THE RELATIVE WHITNEY TRICK AND ITS APPLICATIONS

CHRISTOPHER W. DAVIS, PATRICK ORSON, AND JUNGHWAN PARK

Abstract

We introduce a geometric operation, which we call the relative Whitney trick, that removes a single double point between properly immersed surfaces in a 4 -manifold with boundary. Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to a link that is topologically slice in a contractible topological 4-manifold. We further prove that any link in a homology sphere is order k Whitney tower concordant to a link in S^{3} for all k. Finally, we explore the minimum Gordian distance from a link in S^{3} to a homotopically trivial link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make explicit computations for 3-component links and establish bounds in general.

1. Introduction

The Whitney trick is a fundamental technique of geometric topology and its general failure in 4manifolds is widely cited as the reason that topology in this dimension is so interesting and unusual. In ambient dimension four, the (topological) Whitney trick seeks to remove a pair of oppositely signed transverse intersection points between two locally flat immersed surfaces. In this article, we will introduce a geometric technique called the relative Whitney trick that removes a single point of intersection between properly immersed locally flat surfaces in a 4 -manifold with boundary. The details of the relative Whitney trick are given in Section 2, but we sketch the procedure now. Suppose S_{1} and S_{2} are surfaces in a 4-manifold W and $p \in S_{1} \cap S_{2}$. We find an immersed disk with an embedded arc of its boundary lying on the boundary of the 4 -manifold and use it to guide a regular homotopy of S_{1} that removes the point of intersection p, at the cost of changing ∂S_{1} by a homotopy along that arc in the boundary; see Figure 1.

Figure 1. A schematic for the relative Whitney trick. Possible singularities on the interior of the relative Whitney disk not depicted.

In comparison, the ordinary Whitney trick begins with two intersection points $p, q \in S_{1} \cap S_{2}$ with opposite sign that are paired by a Whitney disk. This immersed disk guides the (ordinary) Whitney trick, which is a regular homotopy of S_{1} with the effect of removing both intersection points p and q; see Figure 2. Any singularities present in the guiding Whitney disk will yield new singularities in the result of the Whitney move, and similarly for the relative Whitney trick.

[^0]

Figure 2. A schematic for the ordinary Whitney trick. Possible singularities on the interior of the Whitney disk not depicted.

Our applications of the relative Whitney trick all concern the study of links in homology 3-spheres. In this article, links $L=L_{1} \cup \cdots \cup L_{n}$ will be ordered and oriented. Given a homology 3-sphere Y, recall it bounds a contractible topological 4-manifold [11, Theorem 1.4'], which we usually denote by X. The uniqueness of this 4-manifold, up to homeomorphisms fixing the boundary, follows from a standard argument using topological surgery theory and the 5 -dimensional h-cobordism theorem.
1.1. Slicing links in homology spheres up to homotopy. We say a link L is slice if it bounds a collection of disjoint locally flat embedded disks D in X, and is moreover freely slice if $\pi_{1}(X \backslash D)$ is a free group generated by the meridians of L. Two links L and L^{\prime} are freely homotopic if there exists a continuous function $F: S^{1} \times\{1, \ldots, n\} \times[0,1] \rightarrow Y$ with $F\left(S^{1}, i, 0\right)=L_{i}$ and $F\left(S^{1}, i, 1\right)=L_{i}^{\prime}$ for all $i=1, \ldots, n$.
The relative Whitney trick will be used in the proof of the following theorem, the first main result of the article.

Theorem 1.1. Every link in a homology sphere is freely homotopic to a freely slice link.
This result should be compared to the work of Austin-Rolfsen [2], who proved that any knot in a homology sphere is freely homotopic to a knot with trivial Alexander polynomial. Combined with a result of Freedman-Quinn [12, Theorem 11.7B], the Austin-Rolfsen result shows that any knot in a homology sphere can be reduced by a free homotopy to a freely slice knot. (For a historical discussion of Alexander polynomial 1 knots see [3, §21.6.3].) To extend this to links we will use the relative Whitney trick, together with the methods of topological surgery theory and a generalization of results of Cha-Kim-Powell [5] which give a sufficient condition for a link in a homology sphere to be freely slice. This condition arises from a surgery-theoretic link slicing approach as we now outline.

A link $L=L_{1} \cup \cdots \cup L_{n}$ in a 3-manifold Y is a boundary link if there exists a collection of pairwise disjoint surfaces $F=F_{1} \cup \cdots \cup F_{n}$ in Y, where F_{i} is a Seifert surface for L_{i}. Such F is called a boundary link Seifert surface for the boundary link L. A surgery-theoretic strategy to slice L is to construct a 4-manifold W with boundary M_{L}, the 0 -surgery on L, such that when we glue 2-handles to the boundary, reversing the 0 -surgery, we obtain a contractible 4 -manifold. The desired slice disks are then the cocores of the 2 -handles.
In an attempt to construct such a W, begin by pushing a boundary link Seifert surface $F=F_{1} \cup$ $\cdots \cup F_{n}$ for L into the contractible 4-manifold bounded by Y. Excise a tubular neighbourhood of the pushed in surface to obtain a 4-manifold X_{F} with free fundamental group generated by the meridians of L, and whose boundary decomposes as $\partial X_{F}=\left(S^{1} \times \bigcup_{i}\left(F_{i} \backslash D^{2}\right)\right) \cup X_{L}$, where X_{L} denotes the link exterior. Let $H=H_{1} \cup \cdots \cup H_{n}$ be a collection of 3-dimensional handlebodies where H_{i} has the same genus as F_{i}, and let $\varphi: F \cong \partial H$ denote a collection of homeomorphisms $\varphi_{i}: F_{i} \cong \partial H_{i}$. Form a new manifold $V_{F}:=X_{F} \cup\left(S^{1} \times H\right)$ by using the homeomorphism

$$
\operatorname{id} \times \varphi: S^{1} \times \bigcup_{i}\left(F_{i} \backslash D^{2}\right) \cong S^{1} \times \bigcup_{i}\left(\partial H_{i} \backslash \phi\left(D^{2}\right)\right)
$$

