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Deciphering the physiological response of
Escherichia coli under high ATP demand
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Abstract

One long-standing question in microbiology is how microbes buffer
perturbations in energy metabolism. In this study, we systemati-
cally analyzed the impact of different levels of ATP demand in
Escherichia coli under various conditions (aerobic and anaerobic,
with and without cell growth). One key finding is that, under all
conditions tested, the glucose uptake increases with rising ATP
demand, but only to a critical level beyond which it drops mark-
edly, even below wild-type levels. Focusing on anaerobic growth
and using metabolomics and proteomics data in combination with
a kinetic model, we show that this biphasic behavior is induced by
the dual dependency of the phosphofructokinase on ATP (sub-
strate) and ADP (allosteric activator). This mechanism buffers
increased ATP demands by a higher glycolytic flux but, as shown
herein, it collapses under very low ATP concentrations. Model anal-
ysis also revealed two major rate-controlling steps in the glycolysis
under high ATP demand, which could be confirmed experimentally.
Our results provide new insights on fundamental mechanisms of
bacterial energy metabolism and guide the rational engineering of
highly productive cell factories.
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Introduction

The sugar and energy metabolism of microorganisms has been

subject of research for many decades (Jensen & Michelsen, 1992;

Kochanowski et al, 2013; Chubukov et al, 2014; Basan et al, 2020).

One central goal of these studies is to decipher key principles of

cellular metabolism and to uncover regulatory mechanisms that

enable microorganisms to adapt to perturbations and varying envi-

ronments (Chubukov et al, 2014; Bruggeman et al, 2020). The inte-

gration of various experimental data, often in combination with

mathematical modeling, helps to shed light on global phenomena of

microbial metabolism, such as overflow metabolism or diauxie

(Basan et al, 2015, 2020; Chen & Nielsen, 2019; Bruggeman et al,

2020). However, despite the progress made, a comprehensive

understanding of how microbes respond and adapt to perturbations

is still lacking in many cases. This also limits our ability to rationally

engineer the metabolism of microorganisms for biotechnological

applications. One example of directed metabolic interventions to

optimize microbial production hosts is the manipulation of the

supply of ATP, the energy currency of the cell. Increasing ATP avail-

ability can, for example, lead to improved succinate (Zhang et al,

2009; Singh et al, 2011) or recombinant protein (Kim et al, 2012)

production. In the opposite direction, artificially enforcing a high

turnover (“wasting”) of ATP can substantially increase the specific

glucose uptake rate and the production rate of certain target

compounds (if production of the latter is coupled with ATP forma-

tion) (Chao & Liao, 1994; Koebmann et al, 2002; H€adicke et al,

2015; Liu et al, 2016; Boecker et al, 2019, 2021; Zahoor et al, 2020).

Studying the response of the cells to perturbed ATP levels is thus

essential not only for understanding fundamental physiological

processes but also for guiding metabolic engineering efforts. As one

approach, several previous studies investigated the influence of a

continuous drain of ATP on the metabolism of Escherichia coli

(Chao & Liao, 1994; Koebmann et al, 2002; Holm et al, 2010).

However, more systematic studies, especially with varying levels of

ATP demand under different growth conditions, are still needed to

address fundamental questions, for example, to which extent the

cells are able to compensate a rising ATP drain by increasing the

glucose uptake rate. In particular, it is unknown what the maximal

glucose uptake rate is and what happens when the ATP drain is

further increased beyond this point.

In this study, we systematically analyzed the consequences of

varying levels of ATP turnover in E. coli by overexpressing the genes
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of the ATP-hydrolyzing F1-subunit of the FOF1-ATPase under dif-

ferent conditions (aerobic and anaerobic conditions, cell growth and

growth arrest). As one key result, we found that the glucose uptake

rate shows under all conditions a biphasic response curve with

respect to increasing ATPase activity, reaching a maximum at a

medium ATPase level but dropping markedly when this level is

exceeded. Focusing on anaerobic growth, we combined metabolome

and proteome data with a kinetic model of E. coli’s central metabo-

lism to reveal the underlying mechanism of this behavior. Analysis of

the model showed that the dual dependency of the phosphofructoki-

nase on ATP as substrate and ADP as activator can explain the bipha-

sic steady-state response curve of the glycolytic flux. The model also

helped to explain unexpected phenomena such as the accumulation

of glycolytic metabolites, and it suggested two major rate-controlling

steps under high ATP drain, which were confirmed experimentally by

overexpressing the genes of the associated metabolic enzymes.

Results

Construction of the ATPase strains with different ATPase
expression strengths

As in previous studies (Koebmann et al, 2002; Holm et al, 2010;

Boecker et al, 2019), as ATP-consuming mechanism, we chose the

atpAGD-encoded F1-subunit of the FOF1-ATP synthase (ATPase)

from E. coli, which hydrolyzes ATP to ADP and phosphate. We

decided to regulate the expression strength via different origins of

replication and thus varying copy numbers of the plasmids harbor-

ing the ATPase genes. Three different plasmids were constructed: a

low copy plasmid (RK2 replicon, LC), a medium copy plasmid

(p15A replicon, MC), and a high copy plasmid (pMB1 replicon, HC)

(Appendix Table S1). E. coli wild-type strain MG1655 was trans-

formed with the three plasmids as well as with the corresponding

empty control plasmids leading to the six strains “LC control”, “LC

ATPase”, “MC control”, “MC ATPase”, “HC control”, and “HC

ATPase”. Expression of atpAGD was put under control of the

isopropyl β-D-thiogalactopyranoside (IPTG) inducible Ptrc-promoter,

and the same amount of IPTG was used for all strains. Additional

controls were the E. coli wild-type strain MG1655 without plasmid

and without IPTG addition (“WT”) and without plasmid but with

IPTG addition (“WT + IPTG”).

Anaerobic growth

First, we cultivated all strains anaerobically and monitored the effect

of expressing ATPase on growth rate, glucose uptake, and produc-

tion of the five main fermentation products (ethanol, acetate,

formate, lactate, and succinate) in the exponential phase. As

expected, the growth rates and biomass yields of the three ATPase

strains decreased with increasing expression levels of the ATPase

(Fig 1A–D; Table 1). Furthermore, compared to their control strains,

the specific glucose uptake rate of the LC and MC ATPase strain

increased by 16.6% to 16.4 mmolGlc/gDW/h and by 17.8% to 17.7

mmolGlc/gDW/h, respectively. Similarly, the specific production

rates of fermentation products were elevated, and their cumulated

yield increased by 11.4% to 0.93 molproduct C-atoms/molGlc C-atoms in

the LC ATPase and by 16.7% to 0.97 molproduct C-atoms/molGlc C-atoms

in the MC ATPase strain (Table 1). This indicates that a larger

portion of the substrate was redirected from biomass to energy

production (and thus to the formation of fermentation products) in

these two ATPase strains to keep up with the higher cellular ATP

demand. However, the data from the HC ATPase strain with highest

ATPase level suggest that there is a maximal ATPase activity,

beyond which E. coli cannot compensate the ATP drain with even

higher glycolytic rates. The specific glucose uptake rate in the HC

ATPase strain dropped by 60.3% to 5.1 mmolGlc/gDW/h, which is

far below the WT strain level. Apparently, there are limitations in

E. coli’s metabolism that prevent a further increase in the glycolytic

flux needed to counterbalance the high ATPase activity. Using a

stoichiometric model of the central metabolism of E. coli, we

performed metabolic flux analysis, based on the measured exchange

rates, to estimate the ATPase flux in the different strains (see Materi-

als and Methods). Importantly, while the ATPase flux increased

with higher ATPase abundance from LC to MC ATPase strain, we

determined the lowest ATPase flux among all ATPase strains for the

HC ATPase strain (Table 1). In fact, the markedly reduced substrate

uptake rate already implies that the ATP hydrolysis rate must be

lower in this strain. However, if less ATP is consumed than in the

other two strains, this raises the question why the glucose uptake

rate drops so strongly. A hypothesis is that the HC ATPase strain

has very low ATP levels, which constrains both the glycolytic and

the ATPase flux. This will be further addressed in a later section.

Anaerobic cultivation under growth arrest

As the next step, we cultivated all strains anaerobically and arrested

growth by transferring the cells to a medium without a nitrogen

source. Such conditions are of particular interest for biotechnologi-

cal applications (e.g., in two-stage production processes (Burg et al,

2016; Klamt et al, 2018)). All ATPase strains showed high glycolytic

and product exchange rates, while all control strains came to a

metabolic halt and barely took up any glucose after 10 h of cultiva-

tion (Fig 2A–D; Table 1). Compared to their corresponding control

strains, the LC ATPase strain had a 300% increased glucose uptake

rate (8.96 mmolGlc/gDW/h), the MC ATPase strain a 380% increase

(10.46 mmolGlc/gDW/h), and the HC ATPase still a 175% increase

(8.10 mmolGlc/gDW/h). To our knowledge, the specific glucose

uptake rate of the MC ATPase strain is the highest rate ever reported

for growth-arrested E. coli cells. The HC ATPase strain showed again

the lowest glucose uptake rate among the three ATPase strains.

While the WT and control strains metabolized most of the glucose-

carbon to ethanol, acetate, formate, and succinate, the amount of

formed lactate increased with the expression strength of ATPase.

The HC ATPase strain converted all glucose almost entirely to

lactate (1.74 molLac/molGlc) (Fig 2C and D; Table 1). As for the case

of anaerobic growth, the overall ATPase flux in the HC ATPase

strain was lower than in the other ATPase strains.

