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Periodic signals called Steady-State Visual Evoked Potentials (SSVEP) are elicited in the brain by flickering
stimuli. They are usually detected by means of regression techniques that need relatively long trial
lengths to provide feedback and/or sufficient number of calibration trials to be reliably estimated in
the context of brain-computer interface (BCI). Thus, for BCI systems designed to operate with SSVEP sig-
nals, reliability is achieved at the expense of speed or extra recording time. Furthermore, regardless of the
trial length, calibration free regression-based methods have been shown to suffer from significant perfor-
mance drops when cognitive perturbations are present affecting the attention to the flickering stimuli. In
this study we present a novel technique called Oscillatory Source Tensor Discriminant Analysis (OSTDA)
that extracts oscillatory sources and classifies them using the newly developed tensor-based discriminant
analysis with shrinkage. The proposed approach is robust for small sample size settings where only a few
calibration trials are available. Besides, it works well with both low- and high-number-of-channel set-
tings, using trials as short as one second. OSTDA performs similarly or significantly better than other
three benchmarked state-of-the-art techniques under different experimental settings, including those
with cognitive disturbances (i.e. four datasets with control, listening, speaking and thinking conditions).
Overall, in this paper we show that OSTDA is the only pipeline among all the studied ones that can
achieve optimal results in all analyzed conditions.

� 2021 Published by Elsevier B.V.
1. Introduction

A Brain-Computer Interface (BCI) is a system that uses brain sig-
nals to deliver commands according to their decoding [1]. Its appli-
cations range from neurological rehabilitation [2–6] to
communication for disabled people [1,7], controlling external
devices [8,9], marketing [10] and entertainment [11]. Over the past
years, several BCI systems have been developed using different
electroencephalogram (EEG) brain responses, including sensorimo-
tor rhythms [12–18], event-related potentials [19,20] and visual-
evoked potentials [21–25]. Among them, Steady-State Visual
Evoked Potentials (SSVEP) have attracted attention due to their
high signal-to-noise ratio (SNR) [26], robustness [27] and greater
information transfer rate [28,29], when compared to other brain
responses.

SSVEP signals are generated when a subject is looking at a flick-
ering stimulus. As a response, periodic signals with fundamental
frequency equal to the stimulus frequency, together with its har-
monics, can be observed in the occipito-parietal regions [30]. Based
on this phenomenon, the SSVEP-based BCIs can differentiate the
brain response to stimuli with different flickering frequencies
(classes) and therefore generate a specific output for each of those
classes. In order to analyze SSVEP signals, several methodologies
have been used in the recent years. Some of them include fast
Fourier transform [31,32], power spectral density-based analysis
[33–36], common spatial patterns [37], minimum energy combina-
tion [27,38,39], multivariate linear regression [40] and linear dis-
r pipe-
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criminant analysis [41], among others. However, the most popular
method in the literature is the Canonical Correlation Analysis (CCA)
[42,43,39,44,45] and its extensions [46–48] or combinations with
other methods [49]. CCA-based methods aim at finding spatial fil-
ters that maximize the correlation between SSVEP signals and
sine–cosine reference templates at the fundamental and harmonic
frequencies of the stimuli. Many CCA-based methods have the
advantage of not requiring calibration (training) data, thus reduc-
ing or even eliminating the need of performing extra-recordings.
Nevertheless, they do not consider the possibly high overlap
between different classes and are very sensitive to cognitive per-
turbations that can be present in out-of-the-lab environments
[50]. Recently, a newmethod called Task-Related Component Anal-
ysis (TRCA) [51,52] has been developed in order to reduce trial
length in the design of SSVEP-based BCIs and operate at higher
speeds. This method is based on the maximization of the inter-
trial covariance matrix, and it was shown to be significantly more
efficient than CCA under time restricting conditions such as short
trial lengths. Another state-of-the-art method developed for
high-speed SSVEP-based BCIs, which we will refer to as High-
Speed BCI (HSBCI), was presented in [28]. HSBCI decomposes
SSVEPs and template signals into sub-band components by apply-
ing a filter bank analysis, and employs CCA-based spatial filters to
extract correlation features. Both TRCA and HSBCI use calibration
data to train their corresponding feature extraction procedures.
In fact, feature training has proven to critically increase SSVEP-
based BCI performance [53]. TRCA and HSBCI methods were origi-
nally introduced for a set of pre-selected channels over parietal and
occipital areas. Even though they both achieve high accuracy
results with short trial lengths, their ability to accurately classify
SSVEP data in the small sample size and in settings with higher
number of channels has to be established yet. Besides, in this
manuscript we also study how cognitive perturbations affect the
aforementioned state-of-the art methods to understand how they
could work in out-of-the-lab environments.

In this paper we propose a novel analysis pipeline, namely
Oscillatory Source Tensor Discriminant Analysis (OSTDA), to
extract SSVEP features from EEG data. Within this pipeline, we
introduce a method called shrinkage higher order discriminant
analysis (sHODA). sHODA is a modification of higher order discrim-
inant analysis (HODA) [54] that includes an analytic shrinkage
inspired by [55] as a tool for overcoming the small sample size
problem. sHODA is then used to extract features from oscillatory
brain sources, resulting in high accuracy results with trial lengths
as short as one second. In this manuscript, we compare OSTDA to
the aforementioned TRCA, HSBCI and CCA methods, and show that
it has the benefits of all of them, but none of their disadvantages. In
particular, we demonstrate that OSTDA is more robust in the small
sample size setting, and less affected by perturbations. Moreover,
our pipeline performs well with few channels and also in settings
Fig. 1. The block diagram of our
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with a high number of channels, which is a required condition in
certain applications. Thus, in this manuscript we propose a practi-
cal and fast SSVEP-based BCI system.