to glue only along this part of the boundary. The resulting 4-manifold V_{F} has boundary the 0-surgery M_{L}, as desired, and it is moreover possible to choose φ so that $\pi_{1}\left(V_{F}\right)$ is still free and generated by the meridians of L. We would now like to know that there exist framed embedded 2-spheres in V_{F} that can be removed by surgery to kill the second homology.
As in Cha-Kim-Powell, we will obtain these embedded 2-spheres via a theorem of FreedmanQuinn [12, Theorem 6.1]. This theorem states that the presence of certain configurations of framed immersed spheres (specifically π_{1}-null immersions of a union of transverse pairs with algebraically trivial intersections; see Appendix A) imply the existence of the embedded spheres required for surgery. To build these configurations, Cha-Kim-Powell find properly immersed disks in the exterior of the pushed in boundary link Seifert surface, bounded by a basis for that surface, and cap them off with properly embedded discs in $H \subseteq V_{F}$ that are dual to the cores of the handlebodies H_{i} in V_{F}. They derive conditions on $L \subseteq S^{3}$ sufficient to ensure the described immersed sphere collection satisfies the hypotheses of [12, Theorem 6.1]. In Section 4, we produce a straightforward generalization of their conditions for links in a homology sphere and in Appendix A we confirm that links in homology spheres satisfying the generalized conditions are freely slice.

Thus our real challenge in the proof of Theorem 1.1 becomes finding a way to freely homotope an arbitrary link to one satisfying the generalized Cha-Kim-Powell conditions. For this we will need a mechanism for separating properly immersed disk collections in 4-manifold, at the expense of changing the link on the boundary by a free homotopy. In Section 3, we use the relative Whitney trick to achieve this goal, proving the following (in fact, we prove a more general statement in Proposition 3.2).

Proposition 1.2. If L is a link in a homology sphere Y, and X is a contractible 4-manifold bounded by Y, then L is freely homotopic to a link whose components bound disjoint locally flat immersed disks in X. Moreover, if X is smooth, then these disks may be smoothly immersed.

We end this subsection by pointing out that it is not known whether Theorem 1.1 can be extended to the smooth category or not. Concretely, we ask the following question.

Question 1.3. Let L be a link in a homology sphere Y and X be a smooth contractible 4-manifold bounded by Y. Is L freely homotopic to a link J in Y so that the link J bounds a collection of disjoint smooth disks in X ? Can this question be answered if L is a knot?

In the case that L is a knot, the question was answered affirmatively by the first named author, under the assumption that X admits a handle structure with no 3 -handles [9, Theorem 1.5]. Compare this with [8, Remark 1.6], where Daemi shows the answer to Question 1.3 is negative if one requires X to be only a homology ball. Indeed, he shows there is a knot in $Y \#-Y$, where Y is the Poincaré homology sphere, such that the knot, even up to free homotopy, does not bound a smooth immersed disk in any smooth homology ball bounded by $Y \#-Y$.
We finally remark that if a link $L \subset Y$ bounds a collection of disjoint piecewise linear disks in a 4-manifold then that link may be changed by a homotopy in Y to a link bounding a collection of disjoint smooth disks in that 4-manifold; see e.g. [16, Proof of Proposition 1.3] for a technique to achieve this by "tubing into the singularities". Thus we compare Question 1.3 with results proving the non-existence of piecewise linear disks for certain knots in the boundaries of contractible 4manifolds $[24,1,16,15,25]$, and suggest our question is a natural refinement of the general problem of finding piecewise linear slice disks in contractible 4-manifolds.
1.2. Whitney tower concordance. Our second application of the relative Whitney trick concerns homology concordance of links. Links L and J in homology spheres Y and Y^{\prime} are homology concordant if there is a disjointly embedded union of locally flat annuli each one bounded by a component of L and a component of J in a homology cobordism from Y to Y^{\prime}. It is conjectured by the first
named author [10] that every link in a homology sphere is homology concordant to a link in S^{3}. This conjecture is particularly intriguing because the corresponding statement is known to be false in the smooth category $[16,15,25,8]$. Evidence for this conjecture was provided in $[9,10]$ and we provide a similar type of evidence in this article. Our evidence will come in the language of Whitney tower concordance. A formal definition of a Whitney tower appears in Section 5; see also [6]. Informally, a Whitney tower is a 2 -complex given by starting with an immersed surface in a 4-manifold (a union of annuli in a homology cobordism in our case) and iteratively pairing up intersection points with Whitney disks, while accepting that each added Whitney disk will introduce more intersection points which must be paired with new Whitney disks. The order of a Whitney tower records roughly how far into this tower one must go before seeing intersection points which are not paired with Whitney disks. Two links L and J in homology spheres Y and Y^{\prime} are order k Whitney tower concordant and we write $L \simeq_{k} J$ if they bound a collection of immersed annuli which extend to an order k Whitney tower in a simply connected homology $S^{3} \times[0,1]$; cf. [6, Definition 3.2]. Hence if two links are homology concordant then they are order k Whitney tower concordant for all k. We will use the relative Whitney trick to prove the following.

Theorem 1.4. If L is link in a homology sphere and k is a nonnegative integer, then there is a link J in S^{3} such that $L \simeq_{k} J$.

We point out an interesting consequence. Consider now an n-component link L in a homology sphere. By Theorem 1.4 there is a link J in S^{3} so that L and J cobound an order n Whitney tower. According to [22, Theorem 4], if n-component links cobound an order n Whitney tower, then this Whitney tower can be used to guide a sequence of Whitney tricks to produce a disjoint union of immersed annuli. As observed in [22, Remark 3], these annuli can be made smooth. We arrive at the following corollary.
Corollary 1.5. If L is link in a homology sphere Y, then there is a link J in S^{3} and a simply connected homology cobordism from Y to S^{3} such that the components of L and J cobound disjoint immersed annuli in the cobordism. Moreover, if the cobordism is smooth, then these annuli may be smoothly immersed.
1.3. Gordian distance and link homotopy. Freedman-Teichner [13] say $L \subset Y$ is $4 D$ homotopically trivial if it bounds disjoint immersed disks in a contractible 4-manifold. Suppose L intersects a 3-ball $B \subset Y$ so that $(B, B \cap L)$ is orientation preserving homeomorphic to one of the tangles in Figure 3. A crossing change is the local tangle replacement operation of replacing a positive crossing with a negative crossing, or vice-versa. The reader may notice that this construction depends on the choice of identification of B to the 3 -ball, but this subtlety will not be relevant in our analysis.