Aerobic cultivations

We repeated the same experiments under aerobic conditions

(Figs EV1A–D and EV2A–D, Appendix Tables S2 and S3). Essen-

tially, the same trends as in the anaerobic cultivations could be

observed. While all ATPase strains showed reduced growth rates

and biomass yields compared to the control strains, the specific
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glucose uptake rates increased in the LC and MC ATPase strain by

6.5 and 49.2%, respectively, but dropped in the HC ATPase strain

by 39.1% (Fig EV1C, Appendix Table S2). The yield of acetate,

which is the major overflow byproduct of E. coli under aerobic

conditions (Wolfe, 2005), increased with the expression strength of

the ATPase genes. We also tested the behavior of the ATPase strains

under aerobic conditions with growth arrest (Fig EV2A–D,
Appendix Table S3). While the metabolism of the WT and control

strains slowed down after some time (as under anaerobic condi-

tions), all ATPase strains exhibited a very high metabolic activity.

Again, a biphasic steady-state response curve of the glucose uptake

rate for increasing ATPase levels could be observed. The MC

ATPase strain reached the highest glucose uptake rate

(10.2 mmolGlc/gDW/h), which was more than 10-fold higher than

in the control strain (and even higher than in the WT with growth).

Compared to the anaerobic case, we estimated considerably higher
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Figure 1. Anaerobic growth of the different strains.

A Time course of biomass concentration.
B Time course of glucose concentration.
C Specific glucose (Glc) uptake rate and specific productivity for ethanol (Eth), acetate (Ace), formate (For), lactate (Lac), and succinate (Suc).
D Yield of Eth, Ace, For, Lac, and Suc.

Data information: The reaction rates in (C) were calculated for the exponential phase under assumption of quasi-steady state. As changes in glucose and fermentation
products are rather small during cultivation of the HC ATPase strain, a higher initial biomass concentration of 0.1 gDW/l was used for this strain to get more robust data
for the calculation of the metabolite exchange rates. The means (A and B) and the means and individual data (C and D) for n = 3 biologically independent samples are
shown. The error bars represent � SD.
Source data are available online for this figure.
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Table 1. Specific growth, glucose uptake, and product synthesis rates and product yields of the tested strains under anaerobic growth with
growth (top) and with growth arrest (bottom). Regarding the calculation of the ATPM and the ATPase rates see Materials and Methods. The
means � SD of n = 3 biologically independent samples are shown.

WT WT + IPTG LC control LC ATPase MC control MC ATPase HC control HC ATPase

With growth

µ [h−1] 0.476 � 0.004 0.449 � 0.007 0.458 � 0.004 0.376 � 0.007 0.461 � 0.002 0.197 � 0.003 0.431 � 0.004 0.063 � 0.009

rGlc [mmol/
gDW/h]

13.48 � 0.04 12.78 � 0.48 14.05 � 0.42 16.38 � 0.56 15.02 � 0.15 17.70 � 0.47 12.93 � 1.11 5.13 � 0.51

rEth [mmol/
gDW/h]

10.81 � 0.14 9.99 � 0.15 10.38 � 0.24 13.23 � 0.33 10.51 � 0.19 15.63 � 0.94 9.84 � 0.52 2.29 � 0.51

rAce [mmol/
gDW/h]

11.90 � 0.19 10.73 � 0.30 10.74 � 0.23 13.23 � 0.22 10.93 � 0.37 14.90 � 0.59 9.89 � 0.24 3.28 � 0.39

rFor [mmol/
gDW/h]

21.88 � 0.37 19.54 � 0.26 20.78 � 1.07 26.99 � 0.86 21.21 � 0.30 30.24 � 0.25 20.46 � 0.66 4.69 � 0.96

rLac [mmol/
gDW/h]

0.83 � 0.05 0.67 � 0.05 0.89 � 0.07 1.30 � 0.11 0.98 � 0.07 0.84 � 0.34 0.83 � 0.09 2.95 � 0.13

rSuc [mmol/
gDW/h]

1.77 � 0.02 1.72 � 0.02 1.73 � 0.10 1.80 � 0.07 1.85 � 0.05 1.66 � 0.08 1.65 � 0.09 0.45 � 0.17

rATPM
(calculated)
[mmol/gDW/h]

4.41 � 0.54 3.27 � 0.31 3.30 � 0.43 14.63 � 1.04 3.61 � 0.82 29.06 � 0.67 2.67 � 1.05 6.99 � 0.73

rATPase
(calculated)
[mmol/
gDW/h]

11.33 25.45 4.32

YBM[gDW/g] 0.155 � 0.005 0.160 � 0.001 0.149 � 0.002 0.104 � 0.003 0.146 � 0.001 0.050 � 0.000 0.136 � 0.002 0.065 � 0.015

YEth [mol/mol] 0.696 � 0.024 0.716 � 0.008 0.678 � 0.009 0.770 � 0.007 0.668 � 0.015 0.857 � 0.022 0.655 � 0.013 0.460 � 0.066

YAce [mol/mol] 0.753 � 0.016 0.774 � 0.007 0.665 � 0.008 0.790 � 0.006 0.666 � 0.010 0.840 � 0.029 0.645 � 0.010 0.650 � 0.004

YFor [mol/mol] 1.299 � 0.031 1.309 � 0.010 1.280 � 0.014 1.542 � 0.010 1.251 � 0.019 1.572 � 0.013 1.268 � 0.013 0.899 � 0.087

YLac [mol/mol] 0.184 � 0.004 0.166 � 0.003 0.177 � 0.005 0.161 � 0.005 0.184 � 0.003 0.143 � 0.001 0.246 � 0.000 0.570 � 0.078

YSuc[mol/mol] 0.125 � 0.007 0.130 � 0.005 0.118 � 0.001 0.106 � 0.003 0.124 � 0.001 0.085 � 0.001 0.125 � 0.002 0.083 � 0.017

Growth arrest

µ [h−1] ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0

rGlc [mmol/
gDW/h]

1.90 � 0.11 2.02 � 0.06 2.34 � 0.34 8.96 � 0.36 2.18 � 0.06 10.46 � 0.43 2.95 � 0.09 8.10 � 0.60

rEth [mmol/
gDW/h]

1.43 � 0.21 1.43 � 0.04 1.47 � 0.04 4.78 � 0.35 1.43 � 0.09 3.16 � 0.40 1.34 � 0.06 0.66 � 0.14

rAce [mmol/
gDW/h]

1.55 � 0.07 1.50 � 0.02 1.58 � 0.04 4.69 � 0.28 1.54 � 0.03 2.56 � 0.54 1.43 � 0.06 0.60 � 0.03

rFor [mmol/
gDW/h]

2.23 � 0.18 2.09 � 0.03 2.10 � 0.10 7.65 � 0.47 2.04 � 0.07 4.28 � 0.82 2.17 � 0.12 0.42 � 0.03

rLac [mmol/
gDW/h]

0.12 � 0.02 0.22 � 0.04 0.32 � 0.12 5.71 � 0.12 0.49 � 0.19 11.31 � 0.54 1.51 � 0.10 13.78 � 0.36

rSuc [mmol/
gDW/h]

0.75 � 0.03 0.71 � 0.02 0.95 � 0.02 2.20 � 0.08 0.89 � 0.06 1.95 � 0.01 0.94 � 0.04 0.35 � 0.04

rATPM
(calculated)
[mmol/gDW/h]

4.16 � 0.27 4.29 � 0.08 4.59 � 0.23 18.62 � 0.82 4.63 � 0.12 19.31 � 0.78 5.42 � 0.14 15.63 � 0.60

rATPase
(calculated)
[mmol/gDW/h]

14.33 14.68 10.21

YBM [gDW/g] ~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0

YEth [mol/mol] 0.738 � 0.009 0.703 � 0.035 0.658 � 0.011 0.497 � 0.011 0.683 � 0.010 0.284 � 0.015 0.512 � 0.032 0.076 � 0.003
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Table 1 (continued)

WT WT + IPTG LC control LC ATPase MC control MC ATPase HC control HC ATPase

YAce [mol/mol] 0.840 � 0.021 0.758 � 0.004 0.704 � 0.015 0.467 � 0.014 0.709 � 0.028 0.259 � 0.011 0.406 � 0.024 0.092 � 0.003

YFor [mol/mol] 1.114 � 0.039 0.993 � 0.056 0.915 � 0.055 0.645 � 0.018 0.901 � 0.058 0.305 � 0.018 0.520 � 0.036 0.059 � 0.001

YLac [mol/mol] 0.063 � 0.006 0.084 � 0.003 0.128 � 0.023 0.728 � 0.013 0.221 � 0.036 1.177 � 0.032 0.734 � 0.023 1.740 � 0.036

YSuc [mol/mol] 0.383 � 0.026 0.341 � 0.007 0.413 � 0.003 0.227 � 0.002 0.407 � 0.006 0.155 � 0.005 0.289 � 0.008 0.043 � 0.002
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Figure 2. Anaerobic cultivation of the different strains under growth arrest.

A Time course of biomass concentration.
B Time course of glucose concentration.
C Specific glucose (Glc) uptake rate and specific productivity for ethanol (Eth), acetate (Ace), formate (For), lactate (Lac), and succinate (Suc).
D Yield of Eth, Ace, For, Lac, and Suc.