The paper is organized as follows: we introduce our proposed
pipeline, OSTDA, in Section 2. There, we also present sHODA and
show the details of the comparison between OSTDA and state-of-
the-art methods. In Section 3 we describe the experimental data
used in this study as well as the evaluation settings. In Section 4,
we explain the details about OSTDA parameter selection, and in
Section 5 we detail the statistical analysis done. Section 6 is dedi-
cated to analyze results, which are discussed in Section 7. Finally,
Section 8 includes a brief conclusion of the paper.

2. Methods

2.1. Notation

In this manuscript, tensors are denoted by calligraphic letters
(e.g. X), matrices are denoted by boldface capital letters (e.g. X),
whereas boldface lower-case letters are used to denote vectors
(e.g. x), and regular letters for scalars (e.g. x).

We denote the data matrix of the k-th training trial as

XðkÞ 2 RC�T , where C is the number of channels and T is the number
of time samples. Therefore, the training data with K trials is a
three-way tensor X 2 RC�T�K .

2.2. Oscillatory Source Tensor Discriminant Analysis (OSTDA)

Fig. 1 shows the block diagram of our proposed feature extrac-
tion and classification pipeline, named Oscillatory Source Tensor
Discriminant Analysis (OSTDA). In the following sections, we elab-
orate upon the details necessary to employ OSTDA.

2.2.1. Feature extraction
Spatio-Spectral Decomposition (SSD). SSD [56] is a multivariate

and unsupervised method that aims at separating oscillatory
sources from brain signals recorded with multiple electrodes by
maximizing their signal-to-noise ratio (SNR) at the frequency band
of interest. It computes spatial filters that are basis vectors of a
subspace where the ratio of the signal power in a specific fre-
quency band to the power of signals at its marginal bands is
maximized.

Assume that the measured signal is X ¼ SþN, with S corre-
sponding to the signal-of-interest in a specific frequency band
and N the noise component in a broad band. While filtering X in
the frequency band of interest (resulting in Xs) gives an approxi-
mation of the signal-of-interest plus noise, filtering in two narrow
bands (1 to 2 Hz) around the frequency band of interest (resulting
in Xn) approximates the noise alone. Using generalized eigenvalue
proposed pipeline, OSTDA.
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decomposition, SSD finds the optimum spatial filter w 2 RC�1 that

maximizes the ratio wTCsw
wTCnw

, where Cs ¼ 1
T XsX

T
s and Cn ¼ 1

T XnX
T
n.

In order to apply SSD to our data, we concatenated all the trials
of the training tensor X 2 RC�T�K to have a X 2 RC�TK data matrix.
Then, we applied SSD on a broad-band range between ½5;32� Hz.
This band was selected because it covers all the fundamental and
second harmonic frequencies of the flickering stimuli. Afterwards,
we selected nSSD sources (nSSD 6 C) from the SSD components. We
obtained the SSD spatial filters separately for each subject using
the training trials. We denote the SSD spatial filters by
W 2 RC�nSSD . The projection of X onto the SSD subspace is denoted
by Xssd 2 RnSSD�T�K , that corresponds to brain sources with
improved SNR within the frequency band ½5;32� Hz.

Correlation with reference signals. As discussed before, a flick-
ering stimulus elicits brain activities oscillating with the funda-
mental frequency equal to the flickering frequency. Therefore,
one of the most informative SSVEP features is the similarity of
the EEG with single-tone sines and cosines at each flickering fre-
quency and its corresponding higher harmonics. In the case of this
study, there are four classes and we use the information of first and
second harmonics (similar to [50]). Thus, a total of M ¼ 16 refer-
ence signals are necessary. In order to extract these similarities
and to reduce the dimensionality of the features, we computed
the Pearson’s correlation of each SSD source signal with these ref-
erence signals grouped in Xref 2 RM�T . This resulted in the training
data tensor Xcorr 2 RnSSD�M�K , which is a concatenation of feature

matrices of all trials fXðkÞ
corrg

K

k¼1 � RnSSD�M . In the following, we refer
to these feature matrices as correlation feature matrices.

Shrinkage Higher Order Discriminant Analysis (sHODA).
Higher Order Discriminant Analysis (HODA) [54], initially intro-
duced as DATER [57], is a generalization of linear discriminant
analysis (LDA) [58] for tensor data Xk � RI1�I2�����IN . In the special
case of matrix data, which is also the case of this manuscript,
assume fXkgKk¼1 � RI1�I2 is the set of the training data points cate-
gorized in multiple classes. In order to find the discriminant sub-
space for this data, a simultaneous matrix factorization should be
performed as the following [59]:

Xk � Uð1ÞGkU
ð2ÞT ; k ¼ 1; � � � ;K ð1Þ

The orthogonal basis factors fUðnÞ 2 RIn�rng2n¼1 are computed,
with the same idea as in LDA, by maximizing between-class covari-
ance of the projections and minimizing the within-class covari-
ance. The projections of data points (or the features) are
computed as:

Gk ¼ Uð1ÞTXkU
ð2Þ ð2Þ

which can be vectorized and used for training a classifier. Test data
can be projected onto this discriminant subspace by using Eq. 2.
Note that Gk 2 Rr1�r2 . Since rn < In; n ¼ 1;2, the discriminant sub-
space has a lower dimension than the original subspace of the data.

HODA employs an alternating least squares (ALS) algorithmic
scheme that iterates over the dimensions of the data tensor (here
the first two dimensions). In each iteration scatter matrices are
computed and the basis factors are estimated using an eigenvalue
decomposition. In other words, each iteration of the ALS algorithm
is an LDA problem as the following:

UðnÞ ¼ argmax
UðnÞ

tr UðnÞT S�n
b UðnÞ

� �
tr UðnÞT S�n

t UðnÞ
� � ; s:t: UðnÞTUðnÞ ¼ I ð3Þ

where S�n
b and S�n

t are the between-class and total scatter matrices
of the n-th mode of the data tensor. In our special case of matrix
3

data, n ¼ 1;2. More details about the computation of the scatter
matrices are presented in appendix A.

