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VECTOR FIELDS ON CANONICALLY POLARIZED SURFACES.

NIKOLAOS TZIOLAS

To my little daughter Eleonora.

Abstract. This paper investigates the geometry of canonically polarized sur-
faces defined over a field of positive characteristic which have a nontrivial
global vector field, and the implications that the existence of such surfaces has
in the moduli problem of canonically polarized surfaces.

In particular, an explicit integer valued function f(x) is obtained with the
following properties. If X is a canonically polarized surface defined over an
algebraically closed field of characteristic p > 0 such that p > f(K2

X
) and X

has a nontrivial global vector field, then X is unirational and the algebraic
fundamental group is trivial. As a consequence of this result, large classes
of canonically polarized surfaces are identified whose moduli stack is Deligne-
Mumford, a property that does not hold in general in positive characteristic.

1. Introduction

The objective of this paper is to investigate the geometry of canonically polarized
surfaces with nontrivial global vector fields and to use the results of this investiga-
tion in order to study the moduli stack of canonically polarized surfaces in positive
characteristic. An investigation with these objectives was initiated in [Tz17a] where
the case of smooth canonically polarized surfaces X with K2

X ≤ 2 has been studied.
A normal projective surface X defined over an algebraically closed field is called

canonically polarized if and only ifKX is ample andX has canonical singularities, or
equivalently the singularities of X are rational double points. Canonically polarized
surfaces are precisely the canonical models of smooth minimal surfaces of general
type and they play a fundamental role in the classification problem of surfaces of
general type. In fact, early on in the theory of moduli of surfaces of general type, it
was realized that the moduli functor of surfaces of general type is not well behaved
and that the correct objects to parametrize are not the surfaces of general type but
instead their canonical models [Ko10], i.e., the canonically polarized surfaces.

The property that a canonically polarized surface X has a nontrivial global vec-
tor field is equivalent to the property that its automorphism scheme Aut(X) is not
smooth. The reason is that the space of global vector fields of X is canonically iso-
morphic to Hom(ΩX ,OX), the tangent space at the identity of Aut(X). Moreover,
it is well known that if X is canonically polarized then Aut(X) is a zero dimensional
scheme of finite type over the base field. Therefore the existence of nontrivial global
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vector fields on X is equivalent to the non smoothness of Aut(X) and consequently
the existence of non trivial infinitesimal automorphisms of X . Considering that
Aut(X) is a group scheme and every group scheme in characteristic zero is smooth,
non smoothness of Aut(X) can happen only in positive characteristic. Therefore a
canonically polarized surface can have non trivial global vector fields only when it
is defined over a field of positive characteristic.

Examples of smooth canonically polarized surfaces surfaces with nontrivial global
vector fields exist but are hard to find since by [Tz17a, Lemma 4.1] such sur-
faces are not liftable to characteristic zero. Such examples have been found by
H. Kurke [Ku81], W. Lang [La83] and N. I. Shepherd-Barron [SB96]. Singular
examples are much easier to find and in fact there exists many examples of canoni-
cally polarized surfaces with nontrivial global vector fields that are even liftable to
characteristic zero. Such an example is given in Example 3.1.

The existence of nontrivial global vector fields on canonically polarized surfaces is
intimately related to fundamental properties of the local and global moduli functors,
in particular the moduli stack.

From the local moduli point of view, suppose that X is a canonically polarized
surface defined over a field of characteristic p. If p = 0 then the local deforma-
tion functor Def(X) is pro-representable since in this case, as explained earlier,
Hom(ΩX ,OX) = 0 and hence X has no infinitesimal deformations [Se06, Corollary
2.6.4]. The pro-representability of Def(X) implies the existence of a universal fam-
ily for the local moduli functor, an ideal solution to the moduli problem. However,
if p > 0, X may have nontrivial infinitesimal automorphisms due to the existence
of nontrivial global vector fields and hence Def(X) is not pro-representable but
only has a hull.

From the global moduli point of view, it is well known [KSB88] [Ko97] that the
moduli stack of canonically polarized surfaces is a separated Artin stack of finite
type over the base field with zero dimensional stabilizers. In characteristic zero the
stack is in fact a Deligne-Mumford stack. This implies that there exists a family
X → S such that for any variety X in the moduli problem, there exists finitely
many s ∈ S such that Xs ∼= X , up to étale base change any other family is obtained
from it by base change and that for any closed point s ∈ S, the completion ÔS,s

pro-represents the local deformation functor Def(Xs). However, none of these hold
in general in characteristic p > 0. The reason for this failure is the existence of
canonically polarized surfaces with non smooth automorphism scheme, or equiva-
lently with nontrivial global vector fields [DM69, Theorem 4.1]. In some sense then
the existence of nontrivial global vector fields on canonically polarized surfaces is
the obstruction for the moduli stack to be Deligne-Mumford.

This investigation has two main objectives.
The first objective is to find numerical conditions, which imply that the moduli

stack of canonically polarized surfaces is Deligne-Mumford and the local deforma-
tion functor pro-representable. According to [Tz17a, Theorem 3.1] such conditions
exist. However their existence is due to purely theoretical reasons and no explicit
conditions were obtained so far.

The second objective is to describe the geometry of canonically polarized surfaces
which have nontrivial global vector fields and consequently their moduli stack is
not Deligne-Mumford. The hope is to obtain a good insight in the geometry of such
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surfaces that will allow the modification of the moduli problem in order to get a
better moduli theory for these surfaces.

From the existing examples of canonically polarized surfaces with nontrivial
global vector fields and the case of smooth canonically polarized surfaces with
K2 ≤ 2, one gets the feeling that surfaces with nontrivial global vector fields tend
to be uniruled and simply connected [Tz17a]. However non uniruled examples exist
in characteristic 2 [SB96], but it is unknown if non uniruled examples exist in higher
characteristics.

The main results of this paper are the following.

Theorem 1.1. Let X be a canonically polarized surface over an algebraically closed
field of characteristic p > 0. Suppose that X has a nontrivial global vector field, or
equivalently Aut(X) is not reduced and that

p > max{8(K2
X)

3 + 12(K2
X)

2 + 3, 4508K2
X + 3}.

Then X is unirational and π1(X) = {1}.

The contrapositive of the previous theorem provides numerical condition between
K2
X , and p which implies the reducedness of the automorphism Aut(X).
If the automorphism scheme Aut(X) of X is not smooth then Aut(X) contains

a subgroup scheme isomorphic to either αp or µp. This is equivalent to say that
if X has a nontrivial global vector field then X has a nontrivial global vector field
D such that Dp = 0 or Dp = D [Tz17b], [RS76]. If µp is a subgroup scheme of
Aut(X), then finer restrictions can be imposed between K2

X and p which imply the
unirationality of X .

Theorem 1.2. Let X be a canonically polarized surface over an algebraically closed
field of characteristic p > 0. Suppose that µp ⊂ Aut(X), or equivalently that X has
a nontrivial vector field of multiplicative type and that one of the following happens:

(1) K2
X = 1 and p > 211.

(2) K2
X ≥ 2 and p > 156K2

X + 3.

Then X is unirational and π1(X) = {1}.

The previous results have immediate applications to the structure of the local
and global moduli problems of canonically polarized surfaces.

Theorem 1.3. Let X be a canonically polarized surface defined over an alge-
braically closed field of characteristic p > 0. Suppose that π1(X) 6= {1} and that

p > max{8(K2
X)

3 + 12(K2
X)

2 + 3, 4508K2
X + 3}.

Then Def(X) is pro-representable.

Theorem 1.4. Let k be a field of characteristic p > 0 and a ∈ Z such that

p > max{8a3 + 12a2 + 3, 4508a+ 3}.

Let Mntfg
a be the moduli stack of canonically polarized surfaces X with K2

X = a,
and nontrivial fundamental group. Then Mntfg

a is Deligne-Mumford.

Theorem 1.3 is an immediate consequence of Theorem 1.1 and [Se06, Corollary
2.6.4] while Theorem 1.4 is a consequence of Theorem 1.1 and [DM69, Theorem
4.1] since the assumptions in both theorems imply that the automorphism scheme
is reduced and that there exist no infinitesimal automorphisms.
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Taking into consideration the breadth of the possible values of the fundamental
group of canonically polarized surfaces (it can be finite or infinite) [BCP11], one
sees that the previous results apply to a very large class of canonically polarized
surfaces.

There are a few comments that I would like to make regarding the statement of
Theorems 1.1, 1.2.

The reason that the cases K2
X = 1 and K2

X ≥ 2 have been distinguished in
Theorem 1.2 is the following. In the proof of Theorem 1.2, it is necessary to work
with a base point free pluricanonical linear system |mKX |. If K2

X = 1, then |4KX |
is base point free while if K2

X ≥ 2, |3KX | is base point free [Ek88]. Otherwise the
proofs are identical. One could work with |4KX | in both cases and get a unified
statement but in this case the bounds obtained would be weaker.

The bounds on K2 obtained in Theorem 1.1 are not optimal if applied in specific
cases. In particular, take the case when K2

X = 1. Then Theorem 1.1 says that X
is unirational and simply connected if p > 4511. However, if X is smooth, it has
been proved in [Tz17a], that X is unirational and simply connected for all p except
possibly for p = 3, 5, 7. I believe that the methods developed in this paper to treat
singular surfaces together with the techniques in [Tz17a] will make it possible to
obtain much finer bounds than those obtained in Theorem 1.1 to the case of singular
canonically polarized surfaces with K2

X = 1.
However, I believe that the strength of Theorem 1.1 lies in its generality and not

the optimality of the bounds obtained when applied in specific cases. The results
apply to every canonically polarized surface and not to a specific class of them. In
individual cases, like the cases when K2

X ≤ 2 which have been treated in [Tz17a]
finer results might be obtained by exploiting known results about the geometry of
the surfaces in question.

A desired result would be to obtain an inequality of the form p > f(K2
X), which

implies the smoothness of Aut(X). Such a result will make it possible to obtain
a theorem like Theorem 1.4 for canonically polarized surfaces whose fundamental
group is not trivial as well. However, the bounds for p are most likely going to be
larger than those in Theorems 1.1, 1.2 making such a result weaker, since it would
cover less cases, compared to Theorems 1.1, 1.2 for surfaces whose fundamental
group is not trivial. I believe that a method based on the methods used in this
paper should provide such a bound. However, at the moment I am unable to do so.

The reason that in Theorem 1.2 I was able to obtain better bounds in the case
when X has a vector field of multiplicative type, or equivalently when µp is a
subgroup scheme of Aut(X), is that µp is a diagonalizable group scheme while αp
is not. As a consequence of this there are many integral curves of the vector field
on X , something that provides a lot of information about the geometry of X .

Finally I would like to say a few words about the proof of Theorems 1.1, 1.2.
The main idea of the proof is to show that under certain relations between K2

X and
p, if X has a nontrivial global vector field, then a linear system on X , usually of the
form |mKX | contains a one dimensional subsystem |V | consisting of integral curves
of D. Then, to show that every irreducible component of every member of |V | is
a rational curve (usually singular) which will imply that either X is birationally
ruled (impossible in the case of canonically polarized surfaces) or more relations
between K2

X and p. In the implementation of this strategy, it is necessary to find
conditions under which the vector field fixes the singular points of X and lifts to
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the minimal resolution of X , something, unlike in characteristic zero, is not always
true in positive characteristic.

This paper is organized as follows.
In Section 3 results about the number of singularities of a canonically polarized

surface and conditions under which a vector field fixes the singularities of a surface
and lifts to its minimal resolution are obtained. In particular, Theorem 3.2 provides
un upper bound for the singular points of a canonically polarized surface X as a
function of K2

X and χ(OX). The result is under the assumption that the surface
has a global vector field, an admittedly strong condition but sufficient for the pur-
poses of this paper. In characteristic zero, similar bounds have been obtained by
Y. Miyaoka [M84]. However, in my knowledge, no such results existed yet in pos-
itive characteristic. In Theorem 3.3, similar conditions are obtained which imply
that a vector field fixes the singular points and lifts to the minimal resolution. In
characteristic zero this is always true but not in general in positive characteristic.
This is exhibited in Example 3.1.

In Section 4 various results related to the geometry of integral curves of a vector
field on a surface are obtained which are needed in the proofs of Theorems 1.1, 1.2.

In Section 5 the general method and strategy for the proof of Theorems 1.1, 1.2
are explicitly described.

Sections 6, 7, 8 are devoted to the proof of the main theorems. The statements of
Theorems 1.1, 1.2 is the combination of the statements of Propositions 6.1 7.1, 8.1.

2. Notation-Terminology

Let X be an integral scheme of finite type over an algebraically closed field k of
characteristic p > 0.

Let P ∈ X be a normal surface singularity and f : Y → X its minimal reso-
lution. P ∈ X is called a canonical singularity if and only if KY = f∗KX . Two
dimensional canonical singularities are precisely the rational double points (or Du
Val singularities) which are classified by explicit equations in all characteristics by
M. Artin [Ar77].

A normal projective surface X is called a canonically polarized surface if and
only if X has canonical singularities and KX is ample. These surfaces are exactly
the canonical models of minimal surfaces of general type.

Derk(X) denotes the space of global k-derivations of X (or equivalently of global
vector fields). It is canonically identified with HomX(ΩX ,OX).

Let D be a nontrivial global vector field on X . D is called p-closed if and only
if Dp = λD, for some λ ∈ k. D is called of additive type if Dp = 0 and of
multiplicative type if Dp = D. The fixed locus of D is the closed subscheme of X
defined by the ideal sheaf (D(OX)). The divisorial part of the fixed locus of D is
called the divisorial part of D. A point P ∈ X is called an isolated singularity of
D if and only if the ideal of OX,P generated by D(OX,P ) has an associated prime
of height ≥ 2.

A prime divisor Z of X is called an integral divisor of D if and only if locally
there is a derivation D′ of X such that D = fD′, f ∈ k(X), D′(IZ) ⊂ IZ and
D′(OX) 6⊂ IZ [RS76].

The vector field is said to stabilize a closed subscheme Y of X if and only if
D(IY ) ⊂ IY , where IY is the ideal sheaf of Y in X . If Y is reduced and irreducible
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and is not contained in the divisorial part of D then Y is also an integral curve of
D.

Let X be a normal surface and D a nontrivial global vector field on X of either
additive of multiplicative type. Then D induces an αp or µp action on X . Let
π : X → Y be the quotient of X by this action [Mu70, Theorem 1, Page 104]. Let

C ⊂ X be a reduced and irreducible curve and C̃ = π(C). Suppose that C is an

integral curve of D. Then π∗C̃ = C. Suppose that C is not an integral curve of D.
Then π∗C̃ = pC [RS76].

For any prime number l 6= p, the cohomology groups Hi
et(X,Ql) are independent

of l, they are finite dimensional of Ql and are called the l-adic cohomology groups
of X . The i-Betti number bi(X) of X is defined to be the dimension of Hi

et(X,Ql).
It is well known that bi(X) = 0 for any i > 2n, where n = dimX [Mi80, Chapter
VI, Theorem 1.1].
X is called simply connected if π1(X) = {1}, where π1(X) is the algebraic

fundamental group of X .
Let F be a coherent sheaf on X . By F [n] we denote the double dual (F⊗n)∗∗.

3. Singular points of surfaces with vector fields.

Let X be a normal projective surface defined over an algebraically closed field k
of characteristic p > 0 whose singularities are rational double points. Suppose that
X has a nontrivial global vector field D. This section has two main oblectives. The
first objective is to obtain an upper bound, as a function of numerical invariants of
X , of the number of singular points of X . The second objective is to find conditions
which imply that the singular points of X are fixed points of the vector field D and
that D lifts to the minimal resolution of X .

If the base field has characteristic zero, then an upper bound of the number
of singular points of X was obtained by Y. Miyaoka [M84]. The proof of that
result uses, among other characteristic zero techniques, the Bogomolov-Miyaoka-
Yau inequality which fails in positive characteristic. In this section, a result in that
spirit is given under the assumption that X has a nontrivial global vector field.
This is a strong restriction on X , but it suffices for the purpose of this paper.

In characteristic zero, a vector field fixes the singularities and lifts to the minimal
resolution [BW74]. However, this does not hold in general in positive characteristic.
In fact something more interesting happens. There exist smooth minimal surfaces
of general type without nontrivial global vector fields (and hence reduced auto-
morphism scheme) whose canonical model has nontrivial global vector fields and
therefore non reduced automorphism scheme. This is a situation that complicates
the structure of the moduli of surfaces of general type in positive characteristic.
The next example exhibits exactly such a case.

Example 3.1. Let k be an algebraically closed field of characteristic 2 and X ⊂ P3
k

be the quintic given by

x1x2(x
3
1 + x32 + x33) + x33x

2
4 + x3x

4
4 = 0.

I will show the following:

(1) The singularities of X are rational double points of type A1 ( i.e., locally
isomorphic to xy + z2 = 0) and KX is ample.