Figure 3. Left: A positive crossing. Right: A negative crossing.

We define the homotopy trivializing number $n_{h}(L)$ to be the minimum number of crossing changes required to transform L into a 4D-homotopically trivial link. If L is a link in S^{3}, then the homotopy trivializing number of L is the minimum Gordian distance from L to a homotopically trivial link (in the sense of Milnor [18]).

In Subsection 6.1, we use the relative Whitney trick to prove that this number can be computed by counting the number of intersections between distinct generically immersed disks bounded by the link in a contractible 4-manifold. More concretely, we prove the following.

Proposition 1.6. If L is a link in a homology sphere Y, then

$$
n_{h}(L)=\min \left\{\sum_{i<j} \#\left(D_{i} \cap D_{j}\right)\right\}
$$

where the minimum is taken over all collections of immersed disks $D_{1} \cup \cdots \cup D_{n}$ in the contractible 4-manifold bounded by Y, with boundary the link, and meeting one-another transversely.

In Subsection 6.2, we combine Proposition 1.6 with results of Habegger-Lin [14] to obtain upper and lower bounds for $n_{h}(L)$. Moreover, for links with 3 or fewer components we completely determine $n_{h}(L)$. We remark that the upper bound we establish depends only on the linking numbers and the number of components, and in particular, it is independent of any of the higher order link homotopy invariants of Milnor [18].

Theorem 1.7. Let L be a link in a homology sphere and $\Lambda(L):=\sum_{i<j}\left|\operatorname{lk}\left(L_{i}, L_{j}\right)\right|$. If L is a 2-component link, then $n_{h}(L)=\Lambda(L)$. If L is a 3-component link, then

$$
n_{h}(L)= \begin{cases}\Lambda(L) & \text { if } \Lambda(L) \neq 0 \\ 2 & \text { if } \Lambda(L)=0 \text { and } \mu_{123}(L) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

In general, there is some $C_{n} \in \mathbb{N}$ so that for every n-component link L,

$$
\Lambda(L) \leq n_{h}(L) \leq \Lambda(L)+C_{n}
$$

1.4. Comparison with the ordinary Whitney trick. In high-dimensions, ordinary Whitney disks are usually assumed to be (and can always be arranged to be) embedded with interiors disjoint from the submanifolds containing their boundary arcs (with the framing condition guaranteed by the opposite signs of the paired intersections). In dimension four, ordinary Whitney disks are generally assumed to contain self-intersections and intersections with other surfaces (as well as framing obstructions) which are then studied or controlled.
In dimension four, it is not always possible to find a Whitney disk. Their existence is obstructed by the self-intersection invariant in a quotient of the fundamental group ring of the ambient 4manifold. In comparison, under appropriate conditions, it is always possible to find relative Whitney disks. For instance if the map on fundamental groups induced by the inclusion of the boundary is surjective then every point of intersection will admit a relative Whitney disk. Notice that our setting of homology spheres bounding contractible 4-manifolds certainly satisfies this condition.

Organization of the paper. The reader will have noticed that Theorems 1.1, 1.4, and 1.7 seem disparate. They are related by their reliance on the relative Whitney trick as a means to separate immersed disks. In Section 2, we give a precise description of the relative Whitney trick, and in Section 3, we use it to separate immersed disks, proving Proposition 1.2. These two sections are prerequisite to the remaining sections of the paper, which are then more or less independent of each other. In Section 4, we state a sufficient condition, Theorem 4.4, for freely slicing a boundary link in a homology sphere generalizing [5, Theorem A], and use it to prove Theorem 1.1. The proof of Theorem 4.4 uses the same ideas as appear in [5] and so is delayed until Appendix A. In Section 5, we apply the relative Whitney trick to the construction of Whitney towers and prove Theorem 1.4. In Section 6, we relate $n_{h}(L)$ to the minimum number of intersection points amongst immersed disks bounded by a link L and prove Theorem 1.7.

Notation and conventions. In this article, links are ordered and oriented. All manifolds are assumed oriented and compact. We will denote by $-Y$ the manifold Y with reversed orientation.

Acknowledgements. We are are indebted to Matthias Nagel for his contributions. We also thank Aru Ray for helpful conversations. We thank the anonymous referee for helpful suggestions. PO is supported by the SNSF Grant 181199.