Tensor-based feature extraction methods are known to cope
well with small sample size scenarios [60,54]. However, even these
methods suffer from ill-conditioned scatter matrices. Therefore,
similar to conventional LDA, it is suggested that the within-class
covariance matrix should be regularized [54]. Previous works
[54,61] have implemented this regularization by means of a con-
stant regularization parameter. However, as we know from the lit-
erature on EEG classification, LDA can benefit from shrinkage,
where the shrinkage parameter is computed analytically in a
data-driven manner [55,62,63]. Inspired by [55], we implemented
an analytic shrinkage in HODA, and called it shrinkage-HODA
(sHODA), where the total scatter matrix of Eq. 3 is regularized in
each of the iterations of the ALS algorithm. The optimization prob-
lem of sHODA is formulated as the following:

UðnÞ ¼ argmax
UðnÞ

tr½UðnÞT S�n
b UðnÞ �

tr½UðnÞT ðS�n
t þcðnÞIÞUðnÞ �

; s:t: UðnÞTUðnÞ ¼ I ð4Þ

where cðnÞ is the regularization parameter of mode n. sHODA com-
putes this regularization parameter of each mode in a data-driven
approach. As mentioned before, [54,61] have introduced a constant
regularization parameter to the total scatter matrix, i.e.
cðnÞ ¼ c0 ¼ const;8n. The constant regularization adds a challenge
of selecting this parameter as a hyper-parameter of the pipeline,
which makes the calibration phase computationally more expen-
sive. Additionally, a constant regularization parameter may not be
the optimum value for regularizing the LDA problem in all itera-
tions of the ALS algorithm. sHODA overcomes both of these draw-
backs and can improve the performance of the feature extraction
in small sample size scenarios. Additionally, data-driven computa-
tion of the shrinkage parameter eliminates one parameter from
the cross-validation parameter tuning. For the details about the for-
mulation and algorithm of sHODA, we refer the reader to appendix
A of this manuscript.

After applying sHODA on the correlation features of SSVEP data

(i.e. fXðkÞ
corrg

K

k¼1 � RnSSD�M), the feature matrix f 2 RK�r1r2 is obtained
and used for classification. Note that the only parameters of sHODA
are the new dimensions of the feature space, i.e. R ¼ ½r1; r2�.

2.2.2. Classification
As in the original paper describing and analysing the datasets

used here [50], we applied the K-Nearest Neighbor (KNN) classifier
with five neighbors for all the analyses performed in this paper
with the OSTDA pipeline. The KNN implementation of the Statistics
and Machine Learning Toolbox of MATLAB� was used.

2.3. Benchmarking

We compared our proposed pipeline, OSTDA, with the following
state-of-the art methods.

Canonical Correlation Analysis (CCA). CCA is probably the most
popular method for feature extraction in SSVEP-based BCIs
[42,43,39,44,45]. CCA solves an optimization problem to find linear
mappings that maximize the correlation of two matrices. Here,
these two matrices are the EEG data from multiple electrodes
and the reference signals. In [50], for each SSVEP flickering fre-
quency, two sine–cosine reference signal matrices were used to
calculate canonical correlations; one of these matrices corre-
sponded to the stimulation frequency and the other one to its sec-
ond harmonic. Therefore, four canonical correlation values (CCA
features) were computed for each class, resulting in sixteen CCA
features.

To implement the above-mentioned CCA-based feature extrac-
tion in this paper, each trial was first detrended and band-pass fil-



T. Jorajuría, M. Jamshidi Idaji, Z. _Is�can et al. Neurocomputing xxx (xxxx) xxx
tered between ½0:53;40� Hz. This step removes DC, high frequency
artifacts and the 50 Hz power line noise [50]. Afterwards, the six-
teen CCA features were computed for each trial and classified with
a KNN classifier with five neighbors. This classifier achieved the
best classification results in the testing dataset in [50].

Task-Related Component Analysis (TRCA). TRCA [51] is a
recently published algorithm applied to high-speed SSVEP-based
BCIs. This method finds spatial filters that maximize the inter-
trial covariance matrix of each class separately by means of a gen-
eralized eigenvalue decomposition (more details can be found in
[52]).

In this paper, we followed the procedure explained in [51] to
implement TRCA, where the SSVEP signals are filtered into sub-
band components by using a filter bank. In order to fit the param-
eters of that work to the data used in this manuscript, the lowest
cut-off frequency was set to 5 Hz, thus we could include the small-
est flickering frequency. We computed the ensemble spatial filters
and the averaged templates for each stimuli and sub-band with the
training trials.

High-Speed BCI (HSBCI). A new high-speed SSVEP-based BCI
was introduced in [28]. HSBCI consists on a filter bank analysis that
decomposes SSVEPs and template signals into sub-band compo-
nents to extract correlation features using CCA-based spatial filters.
We calculated the SSVEP template signals with the training trials.

In order to implement HSBCI, we followed the procedure
explained in [28] with some exceptions to adapt the method to
the data analyzed here: the reference signals matrix to compute
CCA included the first and second harmonics, so the total fre-
quency range was ½5;32� Hz. As for TRCA, we also set the lowest
cut-off frequency to 5 Hz to include the smallest flickering
frequency.
Fig. 2. Scalp plot of the electrodes configurations used in this study. 60-channel
setting: all shown electrodes; 9-channel setting: bold-circled electrodes.
3. Experimental data

3.1. Data description

In this paper, we analyzed a public EEG dataset of a SSVEP-
based BCI recorded from 24 subjects from [50]. All subjects partic-
ipated in the study after giving a written informed consent in
accordance with the declaration of Helsinki and the experiments
were approved by the local ethics committee of National Research
University Higher School of Economics, Moscow [50]. The visual
stimuli consisted of four circles placed in different locations of a
screen, flickering at distinct frequencies of 5.45 Hz, 8.57 Hz,
12 Hz, and 15 Hz. Frequencies multiples of each other were
avoided in order to prevent coincidences between frequencies of
flickering stimuli and their higher harmonics. For more details
about the experimental setup, we refer the reader to [50].