Data information: The reaction rates in (C) were calculated from the beginning of cultivation until the last sampling time point where glucose was still present in the
medium. The means (A and B) and the means and individual data (C and D) for n = 3 biologically independent samples are shown. The error bars represent � SD.
Note: although no nitrogen source was present in the medium, some minor growth (especially of the control and wild type strains) remained (A), which is a known
phenomenon within the first hours of cultivation after nitrogen depletion (Switzer et al, 2020).
Source data are available online for this figure.
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ATPase fluxes for the ATPase strains, which are possible due to the

high ATP yield under aerobic conditions.

Increasing ATP demand induces biphasic response of glucose
uptake under all cultivation conditions

The data of the anaerobic and aerobic cultivations with and without

growth consistently show a biphasic curve of the steady-state

glucose uptake rate as response to the increasing overexpression of

the ATPase genes. As summarized in Fig 3, for all cultivations, the

uptake rate increases from WT over LC to MC ATPase strain and

then drops for HC ATPase strain, especially sharply for growing

cells. This observation raises the key questions: what causes this

biphasic steady-state response, and why does E. coli not further

increase (or at least maintain a high) glycolytic flux under maximal

ATPase expression? For an in-depth analysis of this phenomenon,

we focused on the response of the different ATPase strains under

anaerobic growth, where the highest specific glucose uptake rates

for the LC and MC ATPase strain and the steepest drop of the uptake

rate of the HC ATPase strain could be observed.

Changes at the metabolome and proteome level for increasing
ATPase abundance

For a comprehensive metabolic characterization of the different

ATPase strains under anaerobic growth, we quantified the intracel-

lular concentration of metabolites (Fig EV3A and B; Dataset EV1)

and determined changes on proteome level (Fig EV4; Dataset

EV1). ATP, ADP, and AMP concentrations remained relatively

constant in the LC and MC ATPase strains compared to the control

strains. Only the HC ATPase showed larger changes: the ATP level

decreased by 56.0%, while the ADP level increased by 24.6% and

the AMP level by almost 1,000% (Fig EV3A). These observations

are also reflected by the adenylate energy charges, which are high

in the WT and LC ATPase strain (0.87 and 0.88, respectively),

only slightly lower in the MC ATPase strain (0.80), but signifi-

cantly reduced in the HC ATPase strain (0.34) (Fig EV3A). This

indicates that the LC and the MC, but not the HC ATPase strain,

can compensate the higher ATP demand by the increased glyco-

lytic flux.

The concentrations of several other intracellular metabolites

changed also significantly. Generally, we observed that the concen-

tration of metabolites involved in glycolysis (glucose-6-phosphate,

fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP), dihy-

droxyacetone phosphate (DHAP), glyceraldehyde-3-phosphate

(G3P), PEP, and pyruvate) consistently increased with expression

strength of the ATPase genes, reaching highest values in the HC

ATPase strain (Fig EV3B). Contrarily, the acetyl-CoA concentration

dropped in the HC ATPase strain (Fig EV3B).

In contrast to metabolite concentrations, at the proteome level,

enzymes from the anaerobic core metabolism of E. coli were not as

clearly up- or downregulated (Fig EV4; Dataset EV1). In particular,

larger changes of glycolytic enzyme levels could not be seen; the

abundance levels of these enzymes in the ATPase strains are all

within the range of 60% and 150% of the respective levels in the

control strains. This indicates that changes in the glycolytic fluxes

are mainly induced by allosteric or substrate level regulation rather

than by alteration of enzyme levels. As expected, the three sub-

units of the F1-ATPase were more abundant with increasing copy

number of the expression plasmids. The average abundances of

the ATPase α-, β-, and γ-subunits were +142% (LC ATPase),

+549% (MC ATPase), and +708% (HC ATPase) in comparison to

the WT strain (Fig EV4; Dataset EV1). Among the remaining

enzymes from the core carbon metabolism, only the malate dehy-

drogenase (upregulated), PEP carboxykinase (PCK, upregulated),

and the PEP carboxylase (PPC, downregulated) showed stronger

changes in the MC and HC ATPase strains compared to their

control strains. PCK and PPC are adjacent in the sense that PPC

catalyzes the carboxylating reaction from PEP to oxaloacetate

(with release of a phosphate molecule) and PCK the reaction from

oxaloacetate to PEP thereby consuming ATP (see also Fig 5C).

Under certain conditions, for example, low ATP or high PEP

concentrations, the PCK reaction may also act in the reverse direc-

tion, and it seems that the PCK is used to replace the PPC to

provide additional ATP. However, despite the fact that also the

malate dehydrogenase is upregulated, the overall flux to succinate

as final product of this pathway is still relatively low in the HC

ATPase strain (Fig 1C and D; Table 1). Not as prominent but still

noticeable was the downregulation of formate acteyltransferase

(formerly pyruvate formate lyase; PFL) and of the formate trans-

porter FocA in the HC ATPase strain. While the PFL and the FocA

levels were not significantly affected in the LC and MC ATPase

strains, in the HC ATPase strain, compared to its control, the levels

dropped by 33% and 58%, respectively.

Figure 3. For all growth regimes tested, the glucose uptake rate shows a
biphasic response curve to increasing ATPase levels.

The means for n = 3 biologically independent samples are shown. The error
bars represent � SD.
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What limits the glycolytic flux under high ATPase activity—a
kinetic modeling approach

With the experimental findings and data at hand, we sought to

find a mechanistic explanation for the inability of the HC ATPase

strain to sustain a high glycolytic flux, as in the LC and MC

ATPase strain, to compensate the high ATP demand. Given the

low energy charge in the HC ATPase strain and the increased ratio

between hexose phosphates and FBP, we hypothesized that the

kinetics of the phosphofructokinase (PFK), reaction converting F6P

to FBP under consumption of (Mg)ATP, might cause the biphasic

behavior. This reaction is considered as the committing step of

glycolysis and is a major point of regulation in E.coli (Fenton &

Reinhart, 2009). In E. coli, there are two PFKs (PFK1 (encoded in

pfkA) and PFK2 (pfkB)); however, more than 90% of the PFK

activity in E. coli can be attributed to PFK1 (Kotlarz et al, 1975).

This enzyme is allosterically inhibited by phosphoenolpyruvate

(PEP) and has a dual dependency on (Mg)ADP and (Mg)ATP

(Blangy et al, 1968). On the one hand, high concentrations of the

substrate (Mg)ATP are required to obtain a high PFK flux. On the

other hand, ADP (as well as GDP) is known to allosterically acti-

vate the reaction (Peskov et al, 2008). Indeed, using a kinetic rate

law based on convenience kinetics (Liebermeister & Klipp, 2006)

and including the effect of the allosteric regulators leads to a

biphasic curve when increasing the ADP/(ATP + ADP) ratio

(Fig 4; cf. also Ref. Peskov et al, 2008). For high ATP levels (low

ADP/(ADP + ATP) ratio), ADP as activator is limiting. With

increasing ADP levels induced by higher ATPase activity, the PFK

rate increases as well, but only to an optimal point beyond which

the concentration of the co-substrate ATP becomes limiting. As

second step of the glycolysis, the PFK reaction kinetics could thus

be the cause for the observed biphasic response of the glucose

uptake rate and the low glucose consumption rate in the HC

ATPase strain could be a consequence of the low ATP concentra-

tion (high ADP/(ATP + ADP) ratio) in this strain.

However, it is not clear whether the biphasic response of the

isolated PFK reaction in Fig 4 (with fixed concentrations of PEP,

FBP, F6P) translates into a biphasic response of the glycolytic flux

when the entire central metabolism with all its interactions and

feedbacks is taken into account. We therefore constructed a kinetic

model of the central fermentative metabolism of E. coli for anaerobic

growth on glucose (see detailed description in Appendix Supplemen-

tary Text; section 1). The model comprises 33 metabolites and 28

reactions and, as shown in Fig 5C, accounts for the glycolysis,

anaplerotic reactions, relevant parts of the TCA cycle, the major

fermentative pathways, a growth reaction, a reaction for non-

growth-associated ATP maintenance (NGAM) demand, and, finally,

a reaction for simulating ATP hydrolysis by the ATPase. The latter

reaction depends on the ATPase overexpression level. The model

also accounts for allosteric regulation of the involved enzymes. As

described in detail in the Appendix Supplementary Text, for the first

version of the model, we fitted the unknown parameters of the

model to the measured growth rate, the substrate uptake rate, and

the product exchange fluxes of the wild type and the different

ATPase strains (given in Table 1) as well as to measured metabolite

levels in these strains (see above and Dataset EV1). Since the

proteomic data indicated only minor or moderate changes in the

levels of relevant metabolic enzymes, we used, as an approxima-

tion, constant vmax values (i.e., constant enzymes concentrations) in

all four strains (WT as well as LC, MC, and HC ATPase strains) in

the kinetic model simulations. We were able to find a parametriza-

tion that gave a reasonable fit with the experimental data (Fig 5A

and B). In particular, the fitted model could reproduce the observed

biphasic response of the glucose uptake along the four strains (first

plot in Fig 5A) demonstrating that the known metabolic and regula-

tory interactions contained in the kinetic model are sufficient to

generate this behavior.