2. The relative Whitney trick

In this section, we review some of the terminology and conventions we will use throughout the paper, working in the category of topological manifolds. We then give a detailed description of the relative Whitney trick.
2.1. Conventions for topological manifolds. We recall some definitions used in [19, Section 3]. A continuous map between topological manifolds is a generic immersion if it is locally a smooth immersion (in particular a generic immersion is locally flat away from double points). For ($\Sigma, \partial \Sigma$) a compact surface with boundary and $(W, \partial W)$ a compact 4-manifold with boundary, any continuous $\operatorname{map}(\Sigma, \partial \Sigma) \rightarrow(W, \partial W)$ is homotopic to a generic immersion; this follows from [12, Theorem 8.2], see [19, Proposition 3.1] for an argument. We will henceforth assume generic immersions of surfaces in 4-manifolds have at worst double points. We will call the image of a generically immersed surface simply an immersed surface from now on and call it an embedded surface if it has no double points. If $p \in S$ is a double point of an immersed surface $S \subseteq W$ then by definition there is a neighbourhood U of p in W such that $S \cap U$ is homeomorphic to $\left(\mathbb{R}^{2} \times\{0\}\right) \cup\left(\{0\} \times \mathbb{R}^{2}\right) \subseteq \mathbb{R}^{4}$. The submanifolds $S_{1} \subseteq S$ and $S_{2} \subseteq S$ identified with $\mathbb{R}^{2} \times\{0\}$ and $\{0\} \times \mathbb{R}^{2}$ (respectively) under this homeomorphism are called local sheets of S near p. If $S \subseteq W$ is an immersed surface, it follows that S has a neighbourhood homeomorphic to a self plumbing of a vector bundle over S; see [19, Remark 3.2]. Such a neighbourhood is called a tubular neighbourhood and the bundle is called the normal vector bundle. All the surfaces in this section are compact and each component has boundary. As a consequence, if the normal vector bundle is orientable then it is also trivializable. If a choice of trivialization has been made, we will say S is framed.
We say two (locally flat) immersed submanifolds are transverse if they are locally transverse in the sense of smooth manifolds. Note that if connected embedded surfaces N_{1} and N_{2} meet transversely, this is equivalent to saying $N_{1} \cup N_{2}$ is immersed, so in particular it makes sense to talk about local sheets near transverse intersections of embedded surfaces. We say a proper submanifold $(N, \partial N) \subseteq$ $(W, \partial W)$ is transverse to the boundary if it is locally transverse to the boundary in the sense of smooth manifolds. Transversality is generic in the topological category as follows. Given locally flat proper submanifolds N_{1}, N_{2} of a 4-manifold W that are transverse to the boundary ∂W, there is an isotopy of W, supported in any given neighbourhood of $N_{1} \cap N_{2}$ taking N_{1} to a submanifold N_{1}^{\prime} that is transverse to N_{2}; see $[20,21]$ and $[12$, Section 9.5].
2.2. The relative Whitney trick. Let S be a generically immersed oriented surface in an oriented 4-manifold, (possibly disconnected and possibly with corners). Assume S is transverse to ∂W. Then $\partial S \subseteq W$ is embedded, so that $S \cap \partial W \subseteq \partial S$ is a union of embedded circles and arcs with endpoints at corners of S.
Let p be a double point of S and write S_{1}, S_{2} for two local sheets of the immersion near p. Assume both sheets belong to components of S that have nonempty intersection with ∂W. For $i=1,2$, choose embedded arcs $\alpha_{i} \subseteq S$ running from some $q_{i} \in \partial S \cap \partial W$ to p; see Figure 4 for a labelled schematic.
We assume that $\alpha_{i} \cap\left(S_{1} \cup S_{2}\right) \subseteq S_{i}$, and that α_{1} and α_{2} are disjoint from each other and from all double points of S other than their common endpoint at p. Suppose that there exists an embedded $\operatorname{arc} \alpha_{3} \subseteq \partial W$ running from q_{2} to q_{1} with interior disjoint from ∂S such that the concatenation $\alpha_{1} * \alpha_{2} * \alpha_{3}$ is nullhomotopic in W. Let Δ_{p} be an immersed disk in W transverse to S bounded by $\alpha_{1} * \alpha_{2} * \alpha_{3}$.

Figure 4. Left to right: A transverse point of intersection p in $S_{1} \cap S_{2}$. A relative Whitney disk, Δ_{p} for p. The result of modifying S_{1} by the relative Whitney trick.

Definition 2.1. Let S be an immersed oriented surface in an oriented 4-manifold W and p be a double point of S. Any disk Δ_{p} as above is called a relative Whitney disk for p, and we call the corresponding α_{3} the relative Whitney arc of Δ_{p}.

As we are working in the topological category, we take a moment to justify our later use of smooth concepts, such as tangent and normal vectors, by arranging the Whitney disk into a generic position near its boundary. Let $U_{1}, U_{2} \subseteq S$ be closed regular neighbourhoods of $\alpha_{1}, \alpha_{2} \subseteq S$ respectively; each U_{i} is thus homeomorphic to a closed disk, so that α_{i} is interior to U_{i} except for its endpoint at q_{i}. We may assume, for some local sheets S_{1} and S_{2} of p, that $U_{i} \cap\left(S_{1} \cup S_{2}\right)=S_{i}$. By taking these neighbourhoods small enough we arrange that $U_{1} \cap U_{2}=\{p\}$ and U_{1} and U_{2} are disjoint from every double point of S other than p. As a consequence U_{1} and U_{2} are each embedded in W. Since S is immersed, so is $U:=U_{1} \cup U_{2}$. Thus U has a tubular neighbourhood $N_{U} \subseteq W$ homeomorphic to the result of plumbing together $U_{1} \times D^{2}$ and $U_{2} \times D^{2}$ and we may regard \bar{U}_{1} and U_{2} as smoothly embedded disks in N_{U} with the smooth structure pulled back from this plumbing. After changing Δ_{p} by a homotopy fixing its boundary we may assume that $\Delta_{p} \cap N_{U} \subseteq N_{U}$ is a smooth submanifold with corners. In the complement of the interior of N_{U} we now see a properly immersed disk, $\Delta_{p} \backslash \operatorname{int}\left(N_{U}\right)$. Let $N \subseteq W \backslash \operatorname{int}\left(N_{U}\right)$ be its tubular neighbourhood. We now have that $N_{\Delta}:=N_{U} \cup N$ is the result of gluing together N_{U} and a tubular neighbourhood of $\Delta_{p} \backslash \operatorname{int}\left(N_{U}\right)$ (a self plumbing of a disk) along a 3-ball in their shared boundary. Being the result of gluing together two smooth 4-manifolds along a shared submanifold in their boundary, N_{Δ} is a smooth 4-manifold and Δ_{p}, U_{1} and U_{2} are smoothly immersed surfaces in N_{Δ}.
Introducing some notation, for points $a, b, c \in \mathbb{R}^{2}$ denote by $\overline{a b}$ the straight line segment between a and b, and by $\Delta_{a b c}$ the triangle with vertices at a, b, and c. We will parametrize Δ_{p} by the triangle $\Delta_{x y z} \subseteq \mathbb{R}^{2}$ of Figure 5, sending the line segments $\overline{x y}, \overline{y z}$, and $\overline{z x}$ to α_{1}, α_{2}, and α_{3} respectively. By taking the neighbourhood N_{U} small enough we may assume that $\Delta_{p} \cap N_{U}$ is parametrized by the region R depicted in Figure 5. We also construct a slightly larger immersed disk $\Delta_{p}^{+} \subset N_{\Delta}$ as follows. Let w be the normal vector to $\alpha_{2} \subseteq N_{\Delta}$ given by the outward tangent to $\Delta_{p} \subseteq N_{\Delta}$. Define Δ_{p}^{+}by extending Δ_{p} in the w-direction along the length of the arc α_{2}. We parametrize Δ_{p}^{+}by the larger triangle $\Delta_{x y z}^{+}:=\Delta_{x y^{+} z^{+}} \subseteq \mathbb{R}^{2}$ of Figure 5. Note that at p, the vector w is tangent to α_{1} and to S_{1}.
By restricting the normal bundle E of Δ_{p}^{+}to $\alpha_{1} * \alpha_{2}$ we obtain a 2-plane bundle $\left.E\right|_{\alpha_{1} * \alpha_{2}}$ over $\overline{x y} \cup \overline{y z}$. At each point in α_{i} let v_{i} be the tangent direction in S_{i} normal to α_{i}, and let u_{i} be a common normal to both Δ_{p} and S_{i}, chosen to vary continuously (i.e. to form a section of $\left.E\right|_{\alpha_{i}}$). Moreover, choose u_{i} so that $u_{1}=v_{2}$ and $u_{2}=v_{1}$ at p. Together these give a framing of $\left.E\right|_{\alpha_{1} * \alpha_{2}}$. Since $\Delta_{x y z}^{+}$deformation retracts to $\overline{x y} \cup \overline{y z}$, this framing extends to a framing of E. By the tubular neighbourhood theorem we find an identification of a (possibly smaller) tubular neighbourhood of Δ_{p}^{+}with a plumbed disk, which we parametrize by an immersion $\Phi: \Delta_{x y z}^{+} \times \mathbb{R}^{2} \rightarrow N_{\Delta}$ such that:

- $\Phi(\overline{x y} \times\{(0,0)\})=\alpha_{1},\left.\Phi\right|_{\overline{x y^{+}} \times \mathbb{R} \times\{0\}}$ is an embedding with image in U_{1},

Figure 5. Left: The triangle $\Delta_{x y z}$ used to parametrize Δ_{p}, together with R, the preimage of $\Delta_{p} \cap N_{U}$. Right: A larger triangle $\Delta_{x y z}^{+}:=\Delta_{x y^{+} z^{+}}$.

- $\Phi\left(\overline{x y^{+}} \times\{(0,0)\}\right) \subseteq U_{1}$ is α_{1} extended slightly on S_{1} along the direction tangent to α_{1} at p,
- $\Phi(\overline{y z} \times\{(0,0)\})=\alpha_{2},\left.\Phi\right|_{\overline{y z} \times\{0\} \times \mathbb{R}}$ is an embedding with image in U_{2},
- otherwise $\Phi\left(\left(\overline{x y^{+}} \cup \overline{y z}\right) \times \mathbb{R}^{2}\right)$ is disjoint from S, and
- $\Phi(\overline{z x} \times\{(0,0)\})=\alpha_{3}$ and $\Phi\left(\overline{z x} \times \mathbb{R}^{2}\right) \subseteq \partial W$ is a tubular neighbourhood of α_{3}.

We now take U_{1}, remove a neighbourhood of α_{1}, and replace it with pushed-off copies of Δ_{p}^{+}together with a thickened α_{2}, pushed up in the outwards facing tangent direction to Δ_{p}. Precisely, we form the following:

$$
\begin{aligned}
& U_{1}^{\prime}:=\left(U_{1} \backslash \Phi\left(\overline{x y^{+}} \times[-1,1] \times\{0\}\right)\right) \cup \Phi\left(\Delta_{x y z}^{+} \times\{-1,1\} \times\{0\}\right) \\
& \cup \Phi\left(\overline{y^{+} z^{+}} \times[-1,1] \times\{0\}\right) .
\end{aligned}
$$

We will refer to the act of modifying S by replacing U_{1} by U_{1}^{\prime} the relative Whitney trick along Δ_{p}.
Remark 2.2. Here are some observations.
(1) U_{1}^{\prime} and U_{2} are disjoint.
(2) The image $\Phi\left(\Delta_{x y z}^{+} \times[-1,1] \times\{0\}\right)$ parametrizes a homotopy from U_{1} to U_{1}^{\prime}. If Δ_{p} is not embedded then U_{1}^{\prime} is not embedded.
(3) The homotopy describing the relative Whitney trick changes ∂S by a finger move as depicted in Figure 6. In general, a finger move between embedded arcs A_{1} and A_{2} in a 3-manifold is band-sum operation from A_{1} to a meridional circle of A_{2}. This operation is specified by a choice of embedded arc from A_{1} to A_{2}, together with a choice of framing for that arc relative to a fixed framing on the boundary of the arc. In our case α_{3} is this arc from A_{1} to A_{2}, and the framing is determined by Φ. For the purposes of this paper, we will not need to keep track of this specific framing, but we note that for future applications it might be desirable to do so.
(4) If F is an immersed surface in W (for example a subsurface of S), meeting the interior of Δ_{p} transversely n times, then the relative Whitney trick adds $2 n$ points of intersection to $U_{1}^{\prime} \cap F$. Moreover, for every point of self-intersection of Δ_{p}, there are four new points of self intersection are added to U_{1}^{\prime} by performing the relative Whitney trick.
(5) If W is a smooth 4 -manifold in which S and Δ_{p} are smoothly immersed, then the result of modifying S by the Whitney trick using Δ_{p} is still smoothly immersed (after smoothing corners).

Figure 6. The relative Whitney trick affects $\partial S \cap \partial W$ by a finger move.

3. SEparating an immersed disk collection

Let L be a link in a 3-manifold, whose components bound immersed disks in a bounded 4-manifold. In this section, we explain how to use the relative Whitney trick to homotope away all intersections between these disks.