Participants underwent offline and online (with feedback)
recording sessions. In this study, we used the offline data as the
training dataset and the online data as the testing dataset.

The offline session consisted of four runs of 25 trials each, with
a total of 100 trials (25 trials per class). In each offline trial, the sub-
jects were asked to focus on a randomly selected flickering circle
surrounded by a red oval for three seconds, followed by a one-
second resting period. In the online session, the subjects freely
chose a flickering circle to focus on for three seconds. After each
trial, the classification result was presented to the subject as a
feedback and they had to confirm or reject the result using the key-
board. There were four conditions (with and without perturbation)
in the online session (100 trials each, per subject). During each
condition, the subjects were asked to perform randomly one of
the following tasks, while looking at the stimulus: control (no per-
turbation), speaking (counting loudly and repeatedly from one to
ten), thinking (counting silently from one to ten repeatedly), and
4

listening (paying attention to a pre-recorded audio file where the
participant had counted from one to ten repeatedly).

EEG data were recorded from 60 channels based on the interna-
tional 10–20 system, as in Fig. 2, with the reference electrode on
the left mastoid and 1 kHz sampling rate. The data were segmented
using the stimuli markers specifying the onset and end of the flick-
ering. As aforementioned, offline and online trials of the studied
datasets were three seconds long. However, long trials decrease
the speed of BCI systems, thus an effort must be done to obtain
reliable results with short trial lengths. Consequently, in this study
we focused on short trials of only one second, with the aim of
increasing the information transfer rate of our system.
3.2. Evaluation settings

We evaluated the performance of two different settings with
our proposed pipeline and with the selected state-of-the-art meth-
ods. In particular, we analyzed how the training sample size and
the number of channels affect the performance of the studied
methods. The factor ‘‘sample size” addresses the amount of data
that is necessary to obtain a reliable performance. Reducing the
need of training (also called calibration) data, increases the ease
of use of BCIs. Typically, recording offline data is challenging
because participants become tired before starting the actual feed-
back BCI session. This problem is even greater for patients, whose
attention span might be compromised. Thus, BCI researchers inves-
tigate how short the training sessions can be to still obtain reliable
online performances [64–66], as we do in this work. On the other
hand, the factor ‘‘number of channels” is related to the trade-off
between a fast and easy setup with a low number of dimensions
and the need of flexible paradigms, specially in the case of partic-
ipants with special needs, for example due to pathologies of the
nervous system. This means that, specially for the case of patients,
it is not always possible to select only a few optimal channels, and
hence flexible systems with a higher number of dimensions might
be necessary. Thus, in order to design BCI systems that can be used
in out-of-the-lab conditions, it is necessary to study how reliable
they are under low sample size settings and with higher number
of dimensions, as we do here. That is, it is necessary to analyze
the trade-off between number of channels and the amount of avail-
able training data.

Sample size. Small sample size (SSS) problems in classification
arise when there are not enough training data points in compar-
ison to the number of unkowns. This condition results in overfit-
ting of the machine learning methods and therefore, a significant
drop in the classification results of test data is observed. In order
to assess the performance of our pipeline and other state-of-the-
art methods in SSS settings, we computed the classification results
for two numbers of training trials values. In particular, we used
only the first 5 or 25 trials of each class from the training dataset
for training. We refer to the case of using all the available training
data (i.e. 25 trials per class) as the full sample size (FSS) setting.



Fig. 3. The joint distribution of selected OSTDA parameters (fnSSD;Rg) over N ¼ 24
subjects in 9-channel and 60-channel settings for the SSS (5 training trials per class)
and the FSS (25 training trials per class) settings.
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Note that there are four classes and therefore we have in total 100
trials to train in FSS setting and 20 in the SSS setting.

Number of channels. We evaluated two different settings
regarding the number of channels used. The first setting included
all 60 EEG channels (all electrodes shown in Fig. 2). For the second
setting, only nine channels located in parietal and occipital areas
(bold-circled electrodes in Fig. 2) were selected according to
[28,51]. These channels are known to provide very good perfor-
mance for steady-state visual evoked potential paradigms [67].

4. Parameter selection

OSTDA pipeline has two parameters that were subject-
specifically selected: nSSD (the number of SSD components that
are retained) and R ¼ ½r1; r2� (the number of components retained
by sHODA in each mode).

The range of nSSD was determined based on the number of chan-
nels used [68]. For the 9-channel setting 5 6 nSSD 6 9, while for the
60-channel setting 10 6 nSSD 6 35.

R was restricted to a specific set of possible values based on the
resulting total number of features (equal to the product of the two
elements of vector R, i.e. r1r2) according to the following criteria:
as we have four SSVEP flickering frequencies (classes), the lower
limit was set to three; additionally, taking into account that the
total number of trials in the FSS is 100, the upper bound was lim-
ited to about a 10% of this value [69], in this case to 12. Thus, we
had 3 6 r1r2 6 12. Therefore, the resulting possible values for R
were: ½1;3�; ½1;4�; ½1;5�; ½1;6�; ½1;7�; ½1;8�; ½1;9�; ½1;10�; ½1;11�; ½1;12�;
½2;2�; ½2;3�; ½2;4�; ½2;5�; ½2;6�; ½3;1�; ½3;2�; ½3;3�; ½3;4�; ½4;1�; ½4;2�; ½4;3�;
½5;1�; ½5;2�; ½6;1�; ½6;2�; ½7;1�; ½8;1�; ½9;1�; ½10;1�; ½11;1�; ½12;1�.
Among these values, the ones that satisfied r1 6 nSSD were used for
each nSSD.