Next, we used the model to simulate the steady-state response

curves of glucose uptake rate, energy charge, and ATPase flux when

increasing the ATPase level (represented by vmax of the ATPase

reaction) continuously from 0 (WT) to a maximal value of

85 mmol/gDW/h (Fig 6A). Starting with a low ATPase level, the

ATPase flux increases causing a higher ADP concentration (lower

energy charge) which, as discussed in Fig 4, enhances the PFK and

thereby the glycolytic flux. However, further increasing the abun-

dance of ATPase beyond a critical point reduces the ATP concentra-

tion, now limiting the PFK flux and thus the glucose uptake rate

(Fig 6A). These model simulations also confirmed that the rate of

ATP hydrolysis by the ATPase is lowest in the HC ATPase strain,

despite the fact that it has the highest ATPase abundance (i.e., the

highest vmax; ATPase). Available ATP is rapidly consumed by the large

amounts of ATPase in the HC ATPase strain, which keeps the

concentration of ATP at a very low level limiting in turn both the

PFK as well as the ATPase flux. To further test our hypothesis

regarding the PFK mechanism and its effect on the glucose uptake

under increasing ATP demand, we utilized the model to evaluate

how the steady-state response curves in Fig 6A change if we remove

the allosteric regulation of PFK by ADP (the respective ADP-

dependent term in the kinetic rate law was fixed (clamped) to its

wild-type value in all simulations). Indeed, the biphasic response of

Figure 4. Simulation of the PFK rate with varying ADP/(ATP+ADP) ratios.

The PFK flux was simulated as single (isolated) reaction with the following
fixed metabolite concentrations relevant for the kinetic rate law of the PFK (for
the latter see Appendix Supplementary Text, section 1.3): PEP: 0.27 µmol/gDW;
F6P: 0.91 µmol/gDW; FBP: 9.74 µmol/gDW; total concentration ATP+ADP:
2.67 µmol/gDW.
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the glucose uptake disappears and a monotonic decrease in glucose

uptake, upon enhanced ATP demand, can be seen (Fig 6B).

Taken together, our modeling results strongly support our

hypothesis that the dual dependency of the PFK on ADP and ATP

causes the observed biphasic response in the glycolytic flux. As a

consequence, the PFK mechanism enables the cell to buffer moder-

ate ATPase activities (and to compensate moderate increases in ATP

demand) by an instantaneous adjustment of the glycolytic flux, but

it collapses under very high ATP demand as in the HC ATPase

strain.

While the kinetic model (version 1) reproduced most experi-

mental data in the different strains reasonably well, especially the

exchange rates (Fig 5A), some deviations can be noted in the

metabolite concentrations. The measured accumulation of hexose

phosphates (glucose-6-phosphate, F6P) is correctly reflected by the

model, again indicating that the PFK activity is the limiting factor

in the HC ATPase strain. However, the measured high concentra-

tions of the glycolytic metabolites FBP, PEP, and pyruvate in the

HC ATPase strain are not captured in the simulation results. For

example, the measured concentrations of FBP and pyruvate

increased markedly in the HC ATPase strain, but the opposite

behavior (strong decrease) was displayed by the model. Even after

several rounds of parameter fitting, we could not find a

parametrization that leads to a better reproduction of the qualita-

tive trends of the metabolomics data. These discrepancies between

data and model simulations suggested that there are missing regu-

latory elements in our kinetic model, and we, therefore, introduced

two major changes (model version 2; Appendix Supplementary

Text). As a first change, because of (a) the low concentration of

acetyl-CoA, (b) the accumulation of pyruvate, (c) the increased

lactate yield, and (d) the observed reduced PFL levels in the HC

ATPase strain, we introduced a term in the kinetics of the PFL

reaction, which ensures a lower abundance of PFL (and thus a

decreased vmax) under low ATP concentrations. As a possible

mechanistic explanation, we hypothesized that, at low energy

charges, the large and costly PFL (consisting of 759 amino acids) is

replaced by cheaper pathways (e.g., via lactate fermentation),

although this may partially reduce the ATP yield (see also Discus-

sion). However, even with introduction of a downregulation of the

PFL under low ADP concentrations, the model was still not able to

reflect the high concentration levels of PEP and FBP in the HC

ATPase strain. In fact, with (i) the observed high concentrations of

PEP and ADP (the substrates for the pyruvate kinase (PYK) reac-

tion), (ii) the high FBP level (allosteric activator of pyruvate

kinase), and (iii) the highly negative standard Gibbs free energy

change of this reaction (ΔrG°’ = −21.78 kJ/mol) (Park et al, 2016),

one would expect a higher PYK flux and thus a decrease of the PEP

level, which contradicts the measured high PEP concentration in

the HC ATPase strain (Fig 5B). As a second change in the model,

we therefore introduced a term inhibiting PYK (flux) under high

pyruvate concentrations. Although such an allosteric inhibition of

PYK by pyruvate is not known, it has been reported that alanine,

which is directly produced from pyruvate, may act as inhibitor for

PYK (Taber et al, 1998), and we observed higher concentrations of

alanine in all ATPase strains (Dataset EV1).

With these two changes, the resulting model version 2 was now

able to reproduce the qualitative trends in the fluxes and metabo-

lite concentrations in all three ATPase strains (Fig 5A and B). With

this, we can summarize our understanding for the observed

phenomena as follows: increasing the ATPase activity reduces the

growth rate in all strains and elevates the glycolytic flux in the LC

and MC ATPase strains due to (moderately) increased ADP levels,

which enhances the activity of PFK. However, in the HC ATPase

strain, there is a sharp decrease of ATP, a substrate of the PFK,

which now limits the PFK and thereby the glycolytic flux. As

consequence of low ATP levels, the PFL abundance is reduced,

which lowers the flux from pyruvate to acetyl-CoA. Thus, pyruvate

accumulates, which leads to higher lactate production rates and

inhibits (probably indirectly) PYK activity. Consequently, the

levels of PEP increase further, which further slows down the PFK

flux due to negative inhibition, and thus, the concentrations of

hexose phosphates increase. Finally, high PEP concentrations

propagate also upward to other glycolytic intermediates (DHAP,

G3P, FBP). Since PEP also inhibits fructose-bisphosphate aldolase,

this further contributes to FBP accumulation. We note that the

steady-state response curves shown for model version 1 in Fig 6

are not affected by the model changes and look very similar for

model version 2.

◀ Figure 5. Comparison of the simulations of the kinetic model version 1 and version 2with experimental data of the different strains under anaerobic growth
conditions.

A Comparison of the simulations of the kinetic model version 1 and version 2 with the measured exchange fluxes.
B Comparison of the simulations of the kinetic model version 1 and version 2 with the measured metabolite concentrations.
C Metabolic map containing most relevant reactions (blue) and metabolites (black) of E. coli under anaerobic conditions. Dashed arrows indicate (lumped) reactions

with several enzymes involved. Allosteric regulations of the respective reactions are marked in red (inhibition) or green (activation). The kinetic model (versions 1 and
2) covers almost all of the shown reactions and regulations; a map directly related to the model is shown in Appendix Fig S1. Abbreviations of metabolites and
reaction names: Glcex: external glucose (substrate); G6P: D-glucose-6-phosphate; F6P: D-fructose-6-phosphate; FBP: fructose-1,6-bisphosphate; GAP: D-glyceraldehyde-
3-phosphate; DHAP: dihydroxyacetone phosphate; BPG: 1,3-bisphospho-D-glycerate; 3PG: 3-phosphoglycerate; PEP: phosphoenol-pyruvate; PYR: pyruvate; AcCoA: acetyl
coenzyme A; CoA: coenzyme A; AKG: α-ketoglutarate; OAA: oxaloacetate; FUM: fumarate; SUC: succinate; FOR: formate; LAC: lactate; ACE: acetate; ETH: ethanol; ATP:
adenosine triphosphate; ADP: adenosine diphosphate; NAD: oxidized nicotinamide adenine dinucleotide; NADP: oxidized nicotinamide adenine dinucleotide
phosphate; NADH: reduced nicotinamide adenine dinucleotide; NADPH: reduced nicotinamide adenine dinucleotide phosphate; CO2: carbon dioxide; MQH2:
menaquinol; MQ: menaquinone. PTS: phoshotransferase system; PGI: glucose-6-phosphate isomerase; PFK: phosphofructokinase; FBA: fructose-bisphosphate aldolase;
TPI: triose-phosphate isomerase; GHD: glyceraldehyde-3-phosphate dehydrogenase; PGK: phosphoglycerate kinase; PGM: phosphoglycerate mutase; ENO: enolase; PYK:
pyruvate kinase; PFL: pyruvate formate-lyase (also known as formate acteyltransferase); LDH: lactate dehydrogenase; PTA: phosphate acetyltransferase; ACK: acetate
kinase; ACDH: acetaldehyde-CoA dehydrogenase; ADH: alcohol dehydrogenase; PCK: phosphoenolpyruvate carboxykinase; PPC: phosphoenolpyruvate carboxylase; CS:
citrate synthase; ACO: aconitate hydratase A/B; ICDH: isocitrate dehydrogenase; MDH: malate dehydrogenase; FHD: fumarase; FRD: fumarate reductase; NDH: NADH
dehydrogenase; ADK: adenylate kinase; NGAM: ATP consumption for non-growth-associated maintenance; ATPase: ATP hydrolysis by F1-ATPase in the ATPase strains.

Data information: For the measurements, the means for n = 3 biologically independent samples are shown (A and B) and the error bars represent � SD.
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Using Monte Carlo sampling of kinetic parameters to assess the
robustness of model predictions

The kinetic model (version 2) of E coli’s central metabolism

constructed in the previous section is relatively large and comprises

more than 100 unknown parameters. To assess the robustness of

model predictions with respect to kinetic parameters, we employed

Monte Carlo analysis as previously described in (Murabito et al,

2014). Briefly, we used this method to sample Michaelis–Menten

parameters over two orders of magnitude while preserving the

metabolic steady state to which the original parameters were fitted.