(2) X has nontrivial global vector fields and hence the automorphism scheme
Aut(X) is a non reduced zero dimensional scheme.
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(3) The vector fields of X do not fix all the singular points of X and therefore
they do not lift to the minimal resolution of X .

(4) The minimal resolution of X is a smooth minimal surface of general type
without vector fields and therefore with reduced automorphism scheme
Aut(X ′).

I proceed to show the above properties.
X is a quintic in P3 and hence by the standard adjunction formula, OX(KX) =

OX(1) and hence it is very ample.
The equation of X is invariant under the graded derivation D = x3

∂
∂x4

of

k[x1, x2, x3, x4], which therefore induces a nonzero global vector field on X such
that D2 = 0. Hence X has nontrivial global vector fields.

The singularities of X can be checked locally. In the affine chart given by x3 = 1,
X is given by the equation

x1x2 + x41x2 + x1x
4
2 + x24 + x44 = 0

in k[x1, x2, x4]. The singular points of X are those with x4i + xi = 0, i = 1, 2 and
x44 + x24 + x1x2 = 0. A straightforward calculation shows that the degree two term
of the polynomial defining X at every singular point is an irreducible quadric in x1,
x2 and x4 and hence the singularities of X are ordinary double points given locally
analytically by xy + z2 = 0. Similarly one can easily check that there are no more
singularities in the other charts. Hence (1) is proved.

In this chart the vector field D is given by D = ∂
∂x4

. Hence D has no fixed points
in the open set x3 = 1. In particular, none of the singular points is fixed by D.

SinceKX is ample andX has rational double points, Aut(X) is zero dimensional.
Then since its tangent space is Hom(ΩX ,OX) 6= 0, the space of global derivations,
Aut(X) is not reduced. Hence (2) is proved.

Let now f : X ′ → X be the minimal resolution of X . Then X ′ is simply the blow
up of the singular points of X . Since X has rational double points, KX′ = f∗KX

and therefore X ′ is a minimal surface of general type.
Since f is the blow up of the singular points of X , a vector field on X lifts to a

vector field on X ′ if and only if it fixes the singular points of X . In addition, every
vector field on X ′ induces a vector field on X by the natural map f∗TX′ → TX .
Therefore, in order to show that X ′ has no non trivial global vector fields, it suffices
to show that there is no non trivial global vector field onX which fixes every singular
point of X . This will be done by explicitly calculating the vector fields of X .

Claim: A vector field on X is the restriction on X of a vector field on P3 which
fixes X .

Dualizing the exact sequence

0 → OX(−5) → ΩP3 ⊗OX → ΩX → 0

we get the exact sequence

0 → Hom(ΩX ,OX) → Hom(ΩP3 ,OX) → Hom(OX(−5),OX).

Moreover, there exists a natural exact sequence

0 → Hom(ΩP3 ,OP3(−5)) → Hom(ΩP3 ,OP3)
σ
→ Hom(ΩP3 ,OX) → Ext1((ΩP3 ,OP3(−5)).

Now Ext1((ΩP3 ,OP3(−5)) = H1(TP3(−5)) = 0, by using the standard exact se-
quence for the tangent sheaf on P3 and the cohomology of P3. Hence the map σ is



8 NIKOLAOS TZIOLAS

surjective and therefore every global vector field on X is induced by a vector field
on P3, and the claim is proved.

Now h0(TP3) = 15 and the global vector fields on P3 are induced by the following
graded vector fields of k[x1, x2, x3, x4]. D1 = x1

∂
∂x1

, D2 = x2
∂
∂x2

, D3 = x4
∂
∂x4

,

D4 = x1
∂
∂x2

, D5 = x1
∂
∂x3

, D6 = x1
∂
∂x4

, D7 = x2
∂
∂x1

, D8 = x2
∂
∂x3

, D9 = x2
∂
∂x4

,

D10 = x3
∂
∂x1

, D11 = x3
∂
∂x2

, D12 = x3
∂
∂x4

, D13 = x4
∂
∂x1

, D14 = x4
∂
∂x2

, D15 =

x4
∂
∂x3

. In the calculation of the vector fields of P3 it was taken into consideration

that the graded derivation
∑4
i=1 xi

∂
∂xi

gives the zero vector field of P3.
In the affine chart x3 = 1, these derivations are given by the following derivations

of k[x1, x2, x4]. D1 = x1
∂
∂x1

, D2 = x2
∂
∂x2

, D3 = x4
∂
∂x4

, D4 = x1
∂
∂x2

, D5 = x21
∂
∂x1

+

x1x2
∂
∂x2

+ x1x4
∂
∂x4

, D6 = x1
∂
∂x4

, D7 = x2
∂
∂x1

, D8 = x1x2
∂
∂x1

+ x22
∂
∂x2

+ x2x4
∂
∂x4

,

D9 = x2
∂
∂x4

, D10 = ∂
∂x1

, D11 = ∂
∂x2

, D12 = ∂
∂x4

, D13 = x4
∂
∂x1

, D14 = x4
∂
∂x2

,

D15 = x1x4
∂
∂x1

+ x2x4
∂
∂x2

+ x24
∂
∂x4

.

Let now D =
∑15
i=1 λiDi a derivation, λi ∈ k, i = 1, . . . , 15. The points

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1) are singular points of X corresponding to
the ideals (x1, x2, x4), (x1 + 1, x2, x4), (x1, x2 + 1, x4), (x1 + 1, x2, x4 + 1), (x1, x2 +
1, x4 +1). A straightforward but a bit long calculation shows that the only deriva-
tion fixing these ideals is

D = λ(D1 +D2 +D3 +D5 +D8) =

λ((x1 + x21 + x1x2)
∂

∂x1
+ (x2 + x22 + x1x2)

∂

∂x2
+ (x4 + x1x4 + x2x4)

∂

∂x4
).

However, this derivation does not fix the ideal (x1 + 1, x2 + 1, x4 + a), where a2 +
a + 1 = 0, corresponding to the singular point (1, 1, a), neither the equation of
X . Hence X does not have any nontrivial global vector fields fixing all its singular
points and therefore its minimal resolution has no non trivial vector fields and hence
it has reduced automorphism scheme.

The main results of this section are the following two theorems. The first one
gives an upper bound for the number of singularities of a canonically polarized
surface X . The next one provides a condition under which a vector field fixes the
singular points and lifts to the minimal resolution.

Theorem 3.2. Let X be a canonically polarized surface defined over a field of
characteristic p > 0. Suppose that p does not divide K2

X and X has a nontrivial
global vector field. Let f : X ′ → X be the minimal resolution of X. Let ν(P ) be the
number of f -exceptional curves over a point P ∈ X. Then

(1) Suppose that K2
X = 1 and p 6= 2. Then

∑

P∈X ν(P ) ≤ 55.

(2) Suppose that K2
X ≥ 2 and p 6= 3. Then
∑

P∈X

ν(P ) ≤ 12χ(OX) + 11K2
X,

In particular, X has at most 55 singular points if K2
X = 1 and 12χ(OX) + 11K2

X

singular points if K2
X ≥ 2.

Theorem 3.3. With assumptions as in Theorem 3.2. Suppose also that p > 5 and

(1) p > 56, if K2
X = 1,

(2) p > 12χ(OX) + 11K2
X + 1, if K2

X ≥ 2.
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Then

(1) Every singular point of X is a fixed point of D.
(2) D lifts to a vector field D′ on the minimal resolution X ′ of X.
(3) Every f -exceptional curve is an integral curve of D′.

Remark 3.4. The proof of the theorem uses Proposition 3.14 which requires p 6=
3 and the classification of rational double points in positive characteristic which
requires p > 5 [Ar77]. In characteristic zero χ(OX) > 0 for any surface of general
type and hence always 12χ(OX)+11K2

X+1 > 24. However in positive characteristic
it is not known at the moment of this writing if χ(OX) > 0 for all X and so it is
possible that 12χ(OX) + 11K2

X + 1 may be 5 or less so p = 3, 5 must be excluded
in the second case of the previous theorem, when K2

X ≥ 2.

Taking into consideration the classification of rational double points in positive
characteristic [Ar77], it immediately follows from Theorem 3.2 that

Corollary 3.5. With assumptions as in Theorem 3.2. Suppose that the singular
locus of X consists of the points A∗

i of type Ani
, i = 1, . . . , r, D∗

j of type Dmj
,

j = 1, . . . , s, E∗
6,k of type E6, k = 1, . . . , t, E∗

7,ν of type E7, ν = 1, . . . , w and E∗
8,µ

of type E8, µ = 1, . . . , u. Then

r
∑

i=1

ni +

s
∑

j=1

mj + 6t+ 7w + 8u ≤ 12χ(OX) + 11K2
X.

The proofs of Theorems 3.2, 3.3 will be given at the end of this section.
The next proposition is a simple generalization to the case of singular surfaces

of a well known result on vector fields on smooth surfaces.

Proposition 3.6. Let X be a Gorenstein normal projective surface and D a non-
trivial global vector field on X such that Dp = 0 or Dp = D. Let ∆ be the divisorial
part of D. Then there exists an exact sequence

0 → OX(∆) → TX → ω−1(−∆) → F → 0,

where F is a zero dimensional coherent sheaf whose support is contained in the
union of the singular points of X and the isolated singularities of D.

Proof. Let Z ⊂ X be the union of the singular points of X and the isolated singu-
larities of D. Then Z is a finite set. Let U = X − Z. Then U is smooth and the
restriction of D on U has only divisorial singularities. Therefore the quotient of U
by D is smooth [RS76]. Therefore there exists an exact sequence

0 → OU (∆|U ) → TU → LU → 0,

where LU is an invertible sheaf on U [MP97, Proposition 1.9.3]. Moreover, from
the above sequence it follows that LU = ω−1

U (−∆|U). Applying i∗ in the above
sequence, where i : U → X is the inclusion, and thaking into consideration that ωX
is invertible, we get an exact sequence

0 → OX(∆) → TX → ω−1(−∆) → F → 0,

where F is a zero dimensional coherent sheaf whose support is contained in the
union of the singular points of X and the isolated singularities of D, as claimed.

�
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The next proposition gives a Riemann-Roch type inequality for divisors on sur-
faces with rational double points.

Proposition 3.7. Let X be a normal projective surface over an algebraically closed
field k. Suppose that the singularities of X are rational double points. Let D be a
divisor on X. Then

χ(OX(D)) ≤ χ(OX) +
1

2
(D2 −KX ·D).

Remark 3.8. The difference between the right hand side and the left hand side
has been calculated explicitly with respect to the analytic type of the singularities
of X by M. Reid [Re85] in the case when the base field is C. A similar calculation
may be possible and desirable in positive characteristic. However, for the purposes
of this paper, the above inequality suffices.

Proof. Let f : X ′ → X be the minimal resolution of X . Then the double dual
(f∗OX(D)))[1] is invertible and hence (f∗OX(D)))[1] = OX′(D′), where D′ is a
divisor on X ′. Now by [Ar85], f∗OX′(D′) = OX(D) and R1f∗OX′(D′) = 0. There-
fore,

χ(OX(D)) = χ(OX′(D′)).(3.8.1)

Then by Rieman-Roch on X ′,

χ(OX′(D′)) = χ(OX′) +
1

2
((D′)2 −KX′ ·D′).(3.8.2)

SinceX has rational double points andX ′ is the minimal resolution ofX , χ(OX′) =
χ(OX) and KX′ = f∗KX . Moreover, it is clear that f∗D

′ = D and hence by the
projection formula,

KX′ ·D′ = f∗KX ·D′ = KX · C.(3.8.3)

Next I will relateD2 and (D′)2. Since X has rational double points, D is Q-Cartier.
Let m ∈ Z be a positive integer such that mD is Cartier. Then

mD′ = f∗(mD) + F,

where F is a divisor supported on the exceptional set of f . Then,

m2(D′)2 = m2D2 + F 2 < m2D2,

since F 2 < 0. Hence (D′)2 < D2. Now the statement of the proposition follows
from this and the equations (3.8.1), (3.8.2) and (3.8.3). �

The next result relates the first cohomology of the tangent sheaf of a rational
double point with the number of exceptional divisors over it in the minimal resolu-
tion.

Proposition 3.9. Let P ∈ X be a rational double point singularity. Let f : X ′ → X
be its minimal resolution and Ei, i = 1, . . . , n the f -exceptional curves . Then

h1(TX′) ≥ n.

Remark 3.10. If the characteristic of the base field is zero then the inequality in
the previous proposition is in fact equality [BW74].
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Proof. The proof follows the lines of the proof of [BW74, Pages 70, 71] with some
modifications to deal with the possible positive characteristic complications.

Let Z =
∑n

i=1miEi an integral effective divisor supported on the exceptional
set of f . Then for sufficiently large mi, i = 1, . . . , n, −Z is f -ample. Therefore,
Hi(TX′(−mZ)) = 0, for m >> 0, i = 1, 2. Taking now cohomology on the exact
sequence

0 → TX′(−mZ) → TX′ → TX′ ⊗OmZ → 0,

it follows that

H1(TX′) = H1(TX′ ⊗OmZ).(3.10.1)

Let E =
∑n

i=1Ei be the reduced f -exceptional divisor. Then there exists an exact
sequence

0 → N → OmZ → OE → 0,

where N is supported on the exceptional set of f . Then the previous sequence gives
the exact sequence

0 → TX′ ⊗N → TX′ ⊗OmZ → TX′ ⊗OE → 0.

After taking cohomology in the previous sequence, and since N has 1-dimensional
support, it follows that

h1(TX′) ≥ h1(TX′ ⊗OE).(3.10.2)

Next, there exists an exact sequence

0 → TE → TX′ ⊗OE
σ
→ ⊕ni=1NEi

→ 0,(3.10.3)

where the map σ is the sum of the composition of the natural maps TX′ ⊗OE →
TX′ ⊗ OEi

and TX′ ⊗ OEi
→ NEi

, i = 1, . . . , n. The exactness of the sequence
above can easily be checked locally.

Now since P ∈ X is a rational double point, Ei ∼= P1 and NEi
∼= OP1(−2),

i = 1, . . . , n. The proposition now follows from the equation (3.10.2) and by taking
cohomology in (3.10.3).

Finally I would like to mention that in [BW74], the equality in the statement of
the proposition is proved by taking the exact sequence (3.10.3) withmZ in the place
of E on the left hand side of the sequence and then using a result by Tjurina that
H1(TmZ) = 0. However, this is proved only in characteristic zero and moreover, the
exact (3.10.3) may not be exact with mZ in the place of E if some of the coefficients
of mZ are divisible by p.

�

The next proposition gives a bound for the number of singular points of a pro-
jective surface with rational double points and a nontrivial global vector field.

Proposition 3.11. Let X be a normal projective surface over an algebraically
closed field of characteristic p > 0 with rational double point singularities. Suppose
that X has a nontrivial global vector field D such that Dp = 0 or Dp = D. Let
f : X ′ → X be the minimal resolution of X. Then

∑

P∈X

ν(P ) ≤ 12χ(OX)−K2
X +∆2 +KX ·∆,

where ∆ is the divisorial part of D and ν(P ) is the number of f -exceptional curves
over P ∈ X.
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Remark 3.12. If ∆ = 0, a case that frequently happens, then 12χ(OX)−K2
X is a

bound for the singular points of X , a bound which is a function of only numerical
invariants of X . A similar bound will be given later without the assumption ∆ = 0
if KX is ample and p does not divide K2

X .

Proof. There exists a natural exact sequence

0 → f∗TX′ → TX → N → 0,

where N is a zero dimensional coherent sheaf on X supported on the singular locus
of X . Hence χ(N) = h0(N) ≥ 0. Then from the above sequence it follows that

χ(f∗TX′) ≤ χ(f∗TX′) + χ(N) = χ(TX).(3.12.1)

From the Leray spectral sequence and considering that f is birational with at most
one dimensional fibers we get the exact sequence

0 → H1(f∗TX′) → H1(TX′) → H0(R1f∗TX′) → H2(f∗TX′) → H2(TX′) → 0.

Counting dimensions we get that

χ(f∗TX′) = χ(TX′) + h0(R1f∗TX′)(3.12.2)

Now from Propositions 3.6, 3.7 it follows that

χ(TX) = χ(O(∆)) + χ(ω−1
X (−∆))− χ(F) ≤ χ(O(∆)) + χ(ω−1

X (−∆)) ≤(3.12.3)

2χ(OX) +
1

2
(∆2 −KX ·∆) +

1

2
((KX +∆)2 +KX · (KX +∆)) =

2χ(OX) +K2
X +KX ·∆+∆2.

Now from the equations (3.12.1), (3.12.2) and (3.12.3) we get that

χ(TX′) + h0(R1f∗TX′) ≤ 2χ(OX) +K2
X +KX ·∆+∆2.(3.12.4)

Then by Proposition 3.9 and the previous inequality we get that

χ(TX′) +
∑

P∈X

ν(P ) ≤ χ(TX′) + h0(R1f∗TX′) ≤ 2χ(OX) +K2
X +KX ·∆+∆2.