For each evaluation setting, we selected nSSD and R for each sub-
ject based on the eigenvalues obtained in sHODA, taking the com-
bination of these two parameters that maximized the explained
percentage of variance. This was done with a chronological hold-
out cross-validation using the corresponding training dataset in
each sample size setting, taking the last 40% trials of each class
as the validation set. With these subject-specific parameters,
OSTDA was trained with all available trials in each sample size
setting.

5. Statistical Analysis

Two 3-way repeated measures ANOVA were applied to the clas-
sification results obtained with the testing dataset to see the influ-
ence of the analysis approach (OSTDA, TRCA, HSBCI, CCA), number
of training trials per class (5;25) and perturbation (Control, Listen-
ing, Speaking, Thinking) factors. They were performed separately
for individual accuracy values obtained with the 9- and 60-
channel settings, respectively.

For each ANOVA, we analyzed the sphericity of the response
variables in the repeated measures model, using a Mauchly’s test.
In case of rejection, we report the Greenhouse-Geisser adjusted
p-values. Furthermore, after each ANOVA we performed post hoc
tests using Tuckey’s honestly significant difference (HSD), when
the interaction of main factors was significant.

6. Results

6.1. Parameter selection (training dataset)

As mentioned in Section 4, we performed a chronological hold-
out to tune the parameters of OSTDA (nSSD and R) for each subject.
The last 40% trials of each class of the corresponding training data
5

were used as the validation set. Thus, subject-dependent parame-
ters were selected in each of the evaluation settings, i.e. 9- and
60-channel as well as small and full sample size (refer to
Section 3.2).

Fig. 3 shows the joint distribution of the selected parameters,
fnSSD;Rg, over all the subjects in each setting. In the 9-channel set-
ting the best parameters for most of the subjects are f5; ½2;6�g in
the SSS setting, selected for 75% of subjects, and f5; ½1;3�g and
f5; ½2;6�g in the FSS setting, selected for 50% and 45:83% of sub-
jects, respectively. In the 60-channel setting the predominant
parameters are f10; ½1;3�g, which were selected for 70:83% and
75% of subjects in the SSS and the FSS settings, respectively.

6.2. Classification (testing dataset)

We benchmarked OSTDA against three state-of-the art meth-
ods, namely CCA, TRCA and HSBCI. Fig. 4 depicts test classification
mean accuracy values (%) and standard errors in different evalua-
tion settings and under different perturbations. Besides, in Fig. 5
these mean accuracy values obtained with analyzed approaches
are ranked for each evaluation setting and perturbation condition.

Two 3-way repeated measures ANOVA were separately con-
ducted (see Tables B.1 and B.2 in appendix B) for the individual
accuracies obtained in 9-channel and 60-channel settings. Each
ANOVA was designed with factors approach (OSTDA, TRCA, HSBCI,
CCA), number of training trials per class (5;25) and perturbation
(Control, Listening, Speaking, Thinking).

9-channel setting. The analysis of the 9-channel setting deliv-
ered significant results for all main effects (p < 0:001 in each case)
and also for the 2-way interaction between approach and perturba-
tion (p < 0:01) factors. Post-hoc tests showed that OSTDA per-
formed significantly better than CCA in Control, Speaking,
Thinking (p < 0:001 in each case) and Listening (p < 0:01) condi-
tions. There were no significant differences between OSTDA and
HSBCI nor between OSTDA and TRCA in any perturbation. Quanti-
tatively, however, mean accuracy values achieved with OSTDA
were higher than for TRCA and HSBCI in all sample sizes and per-
turbations. Specifically, they were 4:7% and 0:7% higher than for



Fig. 4. Test classification mean accuracy values (%) and standard errors under different perturbations for different evaluation settings (N = 24 subjects). Different approaches
are represented by different bar groups.

Fig. 5. Ranking of test classification mean accuracy values in each evaluation setting and perturbation (C: control, L: listening, S: speaking, T: thinking). First rank means
highest mean accuracy value. Each approach is represented with a different color.
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TRCA in SSS and FSS settings, respectively, and 1% higher than for
HSBCI in average for both sample size settings.

When comparing mean accuracies between perturbations for
each approach, post hoc tests showed that Control had significantly
better accuracy than Speaking and Thinking for CCA, HSBCI, TRCA
and OSTDA (p < 0:05 in each case). Moreover, mean accuracies in
Control were also higher than in Listening (p < 0:05) for HSBCI.
Besides, in the case of CCA Listening condition had better accuracy
than Speaking (p < 0:01) and Thinking (p < 0:05).

60-channel setting. The analysis of 60-channel setting showed
a significant 2-way interaction between approach and number of
training trials (p < 0:01) factors, between approach and perturbation
(p < 0:05), and significant main effects for approach, number of
training trials (p < 0:001 in each case) and perturbation (p < 0:01)
factors. Post-hoc comparisons revealed that OSTDA and TRCA
obtained significantly better results than CCA and HSBCI in all eval-
uated sample size settings and perturbations (p < 0:001 in each
case). In relation to OSTDA and TRCA, there were no significant dif-
ferences between these two approaches in the FSS setting, but the
SSS setting showed that OSTDA was significantly better than TRCA
(p < 0:05).

Regarding perturbations, OSTDA performed significantly better
than TRCA in Listening (p < 0:05) condition and, when averaging
results of both sample size settings, quantitatively better in Control
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(2:5%), Speaking (2:6%) and Thinking (2:6%). Comparing mean
accuracy values between perturbations for each of these two
approaches, post hoc results showed that Control condition had
better accuracy than Speaking and Thinking (p < 0:05 and
p < 0:01, respectively) for both OSTDA and TRCA. Moreover, classi-
fication results in Control condition were also better than in Listen-
ing (p < 0:05) for TRCA.

