj such that P (0x|bj) is equal to 0 or 1 (one would need

to prepare a state of the form exp(i') |0xi or exp(i') |1xi) implies a change of the

probabilities P (0x) = P (0y) = 1/2, P (0z) = 1 and as long as the state is separable no

B-measurement result can fulfill the relation P (0x|bj) is equal to 0 or 1. We thus have

to conclude that | ̃AB(t0)i must be entangled. However, entanglement implies that

C
2
AB > 0 (91)

and P (0x) = P (0y) = 1/2, P (0z) = 1 implies that

(2PA(0x)� 1)2 + (2PA(0y)� 1)2 + (2PA(0z)� 1)2 = 1, (92)

which leads to a contradiction with equation (89) and therefore proves our claim.

5.3 The Propagator

In this section we introduce basic properties of the quantum mechanical propagator and

derive certain identities, which were used in section 3.2.

We can define the (one-dimensional) propagator K(y, t1; x, t0) by the equation

 (y, t1) =

Z 1

�1
dxK(y, t1; x, t0) (x, t0). (93)

Equation (93) tells us that the value of the wave function at (y, t1) is the sum over all

the values of the wave function  (x, t0) for all x weighted with the factor K(y, t1, x, t0).

One way to think of equation (93) is in terms of Huygen’s principle for matter waves

24In this case bj is understood as the observable ”preparation-event” of the quantum system, e.g.
the configuration of the electron source, which implies a certain spin-orientation etc.
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[58]. We can find an explicit expression for the propagator as follows: By resolving the

wave function  (x, t0) into a superposition of energy eigenstates, we find that

 (x, t0) =
X

n,l

↵(n, l)'nl(x), (94)

where 'nl(x) are energy-eigenstates with the energy En and the prefactors ↵(n, l) are

complex-valued coe�cients. As the energy might be degenerate, another parameter l

distinguishes the eigenfunctions with the same energy. The time evolved state  (y, t1)

can be expressed as

 (y, t1) =
X

n,l

↵(n, l) exp
⇣
�

i

~En(t1 � t0)
⌘
'nl(y). (95)

We further know that by definition

↵(n, l) =

Z 1

�1
dx'⇤

nl(x) (x, t0) (96)

and substituting equation (96) into equation (95) leads to:

 (x, t1) =

Z 1

�1
dx

X

n,l

'nl(y)'
⇤
nl(x) exp

⇣
�

i

~En(t1 � t0)
⌘
 (x, t0). (97)

Comparison with (93) gives the following expression for the propagator in terms of

energy eigenfunctions:

K(y, t1; x, t0) =
X

n,l

'nl(y)'
⇤
nl(x) exp

⇣
�

i

~En(t1 � t0)
⌘
. (98)

Another way to express the quantum mechanical propagator is given by Feynman’s

path integral formalism [58]. Symbolically, one can write:

K(y, t1; x, t0) = N

Z
Dx exp

⇣ i

~S�[y, t1; x, t0]
⌘
. (99)

According to Feynman, the propagator can be understood as a sum over paths, where

each path � contributes a summand of the form N� exp(
i
~S�[y, t1; x, t0]). Here, N� is a

normalization constant and S�[y, t1; x, t0] is the action along the path � with end-points
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y and x. It holds accordingly that

K(y, t1; x, t0) =
X

�

N� exp(
i

~S�[y, t1; x, t0]). (100)

By considering time-steps ti, which are separated from each other by the small interval

✏, and then taking the limit ✏ ! 0, it can be shown that25 equation (100) can be

rewritten as

K(y, t1; x, t0) = lim
✏!0

⇣2⇡i~✏
m

⌘N
2

Z Z Z
... exp

⇣ i

~S[y, t1; x, t0]
⌘
dx1dx2...dxN�1. (101)

Equation (101) is equivalent to the symbolical expression (99). The proof that expres-

sion (101) fulfills (93) is for example given in [58].

5.3.1 Free Particle

For the free particle the energy eigenfunctions are given by:

'p(x) = exp
⇣
�

i

~px
⌘
. (102)

Plugging these relations into (98) the free particle propagator turns out to be:

KF (y, t1; x, t0) =

Z 1

�1
dp exp

⇣ i

~p(y � x)
⌘
exp

⇣ i

~
p2

2m
�t

⌘
. (103)

The integrand in (103) is a gaussian function with respect to momentum p and the

integration can be carried out directly, which leads to

KF (y, t1; x, t0) =

r
m

2⇡~i�t
exp

⇣ im
2~

(y � x)2

�t

⌘
. (104)

We could have equally well evaluated the path integral

KF (y, t1; x, t0) = N

Z
Dx exp

⇣Z tN

t0

dt
1

2
mẋ2

⌘
, (105)

25We have set t1 = tN and y = xN , x = x0. Equation (101) is only true if the lagrangian is of the
form:

L =
1

2
mẋ2

� V (x)

which, however, covers all the relevant cases.