For each sampled set of kinetic parameters, systems properties can

be computed. Here, we focused on the flux control coefficients

(FCCs), which are known from metabolic control analysis and quan-

tify the relative change of a steady-state metabolic flux when chang-

ing the enzyme level, that is, when changing the vmax, of other

reactions (Sauro, 2019). The resulting distributions of FCCs obtained

from the Monte Carlo analysis allow us to assess the control proper-

ties with different (but consistent) parametrizations and conse-

quently to analyze the uncertainty of these global characteristics in

our deterministic model. For details of the method, we refer to

(Murabito et al, 2014) and the Appendix Supplementary Text

(section 4).

For the wild-type metabolic steady state, we found predomi-

nantly narrow distributions of FCCs, indicating a low sensitivity of

these FCCs against parameter variations (Appendix Fig S3). FCCs

with broader distributions were typically sign-dominant. That is,

while the numerical value of the FCCs varies as a function of kinetic

parameters, the sign of the FCCs remains either positive or negative,

respectively, indicating robust qualitative control properties and

hence robust predictions based on the FCCs. Importantly, the FCC

distribution of the NGAM reaction on PTS was narrow with predom-

inantly positive sign (>95% of sampled instances), confirming that

the increase of glucose uptake in the wild type as response to higher

ATP demand is a robust feature of the model.

Using instead the HC ATPase strain (with its high ATP demand)

as reference metabolic (steady) state, most FCCs still show narrow

distributions, but the fraction of enzymes with a broader distribu-

tion of FCCs increased (Appendix Fig S4). The moderately increased

sensitivity to parameter variations can be interpreted as reduced

robustness of the HC ATPase metabolic state. In particular, the

enzymes PYK, PFL, and PFK exhibited broad but sign-dominant

(positive) distributions of their respective FCCs on PTS and glyco-

lytic flux, indicating that the sign (positive control) of these

enzymes on the glycolytic flux in this metabolic state is largely inde-

pendent of the choice of kinetic parameters. Furthermore, the FCCs

of the NGAM and ATPase reactions on PTS and glycolytic flux are

here predominantly negative. Together with the predominantly posi-

tive FCCs of NGAM on PTS and glycolytic flux in the wild type, this

confirms the bi-phasic response of the glycolytic flux to increased

ATP demand as a robust feature of the model. The full results of the

Monte Carlo analysis are shown and discussed in Appendix Supple-

mentary Text.

Using model predictions to obtain higher glycolytic fluxes in the
HC ATPase strain

Motivated by the Monte Carlo analysis from the previous section, in

a final step, we aimed to use the kinetic model (version 2) to make

experimentally testable predictions and, in this way, to further

verify our reasoning of the low glycolytic flux in the HC ATPase

strain. We hypothesized that we could enhance the glycolytic flux

by overexpressing genes of enzymes catalyzing reactions with the

highest metabolic control. We computed the FCCs of all glycolytic

reactions in the kinetic model. Since FCCs are valid only for small

changes in the enzyme level, we also computed the resulting

steady-state glycolytic flux in the model when doubling the enzyme

level, corresponding to doubled vmax values of the respective reac-

tions. The results can be found in the Appendix Supplementary Text

(section 2.3 and Fig S2). Consistent with our previous reasoning on

the experimental findings and consistent with the results from the

A

B

Figure 6. Simulation of the steady-state response curves of glucose
uptake rate, energy charge, and ATPase flux under anaerobic growth for
increasing ATPase activities.

A Simulations with the standard kinetic model (version 1). The measured
glucose uptake rates of the different strains are indicated (cf. with Fig 3).

B Simulations with the kinetic model (version 1) as in (A), but without ADP
activation term in the PFK kinetics.
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Monte Carlo analysis, we found that the PFL and the PFK have

the highest control on the glycolytic flux in the HC ATPase strain.

We therefore overexpressed the genes of these two enzymes to test

whether they indeed represent bottlenecks. We constructed four

variants of the HC ATPase strain: one overexpressing the PFK-

encoding gene pfkA, one overexpressing the PFL-encoding gene

pflB, one overexpressing both genes, and one overexpressing the

phosphoglycerate kinase (PGK) encoding gene pgk (in all cases

additionally to the atpAGD operon on the high copy plasmid).

Overexpression of pgk was chosen as a control since the model

predicted an FCC close to zero for the PGK reaction. Thus, in

contrast to the other three strains, PGK overexpression should not

have a major influence on the glycolytic flux of the HC ATPase

strain. The four variants were grown under anaerobic conditions

and compared to the HC ATPase strain.

As shown in Fig 7A–D and Table 2, the overexpression of pfkA

and pflB indeed had significant effects on the specific glucose uptake

rate as well as on the composition of the fermentation products,

HC ATPase
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HC ATPase + +pfkA pflB
HC ATPase +pgk
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Figure 7. Anaerobic growth of the five HC ATPase strain variants.

A Time course of biomass concentration.
B Time course of glucose concentration.
C Specific glucose (Glc) uptake rate and specific productivity for ethanol (Eth), acetate (Ace), formate (For), lactate (Lac), and succinate (Suc).
D Yield of Eth, Ace, For, Lac, and Suc.

Data information: The reaction rates in (C) were calculated for the exponential phase under assumption of quasi-steady state. The means (A and B) and the means and
individual data (C and D) for n = 3 biologically independent samples are shown. The error bars represent � SD.
Source data are available online for this figure.
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while we observed no significant changes for overexpression of pgk

compared to the HC ATPase strain. In particular, the glucose uptake

rate increased by 46.4% (pfkA), 48.0% (pflB), and 53.4% (pfkA+pflB)
compared to the HC ATPase strain and remained almost constant for

the pgk overexpressing strain. As expected and qualitatively predicted

by the model, due to the enhancement of the PFL flux, the lactate

yield is largely reduced in the pflB and pfkA+pflB overexpressing

strains. The lactate yield dropped also in the pfkA overexpressing

strain, although to a lesser extent. Here, it is likely that the higher

overall glycolytic flux, enabled by higher PFK activity, increases ATP

supply and thus leads to less downregulation of PFL. Therefore, more

carbon is redirected to acetate, ethanol, and formate and less to lactate

also in the pfkA overexpressing strain. We also observed that the

growth rate was increased, at most in the two pfkA overexpressing

strains and less in the strain overproducing (only) PFL. This might

again be related to the relative high protein costs of PFL.

Although the glucose uptake rates of the pfkA and pflB overex-

pression strains were still below WT level, the data in Table 2 con-

firm that PFK and PFL are indeed limiting (bottleneck) reactions for

the glycolytic rate in the HC ATPase strain, which can be partly

overcome by overexpression of the corresponding genes.

Discussion

In this study, we systematically analyzed the consequences of

increasing ATP demand on the physiology of the E. coli wild-type

strain MG1655 under various conditions (aerobic/anaerobic, with/

without cell growth). On the one hand, this study was curiosity-

driven to explore maximal physiological capabilities of E. coli and to

investigate how this bacterium responds to situations of high ATP

demand (which may be relevant under challenging environmental

conditions, e.g., under osmotic, acidic, or toxin-induced stress). On

the other hand, this study aimed to deliver new insights toward the

use and potential of enforced ATP wasting as a metabolic engineer-

ing strategy. We collected a comprehensive dataset on metabolic

fluxes, metabolite concentrations, and protein abundances. In order

to integrate these data with our current knowledge of the complex

metabolism and its regulation in E. coli, we constructed a kinetic

model that enabled us to modulate the ATP maintenance reaction

and thus simulating different levels of ATP wasting in the cells.

The key findings of this study can be summarized as follows.

First, in all conditions tested, there is a biphasic steady-state

response curve of the glucose uptake rate with respect to increasing

Table 2. Growth rates, specific glucose uptake and product synthesis rates, and product yields of the five HC ATPase variants during anaerobic
growth. For the calculations of the ATPM and the ATPase rates, see Methods. The means � SD of n = 3 biologically independent samples are shown.
P values for a two-sample t-test are given with respect to the HC ATPase strain. P > 0.05 was considered as not significant (n.s.).

HC ATPase HC ATPase + pfkA HC ATPase + pflB HC ATPase + pfkA + pflB HC ATPase + pgk

µ [h−1] 0.063 � 0.009 0.134 � 0.013 (P = 0.003) 0.079 � 0.009
(P = 0.161, n.s.)

0.098 � 0.006 (P = 0.011) 0.074 � 0.003 (P = 0.203, n.s.)

rGlc [mmol/gDW/h] 5.13 � 0.51 7.51 � 0.47 (P = 0.009) 7.59 � 0.94
(P = 0.031)

7.87 � 0.32 (P = 0.003) 4.92 � 0.67 (P = 0.743, n.s.)

rEth [mmol/gDW/h] 2.29 � 0.51 5.05 � 0.26 (P = 0.002) 5.81 � 1.02
(P = 0.012)

6.26 � 0.28 (P < 0.001) 2.12 � 0.21 (P = 0.686, n.s.)

rAce [mmol/gDW/h] 3.28 � 0.39 5.56 � 0.54 (P = 0.009) 6.32 � 0.79
(P = 0.008)

6.84 � 0.29 (P < 0.001) 3.36 � 0.35 (P = 0.835, n.s.)

rFor [mmol/gDW/h] 4.69 � 0.96 9.32 � 0.84 (P = 0.007) 10.88 � 1.38
(P = 0.006)

11.44 � 0.33 (P < 0.001) 5.38 � 0.32 (P = 0.385, n.s.)

rLac [mmol/gDW/h] 2.95 � 0.13 2.41 � 0.15 (P = 0.019) 1.18 � 0.22
(P < 0.001)

1.01 � 0.55 (P = 0.008) 2.33 � 0.22 (P = 0.027)

rSuc [mmol/gDW/h] 0.45 � 0.17 1.17 � 0.05 (P = 0.004) 0.89 � 0.03
(P = 0.024)

1.07 � 0.08 (P = 0.010) 0.80 � 0.04 (P = 0.047)

rATPM (calculated)
[mmol/gDW/h]

6.99 � 0.73 9.26 � 0.23 (P = 0.014) 12.67 � 2.02
(P = 0.020)

12.97 � 0.39 (P < 0.001) 5.47 � 0.34 (P = 0.055, n.s.)

rATPase (calculated)
[mmol/gDW/h]

4.32 6.59 10.00 10.30 2.80

YBM [gDW/g] 0.065 � 0.015 0.099 � 0.005 (P = 0.038) 0.053 � 0.009
(P = 0.382, n.s.)