Finally, in order to depict how perturbations are handled by
OSTDA, we studied the distribution of power on the scalp before
and after applying SSD. In particular, we computed the mean
power of each channel over all trials in the 60-channel and full
sample size setting. In Fig. 6, scalp plots of the power distribution
of an illustrative subject are depicted before and after SSD, in dif-
ferent conditions. We used EEGLAB [70] Toolbox of MATLAB� to
plot this figure. In order to plot the power distribution after SSD,
we projected subject-specific nSSD sources back to the sensor space
with SSD trained patterns, and then computed the sensor powers.

As shown in Fig. 6, before SSD, the brain activity is located at
different brain regions depending on the perturbation. In particu-
lar, before SSD the Listening condition activity is mainly located
at temporal areas and during the Thinking condition predominant
areas are frontal and temporal regions. Regarding the Speaking
perturbation, the power is distributed through the whole scalp,
including frontal and sensorimotor areas. After SSD, however, the



Fig. 6. Power distribution on scalp (dB) of an illustrative subject under perturbation conditions, before and after SSD (testing dataset).
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brain activity is mainly located at occipital and parietal areas in all
conditions.
7. Discussion

7.1. OSTDA versus state-of-the-art methods

In Section 6.2, it was shown that OSTDA is the only pipeline that
can achieve optimal results in all analyzed settings (number of
channels and number of training trials). OSTDA performed simi-
larly well to HSBCI and TRCA in the 9-channel setting, although
it was quantitatively better in both sample sizes and all analyzed
perturbations, and significantly better than CCA. In the 60-
channel setting, HSBCI and CCA failed in comparison to OSTDA
and TRCA in all sample size settings and perturbations. In this last
case, HSBCI attained quantitatively the worst performance of all
pipelines, as shown in Fig. 5. Regarding OSTDA and TRCA in the
60-channel setting, OSTDA achieved significantly better classifica-
tion results than TRCA in the SSS setting, and similar in the FSS.
Moreover, OSTDA performed significantly better than TRCA in Lis-
tening condition, and similar in the other three, showing however
quantitatively higher mean accuracies when averaging both sam-
ple sizes.

OSTDA is more robust in the small sample size setting than
other analyzed approaches. In Section 6.2 it was shown that there
was a significant two-way interaction between approach and num-
ber of training trials factors when using 60 channels. In this channel
setting, CCA and HSBCI did not even reach 60% mean accuracy in
any sample size (see Fig. 4), and both performed significantly
worse than OSTDA. Furthermore, OSTDA achieved significantly
better results than TRCA for the SSS setting, and there were no sig-
nificant differences in the FSS setting.

Thus, OSTDA is less sensitive than the other studied approaches
to the small sample size problem. There are two reasons for this:
on the one hand, SSD not only increases the SNR of the data, but
also allows dimensionality reduction based on their oscillatory
properties. On the other hand, tensor based techniques are known
to be more robust than their vectorized counterparts when not
enough training data is available [60,71,57]. The reason of this
robustness in small sample size settings is that in tensor-based fea-
ture extraction methods the dimension of each mode is smaller
than the whole dimension of the vectorized data constructed from
concatenating all the data modes together, alleviating the curse of
dimensionality problem. This, in turn, offers a desirable alternative
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to design robust BCI-based systems under small sample size
conditions.

OSTDA is robust with short trial lengths. As shown in [50], CCA
is limited by the long trial lengths necessary to obtain stable
results. This is because calibration free regression-based techniques
need long epoch-lengths that contain a sufficient number of cycles
in order to achieve reliable estimates. As demonstrated in this
study, this is not the case for OSTDA, which operates well with trial
lengths as short as one second. Therefore, OSTDA is a suitable can-
didate for implementing fast SSVEP-based BCIs, which is a desired
feature for these systems.

OSTDA is optimal using a low or a large number of electrodes.
As discussed before, OSTDA was the only pipeline that did not fail
in any analyzed setting. Its performance in the 9-channel setting
was quantitatively the best one among all approaches (see
Fig. 5), being significantly better than CCA and similar to HSBCI
and TRCA. Those 9 channels are in fact optimal for visual para-
digms [67]. However, it is not always possible to know beforehand
which channels are the best. For instance, when a new experimen-
tal condition should be tested or a paradigm mixes different types
of stimuli (for example visual and auditory), it might be necessary
to increase the number of channels to be able to efficiently perform
experiments. This might also be the case when a paradigm is
designed to use different visual stimuli in left and right visual
hemifields. It might also be necessary to increase the number of
channels when there is a need to discriminate between retinotopi-
cally close stimuli. These stimuli are processed in neighboring
brain regions, and thus require a high spatial EEG sampling. In all
these situations, OSTDA presents a clear advantage over the stud-
ied approaches.

In particular, our results showed that CCA and HSBCI fail in the
60-channel setting. In [72], an electrode channel optimization
method is proposed for SSVEP-based BCIs, where CCA and filter
bank canonical correlation analysis methods (in which HSBCI is
based) are applied as target identification algorithms. Their results
show that, when increasing the number of electrode channels, the
performance also increases until it reaches a maximum value, and
then starts decreasing. The reason for this low performance with
high number of channels is probably the collinearity problem that
arises in multivariate regression algorithms [73].