68



which would have given the same result (104).

5.3.2 Particle in a Constant Electric Field

There exist several equivalent approaches to derive the propagator for the particle in a

constant electric field [59, 60]. We will consider Feynman’s path integral method. The

one dimensional Lagrangian for a constant force F = qE, where q is the charge of the

particle and E is the electric field strength of the electric field is given by:

L = T � V =
1

2
mẋ2 + Fx. (106)

We want to consider this Lagrangian for all paths from a specified starting point x0

to a specified endpoint xN . We can parametrize these paths by thinking of all paths

as deviations y from the classical path xcl. With this conception we can rewrite the

lagrangian as

L =
1

2
m(ẋcl + ẏ)2 + F (xcl + y) =

⇣1
2
mẋ2

cl + Fxcl

⌘
+
⇣
mẋclẏ + Fy

⌘
+

1

2
mẏ2. (107)

The time integral over the second term on the right hand side of (107) is zero, as can

be seen by partial integration:

Z tN

t0

dt
⇣
mẋclẏ + Fy

⌘
= mẋcly

���
tN

t0
�

Z tN

t0

dtmẍcly +

Z tN

t0

dtFy = 0, (108)

where the last equality follows from mẍcl = F and the vanishing deviation (y = 0) at

t0 and tN . The remaining path integral is

KE(y, t1; x, t0) = exp
⇣Z tN

t0

dt
⇣1
2
mẋ2

cl + Fxcl

⌘⌘
N

Z
Dy exp

⇣Z tN

t0

dt
1

2
mẏ2

⌘
. (109)

From equation (105) we know that this can be rewritten as

KE(y, t1; x, t0) = exp
⇣Z tN

t0

dt
⇣1
2
mẋ2

cl + Fxcl

⌘⌘r m

2⇡~i�t
exp

⇣im
2~

(y � x)2

�t

⌘
. (110)

To evaluate the remaining integral, we consider the classical trajectory

xcl(t) = x0 + v0(t� t0) +
1

2

F

m
(t� t0)

2. (111)
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If we set

t0 = 0; xcl(tN) := xN , (112)

we obtain

Z tN

t0

dt
⇣1
2
mẋ2

cl+Fxcl

⌘
=

m

2

(xN � x0)2

tN � t0
+
1

2
F (tN�t0)(xN+x0)�

1

24

F 2

m
(tN�t0)

3. (113)

Combining equation (113) with (110) leads to the final result:

KE(y, t1; x, t0) =

r
m

2⇡~i�t
exp

⇣ i

~

nm(y � x)2

2�t
+

F�t(y + x)

2
�

1

24
F 2�t3

o⌘
. (114)

5.3.3 Fourier-Transform Representation

We can represent the integral transform

 (y, t1) =

Z 1

�1
dxK(y, t1; x, t0) (x, t0) (115)

for the propagators KF (y, t1; x, t0) and KE(y, t1; x, t0) in terms of a Fourier-transform

(F) and a subsequent backtransform (F�1). For the free particle propagator this is

already implied by equation (103), which we can simply rewrite as

 (y, t) = F
�1
n
exp

⇣
� i~ k2

2m
�t

⌘
F( (x, t0))

o
. (116)

For the constant E-field propagator we consider the expression

KE(y, t1; x, t0) = C1

Z 1

�1
dk exp

⇣
i
h
k(y�x)+C(y, x,�t)�t�

~k2

2m
�t�

F

m
k�t2

i⌘
(117)

with

C1 =
1

2⇡
,

C(y, x,�t) =
1

~

n3

2
yF �

13

24m
F 2�t2 �

1

2
xF

o
.

(118)

By the use of (117) we can write the integral transform (115) for KE(y, t1, x, t0) as
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 (y, t) = g(�t)F�1
n
exp

⇣
� i

hF
m
k�t2 + ~ k2

2m
�t

i⌘
F

n
exp

⇣
�

i

2~xF�t
⌘
 (x, t0)

oo
;

(119)

g(�t) = exp
⇣ i

~

h3
2
yF�t�

13

24m
F 2�t3

i⌘
. (120)
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