(3.12.5)

Now by the Riemann-Roch on X ′, Noether’s formula and the facts that KX′ =
f∗KX , χ(OX′) = χ(OX) (since X has rational double point singularities), we get
that

χ(TX′) =
7

6
K2
X′ −

5

6
c2(X

′) =
7

6
K2
X′ −

5

6
(12χ(OX′)−K2

X′) = −10χ(OX′) + 2K2
X .

(3.12.6)

Now the statement of the proposition follows immediately from the equations
(3.12.5) and (3.12.6). �

The following lemma is an easy generalization of the Hodge index theorem to
surfaces with rational double points. It will be used throughout this paper.

Lemma 3.13. Let X be a normal projective surface with rational double points.
Let A be a nef and big line bundle on X and C a divisor on X. Then

C2A2 ≤ (C · A)2.
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Proof. Let X ′ → X be the minimal resolution of X . Since X has rational double
point singularities, C is Q-Cartier. Let m > 0 be an integer such that mC is
Cartier. Then, since f∗A is also nef and big on X ′ and the generalized Hodge
index theorem for nef and big line bundles [Ba01, Corollary 2.4], it follows that

m2C2 ·A2 = (f∗(mC))2 · (f∗A)2 ≤ (f∗(mC) · f∗A)2 = m2(C · A)2.

From this the lemma follows immediately. �

The following proposition is the last ingredient needed in order to prove Theo-
rems 3.2, 3.3. It will also be needed later for the proof of the main theorem of this
paper.

Proposition 3.14. Let X be a canonically polarized surface defined over a field
of characteristic p > 0. Suppose that X has a nontrivial global vector field D such
that Dp = 0 or Dp = D and such that p does not divide K2

X. Then

(1) Suppose that K2
X = 1 and p 6= 2. Then KX ·∆ ≤ 4 and ∆2 ≤ 16.

(2) Suppose that K2
X ≥ 2 and p 6= 3. Then

KX ·∆ ≤ 3K2
X ,(3.14.1)

∆2 ≤ 9K2
X ,

where ∆ is the divisorial part of D.

Proof. Let π : X → Y be the quotient of X by the αp or µp action on X defined
by D. Then π is a purely inseparable map of degree p and by [RS76], KX =
π∗KY +(p− 1)∆ (this formula holds by [RS76] in the smooth part of Y and hence
everywhere since Y is normal).

By [Ek88, Theorem 1.20], the linear system |nKX | is base point free for n = 3 if
K2
X = 1 and n = 2 if K2

X ≥ 2.
Suppose that K2

X ≥ 2 and hence n = 2. The proof in the case when K2
X = 1

and n = 3 is identical and is omitted. Then by [Jou83, Theorem 6.3], [Za44], the
general member of |3KX | is of the form pνC, where C is an irreducible and reduced
curve. Since p does not divide K2

X , ν = 0 and hence the general member of |3KX |
is a reduced and irreducible curve.

Therefore there exists C ∈ |3KX | such that C is reduced and irreducible and
it does not pass through any singular point of X or isolated singularity of D. Let
C̃ = π(C). Then, since C is in the smooth part of X and does not contain any

isolated singularity of D, C̃ lies in the smooth part of Y .
Suppose that C is an integral curve of D. Then [RS76], π∗C̃ = C and therefore

C2 = pC̃2 = pm, m ∈ Z since C̃ is in the smooth part of Y . Then, since C ∈ |3KX |,
it follows that p divides 9K2

X and hence, since p 6= 3, p divides K2
X , which is

impossible.
Hence C is not an integral curve of D and hence the map π : C → C̃ is birational.

Moreover [RS76], π∗C̃ = pC. Now since C̃ is contained in the smooth part of Y ,

adjunction for C̃ holds and hence

2pa(C̃)− 2 = KY · C̃ + C̃2 = π∗KY · C + pC2 = KX · C − (p− 1)∆ · C + pC2 =

(KX · C + C2) + (p− 1)(C2 −∆ · C) = 2pa(C)− 2 + (p− 1)(9K2
X − 3KX ·∆).

Since the map C → C̃ is birational, it follows that pa(C̃) ≥ pa(C). Then the

above equation gives that 3K2
X −KX∆̇ ≥ 0 and hence KX ·∆ ≤ 3K2

X , as claimed.
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Finally, since KX is ample, it follows from Lemma 3.13 that

∆2 ≤
(∆ ·KX)2

K2
X

≤
(3K2

X)2

K2
X

= 9K2
X ,

as claimed.
�

We are now in a position to prove Theorems 3.2, 3.3.

Proof of Theorem 3.2. Since X has a nontrivial global vector field, it follows
from [RS76] that X has a nontrivial global vector field D such that Dp = 0 or
Dp = D. Then the statement of the theorem follows immediately from Propo-
sitions 3.11, 3.14. In the case when K2

X = 1, one must also use that fact that
1 ≤ χ(OX) ≤ 3 [Li09]. �

Proof of Theorem 3.3. I will only do the case when K2
X ≥ 2. The case when

K2
X = 1 is identical and is omitted.
By assumption X has canonical singularities and hence its singularities are ra-

tional double points. Since p > 5, the equations classifying the rational double
points are the same as those in characteristic zero [Ar77]. Hence X may have
either singularities of type An, Dm, E6, E7 and E8. Then, by Theorem 3.2, if
12χ(OX) + 11K2

X + 1 < p, n+ 1 < p and m < p. The statement of the theorem is
local at the singularities. In order to prove the theorem consider cases with respect
to the singularities of X .

Let P ∈ X be a singular point of X . I will do in detail only the case when P ∈ X
is of type An. The rest are similar and are left to the reader.

By passing to the completion at P , we may assume thatX is given by xy+zn+1 =
0. Moreover, by the assumptions and Theorem 3.2, n + 1 < p. D is induced by a
derivation D of k[[x, y, z]] such that D(xy + zn+1) ∈ (xy + zn+1). Now

D(xy + zn+1) = xDy + yDx+ (n+ 1)znDz,

with n + 1 6= 0. From the above equation it follows that yDx ∈ (x, z) and hence,
since y 6∈ (x, z), it follows that Dx ∈ (x, z) ⊂ (x, y, z). Similarly, Dy ∈ (y, z).
Finally, from the previous equation it follows that znDz ∈ (x, y, zn+1). If Dz 6∈
(x, y, z), then Dz is a unit in k[[x, y, z]] and hence zn ∈ (x, y, zn+1), which is
impossible. Hence in this case, P is a fixed point of D.

Next I will show that D lifts to the minimal resolution f : X ′ → X of X . Since
X has rational double points, f is obtained by successively blowing up the singular
points. Let f1 : X1 → X be the blow up of all singular points of X . Then, since
the singular points of X are fixed points of D, D lifts to a vector field D1 on X1.
Moreover, X1 has also rational double points, of simpler type that those of X .
Then, the previous argument shows that the singular points of X1 are fixed points
of D1. Then one can blow up again and continue this process until the minimal
resolution is reached and therefore D lifts to a vector field D′ on X ′.

It remains to show that every f -exceptional curve is an integral curve of D′. In
order to prove this it suffices to prove, since f is a composition of blow ups, the
following. Let P ∈ Z be a rational double point on a surface Z which is a fixed
point of a vector field D of Z and let g : Z̃ → Z be the blow up of P . Then the
reduced g-exceptional curves are integral curves of D̃, the vector field on Z lifting
D.
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Let E be a g-exceptional curve. Suppose that P ∈ X is of type An. Then
f−1(P ) = E1+E2, where whereE1, E2 are distinct smooth rational curves. Suppose
that P ∈ X is of one of the types Dn, E6, E7, E8. Then f

−1(P ) = 2E, where E is
a smooth rational curve. Then the claim that the g-exceptional curves are integral
curves of D̃ is an immediate consequence of Lemma 3.15 which follows.

This concludes the proof of Theorem 3.3.

Lemma 3.15. Let f : X → Y be a morphism between varieties defined over an
algebraically closed field k of characteristic p > 0 Such that X is normal. Suppose
that DY is a nontrival global vector field on Y and DX a nontrivial global vector
field on X lifting DY , i.e., there exists a commutative diagram

f∗OX
DX // f∗OX

OY

OO

DY // OY

OO

Let P ∈ Y be a fixed point of DY and [f−1(P )] =
∑n

i=1miZi, be the cycle cor-
responding to the fiber f−1(P ). Let Zi be a codimension 1 component such that p
does not divide mi, Then DX(IZi

) ⊂ IZi
, i.e., Zi is stabilized by DX .

Proof. Let Zi be a codimension 1 component of f−1(P ) such that p does not divide
mi. In order to prove that DX(IZi

) ⊂ IZi
it suffices to prove this in an affine open

set U of X which is contained in the smooth locus of X and such that U ∩Zi 6= ∅.
Therefore the proof is reduced to the case when both X and Y are affine. Let then
Y = SpecA, X = SpecB. Then DY , DX are induced by derivations of A and B,
respectively. Let mp ⊂ A be the maximal ideal corresponding to P . Then f−1(P )
is given by the ideal mPB of B. Moreover, since DX lifts DY and DY (mP ) ⊂ mP ,
it follows easily that DX(mPB) ⊂ mPB. Then if U is chosen small enough,
mPB = Imi

Zi
. Moreover, since X is normal and U is in the smooth part of X , IZi

is a prime ideal of B and IZi
= (b), for some b ∈ B. Then

DX(bmi) = mib
mi−1DXb ∈ (bmi).

Since p does not dividemi it follows that b
mi−1DXb ∈ (bmi) and hence bmi−1DXb =

bmic and therefore DXb ∈ (b). Hence DX(IZi
) ⊂ IZi

, as claimed.
�

�

4. Integral curves and fixed points of vector fields on surfaces.

Let X be a normal projective surface defined over an algebraically closed field k
of characteristic p > 0. Let D be a nontrivial vector field on X (or equivalently a
k-derivation of OX). This section contains various properties of integral curves of
D which are needed for the proofs of the main results of this paper.

The next proposition presents a method to find integral curves of D.

Proposition 4.1 (Proposition 2.1 [Tz18]). Suppose that either Dp = 0 or Dp =
D. Then D induces an αp or µp action on X, respectively. Let π : X → Y be
the quotient of X by this action. Let L be a rank one reflexive sheaf on Y and
M = (π∗L)[1]. Then D induces a k-linear map

D∗ : H0(X,M) → H0(X,M)
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with the following properties:

(1) Ker(D∗) = H0(Y, L) (considering H0(Y, L) as a subspace of H0(X,M) via
the map π∗).

(2) If Dp = 0 then D∗ is nilpotent and if Dp = D then D∗ is a diagonalizable
map whose eigenvalues are in the set {0, 1, . . . , p− 1}.

(3) Let s ∈ H0(X,M) be an eigenvector of D∗. Then D(IZ(s)) ⊂ IZ(s), where
Z(s) is the divisor of zeros of s. In particular, if D∗(s) = λs, and λ 6= 0,
then (D(IZ(s)))|V = IZ(s)|V , where V = X − π−1(W ), W ⊂ Y is the set of
points that L is not free.

The previous proposition shows that every eigenvector of D∗ corresponds to a
curve C ⊂ X such that D(IC) ⊂ IC and therefore D induces a vector field on C.
However it is possible that D(OX) ⊂ IC and hence the induced vector field on C
is trivial. This implies that C is contained in the divisorial part of D. This cannot
happen of course if D has only isolated singularities.

Let C = n1C1+ · · ·+nkCk be a curve in X and its decomposition into its prime
components. Suppose that D(IC) ⊂ IC . In general D does not induce vector fields
on Ci, i.e, D(ICi

) may not be contained in ICi
. For example for any reduced and

irreducible curve C, D stablizes pC but not necessarily C. The next proposition
provides some conditions in order for D to restrict to Ci.

Proposition 4.2. Let C ⊂ X be a curve such that D(IC) ⊂ IC , where IC ⊂ OX is
the ideal sheaf of C in X. Let C = n1C1 + · · ·+nkCk be the decomposition of C in
its irreducible and reduced components. If p does not divide ni, for all 1 ≤ i ≤ k,
then D(ICi

) ⊂ ICi
, for all 1 ≤ i ≤ k. Therefore D stabilizes the reduced part of

every irreducible component of C and hence induces a vector field on Ci, for all
1 ≤ i ≤ k.

Proof. Let i ∈ {1, . . . , k}. In order to prove that D(ICi
) ⊂ ICi

it suffices to show
this on a nonempty open subset U of X such that U ∩ Ci 6= ∅. In fact, by taking
U small enough we may assume that U ∩ Cj = ∅, for all j 6= i. Hence we may
assume that X = SpecA is affine and smooth and C = niCi. Hence IC = (tni),
for some t ∈ A and ICi

= (t). D is induced by a k-derivation of A. Then since
D(IC) ⊂ IC , it follows that nit

ni−1Dt ∈ (tni) and hence there exists a ∈ A such
that nit

ni−1Dt = atni . Now since p does not divide ni, ni 6= 0 in k and hence it
follows that Dt ∈ (t). Hence D(ICi

) = ICi
, as claimed.

�

Corollary 4.3. With assumptions as in Proposition 4.2. Suppose in addition that
KX is an ample invertible sheaf and KX · C < p. Then D(ICi

) ⊂ ICi
, for all

1 ≤ i ≤ k. Therefore D stabilizes the reduced part of every irreducible component
of C and hence induces a vector field on Ci, for all 1 ≤ i ≤ k.

Proof. Since KX is assumed to be ample and invertible, the condition KX · C < p
immediately implies that ni < p, for all 1 ≤ i ≤ k. Then the corollary follows
directly from Proposition 4.2. �

Proposition 4.4. Suppose that X is Q-factorial and KX is an ample invertible
sheaf. Let C ∈ |mKX | be a curve such that D(IC) ⊂ IC . Let C = n1C1+ · · ·+nkCk
its decomposition into its reduced and irreducible components. Suppose that K2

X <
p/(m2+3m). Let P ∈ Ci ∩Cj, i 6= j, be a closed point such that P ∈ X is smooth.
Then P is a fixed point of D.
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Proof. By Corollary 4.3, D(ICi
) ⊂ ICi

, for all 1 ≤ i ≤ k. The result is local at P .
Let U = SpecA be an affine open subset of X containing P but no other point of
Ci ∩Cj . Since P ∈ X is a smooth point, U may be taken to be smooth. Let I and
J be the ideals of Ci and Cj respectively. Then (I + J)|U = Q, with r(Q) = mP ,
the maximal ideal corresponding to the point of intersection P of Ci and CJ . Now
since D(I) ⊂ I and D(J) ⊂ J , it follows that D(I + J) = D(I) +D(J) ⊂ I + J .
Hence D(Q) ⊂ Q. I will show that this implies that D(mP ) ⊂ mP and therefore
P is a fixed point of D.

In order to show that D(mP ) ⊂ mP , I will first show that Ci · Cj < p. Then if
I = (f) and J = (g), f, g ∈ A, dimk A/(f, g) < p. Hence for any a ∈ mP , there
exists ν < p such that aν ∈ Q = I + J . Let ν0 < p be the smallest such ν. Then
D(aν0) = ν0a

ν0−1Da ∈ Q = I + J . Q is a primary ideal and aν0−1 6∈ Q. Hence
(Da)s ∈ Q ⊂ mP , for some s ≥ 0. Hence Da ∈ mP . Therefore D(mP ) ⊂ mP , as
claimed.

It remains to show that Ci · Cj < p. By definition, mKX ∼
∑k

s=1 nsCs. Let
1 ≤ i, j ≤ k. Then

mKX · Ci = njCi · Cj + niC
2
i +

∑

s6=i,j

nsCs · Ci ≥ njCi · Cj + niC
2
i .(4.4.1)

On the other hand, mK2
X =

∑m
s=1 nsKX ·Cs and since KX is ample, it follows that

KX · Cs > 0 for every 1 ≤ s ≤ m and therefore KX · Cs ≤ nsKX · Cs ≤ mK2
X .

Then from (4.4.1) it follows that

Ci · Cj ≤ m2K2
X − niC

2
i .(4.4.2)

Next I will show that −C2
i ≤ 2 + KX · Ci. Let f : X ′ → X be the minimal

resolution of X . Let C′
i = f−1

∗ Ci, be the birational transform of Ci in X ′. Then
by the adjunction formula for C′

i it follows that

−(C′
i)

2 = −2pa(C
′
i) + 2 +KX′ · C′

i ≤ 2 +KX′ · C′
i.(4.4.3)

Now there are adjunction formulas

f∗Ci = C′
i + E(4.4.4)

KX′ + F = f∗KX

Where E and F are effective f -exceptional divisors (F is effective because f is
the minimal resolution). From these immediately follows that C2

i ≥ (C′
i)

2 and
KX · Ci ≥ KX′ · C′

i. From these and the equation (4.4.3) it follows that

−C2
i ≤ 2 +KX · Ci.(4.4.5)

Then from the equation (4.4.2) it follows that

Ci · Cj ≤ m2K2
X + 2ni + niKX · Ci.(4.4.6)

But it has been shown earlier that niKX · Ci ≤ mK2
X and hence ni ≤ mK2

X and
KX · Ci < mK2

X . Hence

Ci · Cj ≤ (m2 + 3m)K2
X <

p(m2 + 3m)

m2 + 3m
< p,(4.4.7)

as claimed. This concludes the proof.
�

The proof of the previous proposition shows also the following.
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Corollary 4.5. Let C1, C2 be two different irreducible and reduced curves on X
such that D(ICi

) ⊂ ICi
, for i = 1, 2. Assume that C1 ·C2 < p. Then every point of

intersection of C1 and C2 which is a smooth point of X is a fixed point of D.