Additionally, TRCA performed similarly to OSTDA in the FSS set-
ting with 60 channels, but significantly worse under SSS. Thus,
OSTDA offers an optimal option for both channel settings, specially
for SSS problem in 60-channel setting, where the other three ana-
lyzed approaches performed significantly worse.
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7.2. Effect of perturbations in SSVEP-based BCI

As shown in Section 6.2, in 9-channel setting OSTDA, HSBCI and
TRCA performed similarly well under the perturbations. Quantita-
tively, however, OSTDA was better than both of them, particularly
almost 5% better than TRCA in the SSS setting. On the other hand,
CCA was worse than OSTDA in all perturbations, in the two sample
size settings. Besides, all approaches showed significant differences
between Control-Speaking and Control-Thinking conditions, but
HSBCI exhibited differences between Control-Listening conditions
as well, and CCA also between Listening-Speaking and Listening-
Thinking conditions, thus being less robust to perturbations. In
the 60-channel setting, CCA and HSBCI failed under all perturba-
tions. OSTDA performed significantly better than TRCA in Listening
condition, and similar in the other three, but obtained quantita-
tively better results than TRCA when averaging results of both
sample size settings. Moreover, OSTDA and TRCA showed signifi-
cant differences between Control-Speaking and Control-Thinking
conditions, but TRCA also revealed differences between Control-
Listening conditions, proving to be less robust to the Listening per-
turbation than OSTDA.

In summary, OSTDA is the least affected approach under pertur-
bations. This implies that OSTDA might be able to facilitate the
design of practical systems based on SSVEP to be used in out of
the laboratory conditions. Such benefits are due to the combination
of SSD and our tensor-based approach. SSD subspace, computed
from the training data, extracts the oscillatory sources and
improves their SNR in the desired frequency band. At the same
time, disturbances, as the ones studied here, are often not of oscil-
latory nature. Thus, SSD not only reduces dimensions to those con-
taining relevant information, but simultaneously it also reduces
the effect of non-oscillatory activity. Fig. 6 of Section 6.2 shows
that after applying SSD, the power of the brain activity correspond-
ing to the perturbations decreases. This, in turn, allows the occip-
ital and parietal neuronal activities containing SSVEP information
emerge. Paralelly, in the SSVEP setting, reducing dimensions to
those with higher SNR means that the power and hence amplitude
of the signals improves, simultaneously reducing noise contribu-
tions. These two effects can significantly improve the estimation
of correlations. Furthermore, and as our results suggest, by project-
ing contaminated test data on only relevant informative dimen-
sions it is possible to reduce the effect of perturbations.
8. Conclusion

In this manuscript we presented a new pipeline called Oscilla-
tory Source Tensor Discriminant Analysis (OSTDA) to robustly
and efficiently classify SSVEP data. We showed that it is possible
to use short trial lengths and a very short calibration recording of
just a few samples per class to train the OSTDA pipeline. We also
analyzed its performance in different perturbing states of the test
data resembling out-of-the-lab conditions, and in settings that
had low or high number of channels. We were able to show that,
unlike the rest of studied pipelines, OSTDA does not fail in any set-
ting; it is always better or similar to the other studied approaches,
thus offering an optimal alternative. Specifically, for small sample
size problems with high number of channels, a difficult setting
since there are many features and few training trials, OSTDA is sig-
nificantly better than all the other three state-of-the-art pipelines.
4 The notation and almost all the equations of this part are taken from [60].
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Appendix A. sHODA

Notation. We use the notations of [60,54] for tensor algebra.
The mode-n matricization (unfolding) of a tensor X 2 RI1�����IN is
defined as rearranging its mode-n fibers in a matrix denoted by

X nð Þ 2 R
In�ð

QN

i¼1
i–n

IiÞ
. The product of the mode-n unfolding X and a

matrix A 2 RJn�In defines the mode-n product of a tensor and
matrix denoted by Z ¼ X�nA 2 RI1�����Jn�����IN , where Z nð Þ ¼ AX nð Þ.

Finally, the two products Z ¼ X�1A
1ð Þ�2 � � � �NA

Nð Þ and

Z ¼ X�1A
1ð Þ�2 � � � �n�1A

n�1ð Þ�nþ1A
nþ1ð Þ�nþ2 � � � �NA

Nð Þ are written
in summarized form as Z ¼ X� fAg and Z ¼ X��nfAg respec-
tively. Finally X;Xh i�n :¼ X nð ÞX

T
nð Þ 2 RIn�In .

Problem Formulation. Let fXk 2 RI1�����INgKk¼1 be the training
tensor data categorized in C classes with Kc members in each class.
The multi-way feature extraction methods aim at computing

orthonormal basis factors fUðnÞ 2 RIn�rngNn¼1 that define a feature
subspace where the separability of the classes is maximized. The
projection of a tensor data Xk onto this subspace is computed by
Gk ¼ Xk � fUTg.

Higher Order Discriminant Analysis (HODA). HODA is a multi-
way extension of linear discriminant analysis (LDA), where the
basis of the feature subspace is computed by simultaneous maxi-
mization of the between-class covariance and minimization of
the within-class covariance of the features on the feature subspace.
Based on a similar idea, HODA maximizes the Fisher ratio of the
projections of the training data on the feature subspace as the
following4:

fUg ¼ argmax
U 1ð Þ ;���;U Nð Þ

XC
c¼1

Kc jj�G cð Þ���Gjj2F

XK
k¼1

jjG kð Þ��G ckð Þjj2F

s:t: UðnÞTUðnÞ ¼ I; n ¼ 1; � � � ;N

ðA:1Þ
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In the above equation, ��G is the mean of all fGkgKk¼1. While �G cð Þ is
the mean of the members of class c; �G ckð Þ is the mean of the mem-
bers of the class to which the k-th data tensor belongs. The numer-
ator and denominator of Eq. A.1 reflect the between-class and
within-class variance, respectively.