Lemma 3.1. Let W be a 4-manifold, Y be a connected 3-manifold in ∂W, and $L=L_{1} \cup L_{2}$ be a link in Y whose components are nullhomotopic in W. If the inclusion induced map $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is surjective, then there exists a link $J=J_{1} \cup J_{2}$ in Y which is freely homotopic to L and bounds disjoint immersed disks in W. If W is smooth, then these disks may be smoothly immersed.
Moreover, if D_{1} and D_{2} are transverse immersed disks in W bounded by L, then we may choose a homotopy from L to J which restricts to an isotopy on each component of L and changes a crossing between L_{1} and L_{2} exactly once for each point in $D_{1} \cap D_{2}$.

Proof. Let D_{1} and D_{2} be transverse immersed disks bounded by L. We will show how to reduce the number $\left|D_{1} \cap D_{2}\right|$ by one, via the relative Whitney trick. Notice that each point in $D_{1} \cap D_{2}$ can be thought of as a double point in $D_{1} \cup D_{2}$, and so it makes sense to apply the relative Whitney trick as outlined in Section 2. As in Figure 6 this relative Whitney trick has the effect of changing a single crossing between $L_{1}=\partial D_{1}$ and $L_{2}=\partial D_{2}$.
First, we alter D_{1} and D_{2} by a homotopy which is constant on the boundary so that D_{1} and D_{2} intersect transversely. Let $p \in D_{1} \cap D_{2}, q_{1} \in L_{1}, q_{2} \in L_{2}, \alpha_{1}$ be an embedded arc in D_{1} running from q_{1} to p, and α_{2} be an embedded arc in D_{2} running from p to q_{2}. We may assume that α_{1} and α_{2} are disjoint from all double points of D_{1} and D_{2} and miss all points in $D_{1} \cap D_{2}$ other than their common endpoint at p. Since $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is surjective, there is an embedded arc α_{3} in Y running from q_{2} to q_{1} so that the concatenation $\alpha_{1} * \alpha_{2} * \alpha_{3}$ is nullhomotopic in W. Thus, there is a relative Whitney disk Δ_{p} for p.
Performing the relative Whitney trick using Δ_{p} to modify D_{1} will add two points to $D_{1} \cap D_{2}$ for each point in $\Delta_{p} \cap D_{2}$. As the objective is to reduce the number $\left|D_{1} \cap D_{2}\right|$, our next goal must be the removal of all points in $\Delta_{p} \cap D_{2}$. Let $r \in \Delta_{p} \cap D_{2}$. Pick an embedded arc β in Δ_{p} from r to a point t interior to $\alpha_{2} \subseteq D_{2}$ and disjoint from all double points and points of intersection. Perform a 4-dimensional finger move on D_{2} along β (cf. [12, §1.5]); a visualization of how this move changes D_{2} appears in Figure 7. We will refer to the modified D_{2} by the same name. The cost of the finger move is to add two new points of self-intersection to D_{2}, but this will not concern us. Repeat this process at each point in $\Delta_{p} \cap D_{2}$. A similar procedure may be used to remove points in $D_{1} \cap \Delta_{p}$, although this is not required in the proof of the lemma.

Figure 7. Left: A point s in the intersection of Δ_{p} (gray) with D_{2} (red) together with an embedded $\operatorname{arc} \beta$ in Δ_{p} from s to $\alpha_{2} \subseteq \Delta_{2}$. Right: A homotopy of D_{2} removes the point of intersection at $\phi(s)$ and introduces two new points of self intersection for D_{2}.

Now perform the relative Whitney trick using Δ_{p} to modify D_{1}. As we have $D_{2} \cap \Delta_{p}=\emptyset$, the relative Whitney trick reduces $\left|D_{1} \cap D_{2}\right|$ by one. By iterating the procedure above, we achieve that $\left|D_{1} \cap D_{2}\right|=0$. Since each application of the relative Whitney trick reduces $\left|D_{1} \cap D_{2}\right|$ by one and changes one crossing between L_{1} and L_{2}, the last claim of the lemma follows.
For the statement regarding smoothly immersed disks, if W is smooth, then we can arrange that D_{1}, D_{2} as well as each Δ_{p} are smoothly immersed. As a consequence of Remark 2.2 (5), this would result in the disjoint disks produced being smoothly immersed.

When one tries to extend Lemma 3.1 to links with more components, a new complication arises. Assume the hypotheses of the lemma, but now assume that D_{1}, \ldots, D_{n} is a collection of n transverse immersed disks. Consider two of these immersed disks D_{i} and D_{j}. We wish to separate them by removing intersection points with the relative Whitney trick. Let $p \in D_{i} \cap D_{j}$ and Δ_{p} be a relative Whitney disk for p. If Δ_{p} intersects a disk D_{k} for some $k \notin\{i, j\}$, then performing the relative Whitney trick using Δ_{p} to modify D_{i} will produce new points in $D_{i} \cap D_{k}$. Hence, we would need a way to arrange that the relative Whitney disk Δ_{p} is disjoint from D_{k} for all $k \notin\{i, j\}$. Also, note that if $k \in\{i, j\}$, as in the proof of Lemma 3.1, we may perform a finger move on D_{k} to remove the intersection points in $\Delta_{p} \cap D_{k}$ for the price of introducing more self intersections.

Suppose $k \notin\{i, j\}$ and let $r \in \Delta_{p} \cap D_{k}$. Our strategy to remove r is to modify the disk Δ_{p} itself by a relative Whitney trick using some relative Whitney disk Δ_{r} for r. Of course, the use of Δ_{r} may add new intersection points to Δ_{p}, according to what intersects Δ_{r}, so we pause to consider this. Intersection points in $\Delta_{r} \cap D_{i}$ and $\Delta_{r} \cap D_{j}$ are not a problem because performing the relative Whitney trick using Δ_{r} to modify Δ_{p} only adds points to $\Delta_{p} \cap D_{i}$ and $\Delta_{p} \cap D_{j}$, and these points can be removed by performing finger moves as in the proof of Lemma 3.1. In fact, an intersection point in $\Delta_{r} \cap D_{k}$ is also not a problem, as we can now perform a finger move on D_{k} to remove it, at the cost of adding two self-intersections to D_{k}. So intersections between Δ_{r} and each of D_{i}, D_{j} and D_{k} are all unproblematic for us, whereas on Δ_{p} we could only deal with the first two types. The above argument allows us to extend Lemma 3.1 to 3 -component links. For links with more than 3 -components there may be further intersection types in Δ_{r} that we cannot yet deal with. This suggests an induction: adding relative Whitney disks at each stage, and increasing the number of intersection types we know how to remove with finger moves. Eventually we know how to deal with all intersection types. Then a series of finger moves and relative Whitney tricks will remove the intersection point r, with the only cost a possible increase in self-intersection for the disks. We now give more detailed proof. Note that the following statement is more general than Proposition 1.2.