Remark 4.6. Proposition 4.4 and Corollary 4.5 apply in particular in the case
when the singularities of X are rational double points since they are Q-factorial.

As explained in Section 3, in general, in positive characteristic a vector field on
a variety Y does not fix its singular points. In section 3 conditions were obtained
which imply that a vector field on a surface fixes its singular points. The next
proposition shows gives a condition which implies that a vector field on a curve
fixes the singular points of the curve.

Proposition 4.7. Let D be a nontrivial vector field of either additive or multi-
plicative type on a smooth surface X defined over an algebraically closed field k
of characteristic p > 0. Let C ⊂ X be a reduced and irreducible curve such that
D(IC) ⊂ IC , where IC is the ideal sheaf of C in X. Suppose that pa(C) < (p−1)/2.
Then D fixes every singular point of C and lifts to the normalization C̄ of C.

Proof. We may assume that D(OX) 6⊂ IC and hence the restriction of D on C is
not trivial (otherwise the result is obvious).

Let π : X → Y be the quotient of X by the αp or µp action on X induced by

D. Then π is a purely inseparable morphism of degree p. Let C̃ = π(C) ⊂ Y .

Then C = π∗C̃ and π∗C = pC̃ [RS76]. Let P ∈ C be a singular point of C and
Q = π(P ) ∈ Y . If P is a fixed point of D then there is nothing to prove. Suppose
that P is not a fixed point of D. Then Q ∈ Y is a smooth point of Y [AA86]. Hence
locally around Q ∈ Y , X → Y is an αp or µp torsor and hence the same holds for

C → C̃. Consider cases with respect to whether Q ∈ C̃ is a singular or a smooth
point of C.

Case 1. Q ∈ C̃ is singular. Then since P ∈ X is not a fixed point of D,
in suitable local analytic coordinates at P , OX = k[[x, y]], D = h(x, y)∂/∂x and
OY = k[[xp, y]] [RS76, Theorem 1]. Then IC̃ = (f(xp, y)) and since it is assumed

that Q ∈ C̃ is singular, f(xp, y) ∈ (xp, y)2. Then IC = (f(xp, y)) ⊂ k[[x, y]]. Write
f(xp, y) =

∑

i fi(x
p)yi. Then either mP (f(x

p, y)) ≥ p (considered in k[[x, y]]) or
there exists an m ≥ 1 such that fm(xp) is a unit in k[[xp]].

The first case is easily seen to be impossible since C is assumed to have arithmetic
genus less than p and a curve of arithmetic genus less than p cannot have a point
of multiplicity bigger than p.

Suppose then that there exists an m ≥ 1 such that fm(xp) is a unit in k[[xp]].
By using the Weierstrass preparation theorem in k[[xp, y]] it follows that

f(xp, y) = u(xp, y)[f0(x
p) + f1(x

p)y + · · ·+ fm−1(x
p)ym−1 + ym],

where fi(x
p) ∈ (xp), for all 0 ≤ m− 1 and u(xp, y) is a unit in k[[xp, y]] and hence

also in k[[x, y]]. In fact m ≥ 2 since it assumed that Q ∈ C̃ is singular. Then
IC = (ym + h(xp, y)), where

h(xp, y) = f0(x
p) + f1(x

p)y + · · ·+ fm−1(x
p)ym−1 ∈ (x, y)p+1 ⊂ k[[x, y]]

and m ≥ 2. Suppose that m ≥ p. Then mP (C) ≥ p and hence pa(C) ≥ p, which
is impossible since by assumption pa(C) ≤ (p − 1)/2. Suppose that m < p. Then
write p = sm + r, 0 < r < m. After blowing up P ∈ C and its infinitely near
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singular points s times we see by using the adjunction formula that

2pa(C) ≥ sm(m− 1).(4.7.1)

Suppose that m ≥ (p + 1)/2. Then m − 1 ≥ (p − 1)/2 and hence from the above
inequality it follows that

pa(C) ≥
(sm

2

)

(

p− 1

2

)

≥
p− 1

2
,

since m ≥ 2.
Suppose thatm < (p+1)/2. Then also r < m < (p+1)/2. Then p−r > (p−1)/2

and hence

pa(C) ≥
1

2
sm(m− 1) = (p− r)

m− 1

2
≥

(

p− 1

2

)(

m− 1

2

)

.(4.7.2)

Suppose that m ≥ 3. Then from the above inequality it follows that pa(C) ≥
(p − 1)/2. Suppose that m = 2. Then s = (p − 1)/2 and r = 1. Then from the
equation 4.7.2 it follows again that pa(C) ≥ (p− 1)/2.

Case 2. Q ∈ C̃ is smooth. Then C → C̃ is a µp or αp torsor. Hence

OC =
OC̃ [t]

(tp − s)

where s ∈ OC̃ . Let x be local analytic coordinate of C̃ at Q. Then locally ana-

lytically at Q ∈ C̃, OC̃ = k[[x]] and s = f(x) ∈ k[[x]]. Moreover, since P ∈ C is
singular, f(x) ∈ (x2). Therefore

OC =
OC̃ [t]

(tp − s)
=

k[[x, t]]

(tp − f(x))
.

Then one can write f(x) = xmu(x), where u(x) is a unit in k[[x]]. If m < p then
m
√

u(x) exists and therefore locally analytically at P ,

OC
∼=

k[[x, y]]

(tp − xm)
.

If p ≤ m then since k has characteristic p, the m
√

u(x) does not always exist.
But in this case mP (OC,P ) ≥ p which is impossible since pa(C) < p. Hence
IC = (tp − xm), m ≥ 2. Then by using the same argument as in Case 1 it follows
that pa(C) ≥ (p− 1)/2, which is impossible.

Hence every singular point of C is a fixed point of D. Hence D lifts to a vector
field D′ on the blow up X ′ of X at any singular point of C. Let C′ be the birational
transform of C in X ′. Then D′(IC′) ⊂ IC′ and pa(C

′) < pa(C). Hence D
′ restricts

to a vector field of C′. Moreover, the previous arguments imply that the singular
points of C′ are fixed points ofD′. Hence this process can continue until a birational
map f : Y → X is reached such that Y and the birational transform C̄ = f−1

∗ C are
smooth and D lifts to a vector field D̄ on Y such that D̄(IC̄) ⊂ IC̄ and hence it
induces a vector field on C̄ lifting D.

�

Corollary 4.8. With assumptions as in Proposition 4.7. Suppose in addition that
C is singular. Let Dc be the vector field on C induced by D. Suppose that Dc 6= 0.
Let C̄ → C be the normalization of C. Then C̄ ∼= P1

k. Moreover

(1) Suppose that Dp = 0. Then D has exactly one fixed point on C.
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(2) Suppose that Dp = D. Then D has at most two distinct fixed points on C.

In particular, C is rational.

Proof. By Proposition 4.7, D fixes the singular points of C and the restriction
Dc of D on C lifts to a vector field D̄ on the normalization π : C̄ → C of C.
Considering that smooth curves of arithmetic genus greater or equal than 2 do not
have nontrivial global vector fields, it follows that pa(C̄) ≤ 1.

Suppose that C̄ is an elliptic curve. In this case TC̄ = OC̄ and hence the unique
global vector field of C̄ has no fixed points. Let P ∈ C be a singular point of C.
Then by Proposition 4.7, P is a fixed point of D. Let also π−1(P ) =

∑n
i=1miQi,

be the divisor in C̄ corresponding to π−1(P ). Then since pa(C) < (p − 1)/2, it
follows that mi < p, for all i = 1, . . . ,m. Then by Lemma 3.15 it follows that every
Qi, i = 1, . . . , n, is a fixed point of D̄. This a contradiction since D̄ has no fixed
points.

Hence C̄ = P1. In this case TC̄ = ω−1
P1 = OP1(2). Hence P1 has three linearly

independent global vector fields Di, i = 1, 2, 3. These vector fields are induced from
the homogeneous vector fields D1 = x ∂

∂x
, D2 = x ∂

∂y
and D3 = y ∂

∂x
of k[x, y]. Note

that Dp
1 = D1 and Dp

i = 0, i = 2, 3. Hence there are ai ∈ k, i = 1, 2, 3, such that
D̄ = a1D1 + a2D2 + a3D3.

Claim: D̄p = D̄ if and only if a2 = a3 = 0 and a1 ∈ F∗
p, and D̄

p = 0 if and only

if a21 + 4a2a3 = 0.
In order to show this restrict D̄ to the standard affine cover of P1.
Let U ⊂ P1 be the open affine subset given by y 6= 0. Let u = x/y. Then an

easy calculation shows that D1 = u d
du

, D2 = −u2 d
du

and D3 = d
du

. Therefore

D̄ = (−a2u
2 + a1u+ a3)

d

du

in U . I will now show that this is additive if and only if −a2u2 + a1u+ a3 = 0 has
either a double root or no roots and multiplicative if and only if a2 = 0 and a1 ∈ Fp.
Suppose that the previous equation has a double root, and hence a21 + 4a2a3 = 0.
Then after a linear automorphism of k[u], D̄ = au2 d

du
, a ∈ k. This can easily

verified to be additive. Suppose on the other hand that −a2u2 + a1u + a3 = 0
has either two distinct roots or only one simple root (hence a2 = 0). Suppose that
a2 6= 0 and hence it has two distinct roots. Then after a linear automorphism of
k[u], D̄ = a(u2 + u) d

du
. Then an easy calculation shows that

Dp(up−1) = ap(p− 1)p(up + up−1) = −ap(up + up−1) 6= 0.

Hence in this case D̄ is neither additive or multiplicative. Hence a2 = 0 and
D̄ = (a1u+ a3)

d
du

. Then D̄p = ap−1
1 D̄. Hence D̄p = D̄ if and only if ap−1

1 = 1 and
therefore if and only if a1 ∈ Fp.

Let V be the affine open subset of P1 given by x 6= 0. Let v = y/x. Then in V ,
D1 = −v d

dv
, D2 = d

dv
and D3 = −v2 d

dv
. Therefore

D̄ = (−a3v
2 − a1v + a2)

d

dv
.

Suppose that D̄ is additive. Then similar arguments as before show that a21 +
4a2a3 = 0. Suppose that D̄ is of multiplicative type. Then as before we get that
a3 = 0. This concludes the proof of the claim.

Suppose now that D̄ is of multiplicative type. Then it has been shown that
D̄ = ax ∂

∂x
, a ∈ F∗

p. The fixed points of this are [0, 1] and [1, 0]. In particular it has
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exactly two distinct fixed points. These points may be over different points of C or
over the same. Hence D has at most 2 fixed points on C as claimed.

Suppose that D̄ is of additive type. Then from the previous arguments it follows
that D̄ has a single fixed point.

Hence if Dp = D, then D has at most two distinct points and if Dp = 0 then it
has just one. �

Proposition 4.9. Let X be a canonically polarized surface over an algebraically
closed field of characteristic p > 0. Let D be a nonzero vector field on X such that
either Dp = 0 or Dp = D. Assume moreover that D fixes the singular points of X
and that it lifts to the minimal resolution of X. Suppose that p > (m2+3m)K2

X+3.
Then the linear system |mKX | does not contain a positive dimensional subsystem
whose members are stabilized by D.

Proof. Suppose that there exists a positive dimensional linear subsystem of |mKX |,
for some m > 0, whose members are stabilized by D. Then take |V | ⊂ |mKX | a
one-dimensional linear subsystem whose members are stabilized by D.

Claim: Let C ∈ |V | be any member of |V | and let C =
∑s

i=1 niCi be its
decomposition into its reduced and irreducible components. Then, if Ci is not a
component of the divisorial part of D, Ci is a rational curve, for all i = 1, . . . , s.

Indeed. From the assumptions of the proposition it follows that KX · C < p.
Then, since KX is ample, it follows by Corollary 4.3 that every Ci is stabilized by
D, i.e., D(ICi

) ⊂ ICi
, i = 1, . . . , n. Hence D induces vector fields on every Ci, for

all i.
Suppose that Ci is a component of C which is not contained in the divisorial

part of D. Then the restriction of D on Ci is not zero. Let πi : C̄i → Ci be the
normalization of Ci. I will show next that D lifts to C̄i.

Let f : X ′ → X be the minimal resolution of X . Let C′
i be the birational

transform of Ci in X ′. Then C′
i is stabilized by D′ and therefore D′ induces a

nonzero vector field on C′
i. In order to show that D lifts to C̄i it suffices to show

that D′ lifts to the normalization of C′
i, which is C̄i. This will be done by using

Proposition 4.7.
Since X has canonical singularities, KX′ = f∗KX . Then, since KX is ample,

KX′ · C′
i = f∗KX · C′

i = KX · Ci ≤ KX · C = mK2
X <

p− 3

m+ 3
(4.9.1)

by the assumptions of the proposition. Moreover, since KX′ is nef and big, by the
Hodge Index Theorem and the previous inequality, it follows that

(C′
i)

2 ≤
(KX′ · C′

i)
2

K2
X′

≤
m2(K2

X)2

K2
X

= m2K2
X ≤

m

m+ 3
(p− 3).(4.9.2)

Now from the equations (4.9.1), (4.9.2) it follows that

(4.9.3) pa(C
′
i) = 1 +

1

2
((C′

i)
2 +K ′

X · C′
i) < 1 +

1

2
·
m+ 1

m+ 3
(p− 3) <

p− 1

2
,

Therefore, by Proposition 4.7, D′ lifts to the normalization of C′
i and hence D lifts

to a vector field D̄ on the normalization C̄i of Ci. Considering that a smooth curve
of genus greater or equal to 2 does not have any nontrivial global vector fields, it
follows that C̄i is either P

1 or an elliptic curve. I will show that it is actually P1.
Next I will show that there exist fixed points of D′ on C′

i.
Consider cases with respect to whether C′ = f∗C is reducible or not.
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Suppose that C′ is irreducible (and hence C does not pass through any singular
point of X). Then C′ = niC

′
i. In particular,

m2K2
X = n2

i (C
′
i)

2 = n2
iC

2
i .(4.9.4)

Suppose that D′ has no fixed points on C′
i. Let π : X ′ → Y ′ be the quotient of

X ′ by the αp or µp action induced on X ′ by D′. Let Ĉi = π(C′
i). Then, by [AA86],

Ĉi is in the smooth part of Y ′ and by [RS76], π∗Ĉi = C′
i. Hence

(C′
i)

2 = (π∗Ĉi)
2 = pĈ2

i = λp,

for some λ ∈ Z. Then from (4.9.4) it follows that m2K2
X = λn2

i p. Since K2
X > 0,

then λ > 0 and hence K2
X > p, which is a contradiction from the assumptions.

Hence in this case there are fixed points of D′ on C′
i.

Suppose that C′ has at least two components. Since KX is ample, C and hence
C′ is connected. Hence C′

i intersects another component B of C′. If B is contained
in the divisorial part of D′ then the intersection points C′

i ∩ B are fixed points of
D′. Hence in this case there are fixed points of D′ on C′

i. Suppose that B is not in
the divisorial part of D′. There are now two possibilities. B is not f -exceptional
or B is f -exceptional.

Suppose that B is not f -exceptional. Then B = C′
j , the birational transform in

X ′ of a component Cj of C, j 6= i. But now from the equation (4.4.7) in the proof
of Proposition 4.4 it follows that

C′
i · C

′
j ≤ Ci · Cj < p.

Then from Corollary 4.5 it follows that the points of intersection C′
i ∩C

′
j are fixed

points of D′. Again then there are fixed points of D′ on C′
i.

Suppose finally that B is f -exceptional. I will show that B · C′
i < p and hence

again from Corollary 4.5 the points of intersection C′
i ∩B are fixed points of D′.

From the adjunction formula for C′
i it follows that

(C′
i)

2 ≥ −2−KX′ · C′
i = −2−KX · Ci ≥ −2−

1

ni
KX · C = −2−

m

ni
K2
X .