0.068 � 0.004 (P = 0.794, n.s.) 0.075 � 0.005 (P = 0.404, n.s.)

YEth [mol/mol] 0.460 � 0.066 0.667 � 0.040 (P = 0.019) 0.690 � 0.101
(P = 0.055, n.s.)

0.761 � 0.026 (P = 0.004) 0.407 � 0.067 (P = 0.471, n.s.)

YAce [mol/mol] 0.650 � 0.004 0.732 � 0.030 (P = 0.018) 0.794 � 0.025
(P = 0.001)

0.854 � 0.057 (P = 0.008) 0.663 � 0.105 (P = 0.873, n.s.)

YFor [mol/mol] 0.899 � 0.087 1.239 � 0.039 (P = 0.007) 1.387 � 0.016
(P = 0.001)

1.434 � 0.057 (P = 0.002) 1.078 � 0.170 (P = 0.254, n.s.)

YLac [mol/mol] 0.570 � 0.078 0.320 � 0.039 (P = 0.015) 0.147 � 0.062
(P = 0.004)

0.128 � 0.070 (P = 0.004) 0.592 � 0.084 (P = 0.796, n.s.)

YSuc [mol/mol] 0.083 � 0.017 0.163 � 0.003 (P = 0.003) 0.113 � 0.011
(P = 0.103, n.s.)

0.131 � 0.002 (P = 0.016) 0.163 � 0.033 (P = 0.037)
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ATPase activity. There is a maximum uptake rate at a medium

ATPase level, and the glucose uptake rate drops markedly beyond

this level. Second, the model indicates that the PFK reaction with its

dual dependency on ADP/ATP causes this biphasic behavior. The

PFK mechanism is known to buffer increased ATP demands by a

higher glycolytic flux (due to elevated ADP levels) but, as shown

herein, it collapses under high ATP demands with low ATP concen-

trations. Third, the metabolomics data under anaerobic conditions

show an increasing accumulation of glycolytic metabolites reaching

highest values at maximal ATPase level. This behavior cannot be

explained with current knowledge, and we postulate that there are

unknown regulatory mechanisms for PYK (presumably allosteric

regulation by pyruvate or alanine) and PFL (enzyme-level regula-

tion). Finally, we validated the model predictions that PFK and PFL

are rate-limiting in the HC ATPase strain and found that over-

expressing the genes of these enzymes indeed restores some of the

glycolytic capacity.

The kinetic model played an important role in this study to iden-

tify and analyze potential mechanisms in the metabolism of E. coli

that led to the observed phenotypes under high ATP demand. It has

to be noted that the model is relatively large and comprises more

than 100 unknown parameters, many of which will not be uniquely

identifiable, despite fitting the model against a considerable set of

data. However, the model is based on established biological knowl-

edge of E. coli’s central metabolism, it is able to reproduce measure-

ments of the different strains reasonably well and it gave

predictions that could be successfully verified. Moreover, the results

of the Monte Carlo sampling of kinetic parameters showed that key

properties of the kinetic model and its predictions are robust over a

wide range of parameter variations. Hence, despite potential param-

eter identifiability issues, the model could demonstrate its predictive

power and thus represents a solid and plausible basis that supports

our hypotheses and explains major findings of this study. However,

as is true for every model, we can neither prove its correctness nor

that other models with alternative mechanisms may exist that repro-

duce the observed phenomena equally well.

Our results are in several aspects consistent with current knowl-

edge on the physiology of energy metabolism in E. coli but, at the

same time, indicate gaps in our understanding. For example, the

increasing levels of FBP in the LC and MC ATPase strains are consis-

tent with the linear correlation between glycolytic flux and FBP

concentration that has been shown for E. coli under various condi-

tions and carbon sources (Kotte et al, 2010; Kochanowski et al,

2013). Based on these earlier findings, it was proposed that FBP—
presumably indirectly via the transcription factor Cra (Bley Folly

et al, 2018)—acts as a general flux-sensing metabolite for E. coli.

However, among all strains, the HC ATPase strain had the highest

level of intracellular FBP but by far the lowest glycolytic flux. Thus,

the generalization of FBP being a flux-sensor might not to be true

for extreme metabolic perturbations as in the HC ATPase strain. Our

data also confirm previous work on overflow metabolism and

proteome allocation phenomena in E. coli. In particular, the

observed increase in acetate formation under aerobic conditions in

the LC and MC ATPase strains is likely a consequence of proteome

reallocation from respiratory pathways (with high ATP yield but

also high protein costs) toward overflow metabolism. This conse-

quently results in lower ATP yields but enables higher glycolytic

fluxes (and thereby higher total ATP synthesis rates), due to

reduced protein costs (Chen & Nielsen, 2019).

The observed downregulation of PFL in the HC ATPase strain

under anaerobic conditions could be a strategy to optimize

proteome allocation, here as response to low ATP concentrations.

Again, lactate excretion (yielding 2 mol ATP per mol of glucose)

seems disadvantageous compared to the PFL reaction in combina-

tion with the formation of acetate, ethanol, and formate resulting in

an ATP yield of 2.5 mol ATP per mol of glucose. However, since

PFL is a rather large enzyme (759 amino acids vs. 343 amino acids

in the average essential protein in E. coli (Gong et al, 2008)), under

the low ATP levels in the HC ATPase strain, it could be more

cost-efficient for E. coli (in terms of ATP demand) to use the lactate

pathway. The lactate dehydrogenase appears to be constitutively

available under anaerobic conditions, and the pathway becomes

active with rising pyruvate concentrations. Under growth-arrested

conditions with a limited nitrogen source, which further limits the

proteome pool, the effect is even more drastic. Here, almost the

entire carbon is converted into lactate in the HC ATPase strain (yield

of 1.74 molLac/molGlc, Fig 2; Table 1), and increased lactate yields

are also observed in the LC and MC ATPase strains. Another inter-

esting insight from the proteomic data in the HC ATPase strain is

the replacement of PPC with PCK. Due to the low ATP level, PCK

may run in the direction of oxaloacetate and ATP synthesis, thus

increasing the ATP yield compared to the sole use of PPC. While

overexpression of the PCK genes has been used to increase the ATP

yield in E. coli strains (Chao & Liao, 1993; Kwon et al, 2008; Zhang

et al, 2009; Aslan et al, 2017; Kyselova et al, 2018), we are not

aware of a previous report showing that E. coli naturally switches to

PCK to enhance ATP supply. Identifying the regulatory mechanisms

that enable this switch is an interesting aspect of future work.

When analyzing proteome (re)allocation, we also need to

consider the effect of the ATPase overproduction on the proteome

pool. Especially in the HC ATPase strain, the expression of the

ATPase genes consumes cellular resources such as amino acids and

may thereby reduce the overall capacity to synthesize other

proteins, including metabolic enzymes. Hence, in addition to the

discussed low ATP concentrations, changes in the proteome compo-

sition (such as the reduced PFL abundance) may also be induced by

the synthesis costs of the ATPase subunits. However, there are

several evidences that the activity of the ATPase is the dominant

factor, rather than the costs of its synthesis. First of all, compared to

the WT (where the three components of the F1-subunit are used to

build the FOF1-ATP synthase), the proteomic data indicated a

moderate averaged 8.1-fold increase of the three F1-ATPase compo-

nents in the HC ATPase strain, which is still a comparably small

fraction of the overall proteome pool. Moreover, we see a 6.5-fold

increase of ATPase abundance already in the MC ATPase strain;

hence, there is effectively only a 25% increase of the ATPase level

in the HC strain compared to the MC strain. With this relatively

small change, it appears unlikely that the drastic change in the

glycolytic flux and ATP levels between these two strains is mainly

caused by a reduction of available resources for protein synthesis.

Furthermore, except for the mentioned major changes, other

enzymes of central metabolic steps, especially in the glycolysis,

show a relatively constant level in the proteomic data and appear

thus to be affected to a minor extent only. Another evidence in this

direction is the fact that the additional overexpression of the pfkA
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or/and of the pflB gene (but not of the pgk gene) in the HC ATPase

strain increased the glycolytic flux, as predicted, although this will

even further reduce the available proteome pool for other enzymes.