Proposition 3.2. Let W be a 4-manifold, Y be a connected 3-manifold in ∂W, and $L=L_{1} \cup \cdots \cup L_{n}$ be a link in Y whose components are nullhomotopic in W. If the inclusion induced map $\pi_{1}(Y) \rightarrow$ $\pi_{1}(W)$ is surjective, then there exists a link $J=J_{1} \cup \cdots \cup J_{n}$ in Y which is freely homotopic to L and bounds disjoint immersed disks in W. If W is smooth, then these disks may be smoothly immersed.

Moreover, if D_{1}, \ldots, D_{n} are transverse immersed disks in W bounded by L, then we may choose a homotopy from L to J which restricts to an isotopy on each component of L and for any $i \neq j$ changes a crossing between the $i^{\text {th }}$ and $j^{\text {th }}$ components exactly once for each intersection point in $D_{i} \cap D_{j}$.

Proof. Let D_{1}, \ldots, D_{n} be transverse immersed disks bounded by L. Consider two of these immersed disks D_{i} and D_{j} and let $p \in D_{i} \cap D_{j}$. We will modify $D_{1} \cup \cdots \cup D_{n}$ by a homotopy which is constant on the boundary and which does not change $\left|D_{k} \cap D_{\ell}\right|$ for any $k \neq \ell$. Afterwards we will produce a relative Whitney disk Δ_{p} associated with p so that $\Delta_{p} \cap D_{k}=\emptyset$ for all $k \neq i$. Once we have accomplished this, the relative Whitney trick using Δ_{p} to modify D_{i} preserves $\left|D_{k} \cap D_{\ell}\right|$ for all $\{k, \ell\} \neq\{i, j\}$ and will reduce this number by one if $\{k, \ell\}=\{i, j\}$. As in Lemma 3.1, it also affects L by a homotopy obtained by changing a crossing between the $i^{\text {th }}$ and the $j^{\text {th }}$ component.

We will call the point $p \in D_{i} \cap D_{j}$ an order zero intersection point. Choose a relative Whitney disk Δ_{p} associated with p and call it an order one relative Whitney disk. As in the proof of Lemma 3.1, a relative Whitney disk exists since the induced map $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is surjective. In fact, for any double point, we can find an associated relative Whitney disk. We define the set of acceptable numbers for Δ_{p} to be $A_{p}=\{i, j\}$. An intersection point $r \in \Delta_{p} \cap D_{k}$ is called unacceptable for Δ_{p} if $k \notin A_{p}$. We now make an inductive definition. Let $m \in \mathbb{N}$, suppose that Δ_{q} is an order m relative Whitney disk with set of acceptable numbers $A_{q} \subseteq\{1, \ldots, n\}$ and that $r \in \Delta_{q} \cap D_{k}$ is some unacceptable intersection point for Δ_{q}. We will call the point r an order m intersection point. An associated relative Whitney disk Δ_{r} is called an order $m+1$ relative Whitney disk. The set of acceptable numbers for Δ_{r} is defined to be $A_{r}:=A_{q} \cup\{k\}$. It follows from induction that if Δ_{q} is an order m relative Whitney disk, then $\left|A_{q}\right|=m+1$. In particular, if Δ_{q} is an order $n-1$ relative Whitney disk, then $A_{q}=\{1, \ldots, n\}$ and every intersection point $r \in \Delta_{q} \cap D_{k}$ is acceptable.
Let $\mathcal{D}_{1}=\left\{\Delta_{p}\right\}$. We make an inductive construction. Let $m \in \mathbb{N}$ and suppose \mathcal{D}_{m} is a set of order m relative Whitney disks. For each $\Delta_{q} \in \mathcal{D}_{m}$ and for each unacceptable order m intersection $r \in \Delta_{q}$, choose an order $m+1$ relative Whitney disk Δ_{r}. Write \mathcal{D}_{m+1} for the set consisting of a single choice of Δ_{r} for each such q and r. Write $\mathcal{D}:=\mathcal{D}_{0} \cup \mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{n-1}$. We now organize \mathcal{D} into a tree with root Δ_{p} by declaring that for any $\Delta_{q} \in \mathcal{D}_{m}$ and any unacceptable intersection point $r \in \Delta_{q} \cap D_{k}$ the relative Whitney disk Δ_{r} is a descendent of Δ_{q}. Notice that a vertex Δ_{q} on this graph is a leaf if and only if it has no unacceptable intersections. Consequentially, any order $n-1$ relative Whitney disk in \mathcal{D} is a leaf.
Suppose that $\Delta_{r} \in \mathcal{D}_{m}$ is a leaf of order $m>1$. We will homotope $D_{1} \cup \cdots \cup D_{n}$ while preserving $D_{k} \cap D_{\ell}$ for all $k \neq \ell$, preserving \mathcal{D}, and without introducing any new unacceptable intersection points. The end result will have that the interior of Δ_{r} is disjoint from $D_{1} \cup \cdots \cup D_{n}$.