Then

C′ = f∗C =

s
∑

r=1

nsC
′
s + bB + E,

where b > 0 is an integer and E is an effective f -exceptional divisor. Then

m2K2
X ≥ C · Ci = f∗C · C′

i ≥ ni(C
′
i)

2 + bB · C′
i ≥ −2ni −mK2

X + bB · C′
i

Therefore

bB · C′
i ≤ m2K2

X + 2ni +mK2
X(4.9.5)

Now since C ∈ |mKX | and KX is ample it follows that ni ≤ mK2
X . Then the

previous equation becomes

bB · C′
i ≤ m2K2

X + 2mK2
X +mK2

X = (m2 + 3m)K2
X < p,

by the assumptions. Hence bB · C′
i < p, and in particular B · C′

i < p. Therefore,
from Corollary 4.5 the points of intersection C′

i ∩B are fixed points of D′.
Therefore there are fixed points of D′ on C′

i. Let P ∈ C′
i be a fixed point of

D′. Let π−1(P ) =
∑m

i=1 niQi. Then since pa(C
′
i) < p, it follows that ni < p,

i = 1, . . . ,m. Then by Lemma 3.15, every Qi is a fixed point of D̄i. Hence D̄i has
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fixed points. Therefore C̄i ∼= P1 since vector fields on an elliptic curve do not have
fixed points. This concludes the proof of the claim.

Let |V ′| be the linear system which is obtained from |V | by removing the base
components. Hence |V ′| has only isolated base points. Let φ : X 99K P1 be the
rational map defined by |V ′|. Consider now the following commutative diagram

W
h //

ψ

  ❇
❇❇

❇❇
❇❇

❇

g

��

B

σ

��
X

φ //❴❴❴ P1

Where g is the resolution of base points of |V ′|, ψ the corresponding morphism,
and h, σ is the Stein factorization of ψ. Then h is a fibration and its generic fiber
is an integral normal (and hence regular) curve [Ba01, Page 91]. Moreover, by the
construction of h, the general fiber is the birational transform inW of an irreducible
component of a general member of |V ′|. Therefore it is a rational curve.

Suppose that the general fiber of h is smooth. Therefore the general fiber of h is
isomorphic to P1. Then the generic fiber is also a smooth curve of genus zero over
K(B), where K(B) is the function field of B. Hence it is isomorphic to a smooth
conic in P2

K(B). Then by Tsen’s Theorem this conic has a K(B)-point and therefore

the generic fiber is actually isomorphic to P1
K(B). Therefore, X , and hence X ′, is

birational to B × P1, i.e., is birationally ruled. But then this implies that X ′ has
Kodaira dimension −1, which is a contradiction.

Hence every fiber of h is singular and therefore the generic fiber is singular too.
Then by Tate’s Theorem [Ta52], [Sch09], (p − 1)/2 < pa(Wg), where Wg is the
general fiber of h. But since the general fiber of h is the birational transform of
a component Ci of a general member C of |V ′|, it follows from the equation 4.9.3
that

pa(Wg) ≤ pa(C) ≤ 1 +
1

2
(m+m2)K2

X < (p− 1)/2,

a contradiction. Hence |mKX | contains at most finitely many integral curves of D.
�

Corollary 4.10. Let X be a canonically polarized surface over an algebraically
closed field of characteristic p > 0. Let D be a nontrivial global vector field on X
such that Dp = 0 or Dp = D. Suppose that

(1) p > max{56,m2 + 3m+ 3}, if K2
X = 1,

(2) p > max{12χ(OX) + 11K2
X + 1, (m2 + 3m)K2

X + 3}, if K2
X ≥ 2.

Then the linear system |mKX | does not contain a positive dimensional subsystem
whose members are stabilized by D.

Moreover, suppose that D has only isolated singularities. Let π : X → Y be the
quotient of X by the αp or µp action induced by D. Then h0(OY (mKY )) ≤ 1.

Proof. From Theorem 3.3 it follows that D lifts to the minimal resolution of X .
Then from Proposition 4.9 it follows that |mKX | does not contain a positive di-
mensional subsystem whose members are stabilized by D.

Suppose now that D has only isolated singularities. Then KX = π∗KY . If
h0(OY (mKY )) ≥ 2, then |π∗(mKY )| gives a positive dimensional subsystem of
|mKX | which consists of integral curves of D. But by Proposition 4.9 this is im-
possible. �
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The next two results will also be needed in the proofs of the main results of this
paper.

Proposition 4.11. Let f : Y → X be a composition of n blow ups starting from a
smooth point P ∈ X of a surface X. Let C ⊂ X be an integral curve in X passing
through P and let m = mQ(C) be the multiplicity of C at P ∈ C. Then

mKY − f∗C + C′ = mf∗KX +

n
∑

k=1

(km− a1 − a2 − . . .− ak)Ek,

where Ei, 1 ≤ i ≤ n are the f -exceptional curves, C′ is the birational transform of
C in Y and 0 ≤ ai ≤ m, are nonnegative integers.

The proof of the proposition is by a simple induction on the number of blow ups
n and is omitted.

Proposition 4.12. Let P ∈ S be a Duval singularity and let C ⊂ S be a smooth
curve such that P ∈ S. Let f : S′ → S be the minimal resolution of P ∈ S, and Ei,
i = 1, . . . , n be the f -exceptional curves. Let C′ be the birational transform of C in
S′ and ai > 0, 1 ≤ i ≤ n be positive rational numbers such that

f∗C = C′ +
n
∑

i=1

aiEi.

Then

(1) Suppose that P ∈ S is of type An. Then (n + 1)C is Cartier in S and
(n+ 1)ai are positive integers ≤ n, i = 1, . . . , n.

(2) Suppose that P ∈ S is of type Dn. Then 4C is Cartier in S and 4aiare
integers ≤ n, i = 1, . . . , n.

(3) Suppose that P ∈ S is of type E6. Then 3C is Cartier in S and 3aiare
integers ≤ 6, i = 1, . . . , 6.

(4) Suppose that P ∈ S is of type E7. Then 2C is Cartier in S and 2aiare
integers ≤ 7, i = 1, . . . , 7.

Notice that P ∈ S cannot be of type E8 because this singularity is factorial and
hence there is no smooth curve passing through it.

The proof of this proposition is by a straightforward computation of the coeffi-
cients ai in f

∗C depending on the type of the singularity and the position of C′ in
the dual graph of the exceptional locus of the singularity and it is omitted. Similar
computations can be found in [Tz03, Proposition 4.5].

5. Methodology of the proof of Theorems 1.1, 1.2.

Let X be a canonically polarized surface defined over an algebraically closed field
of characteristic p > 0 with a nontrivial global vector field D. The strategy for the
proof of Theorems 1.1, 1.2 is to do one of the following:

(1) Find an integral curve C of D on X with the following properties: Its
arithmetic genus pa(C) is a function of K2

X , pa(C̄) ≥ 1, where C̄ is the
normalization of C, and such that C contains some of the fixed points
of D. Then by using the results of Section 4, if pa(C) is small enough
compared to the characteristic p, D induces a vector field on C which lifts
to C̄. But this would be impossible since smooth curves of genus greater
or equal than two have no nontrivial global vector fields and global vector
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fields on smooth elliptic curves do not have fixed points. This argument
will allow us to conclude that if p > f(K2

X), for some function f(K2
X) of

K2
X then X does not have any nontrivial global vector fields.

(2) Find a positive dimensional family of integral curves {Ct} of D whose arith-
metic genus is a function ofK2

X and χ(OX). Then from Corollary 4.10 there
must be a relation of the form p < f(K2

X , χ(OX)). Hence if such a relation
does not hold, X does not have any nontrivial global vector fields.

In order to achieve this, the following method will be used. It is based on a
method initially used in [RS76] and then in [Tz17a] but with different objectives.

Since X has a nontrivial global vector field, then by [Tz17a, Proposition 4.1] X
has a nontrivial global vector field D of either additive or multiplicative type which
induces a nontrivial αp or µp action. Let π : X → Y be the quotient. Then π is
purely inseparable of degree p, Y is normal and KY is Q-Cartier. Consider now the
following diagram

(5.0.1) Y ′

h

��

g

  ❆
❆❆

❆❆
❆❆

❆ X

π

��
Z Y

where g : Y ′ → Y is the minimal resolution of Y and h : Y ′ → Z its minimal model.

Lemma 5.1. Every g-exceptional curve is a rational curve (perhaps singular).

Proof. let X̂ be the normalization of Y ′ in K(X). Let φ : W → X̂ be the minimal

resolution of X̂. Then there exists a commutative diagram

W
φ //

ψ

��

X̂
π̂ //

ĝ

��

Y ′

g

��
X ′

f // X
π // Y

where π̂ is purely inseparable of degree p, f : X ′ → X is the minimal resolution
of X and ψ is birational. Considering that X has rational double points, the f
exceptional curves are smooth rational curves. Therefore, since ψ is a composition
of blow ups, it easily follows that every ĝ-exceptional curve is a rational curve. Now
let F be a g-exceptional curve. Then F = π̂(F̂ ), where F̂ is a ĝ-exceptional curve.
Hence, F is a rational curve.

�

Integral curves on X will be found by choosing a suitable a reflexive sheaf L on
Y such that either h0(L) ≥ 2, in which case the pullbacks in X of the divisors of Y
corresponding to the sections of L will be integral curves of D, or h0((π∗L)[1]) ≥
2 and then study the action of D on H0((π∗L)[1]) exhibited in Proposition 4.1.
The eigenvectors of this action will be curves stabilized by D and under suitable
conditions their components which are not contained in the divisorial part of D will
be integral curves of D.

In order to prove Theorems 1.1, 1.2 we will distinguish cases with respect to the
Kodaira dimension κ(Z) of Z. Then results from the classification of surfaces in
positive characteristic will be heavily used [BM76], [BM77], [Ek88] and the geometry
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o X and Z will be compared by using the diagram (5.0.1). Moreover, since π is a
purely inseparable map, it induces an equivalence between the étale sites of X and
Y . Therefore X and Y have the same algebraic fundamental group, l-adic betti
numbers and étale Euler characteristic. Then by using the fact that g and h are
birational it will be possible to calculate the algebraic fundamental group, l-adic
Betti numbers and étale Euler characteristic of X from those of Z.

The proof of Theorems 1.1, 1.2 is significantly easier if the vector field D has a
nontrivial divisorial part as the next theorem shows.

Theorem 5.2. [Tz17a, Theorem 6.1] Suppose that D has a nontrivial divisorial
part. Suppose that K2

X < p. Then the Kodaira dimension of Z is −1 and X is
purely inseparably uniruled.

Finally I collect some formulas and set up some terminology and notation that
will be needed in the proofs.

Let ∆ be the divisorial part of D. There is also the following adjunction formula
for purely inseparable maps [RS76, Corollary 1]

KX = π∗KY + (p− 1)∆.(5.2.1)

(According to [RS76], the previous formula holds in the smooth part of X and
hence everywhere since X is normal).

Let Fi, i = 1, . . . , n be the g-exceptional curves and Ej , j = 1, . . . ,m be the
h-exceptional curves. By Lemma 5.1 the g-exceptional curves Fi are all rational
(but perhaps singular).

Taking into consideration that g : Y ′ → Y is the minimal resolution of Y , we get
the following adjunction formulas

KY ′ +

n
∑

i=1

aiFi = g∗KY ,(5.2.2)

KY ′ = h∗KZ +

m
∑

j=1

bjEj ,

where ai ∈ Q≥0, and bj ∈ Z>0, j = 1, . . .m. Moreover since both Y ′ and Z are
smooth, h is the composition of m blow ups.

In the next sections I will consider cases with respect to the Kodaira dimension
κ(Z) of Z.

Finally, for the rest of the paper, fix the notation of this section.

6. The Kodaira dimension of Z is 1 or 2.

Proposition 6.1. Let X be a canonically polarized surface over a field of charac-
teristic p > 0. Suppose that X has a nontrivial global vector field D with isolated
singularities such that Dp = 0 or Dp = D. Suppose moreover, with notation as in
Section 5, that the Kodaira dimension κ(Z) of Z is 1 or 2. then

(1) Suppose that K2
X = 1. Then p < 56.

(2) Suppose that K2
X ≥ 2. Then p < 42K2

X + 3.

Proof. Suppose that the statements of the proposition are not true, i.e., p ≥ 56,
if K2

X = 1 and that p > 42K2
X + 3, if K2

X ≥ 2. Then, I will sow that also
p > 12χ(OX) + 11K2

X + 1 and therefore from Theorem 3.3 D fixes the singular
points of X and lifts to a vector field D′ in the minimal resolution of f .
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Indeed. Let f : X ′ → X be the minimal resolution of X . Since X has canonical
singularities, χ(OX) = χ(OX′) and KX′ = f∗KX . X ′ is a minimal surface of
general type. Therefore from Noether’s inequality, 2χ(OX′) ≤ K2

X′ + 6. Hence,
since K2

X = K2
X′ , it follows that 2χ(OX) ≤ K2

X + 6. Hence

12χ(OX) + 11K2
X + 1 ≤ 17K2

X + 37 < 42K2
X + 3 < p,(6.1.1)

by the assumption.
Now by Theorem 5.2, D has no divisorial part, i.e., ∆ = 0. Therefore, KX =

π∗KY and hence KY is ample.
Consider cases with respect to the Kodaira dimension κ(Z) of Z.
Case 1: Suppose that κ(Z) = 2.
According to [Ek88, Theorem 1.20], the linear system |4KZ| is very ample. Let

W ∈ |4KZ | be a smooth member which does not go through the points blown up
by h in the diagram 5.0.1. Then by the adjunction formula, pa(W ) = 10K2

Z + 1.
Then combining the equations 5.2.2 it follows that

g∗(4KY ) = 4KY ′ + 4

n
∑

i=1

aiFi = h∗(4KZ) + 4

m
∑

j=1

bjEj + 4

n
∑

i=1

aiFi ∼(6.1.2)

W ′ + 4

m
∑

j=1

bjEj + 4

n
∑

i=1

aiFi,(6.1.3)

where W ′ = h∗W = h−1
∗ W is the birational transform of W in Y ′. By pushing

down to Y we get that

4KY ∼ W̃ + 4

m
∑

i=1

biẼi,(6.1.4)

where Ẽi = g∗Ei, 1 ≤ i ≤ m. Note that since Y ′ is the minimal resolution of Y , g
does not contract any (-1) h-exceptional curves. Hence if h is not an isomorphism

then g∗
∑m
i=1 Ei 6= 0. Now since |4KZ| is very ample it follows that dim |W̃ | ≥ 1 and

therefore dim |4KY | ≥ 1, or equivalently h0(OY (4KY )) ≥ 2. But by Corollary 4.10
this is impossible.

Case 2: Suppose that κ(Z) = 1.
Since κ(Z) = 1, it is well known that Z admits an elliptic fibration φ : Z → B,

where B is a smooth curve. Then one can write

R1φ∗OZ = L⊕ T,(6.1.5)

where L is an invertible sheaf on B and T is a torsion sheaf.
Claim: B ∼= P1 and T = 0.
By Lemma 5.1, the g-exceptional curves are rational. Hence if at least one of

them is not contracted to a point by φ ◦ h, then B is dominated by a rational
curve and hence it is isomorphic to P1. Suppose that every g-exceptional curve is
contracted to a point by φ ◦ h. Then by looking at diagram 5.0.1 we see that there
exists factorizations

Y
ψ

  ❅
❅❅

❅❅
❅❅

❅

X

π

>>⑦⑦⑦⑦⑦⑦⑦⑦
σ // B
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such that the general fiber of ψ is an elliptic curve. Then let Yb = ψ−1(b) be the
general fiber. Then KY · Yb = 0 and therefore,

KX · π∗Yb = π∗KY · π∗Yb = pKY · Yb = 0.

But this is impossible since KX is ample. Therefore there must be a g-exceptional
curve not contracted to a point by φ ◦ h and hence B ∼= P1.

Suppose now that T 6= 0. Let b ∈ T . Then φ−1(b) = pmW , m > 0 and W is
an idecomposable fiber [KU85]. Moreover |14KZ| defines the fibration φ [KU85].
Hence 14KZ ∼ νF , where F is a general fiber of φ and hence a smooth elliptic
curve (if p 6= 2, 3.). Then F ∼ φ−1(b) = pmW . and hence 14KZ ∼ pmνW . Then
by pulling up to Y ′ it follows that

14h∗KZ = pmνW ′ + p(

m
∑

i=1

ciEi).

If h blows up a point ofW then ci > 0 and 14h∗KZ has a component corresponding
to a (−1) h-exceptional curve with coefficient divisible by p. Considering that the
(−1) h-exceptional curves do not contract by g, we see that in any case (if h blows

up a point on W or not) that, after pushing down to Y , 14KY ∼ pW̃ +B, for some

divisor W̃ (either the birational transform of W or the image of a −1 h-exceptional
curve. Therefore by pulling up to X and since KX = π∗KY ,

14KX ∼ pπ∗W̃ + π∗B.

But from this it follows that 14K2
X > p, a contradiction. This concludes the proof

of the claim.
Next consider cases with respect to pg(Z).
Case 1. Suppose that pg(Z) ≥ 2. Then, since h0(OZ(KZ)) ≥ 2, it easily follows

that h0(OY (KY )) ≥ 2. Then by Corollary 4.10 we get a contradiction. So this case
is impossible too.