To further demonstrate that the lack of ATP and not proteome

burden causes the low glycolytic flux in the HC ATPase strain, we

cultivated the latter and its control strain anaerobically as before

(with glucose as main substrate), but this time with addition of

fumarate enabling the strains to gain more ATP (via fumarate respi-

ration). As also suggested by our model, the glycolytic flux in the

HC ATPase strain should then increase due to the higher ATP levels

fueling the PFK reaction while we do not expect significant changes

in the HC control as it is not ATP-limited. In fact, with addition of

fumarate, the glucose uptake rate even decreased slightly in the HC

control strain, but increased markedly in the HC ATPase strain by

more than 100% almost reaching the level of the control strain (Fig

EV5 and Appendix Table S4). The extra amount of glucose was

almost completely converted to lactate while the gained ATP was

directly consumed by the ATPase as reflected by a high ATPase flux.

This result is another strong indicator that it is the low ATP level in

the HC ATPase strain rather than ATPase synthesis costs that

prevents higher glycolytic fluxes.

The finding that overexpression of the PFK- and PFL-encoding

genes may largely increase the glycolytic flux and, especially in the

case of PFK, also the growth rate in the HC ATPase strain under

anaerobic conditions corroborates, on the one hand, our hypothesis

on physiological constraints in this strain but, on the other hand,

demonstrates that E. coli, as could be expected for the extreme

perturbation in the HC ATPase strain, is not for all conditions

primed to adjust an optimal expression pattern maximizing its

growth rate (cf. Bruggeman et al, 2020). Clearly, adaptive laboratory

evolution may yield strains that adapt to these physiological

changes resulting, for example, in an upregulation of PFK.

Our results are also of high relevance for metabolic engineering

strategies that harness the concept of enforced ATP wasting for

strain optimization. Several previous works have already demon-

strated the potential of increased ATP turnover as a strategy to

maximize substrate uptake and product synthesis rates (Chao &

Liao, 1994; Koebmann et al, 2002; H€adicke et al, 2015; Liu et al,

2016; Boecker et al, 2019, 2021; Zahoor et al, 2020). However, our

study is the first showing that there is an optimal level of ATPase

expression, at which the specific glucose uptake rate and metabolic

activity reaches a maximum. To use the full potential of ATP wast-

ing, it will be important to find the precise maximum (which will be

specific for the production organism, the respective substrate–
product combination, and the chosen conditions) and to properly

adjust the optimal level of the ATPase. For each condition tested,

the MC ATPase strain showed the highest glucose uptake rate

(which are, to the best of our knowledge, for some cultivation

conditions, the highest ever reported so far). Our data also reveal

that the highest relative increase can be seen for the growth-arrested

cultivations (+1,016% for aerobic and +380% for anaerobic condi-

tions; Fig 3). Moreover, the relative drop in the metabolic activity of

the HC ATPase strain is less severe than in the cases with growth

indicating a higher robustness against maximal ATPase levels under

these conditions. With these findings, we anticipate that the highest

potential of enforced ATP wasting lies in the optimization of two-

stage (or even three-stage (Boecker et al, 2021)) processes, in which

ATP wasting may greatly boost the activity of the cells in the

(growth-arrested) production phase (Burg et al, 2016; Klamt et al,

2018).

Materials and Methods

Strains and plasmid construction

All strains, plasmids, and primers used in this study are summarized

in Appendix Table S1. E. coli NEB 5-alpha competent cells (New

England Biolabs, #C2987U) were used for all cloning techniques and

plasmid propagation. Standard molecular cloning techniques

followed protocols described earlier (Sambrook & Russell, 2001).

The ATPase encoding genes atpAGD were amplified from plasmid

pCP41::atpAGD (Koebmann et al, 2002) by polymerase chain reac-

tion (PCR) using the Q5 Hot Start High-Fidelity DNA Polymerase

(New England Biolabs, #M0493L) and the primer pair atpAGD_

mono_fw/atpAGD_mono_rv as described in (Boecker et al, 2019).

To construct plasmids pSB58.6 and pSB62.6, gfpmut3 was cut out

from pSB-T1g and pSB-T2g (Balzer et al, 2013) using restriction

enzymes NdeI (New England Biolabs, #R0111S) and BamHI-HF (New

England Biolabs, #R3136S). The atpAGD PCR-amplicon was digested

with the same enzymes and ligated into the plasmid backbones of

pSB-T1g and pSB-T2g using T4 DNA Ligase (New England Biolabs,

#M0202S), yielding plasmids pSB58.6 and pSB62.6, respectively. To

construct plasmid pSB66.1, the pMB1 replicon was cut out from

pSB62.6 using restriction enzymes AscI (New England Biolabs,

#R0558S) and SpeI-HF (New England Biolabs, #R3133S). The p15A

replicon was amplified by PCR from plasmid pZA31-luc (Lutz &

Bujard, 1997) using primer pair p15A_SpeI_fw/p15A_AscI_rv. The

amplicon was digested with AscI and SpeI-HF and ligated into the

AscI/SpeI-HF digested plasmid pSB62.6. To construct the control

plasmids pSB60.1, pSB64.1, and pSB68.1, atpAGD was cut out from

pSB58.6, pSB62.6, and pSB66.1 using restriction enzymes NdeI and

BamHI-HF. The 5’-overhangs were filled-in using the Klenow Frag-

ment (Thermo Scientific, #EP0054) and the blunt-ended DNA frag-

ments were self-ligated. The E. coli wild-type strain MG1655 (Blattner

et al, 1997) was transformed with the ATPase expression and control

plasmids, generating three ATPase expression strains (low, medium,

and high) and three control strains (low, medium, and high) with

varying plasmid copy numbers.

For additional expression of pfkA, pflB, and pgk together with

atpAGD in the high copy plasmid pSB62.6, the plasmid was linear-

ized by PCR with the primer pair pSB73.4_Gibson_fw/atpD_rv. The

genes encoding pfkA, pflB, and pgk were amplified from the

genomic DNA of E. coli MG1655 by PCR using the

primer pairs pfkA_rbs_fw/pfkA_rbs_rv, pflB_rbs_fw/pflB_rbs_rv,

and pgk_rbs_fw/pgk_rbs_fw, respectively. A ribosomal binding site

(rbs) from the natural ATPase operon of E. coli MG1655 (between

atpD and atpC) was inserted into each forward primer to allow poly-

cistronic expression of atpAGD and the respective gene. The linear-

ized plasmid pSB62.6 and the DNA fragments harboring the

amplified genes were ligated by Gibson assembly, yielding plas-

mids pSB84.3, pSB85.3, and pSB88.11 (Appendix Table S1). For co-

expression of pfkA and pflB together with atpAGD in the high copy

plasmid, pSB84.3 was linearized by PCR with the primer pair

pSB73.4_Gibson_fw/pfkA_rv. pflB was amplified from the genomic

DNA of E. coli MG1655 by PCR using the primer pair pflB_rbs2_fw/
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pflB_rbs_rv. The same rbs as used above was inserted into the

forward primer to allow polycistronic expression of atpAGD, pfkA,

and pflB from a single operon. The pflB-harboring DNA fragment

and the linearized plasmid pSB84.3 were ligated by Gibson assem-

bly, yielding plasmid pSB86.4 (Appendix Table S1).

Media and cultivation conditions

All liquid and solid media used for cultivation of the ATPase and

control strains contained kanamycin (except for “WT” and “WT +
IPTG”) with a final concentration of 50 µg/ml. For growth assays,

cells were freshly transformed with the corresponding plasmid and

plated on LB0 agar plates (10 g/l tryptone, 5 g/l yeast extract, 5 g/l

NaCl, 15 g/l agar). A single colony was picked and used to inoculate

5 ml of LB0 medium. The medium was incubated at 37°C and

150 rpm for 5 h.

For aerobic cultivation, cells were diluted 1:500 into chemically

defined medium (MM: 4 g/l glucose, 34 mM NaH2PO4, 64 mM

K2HPO4, 20 mM (NH4)2SO4, 1 μM Fe(SO4)4, 300 μM MgSO4, 1 μM
ZnCl2, 10 μM CaCl2, adapted from (Tanaka et al, 1967)), containing

0.01 mM of IPTG (except for “WT”) and cultivated at 37°C and

250 rpm overnight. The cells were centrifuged at 5,000 g, washed,

and used to inoculate 25 ml of fresh MM (containing 0.01 mM IPTG,

except for “WT”) to an optical density at 420 nm (OD420) of 0.2 (0.4

for the HC ATPase strain). The cells were cultivated in 250-ml shake

flasks with three baffles at 37°C and 250 rpm.

For anaerobic cultivation, cells from the LB0-culture were diluted

1:100 into MM (containing 0.01 mM IPTG, except for “WT”) and

cultivated at 37°C without shaking overnight. The cells were centri-

fuged at 5,000 g, washed, and used to inoculate fresh MM (containing

0.01 mM IPTG, except for “WT”) to an OD420 of 0.2 (0.4 for the HC

ATPase and pfkA, pflB, or pgk co-expressing strains). The medium

was filled into 5-ml screw-cap glass vials (completely filled to the

top), and the vials were incubated at 37°C without shaking. For every

time point, new vials were opened to guarantee anaerobic conditions.

For cultivation of growth-arrested cells, the same procedures for

aerobic and anaerobic cultivation were followed as described above,

but MM without added (NH4)2SO4 and an initial OD420 of 2.0 were

used for cultivation.

For anaerobic cultivations in medium containing additionally

fumarate, the cells were cultivated as described above, but MM

supplemented with 20 mM of fumarate was used for the overnight

and main cultures.

Cell growth was monitored measuring the OD420 and using a

factor of 0.22 to convert one OD420 unit to gram dry weight per liter

(gDW/l). All cultivations were performed in biological triplicates, if

not stated otherwise.