The above equation is solved using the alternating least square
(ALS) algorithm. In the n-th iteration of the ALS algorithm, UðnÞ is
optimized while all other basis matrices are used from the esti-
mates of the previous iterations. Therefore, in iteration n, Eq. A.1
can be rewritten as the following:

UðnÞ ¼ argmax
UðnÞ

tr½UðnÞT S�n
b UðnÞ �

tr½UðnÞT S�n
t UðnÞ �

; s:t: UðnÞTUðnÞ ¼ I ðA:2Þ

where S�n
b and S�n

t are the between-class and total scatter matri-
ces defined as the following:

S�n
b ¼

XC
c¼1

�Z�n
ðcÞ

; �Z�n
ðcÞ* +

�n

¼ �Z�n; �Z�n
� �

�n ðA:3Þ

where

�X cð Þ ¼
ffiffiffiffiffiffi
Kc

p
�X cð Þ � ��X

� �
; �X ¼ cat N þ 1; �X 1ð Þ; � � � ; �X Cð Þ	 
 ðA:4Þ

�Z�n
ðcÞ

¼ �X cð Þ��nfUTg; �Z�n ¼ �X�� n;Nþ1ð ÞfUTg ðA:5Þ
and

��X ¼ 1
K

XK
k¼1

XðkÞ ðA:6Þ

�XðcÞ ¼ 1
Kc

X
k2Xc

XðkÞ; c ¼ 1; � � � ; C ðA:7Þ

Additionally:

S�n
t ¼

XK
k¼1

~Z�n
ðkÞ

; ~Z�n
ðkÞ* +

�n

¼ ~Z�n; ~Z�n
� �

�n ðA:8Þ

where

~X kð Þ ¼ X kð Þ � ��X; ~X ¼ cat N þ 1; ~X 1ð Þ; � � � ; ~X Kð Þ	 
 ðA:9Þ
~Z�n

ðkÞ
¼ ~X kð Þ��nfUTg; ~Z�n ¼ ~X�� n;Nþ1ð ÞfUTg ðA:10Þ
Table B.1
Three-way repeated measures ANOVA for individual accuracies in testing dataset with 9-ch

Source SS

Approach 11241.2
Error(Approach) 15084.5
Number trials 2644.0
Error(Number trials) 2654.0
Perturbation 2617.7
Error(Perturbation) 8455.5
Approach x Number trials 636.4
Error(Approach x Number trials) 4994.2
Approach x Perturbation 510.5
Error(Approach x Perturbation) 3608.2
Number trials x Perturbation 28.9
Error(Number trials x Perturbation) 499.7
Approach x Number trials x Perturbation 29.8
Error(Approach x Number trials x Perturbation) 1403.4
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Shrinkage Higher Order Discriminant Analysis (sHODA). In
order to prevent the ill-conditioned behaviour of the within-class
scatter matrix (or here total scatter matrix) in the generalized
eigenvalue decomposition, Phan et. al. [54] suggested that it should
be regularized with a constant regularization parameter, i.e. in each
iteration replace S�n

t by S�n
t þ cI, where I is the identity matrix. This

regularization parameter should be optimized in a cross-validation
scheme. In many analysis pipelines, like OSTDA in this paper, there
are other parameters and the regularization parameter of HODA
adds up to them, making the parameter tuning harder.

To overcome this problem, we propose to compute the shrink-
age data-driven and automatically in each iteration of the ALS algo-
rithm. We do so using the idea of shrinkage in [55] and implement
it based on the scatter matrices of n-th iteration of the ALS algo-
rithm as follows:

cðnÞ ¼ f
M

ðM � 1Þ2

X
i;j

varð~Z�n
ðnÞði; :Þ � ~Z�n

ðnÞðj; :ÞÞ

jjS�n
t � mIjj2

0
BB@

1
CCA ðA:11Þ

where � is the Hadamard product, m ¼ 1
In
traceðS�n

t Þ, and f is
defined as the following function:

f ðxÞ ¼
0; x 6 0
x; 0 < x < 1
1; x P 1

8><
>:

Therefore, the optimization problem of each iteration of the ALS
algorithm of sHODA changes from Eq. (A.2) to the following:

UðnÞ ¼ argmax
UðnÞ

tr½UðnÞT S�n
b UðnÞ �

tr½UðnÞT ðS�n
t þcðnÞIÞUðnÞ �

; s:t: UðnÞTUðnÞ ¼ I ðA:12Þ

The main advantage of sHODA over regularized HODA is that
regularization is performed analytically, thus eliminating the need
of performing cross-validation to optimize the regularization
parameter.
Appendix B. ANOVA Tables

Tables B.1 and B.2.
annel setting, with approach, number of training trials per class and perturbation factors.

df MS F p

3 3747.08 17.140 <0.001
69 218.62 – –
1 2644.04 22.914 <0.001
23 115.39 – –
3 872.58 7.121 <0.001
69 122.54 – –
3 212.14 2.931 0.0887
69 72.38 – –
9 56.72 3.254 <0.01
207 17.43 – –
3 9.63 1.329 0.2724
69 7.24 – –
9 3.32 0.489 0.8204
207 6.78 – –



Table B.2
Three-way repeated measures ANOVA for individual accuracies in testing dataset with 60-channel setting, with approach, number of training trials per class and perturbation
factors.

Source SS df MS F p

Approach 317445.4 3 105815.13 289.756 <0.001
Error(Approach) 25197.9 69 365.19 – –
Number trials 12033.3 1 12033.33 82.834 <0.001
Error(Number trials) 3341.2 23 145.27 – –
Perturbation 1655.0 3 551.65 5.866 <0.01
Error(Perturbation) 6489.1 69 94.04 – –
Approach x Number trials 2628.6 3 876.20 6.394 <0.01
Error(Approach x Number trials) 9455.6 69 137.04 – –
Approach x Perturbation 805.9 9 89.54 2.683 <0.05
Error(Approach x Perturbation) 6908.8 207 33.38 – –
Number trials x Perturbation 3.0 3 1.00 0.089 0.9563
Error(Number trials x Perturbation) 776.4 69 11.25 – –
Approach x Number trials x Perturbation 89.7 9 9.97 0.691 0.6512
Error(Approach x Number trials x Perturbation) 2983.1 207 14.41 – –
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