Case 2. Suppose that pg(Z) ≤ 1. I will show that this case is impossible too.
From the Noether’s formula on Z [Ba01, Theorem 5.1]

10− 8h1(OZ) + 12pg(Z) = K2
Z + b2(Z) + 2(2h1(OZ)− b1(Z)) =(6.1.6)

b2(Z) + 2(2h1(OZ)− b1(Z))

it easily follows [Ba01, Page 113] that if pg(Z) ≤ 1, then the only numerical solutions
to the equation 6.1.6 are the following:

(1) pg(Z) = 0, χ(OZ) = 0, b1(Z) = 2.
(2) pg(Z) = 0, χ(OZ) = 1, b1(Z) = 0.
(3) pg(Z) = 1, χ(OZ) = 2, b1(Z) = 0.
(4) pg(Z) = 1, χ(OZ) = 1, b1(Z) = 2.
(5) pg(Z) = 1, χ(OZ) = 1, b1(Z) = 0.
(6) pg(Z) = 1, χ(OZ) = 0, b1(Z) = 2.
(7) pg(Z) = 1, χ(OZ) = 0, b1(Z) = 4.

Note that by [KU85, Lemma 3.5] the last case is not possible. Consider next each
one of the cases separately. I will only consider the first two cases. The rest are
similar and are omitted.

Case 2.1. Suppose that pg(Z) = χ(OZ) = 0 and b1(Z) = 2.
By Igusa’s formula [IG60] it follows that the fibers of φ : Z → P1 are either

smooth elliptic curves or of type mE, where m is a positive integer and E an
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elliptic curve (singular or smooth). Also note that φ must have multiple fibers or
else Z cannot have Kodaira dimension 1.

I will next show that in fact E is a smooth elliptic curve. Indeed. Since b1(Z) = 2
it follows that dimAlb(Z) = 1. Hence Alb(Z) is a smooth elliptic curve. Let then
ψ : Z → Alb(Z) be the Albanese map. Then there exist the following two maps

Z
ψ //

φ

��

Alb(Z)

P1

Suppose that mE is a multiple fiber of φ. Suppose also that E is a rational elliptic
curve. Then E cannot dominate Alb(Z) and hence it must contract by ψ. Hence all
fibers of φ contract by ψ. But then there would be a nontrivial map P1 → Alb(Z),
which is impossible. Hence E is a smooth elliptic curve.

It is well known [Ba01, Theorem 8.11] that the linear system |νKZ |, ν ∈ {4, 6}
contains a strictly positive divisor. Then νKZ ∼ sE, where s > 0 is a positive
integer and E is a smooth elliptic curve. Let E′ = h−1

∗ E be the birational transform
of E in Y ′. Then E′ is a smooth elliptic curve and since the g-exceptional curves
are all rational, it follows that E′ does not contract by g. Therefore by pulling up
to Y ′ and then pushing down to Y we get that

νKY ∼ mẼ +B,(6.1.7)

where B is an effective divisor on Y . Hence by pulling up to X we get that

νKX ∼ mÊ + π∗B.(6.1.8)

As in the previous cases we see that if K2
X < p/ν, Ê is irreducible and therefore

is an integral curve of D whose normalization Ē is a smooth elliptic curve. I will

show that D lifts to a vector field D̄ on Ē and that D has fixed points on Ê. Then
by Lemma 3.15, D̄ will have fixed points which is impossible since Ē is an elliptic
curve and hence get a contradiction again.

Let now f : X ′ → X be the minimal resolution of X . Then KX′ = f∗KX and
therefore

νKX′ ∼ mE′′ + f∗π∗B + F,(6.1.9)

where E′′ is the birational transform of Ê in X ′ and F is an effective f -exceptional
divisor. Now from the equation (6.1.9), since KX′ is nef and big, we get that

KX′ ·E′′ < νK2
X′ = νK2

X .(6.1.10)

and then from the Hodge Index Theorem it follows that that

(E′′)2 <
(KX′ ·E′′)2

K2
X′

< ν2K2
X .

Therefore from the adjunction formula it follows that

pa(E
′′) <

ν(ν + 1)

2
K2
X + 1.

Hence if

K2
X <

p− 3

2
·

2

ν(ν + 1)
,
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then pa(E
′′) < (p − 1)/2. Considering that ν ∈ {4, 6}, the above inequality holds

if K2
X < (p− 3)/42, which holds according by the assumptions. Also, since Ê is an

integral curve of D, E′′ is an integral curve of D′, the lifting of D to X ′. Therefore
in this case, from Proposition 4.7 it follows that the restriction of D′ on E′′ fixes
the singular points of E′′ and hence lifts to its normalization Ē of E′′.

Next I will show that D′ has fixed points on E′′.
Suppose that D has no fixed points on Ê. Then Ê is in the smooth part of X

since the singular points of X are fixed points of D. Moreover, since D has no fixed
points on Ê, Ẽ = π(Ê) is in the smooth part of Y . Then

KX · Ê = π∗KY · π∗Ẽ = p(KY · Ẽ) = λp,

where, since KY is ample, λ is a positive integer. But then from the equation
(6.1.7) it follows that νK2

X > p, which is impossible. Therefore, there are fixed

points of D on Ê. Let P ∈ Ê be a point which is a fixed point of D. Suppose that
P ∈ X is a smooth point. Then Q = f−1(P ) is a fixed point of E′′. Suppose that
P ∈ X is singular. Let then F be an f -exceptional curve such that F ·E′′ > 0. By
Theorem 3.3, F is an integral curve of D′. I will show that F · E′′ < p and hence
by Corollary 4.5, the intersection points F ∩E′′ are fixed points of D′. Write

f∗Ê = E′′ + aF + F ′,

where F ′ is f -exceptional and effective. Then by Lemma 3.13, and (6.1.8), it follows

that Ê2 < ν2K2
X and hence

ν2K2
X > Ê2 ≥ (E′′)2 + a(F ·E′′).

Considering now that from (6.1.10),

(E′′)2 ≥ −2−KX′ · E′′ ≥ −2− νK2
X

We get that

a(F · E′′) ≤ 2 + (ν + ν2)K2
X ,(6.1.11)

and therefore F · E′′ < p if 2 + (ν + ν2)K2
X < p, which holds if 42K2

X + 2 < p
(ν = 4 or ν = 6). Hence the intersection points E′′ ∩ F are fixed points of D′.
Hence in any case there are fixed points of D′ on E′′. Then from Lemma 3.15, the
preimages of these points in D̄ are fixed points of the lifting of D′ on D̄, which is
a contradiction since a vector field on an elliptic curve has no fixed points.

Case 2.2. Suppose that pg(Z) = 0, χ(OZ) = 1, b1(Z) = 0. I will show that this
case is also impossible.

Claim: dim |6KZ| ≥ 1.
Let Fti = miPi, ti ∈ P1, i = 1, . . . , r be the multiple fibers of φ. Since T = 0,

they are all tame. Then by the canonical bundle formula [Ba01, Theorem 7.15 and
Page 118] we get that

dim |nKZ | = n(−2 + χ(OZ)) +

r
∑

i=1

[

n(mi − 1)

mi

]

= −n+

r
∑

i=1

[

n(mi − 1)

mi

]

,

(6.1.12)

where for any m ∈ N, [m] denotes its integer part. Also, in the notation [Ba01,
Remark 8.3] if,

λ(φ) = −1 +

r
∑

i=1

mi − 1

mi

,
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Then κ(Z) = 1 if and only if λ(φ) > 0. Hence φ has at least two multiple fibers.
Suppose that φ has at least three multiple fibers, i.e., r ≥ 3 and mi ≥ 2. Then

for every 1 ≤ i ≤ r,
[

6(1−
1

mi

)

]

≥

[

6

2

]

= 3.

Then from the equation 6.1.12 it follows that dim |6KZ | ≥ −6 + 3 · 3 = 3.
Suppose that φ has exactly two multiple fibers with multiplicities m1 and m2.

Then in order to have λ(φ) > 0, at least one of them must be greater or equal than
3. Say m1 ≥ 3 and m2 ≥ 2. Then from the equation 6.1.12 it follows that

dim |6KZ| = −6 +

[

6(1−
1

m1

]

+

[

6(1−
1

m2

]

≥ −6 +

[

6 ·
2

3

]

+

[

6 ·
1

2

]

= 1.

Hence 6KZ ∼ mE, where m > 0 is a positive integer and E is a smooth elliptic
curve. By repeating now the argument used in Case 2.1 we see that this is impossible
if 42K2

X + 3 < p. This concludes the study of the case when κ(Z) = 1.
�

7. The Kodaira dimension of Z is 0.

Fix the notation as in Section 4. The main result of this section is the following.

Proposition 7.1. Let X be a canonically polarized surface defined over an alge-
braically closed field of characteristic p > 0. Suppose that X admits a nontrivial
global vector field D such that Dp = 0 or Dp = D. Suppose that Z has Kodaira
dimension zero. Then

p < max{8(K2
X)

3 + 12(K2
X)

2 + 3, 4508K2
X + 3}.

Moreover, suppose that Dp = D. Then

(1) Suppose that K2
X = 1. Then p < 179.

(2) Suppose that K2
X ≥ 2. Then p < 140K2

X + 3.

Proof. I will only do the case when K2
X ≥ 2. The case when K2

X = 1 is identical
and is omitted. Then only difference between the two cases is that in the Case 3.1
below, where the case when Dp = D is studied, if K2

X = 1 then |4KX | is base point
free while if K2

X ≥ 2, |3KX | is base point free [Ek88]. So in the case K2
X = 1,one

has to work with the linear system |4KX | instead.
From now on assume K2

X ≥ 2. Suppose that the assumptions of the proposition
do not hold, in their respective cases. Then in particular, K2

X < p. Hence by
Theorem 5.2, D has only isolated singularities, i.e., ∆ = 0. Therefore from the
equation (5.2.1) it follows that KX = π∗KY . Hence, since KX is ample, KY is
ample as well. Moreover, Y is singular since if this was not true, then K2

X =
pK2

Y ≥ p.
Let f : X ′ → X be the minimal resolution of X . Then, as before, since X has

canonical singularities, KX = f∗KY and thereforeX is a minimal surface of general
type. Moreover, from the equation (6.1.1) it follows that

12χ(OX) + 11K2
X + 1 ≤ 17K2

X + 37 < 140K2
X + 3 < p.

Hence by Theorem 3.3 every singular point of X is a fixed point of D, D lifts to a
vector field D′ on X ′ and that every f -exceptional curve is stabilized by D′.
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According to the classification of surfaces [BM76], [BM77], Z is one of the fol-
lowing: An abelian surface, a K3 surface, an Enriques surface or a hyperelliptic
surface.

Case 1: Suppose that Z is an abelian surface. Then every g-exceptional
curve is also h-exceptional since by Lemma 5.1 every g-exceptional curve is rational
and there do not exist nontrivial maps from a rational curve to an abelian surface.
Hence there exists a factorization

Y ′
g //

φ

��

Y

θ~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

Z

(7.1.1)

Let Bj , j = 1, . . . , r be the θ-exceptional curves. Then one can write

KY = θ∗KZ +

r
∑

j=1

γjBj .

But then, since {Bj, 1 ≤ j ≤ r} is a contractible set of curves, it easily follows that

K2
Y =





r
∑

j=1

γjBj





2

≤ 0,

which is impossible since KY is ample. Therefore Z cannot be an abelian surface.
Case 2: Suppose that Z is a hyperelliptic surface. I will show that this

case is also impossible. It is well known that if Z is hyperelliptic, then b1(Z) =
2 [BM77] and hence dimAlb(Z) = 1. Then the morphism φ : Z → Alb(Z) is an
elliptic fibration [BM77]. Since every g-exceptional curve is rational, they must be
contracted to points in Alb(Z). Hence there exists a factorization

Y
ψ̃

##❋
❋❋

❋❋
❋❋

❋❋

X

π

??⑧⑧⑧⑧⑧⑧⑧⑧ ψ // Alb(Z)

The general fiber Yb of ψ̃ is an elliptic curve. Hence KY · Yb = 0. hence

KX · π∗Yb = π∗KY · π∗Yb = pKY · Yb = 0,

which is impossible since KX is ample. Hence Z can be either a K3 surface or an
Enriques surface.

Case 3: Suppose that Z is a K3 surface. Consider now two cases with
respect to whether D is of multiplicative or additive type.

Case 3.1. Suppose that D is of multiplicative type, i.e., Dp = D.
By [Ek88, Theorem 1.20], |3KX | is base point free. Also, since KX = π∗KY , by

Proposition 4.1, there exists a k-linear map

D∗ : H0(OX(3KX)) → H0(OX(3KX)).(7.1.2)

Moreover, sinceDp = D, D∗ is diagonalizable (with eigenvalues in the set {0, 1, . . . , p−
1}) and their eigenvectors correspond to integral curves of D. Let

H0(OX(3KX)) = ⊕ki=1V (λi),(7.1.3)

the decomposition ofH0(OX(3KX)) in eigenspaces ofD∗, where λi ∈ Fp, 1 ≤ i ≤ k.
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Suppose that dim |3KX | = m. Let Zi, i = 1, . . . ,m be a basis of |3KX | corre-
sponding to eigenvectors of D∗. Since KX is ample it follows from [Ha77, Corollary
7.9] that Zi is connected for all i. Now since Zi are eigenvectors of D∗, Zi are
stabilized by D and hence D induces nontrivial vector fields on each Zi. Moreover,
if K2

X < p/3, something which is true if the assumptions of the proposition hold,
then from Corollary 4.3, D restricts to every reduced and irreducible component of
Zi, for all 1 ≤ i ≤ m.

Since Z is a K3 surface, ωZ ∼= OZ . Hence from the equations (5.2.2) it follows
that

KY =

s
∑

j=1

bjẼj ,(7.1.4)

where Ẽj is the birational transform in Y of the h-exceptional curves not contracted
by g (note that such curves exist because if this was not the case then Y ′ = Z and
hence since KZ = 0 it would follow that KY = 0 which is impossible since KY is
ample). In particular pg(Y ) 6= 0 and hence pg(X) 6= 0. Let C = π∗Ẽ, where Ẽ is
any irreducible component of KY in the equation (7.1.4). Then, since K2

X < p, C
is reduced and hence is an integral curve of D.

Claim: D has at most two fixed points on C.
Indeed. From the equation (7.1.4) it follows that

KX · C = π∗KY · π∗Ẽ = pKY · Ẽ ≤ pK2
Y = K2

X .(7.1.5)

Moreover, from Lemma 3.13, C2 ≤ K2
X . Let C

′ = f−1
∗ C be the birational transform

of C in X ′. Then

KX′ · C′ = f∗KX · C′ = KX · C ≤ K2
X .

Moreover, (C′)2 ≤ C2 ≤ K2
X = K2

X′ . Therefore pa(C
′) ≤ K2

X + 1. Then, the
assumptions of the proposition imply that K2

X + 1 < (p − 1)/2. Hence it follows
from Corollary 4.8 thatD′ fixes the singular point of C′ and lifts to its normalization
C̄. Suppose that C′ is singular. Then by Corollary 4.8, C̄ ∼= P1 and D′ has at most
two fixed points on C′. Suppose that C′ is smooth. Then it must be either a
smooth rational curve or an elliptic curve. In the first case D′ has exactly two fixed
points on C′. Suppose that C′ is an elliptic curve. Then the map C′ → C factors
through the normalization C̃ → C. Therefore there exists a purely inseparable map
of degree p map C′ → C̃ of smooth curves. Moreover, since C is the pushforward
in Y of an h-exceptional curve, C is rational and hence C̃ = P1. Therefore there
exists a purely inseparable map of degree p, C′ → P1. But this implies that there
exists a map P1 → (C′)(p), where C′ → (C′)(p) is the k-linear Frobenius. But this is
impossible since (C′)(p) is also an elliptic curve. Therefore, C′ cannot be an elliptic
curve and hence in any case D′ has at most two fixed points on C′.

Next I will show that this implies that D has at most two fixed points on C. Let
P ∈ C be a fixed point of D.

Suppose that P is a smooth point of X . Then Q = f−1(P ) is a fixed point of
D′ on C′.

Suppose that P is a singular point of X . Let then E be an f -exceptional curve
which intersects C′. By Theorem 3.3, E is stabilized byD′. Then by repeating word
by word the arguments that lead to the equation (6.1.11) we find that E · C′ ≤
2K2

X + 2 and hence the assumptions of the proposition imply that E · C′ < p.
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Therefore, by Corollary 4.5, every point of intersection of E and C′ is a fixed point
of D′ on C′. Therefore D has at most as many fixed points on C as D′ has on C′

and hence at most 2. This concludes the proof of the claim.
Therefore C is a rational curve and D has at most two fixed points on D. Let

P1, P2 be the fixed points of D on C, with the possibility that P1 = P2.
Let 1 ≤ i ≤ m be such that C is not an irreducible component of Zi. Since KX

is ample, it follows that C · Zi > 0. For the same reason, Zi · Zj > 0 and therefore
Zi ∩ Zj 6= ∅, for all 1 ≤ i, j ≤ m.