Analytical methods

Extracellular glucose, ethanol, acetate, formate, succinate, lactate,

pyruvate, and fumarate in the medium were quantified as described

earlier (Boecker et al, 2019). Orotate was quantified by the same

method but was not secreted in significant amounts by the strains.

For quantification of intracellular metabolites (except pyruvate),

cells (~0.5 mg of biomass, from mid-exponential growth phase,

growth conditions as described above) were applied to filter disks

(Merck Millipore, #HVLP02500) under constant nitrogen flow to

keep anaerobic conditions. The medium was removed by suction fil-

tration, and the filter disks were immediately transferred to 1 ml of

a −20°C cold acetonitrile/methanol/water (40:40:20) quenching

solution. After incubation at −20°C for at least 30 min, the samples

were shaken vigorously, and 500 μl of the mixture was centrifuged

at 17,000 g and −9°C for 15 min. Next, 400 μl of the supernatant

was kept at −80°C until metabolite quantification. Extracts were

mixed with a 13C-labeled internal standard in a 1:1 ratio and

analyzed by liquid chromatography-tandem mass spectrometry,

which was performed as previously described (Guder et al, 2017)

using an Agilent 6495 triple quadrupole mass spectrometer (Agilent

Technologies). The ratio of 12C and 13C peak heights was used to

quantify metabolites. 12C/13C ratios were normalized to OD at the

time point of sampling. Absolute ATP, ADP, and AMP concentra-

tions were determined with the 13C internal standard and authentic

standards (Guder et al, 2017). A specific cell volume of 2 µl/mg was

used to calculate the cell volume. The intracellular adenosine energy

charge was calculated with the formula ([ATP] + 0.5[ADP])/([ATP]

+ [ADP] + [AMP]). For quantification of intracellular pyruvate, cell

extracts were prepared as described above, but ~1 mg of biomass

and 2 ml of the quenching solution were used. 1.7 ml of the extract

were centrifuged at 17,000 g and −9°C for 15 min and 1.5 ml of the

supernatant transferred to a new test tube. The solvents were evapo-

rated in a speed-vac and the residues dissolved in 55 µl of H2O.

Absolute pyruvate concentrations were determined using the pyru-

vic acid assay kit (Megazyme, #K-PYRUV) and normalized to OD at

the time point of sampling.

For proteomics analysis, cells were cultivated as described

above. ~1 × 109 cells were harvested by centrifugation (3 min, 4°C,
17,000 g), the supernatant discarded and the cells resuspended in

2 ml of ice-cold PBS buffer. The cells were centrifuged again (3 min,

4°C, 17,000 g) and the PBS-washing step was repeated twice. Cell

pellets were stored at −80°C until further analysis.

The pelletized cells were lysed in 400 µl of 2% sodium lauroyl

sarcosinate (SLS) in 100 mM ammonium bicarbonate by heat

(20 min, 90°C) and sonication. After 10 min of centrifugation at

17,000 g, the protein concentration in the supernatant was deter-

mined with a bicinchoninic acid (BCA)-based protein assay kit

(Thermo Fisher, #23252). 7.5 µl of 0.2 M tris(carboxylethyl)phos-

phine in 100 mM ammonium carbonate were added to 300 µl of the
supernatant. The solution was incubated for 15 min at 90°C. 7.5 µl
of 74 mg/ml iodoacetamide were added to the cooled-off samples

and incubated for 30 min at 25°C under shaking of 500 rpm. Using

2% SLS in 100 mM ammonium bicarbonate, 200 µl aliquots of the

samples were prepared containing a total protein mass of 50 µg.
600 µl of 100 mM ammonium bicarbonate and 8.5 µl of 0.1 µg/µl
porcine trypsin were added to the samples for incubation overnight

at 30°C.
5% trifluoroacetic acid was added to the samples to a final

concentration of 1.5%. After incubation for 10 min at room temper-

ature, the samples were centrifuged at 17,000 g for 10 min at 4°C.
The supernatant was used for solid phase extraction of the peptides

using C18-columns (Macherey-Nagel).

Peptides were analyzed using a Q-Exactive Plus mass spectrome-

ter connected to an Ultimate 3000 RSLC nano and a nanospray flex

ion source (Thermo Scientific). The analytical setting was reported

in detail previously (Donati et al, 2021). In short, peptide separation

was performed on a reverse-phase HPLC column (75 μm × 42 cm)
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packed in-house with C18 resin (2.4 μm, Dr. Maisch GmbH,

Germany). The following separating gradient was used: 96%

solvent A (0.15% formic acid) and 4% solvent B (99.85% acetoni-

trile, 0.15% formic acid) to 30% solvent B over 60 min at a flow

rate of 300 nl/min.

The data acquisition mode was set with the following parame-

ters: 1 MS scan at a resolution of 70,000 with 50 ms max. ion injec-

tion fill time, MS/MS at 17,500 scans of the 10 most intense ions

with 50 ms max. fill time. Label-free quantification (LFQ) of the data

was performed using Progenesis QIP (Waters) and MASCOT (v2.5,

Matrix Science) for spectrum/peptide identification. Progenesis

outputs were further processed with SafeQuant (Glatter et al, 2012;

Ahrn�e et al, 2016).

Calculation of growth rate, specific exchange rates, and yields

For experiments with growth, the growth rate (µ) for the exponen-

tial phase was determined by plotting the natural logarithm of the

biomass concentrations of each sampled time point (within the

exponential growth period) against the cultivation time. The slope

of the linear regression equals µ.
Specific uptake and excretion rates for the exponential phase in

growth-coupled experiments were determined with the formula:

rM ¼ μ cM;e � cM;s

� �
= cX;e � cX;s
� � ½mmol=gDW=h�

where µ is the growth rate, cM,e and cM,s represent the end and

start concentrations of the respective metabolite M (mmol/l

glucose, ethanol, acetate, formate, lactate, succinate, pyruvate, or

fumarate), and cX,e and cX,s represent the end and start concentra-

tions of the biomass (gDW/l). In experiments with growth arrest,

where the biomass concentration remained nearly constant, the

specific rates are calculated as:

rM ¼ cM;e � cM;s

� �
=XAv=Δt ½mmol=gDW=h�

where XAv is the average biomass concentration (gDW/l), and Δt
= te − ts the length of the time period (difference of end and start

time). This procedure was used for each of the three replicates

from which then the mean and the standard deviation was calcu-

lated for each rate.

Metabolite yields were determined by plotting ΔcM (mmol/l)

against ΔcGlc (mmol/l) for every sampled time point of the exponen-

tial growth period (for growth-coupled cultivation) or of the indi-

cated time period (of growth-arrested cultivation). The slope of the

linear regression equals the yield of the respective metabolite.

Biomass yields were determined by plotting ΔcX (gDW/l) against

ΔcGlc (g/l) for every sampled time point of the exponential growth

period (for growth-coupled cultivation). The slope of the linear

regression equals the biomass yield.

Statistical analysis

Unless stated otherwise, P-values for comparisons between different

strains were calculated using an unpaired two-sample t-test with the

software OriginPro (version 2020b, OriginLab Corporation). Statisti-

cal details of the individual experiments can be found in the

captions of the respective tables and figures.

Metabolic flux analysis to determine ATP turnover rates through
the ATPase

Using a stoichiometric model of the central metabolism of E. coli (83

reactions and 54 internal metabolites; adapted from (H€adicke &

Klamt, 2017)) and the MATLAB (MathWorks, version R2020b) tool-

box CellNetAnalyzer (Klamt et al, 2007; von Kamp et al, 2017), meta-

bolic flux analysis based on the experimentally determined exchange

rates was performed to estimate the ATPase flux in the different

strains. In stoichiometric models, unspecific ATP consumption

(which includes the non-growth-associated maintenance (NGAM)

demand of ATP) is usually represented by an “ATPM” pseudo reac-

tion hydrolyzing ATP. In the ATPase strains, the estimated flux

through this reaction in the stoichiometric model contains both the

NGAM demand as well as the actual ATPase flux and the latter can

thus be calculated as the difference of the calculated ATPM flux in

the ATPase strains and the calculated ATPM flux in the correspond-

ing control strains. Herein, it was assumed that, after consideration of

the measured growth rate and exchange fluxes, the remaining degrees

in the network were used by the cell to produce a maximum amount

of ATP (which is accounted for by maximizing the ATPM flux under

the given constraints). When performing these calculations, it

happens (especially for anaerobic conditions) that the experimentally

determined rates contradict each other (e.g., due to linear dependen-

cies). In those cases, CellNetAnalyzer can be used to minimally adjust

the measured rates to obtain a consistent scenario (“Check feasibil-

ity” function) before the ATPM flux is maximized. The stoichiometric

model together with a detailed description of the calculations is

provided on GitHub (see Data availability).

Kinetic model

The two versions for the kinetic model were implemented and simu-

lated with COPASI (Hoops et al, 2006) and are described in detail in

the Appendix Supplementary Text. The model files are also

provided on GitHub (see Data availability).

Data availability

The kinetic models (provided in COPASI and SBML format) as well

as the stoichiometric model used for calculating the ATPase fluxes

(provided as CellNetAnalyzer project and as SBML file) are available

under the following GitHub repository: https://github.com/klamt-

lab/Models_E.coli_High_ATP_Demand

Metabolomics MS data: Edmond Repository [Dyld9hM3KIMXqRg2]

https://edmond.mpdl.mpg.de/imeji/collection/

Dyld9hM3KIMXqRg2

Proteomics MS data: MassIVE Repository MSV000088475

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=

MSV000088475

Expanded View for this article is available online.
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