Let now again Zi be a member of the basis of |3KX |. Let A be an irreducible
and reduced component of Zi different from C such that C · A > 0. I will show
that every point of intersection of C and A is a fixed point of D. Indeed, from the
definition of C and Zi, it follows that

C · A ≤ C · Zi = 3KX · C ≤ 3K2
X < p

by the equation (7.1.5) and the assumptions of the proposition. Hence by Corol-
lary 4.5, every point of intersection of A and C which is a smooth point of X is a
fixed point of D. The points of intersection of A and C which are singular points
of X are fixed points of D always. Hence every point of intersection of C and A is
a fixed point of D. In particular, every point of intersection of C and Zi is a fixed
point of D (in the case C is not a component of Zi).

Suppose that P1 = P2. Let 1 ≤ i ≤ m. Then either C is a component of Zi or
(Zi ∩ C)red = {P1}, for all 1 ≤ i ≤ m. But this implies that P1 is a base point
of |3KX |, which is impossible. Hence P1 6= P2. For the same reason, it is not
possible that either (Zi ∩ C)red = {P1}, for all i or (Zi ∩ C)red = {P2}, for all i.
Therefore there exist indices 1 ≤ i 6= j ≤ m, such that (Zi ∩ C)red = {P1} and
(Zj ∩ C)red = {P2}. But then, since Zi ∩ Zj 6= ∅ and the curves Zi and Zj are

connected, the curveW = Zi+Zj+C contains loops. Let Z̃i = π(Zi), Z̃j = π(Zj).

Then W̃ = Z̃i + Z̃j + Ẽ is a curve whose reduced curve W̃red contains loops. Hence
dimH1(OW̃red

) ≥ 1 and hence dimH1(OW̃ ) ≥ 1 as well.

Now since Z is a K3 surface, it follows that H1(OZ) = 0 Hence H1(OY ′) = 0
and therefore from the Leray spectral sequence it follows that H1(OY ) = 0. Then
from the exact sequence

0 → OY (−W̃ ) → OY → OW̃ → 0

we get the exact sequence in cohomology

· · · 0 = H1(OY ) → H1(OW̃ ) → H2(OY (−W̃ )) → H2(OY ) → H2(OW̃ ) = 0.

Considering now that h1(OW̃ ) ≥ 1, H2(OY (−W̃ )) = H0(OY (W̃+KY )), H
2(OY ) =

H0(OY (KY )) and that pg(Y ) 6= 0, it follows that

h0(OY (W̃ +KY )) ≥ 2.(7.1.6)

Now since π∗(W̃ +KY ) = W +KX ∼ 7KX it follows that |7KX | contains a posi-
tive dimensional subsystem whose members are stabilized by D. Then by Proposi-
tion 4.9, and the assumptions of the proposition, this is impossible. Hence Z cannot
be a K3 surface.

Case 3.2. Suppose that D is of additive type, i.e., Dp = 0.
The main idea in order to treat this case this is the following. I will show that

there exists a ”small” positive number ν such that dim |νKY | ≥ 1 and then get a
contradiction for p large enough by Corollary 4.10.
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The main steps of the proof are the following.
Let F =

∑n
j=1 Fj be the reduced g-exceptional divisor. Then write F = F ′+F ′′,

where F ′ =
∑r

j=1 Fj , where Fj , j = 1, . . . , r are the g-exceptional curves which are

not h-exceptional, and F ′′ =
∑n

j=r+1 Fj are the g-exceptional curves that are also

h-exceptional. Notice that F ′ 6= 0 because if that was the case then there would be
a birational morphism ψ : Y → Z. Then by the adjunction formula,

KY = ψ∗KZ + F̃ = F̃ ,

since KZ = 0, where F̃ is a ψ-exceptional divisor. Then K2
Y = F̃ 2 ≤ 0, which is

impossible since KY is ample.
Then I will show that at least one of the following is true.

(1) h0(OY (2KY )) ≥ 2 and hence dim |2KY | ≥ 1.
(2) There exists a divisor B =

∑r
j=1 njFj , and a positive number ν such that

either ν ≤ K2
X or ν = 44, and such that dim |νKY ′ + B| ≥ 1. Moreover,

the linear system |B̂|, where B̂ = h∗B in Z is either base point free or its
moving part is base point free. This implies that dim |νKY | ≥ 1.

Then in both cases the claimed result will be obtained by using Corollary 4.10.
The assumptions of the proposition imply that 10K2

X +3 < p and 4K2
X +3 < p.

Therefore, by Corollary 4.10,

H0(OY (KY )) = H0(OY (2KY )) = k(7.1.7)

and hence pg(Y ) = 1.
Next I will show that Y has rational singularities. Indeed. The Leray spectral

sequence for g gives

0 → H1(OY ) → H1(OY ′) → H0(R1g∗OY ′) → H2(OY ) → H2(OY ′) → H1(R1g∗OY ′).

Now since g is birational it follows that H1(R1g∗OY ′) = 0. Moreover, by Serre
duality, H2(OY ) ∼= H0(OY (KY )) = k and H2(OY ′) ∼= H0(OY ′(KY ′)) = k and
H1(OY ′) = 0, since Z is a K3 surface. Hence from the Leray sequence it follows
that H1(OY ) = 0 and R1g∗OY ′ = 0. Therefore Y has rational singularities as
claimed. In particular, every g-exceptional curve is a smooth rational curve.

Let F̂i = h∗Fi, i = 1, . . . , r, be the birational transforms of the Fi in Z. Consider
next cases with respect to whether the curves F̂i are either all smooth or there exists
a singular one among them.

Case 1. Suppose that there exists an 1 ≤ i ≤ r such that F̂i is singular. In
this case I will show that dim |(K2

X)KY | ≥ 2 and then get a contradiction by
Corollary 4.10.

After a renumbering of the g-exceptional curves we can assume that i = 1. Then
by the adjunction formula

F̂ 2
1 = 2pa(F̂1)− 2−KZ · F̂1 = 2pa(F̂1)− 2 ≥ 0.

Hence the linear system |F̂1| in Z is base point free [Hu16, Propositions 3.5, 3.10].

Claim 7.2. Let Q ∈ F̂1 be a singular point of F̂1 and m = mQ(F̂1) be the multi-
plicity of the singularity. Then

mQ(F̂1) ≤ K2
X .(7.2.1)
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In order to prove the claim, observe the following. Over a neighborhood of any
singular point of F̂1, F1 can meet at most two distinct h-exceptional curves Ei and
Ej , and moreover it must intersect each one of them with multiplicity 1. Indeed.

Suppose that F1 meets three distinct h-exceptional curves Ei, Ej and Es (over
the same point of Z). Since h is a composition of blow ups, it follows that Ei ∩
Ej ∩Es = ∅. Hence the intersection of F1 and Ei ∪Ej ∪Es consists of at least two
distinct points, say P and Q. Up to a change of indices we can assume hat P ∈ Ei
and Q ∈ Ej . Then the union Ex(h) ∪ F1, where Ex(h) is the exceptional set of h,
contains a cycle. Therefore from the equations (5.2.2) it follows that

KY =

n
∑

j=1

bjẼj ,(7.2.2)

where Ẽj = g∗Ej , j = 1, . . . , n. Moreover if E2
j = −1, then Ẽj 6= 0. But then, if F1

meets at least two distinct h-exceptional curves, ∪nj=1Ẽ contains either a singular

curve or a cycle. In any case, if C̃ =
∑n

j=1 bjẼj then H1(OC̃) 6= 0. But then from
the equation in cohomology

H1(OY ) → H1(OC̃) → H2(OY (−C̃)) → H2(OY ) → 0,

and since H1(OY ) = 0, H2(OY ) = k, it follows that dimH2(OY (−C̃)) ≥ 2.
Then by duality,

h0(OY (KY + C̃)) = h0(OY (2KY )) ≥ 2,

a contradiction to the equations (7.1.7). Hence F1 meets at most two distinct h-
exceptional curves. Suppose that F1 meets an h-exceptional curve Ei and Ei ·F1 ≥
2. Then there are two possibilities. Either Ei is also g-exceptional or it is not.
Suppose that Ei is g-exceptional. But this is impossible because Y has rational
singularities and in such a case two g-exceptional curves cannot intersect with
multiplicity bigger than one. Suppose that Ei is not g-exceptional. Then Ẽi = g∗Ei
is singular and therefore h1(OẼi

) ≥ 1. But then h1(OC̃) ≥ 1 and hence arguing

as before we see that h0(OY (2KY )) ≥ 2, which is again a contradiction to the
equations (7.1.7). Hence it has been shown that over a neighborhood of any singular

point of F̃1, F1 meets at most two h-exceptional curves with multiplicity at most
one.

Next I will show that

mQ(F̂1) ≤ KY ′ · F1.(7.2.3)

The map h is a composition of blow ups of points of Z. Since F̂1 is singular, h must
blow up the singular points of F̂1. Let h1 : Y1 → Z be the blow up of Q ∈ Z. Then
there exists a factorization

Y ′

h2

  ❆
❆❆

❆❆
❆❆

❆
h // Z

Y1

h1

??⑦⑦⑦⑦⑦⑦⑦⑦

Then also h∗1F̂1 = (h1)
−1
∗ F̂1 + mQ(F̂1)E1, where E1 is the h1-exceptional curve

and (h1)
−1
∗ F̂1 is the birational transform of F̂1 in Y1. From this it follows that
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E1 ·(h1)−1
∗ F̂1 = mQ(F̂1). Also KY1 = h∗1KZ+E1 = E1. ThereforeKY1 ·(h1)

−1
∗ F̂1 =

mQ(F̂1). Moreover,

KY ′ = h∗2KY1 + E′,

where E′ is an effective h2-exceptional divisor. But then

KY ′ · F1 = h∗2KY1 · F1 + E′ · F1 ≥ KY1 · (h2)∗F1 = KY1 · (h1)
−1
∗ F̂1 = mQ(F̂1).

This proves the claim.
As it has been shown earlier, F1 meets at most two h-exceptional curves Ej and

Es, with the possibility j = s, each one of them with intersection multiplicity one.
Suppose that Ei 6= Ej and that F1 intersects Ej and Es at the same point Q.

Hence Ej ∩ Es ∩ F1 6= ∅. Then since Y has rational singularities it is not possible
that Ej and Es are both g-exceptional.

Suppose that Es is g-exceptional but Ej is not g-exceptional. Then g∗Ej would
be singular. But then from the equation (7.2.2) and the arguments following it, we
get again that dimH0(OY (2KY )) ≥ 2, a contradiction to the equation (7.1.7).

Hence neither of Ej and Es is g-exceptional. Now write

KY ′ = bjEj + bsEs +
∑

r 6=j,s

brEr.

Then from the equation (7.2.3) and the facts that Ej ·F1 = Es ·F1 = 1, F1 ·Er = 0,
for r 6= j, s, it follows that

mQ(F̂1) ≤ KY ′ · F1 = bj + bs.

Then from the equation (7.2.2) and the fact that Ej and Es are not g-exceptional
it follows that

KY = bjẼj + bsẼs + W̃ ,

where W is an effective divisor. Then since KX = π∗KY we get that

KX = bjπ
∗Ẽj + bsπ

∗Ẽs + π∗W̃ .

Now considering that KX is ample we get that

mQ(F̂i) ≤ KY ′ · Fi = bj + bs ≤ bjπ
∗Ẽj ·KX + bsπ

∗Ẽs ·KX ≤ K2
X ,

as claimed.
Suppose finally that Ej = Es, i.e., F1 meets exactly one h-exceptional curve.

ThenKY ′ ·F1 = bj. If Ej is not g-exceptional then the previous argument proves the
claim. Suppose that Ej is also g-exceptional. Then there exists a −1 h-exceptional
curve Eλ such that bλ ≥ bj . The previous argument now shows that bλ ≤ K2

X and
hence

mQ(F̂i) ≤ bj ≤ bλ ≤ K2
X .

This concludes the proof of Claim 7.2.

Claim 7.3. Let B be any member of the linear system |(K2
X)KY ′ + F1|. Then

B ∼W ′ +

m
∑

i=1

γiEi,(7.3.1)

where γi ≥ 0 for all i and W ′ is the birational transform in Y ′ of a smooth curve
W in Z such that |W | is base point free and pa(W ) ≥ 1.
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By [Hu16, Proposition 3.5 and 3.10], the linear system |F̂1| is base point free

and contains a smooth curve. Let W ∈ |F̂1|. be a general member. Then W is
reduced and irreducible and moreover it does not pass through h(Ex(h)). Let W ′

be the birational transform of W in Y . Then W ′ ∼=W . Now from Proposition 4.11
it follows that

µKY ′ − h∗F̂1 + F1 =

m
∑

i=1

γiEi,(7.3.2)

where γi ≥ 0, for all 1 ≤ i ≤ m, and µ is the maximum of the multiplicities of the
singular points of F̂1. But from Claim 7.2 it follows that µ ≤ K2

X . Hence

(K2
X)KY ′ − h∗F̂1 + F1 =

m
∑

i=1

γ′iEi,(7.3.3)

for some γ′i ≥ 0, for all 1 ≤ i ≤ m. Let now W ∈ |F̂1| be a general member. Then

W ′ = h∗F̂1 = Fi + (h∗F̂1 − F1). Then from the equation (7.3.2) it follows that

(KX)2KY ′ + Fi = (K2
X)KY ′ +W ′ − h∗F̂i + Fi =W ′ +

m
∑

i=1

γ′iEi,

for some γ′i ≥ 0, 1 ≤ i ≤ m. This concludes the proof of Claim 7.3.
Now pushing down to Y by g∗, and considering that Fi is g-exceptional, we see

that

(K2
X)KY ∼ W̃ +

m
∑

j=1

γ′jẼj .(7.3.4)

Moreover notice that from the construction of W , dim |W̃ | ≥ 1 and therefore
dim |(K2

X)KY | ≥ 1. But according to the assumptions of the proposition,

(K2
X)3 + 3(K2

X)
2 + 3 < p,

and therefore from Corollary 4.10 we get a contradiction. Hence there is no g-
exceptional curve Fi such that F̂i = h∗Fi is singular.

Case 2. Suppose that F̂i is smooth for any i = 1, . . . , r. In this case I will show
that K2

X > (p− 3)/506.

Since F̂i is smooth it follows that F̂i ∼= P1 and that F̂ 2
i = −2, for all i = 1, . . . , r.

Consider now cases with respect to whether or not every connected subset of the
set {F̂ , . . . , F̂r} is contractible.

Case 2.1. Suppose that every connected subset of {F̂1, . . . , F̂r} is contractible.

Let φ : Z → W be the contraction. Since F̂ 2
i = −2, for all i = 1, . . . , r, W has

Duval singularities. Therefore KZ = φ∗KW . Hence, since KZ = 0, KW = 0. Then
there exists a factorization

Y ′
g //

φh

  ❇
❇❇

❇❇
❇❇

❇ Y

ψ~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

W

Hence KY = ψ∗KW + Ẽ = Ẽ, where Ẽ is a divisor supported on the ψ-exceptional
set. But then K2

Y = Ẽ2 ≤ 0, which is impossible since KY is ample.
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Case 2.2. There exists at least one connected subset of {F̂1, . . . , F̂r} which is
not contractible.

Claim 7.4. There exists integers 0 ≤ γj ≤ 22, j = 1, . . . , r such that the linear
system |44KY ′+

∑r
j=1 γjFj | has dimension at least one. Moreover, letB ∈ |44KY ′+

∑r
j=1 γjFj | be any member. Then if K2

X < p/44,

B ∼W ′ +

m
∑

i=1

γiEi,

where γi ≥ 0 for all i and W ′ is the birational transform in Y ′ of a reduced and
irreducible curve W in Z such that |W | is base point free and pa(W ) ≥ 1.

In order to prove the Claim 7 it is necessary to prove first the following.

Claim 7.5. There exist numbers 0 ≤ γi ≤ 23, i = 1, . . . , r such that if Γ =
∑r
i=1 γiF̂i, then Γ · F̂i ≥ 0, for all 1 ≤ i ≤ r, and Γ2 ≥ 0.

I proceed to prove the claims. Let {F̂1, . . . , F̂s}, s < r, be the maximal connected

subset of {F̂1, . . . , F̂r} which is contractible. Since the rank of Pic(Z) is at most
22 [Hu16] it follows that s ≤ 22.

Let φ : Z → Z ′ be the contraction of {F̂1, . . . , F̂s}. Then Z ′ has Du Val singu-

larities. Since ∪ri=1F̂ is connected, there exists a curve F̂j ∈ {F̂s+1, . . . , F̂r}, such

that F̂j ∩ (∪F̂ si=1) 6= ∅ and of course F̂j does not contract by φ. Let F ′
j = φ∗F̂j .

Observe now that one of the following happens.

(1) F ′
j is singular. In this case one of the following happens.

(a) F̂j meets two distinct φ-exceptional curves, say F̂λ, F̂µ, 1 ≤ λ < µ ≤ s.

(b) F̂j meets one φ-exceptional curve F̂i, i ≤ s, such that F̂j · F̂i ≥ 2.

(c) F̂j meets exactly one φ-exceptional curve F̂i and F̂i · F̂j = 1.
(2) F ′

j is smooth.

Suppose that the case 1.a happens. Then let Γ = F̂j +
∑µ

i=λ F̂i. Then this is a

cycle of −2 rational curves and Γ · F̂i = 0, for all i ∈ {j, λ, λ+1, . . . , µ}, and Γ2 = 0.

Suppose that the case 1.b happens. Then let Γ = F̂j + F̂i. Then Γ · F̂j ≥ 0,

Γ · F̂i ≥ 0 and Γ2 ≥ 0.
Suppose that the case 1.c happens. This can happen only when the fundamental

cycle of the singularity of W is not reduced, i.e., when W has either a Ds, E6, E7

or E8 singularity.
Suppose that W has a Ds singularity. The fundamental cycle of the singularity

is F̂1 + 2
∑s−2
i=1 F̂i + F̂s−1 + F̂s. Hence in this case F̂j must intersect some F̂i,

2 ≤ i ≤ s − 2. Let Γ = F̂j + F̂i−1 + 2
∑s−2
k=1 F̂k + F̂s−1 + F̂s. Then Γ · F̂j = 0,

Γ · F̂k = 0, i− 1 ≤ k ≤ s and Γ2 = 0.
The cases when W has E6, E7 or E8 singularities are treated similarly.
Suppose finally that case 2 happens, i.e., F ′

j is smooth. Then write

φ∗F ′
j = F̂j +

s
∑

i=1

aiF̂i.

Letm be the index of F ′
j in S. Then according to Proposition 4.12, m ∈ {2, 3, 4, s+

1} (the exact value of m depends on the type of singularities of S). Moreover, if
S has an As or Ds singularity, then mai ≤ s, for all i = 1, . . . , s. If S has an E6
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singularity then mai ≤ 6 for all i and if S has an E7 singularity then mai ≤ 7 for
all i. In any case mai are positive integers at most 22, for all i = 1, . . . , s, and
m ≤ s+ 1 ≤ 23. Let γi = mai, for all i = 1, . . . , s and γj = m. Let also

Γ = mφ∗F ′
j = γjF̂j +

s
∑

i=1

γiF̂i.

Then Γ · F̂i = 0, i = 1, . . . , s, and Γ · F̂j = m(F ′
j)

2 ≥ 0 (if (F ′)2 < 0, then the set

{F̂j, F̂1, . . . , F̂s} would be contractible which is not true). Moreover, Γ2 ≥ 0. This
concludes the proof of Claim 7.5.

So it has been proved that there exists a nontrivial effective divisor Γ =
∑r
i=1 γiF̂i

in Z, such that 0 ≤ γi ≤ 23, i = 1, . . . , r, and Γ · F̂i ≥ 0 for all i = 1, . . . , r and
Γ2 ≥ 0. In particular, if three of the F̂i meet at a common point or two have
a tangency then B is reduced. Now since F̂i is smooth for all i, every multiple
γiF̂i can be considered singular with multiplicity γi ≤ 23 at every point. If two,
say F̂i and F̂j meet at a point with multiplicity 1 then Γ has at this point mul-
tiplicity γi + γj ≤ 23 + 23 = 46. Therefore from Proposition 4.11 it follows that
46KY ′ − h∗Γ + Γ′ is an effective divisor, where Γ′ =

∑r
i=1 γiFi.

Consider now cases with respect to Γ2.
Suppose that Γ2 = 0. Then by [Hu16, Proposition 3.10], the linear system |BΓ

is base point free. Moreover, by [Jou83, Theorem 6.3], if p 6= 2, 3, Γ ∼ pνW , where
W is a smooth irreducible elliptic curve. In fact |Γ| is also base point free [Hu16,
Proposition 3.10]. I claim that if ν > 0, then K2

X > pν/44. Indeed.

46KY ′ + Γ′ = 46KY ′ + Γ′ − h∗Γ + h∗Γ = (46KY ′ − h∗Γ + Γ′) + pνW ′ =(7.5.1)

pνW ′ + E,

where E is an effective divisor whose prime components are g-exceptional and h-
exceptional curves andW ′ is the birational transform ofW in Y ′ (W can be chosen
to avoid the points blown up by h). Then by pushing down to Y and then pulling
up on X we find that

46KX = pνπ∗W̃ + π∗Ẽ,(7.5.2)

where W̃ = g∗W and Ẽ = g∗E. Also notice that since W moves in Z, W ′ is not g-
exceptional and hence W̃ 6= 0. Then, sinceKX is ample, it follows that 46K2

X ≥ pν .
But this is impossible since we are assuming that the inequalities of the statement
of Claim 3.2 do not hold. Hence ν = 0. Then by pushing the equation 7.5.1 down
to Y we get that

46KY = W̃ + g∗E,

where W̃ is the birational transform of W in Y . Now since dim |W | ≥ 1 it follows
that dim |46KY | ≥ 1. But according to the assumptions of the proposition,

(46 · 49)K2
X + 3 < p.

Then from Corollary 4.10 gives a contradiction. So it is not possible that Γ2 = 0.
Suppose finally that Γ2 > 0. Then Γ is nef and big. Then by [Hu16, Corollary

3.15], Γ ∼ mW +C, where W is a smooth elliptic curve and C ∼= P1. Moreover, as
before, the linear system |W | is base point free [Hu16, Proposition 3.10]. Repeating
now the arguments of the previous case we find that

46KY ′ + Γ′ = mW ′ + C′ + E,
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whereW ′ and C′ are the birational transforms ofW and C in Y ′ and E is effective.
Repeating now word by word the arguments of the case when Γ2 = 0 we get again
a contradiction.

Therefore, under the assumptions of the proposition, Z is not a K3 surface.
Case 4: Suppose that Z is Enriques.

In this case, since we assume p 6= 2, π1(X) = π1(Z) = Z/2Z. Then there exists
an étale double cover ν : W → X of X . Then KW = ν∗KX and K2

W = 2K2
X .

Also D lifts to a nontrivial global vector field D′ on W . Then in the corresponding
diagram (5.0.1) for W , Z is going to be a K3 surface. Then, under the assumptions
of the proposition, the results from the previous cases for W show that Z cannot
also be an Enriques surface.

�

8. The Kodaira dimension of Z is −1.

Proposition 8.1. Let X be a canonically polarized surface defined over an alge-
braically closed field of characteristic p > 0. Suppose that X admits a nontrivial
global vector field D such that Dp = 0 or Dp = D. Suppose also that, with notation
as in section 5, Z has Kodaira dimension −1 and that one of the following holds

(1) K2
X = 1 and p > 211.

(2) K2
X ≥ 2 and p > 156K2

X + 3.

Then X is unirational and π1(X) = {1}.

Proof. I will only do the case when K2
X ≥ 2. The only difference between the two

case is that in the proof one has to use the inequalities in Proposition 3.14 that
correspond to each case. Otherwise the proofs are identical.

Let f : X ′ → X be the minimal resolution of X . Then from the inequalities
(6.1.1) it follows that

12χ(OX) + 11K2
X + 1 ≤ 17K2

X + 37 < 156K2
X + 3 < p,

from the assumptions. Therefore from Theorem 3.3, D lifts to a vector field D′ on
X ′. Moreover, every f -exceptional curve is stabilized by D′.

Since κ(Z) = −1, Z is a ruled surface. Hence there exists a fibration of smooth
rational curves φ : Z → B, where B is a smooth curve.

Claim: Under the conditions of the proposition, B ∼= P1.
Suppose that the claim has been proved. Then Z and hence Y ′ are rational. In

particular π1(Y
′) = π1(Z) = {1}. Then there exists a commutative diagram

Y ′
(p)

σ //

F(p)   ❆
❆❆

❆❆
❆❆

X̂
ĝ //

π̂

��

X

π

��
Y ′

g // Y

Where X̂ is the normalization of Y ′ in X , π̂ and σ are purely inseparable maps
of degree p, ĝ is birational and F(p) is the k-linear Frobenius. Therefore, since
Y ′ is rational, Y ′

(p) is also rational and hence X is purely inseparably unirational.

Moreover, since π̂ is purely inseparable, it follows that π1(X̂) = π1(Y
′) = {1}.

Then, since ĝ is birational and X̂ and X are normal, it follows by [Gr60, Chapter

X] that the natural map π1(X̂) → π1(X) is surjective. Therefore π1(X) = {1}.
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Therefore it remains to prove the claim.
Suppose that a g-exceptional curve F does not map to a point in B by the map

φh. Then there exists a dominant morphism F → B. But since F is a rational
curve then B ∼= P1.

Suppose that every g-exceptional curve is contracted to a point in B by φh.
Then there exists a factorization

Y ′
g //

h

��

Y

ψ

��
Z

φ // B

(8.1.1)

The general fiber of ψ is a smooth rational curve. Also, since the g-exceptional set
is contained in fibers of φh, Y has rational singularities. Let σ : X → B be the
composition ψπ.

Consider next cases with respect to whether the divisorial part ∆ of D is zero
or not.

Case 1: ∆ = 0.

Then KX = π∗KY and hence, since π is a finite map, KY is ample. Let Yb
be a general fiber of ψ. Then Yb ∼= P1. Therefore since Y 2

b = 0, it follows that
KY ·Yb = −2,which is impossible since KY is ample. Therefore in this case B ∼= P1.

Case 2: ∆ 6= 0.

In order to show that B ∼= P1 I will show that there exists a rational curve (in
general singular) C in X which dominates B. The method to find such a rational
curve is to show that there exists an integral curve C of D on X which dominates
B. Then by Corollary 4.8, if the arithmetic genus of C is small compared to the
characteristic p, C is rational. Finally, integral curves ofD will be found by utilizing
Proposition 4.1.

By [Ek88, Theorem 1.20], the linear system |3KX | is base point free. Then
by [Jou83, Theorem 6.3], the general member of |3KX | is of the form pνC, where C
is an irreducible and reduced curve. Suppose that ν > 0. Then K2

X > p/3, which
is impossible from the assumptions of the proposition. Hence the general member
of |3KX | is reduced and irreducible (but perhaps singular).

The assumptions of the proposition imply that p does not divide K2
X . Therefore,

from Proposition 3.14 it follows that

KX ·∆ ≤ 3K2
X(8.1.2)

∆2 ≤ 9K2
X .

Claim: There exists a rank 1 reflexive sheaf M on Y such that

OX(KX +∆) = (π∗M)[1].

I proceed to prove the claim. According to the adjunction formula (5.2.1) for π,

KX +∆ = π∗KY + p∆,(8.1.3)

Let now U ⊂ X be the smooth part of X and V = π(U) ⊂ Y . Then V is also
open. Since π is purely inseparable of degree p, if L is an invertible sheaf on U ,
then Lp = π∗N , where N is an invertible sheaf on V [Tz17b, Proposition 3.8].
Therefore,

(OX(∆)|U )
p = π∗MV ,
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where MV is an invertible sheaf on V . Since X and Y are normal, U and V have
codimension 2 in X and Y , respectively, and therefore it easily follows that

OX(p∆) = (π∗M)[1],

where M = i∗MV , i : V → Y is the inclusion. From this and the equation (8.1.3)
the claim follows. Therefore also

OX(3KX + 3∆) = (π∗N)[1],

where N =M [3]. Hence by Proposition 4.1, there exists a k-linear map

D∗ : H0(OX(3KX + 3∆)) → H0(OX(3KX + 3∆)).

Let C ∈ |3KX+3∆| be a curve which corresponds to an eigenvector of D∗. Then
by Proposition 4.1, C is stabilized by D. Moreover, from the equations (8.1.2) it
follows that

KX · C = 3K2
X + 3KX ·∆ ≤ 12K2

X,(8.1.4)

C2 = 9K2
X + 9∆2 + 18KX ·∆ ≤ 144K2

X

Let now C =
∑s

i=1 niCi be the decomposition of C into its prime divisors.
The assumptions of the proposition imply that KX · C = 3K2

X < p. Hence by
Corollary 4.3, every component Ci of C is stabilized by D and hence D induces a
vector field on Ci, for all i. The induced vector field will be non zero if and only if
Ci is not contained in the divisorial part ∆ of D.

Claim: Suppose that Ci is not contained in the divisorial part ∆ of D. The Ci
a rational curve.

I proceed now to prove the claim. Let C′
i = f−1

∗ Ci be the birational transform of
Ci in the minimal resolution X ′ of X . Then C′

i is stabilized by D′. Let ν : C̄i → C′
i

be the normalization of C′
i, which is also the normalization of Ci.Since KX is ample,

it follows from the equations (8.1.4) than KX · Ci ≤ KX · C ≤ 12K2
X. Then also

K ′
X · C′

i = f∗KX · C′
i = KX · Ci ≤ 12K2

X ,

and from the Hodge Index Theorem,

(C′
i)

2 ≤
(KX′ · C′

i)
2

K2
X′

≤ 144K2
X .

Therefore from the adjunction formula,

pa(C
′
i) ≤ 78K2

X + 1 < (p− 1)/2,

from the assumptions of the proposition. Hence from Proposition 4.7 it follows that
D′ fixes every singular point of C′

i, for all i = 1, . . . , s and D′ lifts to a vector field D̄
in the normalization C̄i of C

′
i. Therefore C̄i is either a smooth rational curve or an

elliptic curve. I will show that D′ has fixed points on C′
i and hence by Lemma 3.15,

D̄ has also fixed points and hence C̄i ∼= P1. Therefore Ci is rational.
Next I will show that there exists a fixed point of D on Ci. Suppose that this was

not the case and that D has no fixed points on Ci. Then Ci is in the smooth part
of X since by Theorem 3.3, D fixes every singular point of X . Then if C̃i = π(Ci),

C̃i is in the smooth locus of Y . Since there are no fixed points of D on C, C ·∆ = 0.
Then from the adjunction formula for π we get that

KX · Ci = π∗KY · Ci = π∗KY · π∗C̃i = pKY · C̃i,
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and therefore KX · Ci ≥ p. On the otherhand it has been shown that KX · Ci ≤
12K2

X < p, by the assumptions of the proposition. Hence there exists fixed points
of D on every Ci and therefore C̄i ∼= P1 and hence Ci is rational as claimed.

Now let ∆′ =
∑ν

i=1 niCi, where Ci, 1 ≤ i ≤ ν ≤ s are the irreducible components
of C that are also components of ∆ (and hence the restriction of D on Ci is zero).
Let also Z =

∑s
j=ν+1 niCi, where Cj are the irreducible components of C which

are not contained in ∆ and therefore the restriction of D on Cj , j ≥ ν + 1, is not
zero (if ν = s then Z = 0). Then C = ∆′ + Z.

Next I will show that Z 6= 0 and that there is a component of it which dominates
B. Hence B is rational.

Suppose that this is not true and that either Z = 0 or no component of Z
dominates B. Therefore either Z = 0 or Z is contained in a finite union of fibers of
ψh : X → B. Let F be a general fiber of ψh. Then in both cases F · Z = 0. Then
if we write 3KX = C − 3∆ = ∆′ + Z − 3∆, the adjunction formula for π becomes

∆′ + Z = 3π∗KY + 3p∆.

Intersecting this with a general fiber F and taking into consideration that F ·Z = 0
and that F · π∗KY = −2p we find that

∆′ · F = −6p+ 3p(∆ · F ).(8.1.5)

Now

∆′ · F =

ν
∑

i=1

ni(Ci · F ) ≤ m

(

ν
∑

i=1

(Ci · F )

)

≤ m∆ · F,(8.1.6)

where m is the maximum among the n1, . . . , nν such that Ci · F 6= 0. Notice that
it is not possible that Ci · F = 0, for all i = 1, . . . , ν. If this was the case, then
∆′ ·F = 0. But since also we assume that Z ·F = 0, it would follow that C ·F = 0
and hence (KX +∆) · F = 0. But then

KX · F = −∆ · F ≤ 0,

for a general fiber F . But this is impossible since KX is ample. Hence ∆′ · F > 0
and hence m > 0.

Next I will show that m ≤ 12K2
X. Indeed. From the definition of ∆′ and the

equation (8.1.4) it follows that

m ≤
ν
∑

i=1

ni ≤
ν
∑

i=1

ni(KX · Ci) = KX ·∆′ ≤ KX · C ≤ 12K2
X,

as claimed. Then from the equations (8.1.5), (8.1.6) it follows that

(12K2
X − 3p)∆ · F + 6p > 0.(8.1.7)

Notice now that from the adjunction formula for π it follows that

KX · F = π∗KY · F + (p− 1)∆ · F = −2p+ (p− 1)∆ · F.

Then since KX · F > 0, it follows that ∆ · F ≥ 3. Now the assumptions of the
proposition imply that K2

X < p/12. Then it is easy to see that

(3p− 12K2
X)∆ · F − 6p > 0,

which is a contradiction to the equation (8.1.7). Therefore it is not possible that
Z · F = 0. Hence there exists a component Ci of C such the restriction of D on C
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is not zero and Ci dominates B. Then since Ci is rational, it follows that B ∼= P1.
This concludes the proof of Proposition 8.1.

�
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