Proceeding, since Δ_{r} is order $m>1$, it is a descendent of some Δ_{q}. Thus for some k, we have that $r \in \Delta_{q} \cap D_{k}$ where r is an unacceptable intersection point of order $m-1$, and $A_{r}=A_{q} \cup\{k\}$. Suppose $\Delta_{r} \cap D_{\ell}$ is nonempty for some ℓ. If $\ell=k$, then for each point perform a finger move on D_{k}, along an embedded arc in Δ_{r}, to remove this intersection point, with the cost of producing two new self-intersections in D_{k}. If $\ell \neq k$, then we perform a finger move on D_{ℓ}, along an embedded arc in Δ_{r}, to remove this point of intersection, with the cost of producing two new points in $\Delta_{q} \cap D_{\ell}$. Since Δ_{r} is a leaf, ℓ must be in $A_{r}=A_{q} \cup\{k\}$. As $\ell \neq k$, it must be that $\ell \in A_{q}$, and so these two new points of intersection are acceptible. We have now arranged that the interior of Δ_{r} is disjoint from $D_{1} \cup \cdots \cup D_{n}$. Importantly, we have created no new unacceptable intersections.

We now modify Δ_{q} by the relative Whitney trick using Δ_{r}. This reduces the number of unacceptable intersections in Δ_{q} by one and eliminates the leaf at Δ_{r}. The possible cost of this procedure is to produce new self-intersections in D_{k} and new acceptable intersections in Δ_{q}. The affect on the boundary of this move is to change the relative Whitney arc associated with Δ_{q} by a homotopy passing it through a component of L. In particular, the original link L is preserved.

Iterate the modification of the previous three paragraphs until the tree \mathcal{D} has no leaves of order $m>1$. This means that $\mathcal{D}=\left\{\Delta_{p}\right\}$ and so Δ_{p} is a leaf. Thus $\Delta_{p} \cap D_{k}=\emptyset$ for all $k \notin\{i, j\}$. By performing finger moves as in Lemma 3.1, we arrange that Δ_{p} is disjoint from D_{j} at a cost of adding self intersections to D_{j}. Modifying D_{i} by the relative Whitney trick using Δ_{p} reduces $\left|D_{i} \cap D_{j}\right|$ by exactly one at the possible expense of increasing the self-intersections of D_{i}. On the boundary this relative Whitney move affects a single crossing change between L_{i} and L_{j} as claimed.
Again, the same argument from the proof of Lemma 3.1 gives the statement regarding smoothly immersed disks.

Remark 3.3. The idea of finding increasingly high order relative Whitney disks used in the proof of Proposition 3.2 is reminiscent of the concept of a Whitney tower; see for example [6, 4]. It motivates and is an example of what we call a relative Whitney tower, a concept whose formal definition appears in Section 5.

4. Every link in a homology sphere is freely homotopic to a slice link

Cha-Kim-Powell [5] have obtained conditions that ensure a link in S^{3} is freely slice. We now describe a generalization of these conditions for links in a general homology sphere. Links satisfying the generalized conditions are also freely slice, as we confirm in Appendix A. We then describe how the disk separation results from Section 3 are used to modify any link in a homology sphere by a homotopy to satisfy the generalized Cha-Kim-Powell conditions. This will prove Theorem 1.1, the main theorem of the paper. We first give some definitions. Recall that a link L in a homology sphere Y is a boundary link if it bounds pairwise disjoint Seifert surfaces in Y and a collection of such surfaces is called a boundary link Seifert surface for L. Lastly, a link L is freely slice if it bounds a collection of disjoint locally flat disks D in the contractible topological 4-manifold X bounded by Y such that $\pi_{1}(X \backslash D)$ is a free group generated by the meridians of L.

Definition 4.1. Given a boundary link L together with a boundary link Seifert surface F, a good basis is a collection $\left\{a_{i}, b_{i}\right\}_{1 \leq i \leq g}$ of simple closed curves on F, whose geometric intersections are symplectic, that represent a basis for $H_{1}(F ; \mathbb{Z})$, and such that the Seifert matrix of F with respect to this basis is reducible by a sequence of elementary S-reductions to the null matrix

where $\epsilon_{i} \in\{0,1\}$ for each i and each $*$ represents some integer.
Definition 4.2. Let L be a boundary link in a homology sphere Y, F be a boundary link Seifert surface for L, and $\left\{a_{i}, b_{i}\right\}_{1 \leq i \leq g}$ be a good basis for L on F. For each i, let b_{i}^{\prime} be the result of pushing b_{i} off of F such that it has zero linking with a_{i}, and $\left(b_{i}^{\prime}\right)^{+}$be a zero linking parallel copy of b_{i}^{\prime}.

We say that $\left\{a_{i}, b_{i}\right\}_{1 \leq i \leq g}$ is a good disky basis for L if there exist immersed disks

$$
\left\{\Delta_{j}^{+}, \Delta_{i} \mid 1 \leq j \leq 2 g, 1 \leq i \leq g\right\}
$$

in the contractible 4-manifold bounded by Y, such that $\partial \Delta_{i}^{+}=a_{i}, \partial \Delta_{g+i}^{+}=\left(b_{i}^{\prime}\right)^{+}$, and $\partial \Delta_{i}=b_{i}^{\prime}$ for each i and all disks are pairwise disjoint except possibly for intersections among $\left\{\Delta_{j}^{+}\right\}_{1 \leq j \leq 2 g}$.

Remark 4.3. Cha-Kim-Powell use the condition of 'homotopy trivial ${ }^{+}$' in addition to being a good basis. As in the proof of [5, Proposition 4.3] it follows from [5, Remark 3.2 (1) and Lemma 3.3] that a homotopy trivial ${ }^{+}$good basis for a boundary link in S^{3} satisfies the conditions of Definition 4.2.

We can now state a version of the Cha-Kim-Powell theorem for links in general homology spheres.
Theorem 4.4. A boundary link in a homology sphere with a good disky basis is freely slice.
The proof of Theorem 4.4 is essentially the same as Cha-Kim-Powell's proof of [5, Theorem A]. A sketch of this argument, together with the minor adjustments required to confirm their argument transfers over to general homology spheres, are found in Appendix A. The current section will proceed assuming that Theorem 4.4 is proved.

Next we show how a link in a 3-manifold can be modified by a homotopy to a boundary link with a good disky basis.

Proposition 4.5. Let W be a simply connected 4-manifold, Y be a connected 3-manifold in ∂W, and $L=L_{1} \cup \cdots \cup L_{n}$ be a link in Y whose components are nullhomologous in Y. Then L is freely homotopic to a link $J=J_{1} \cup \cdots \cup J_{n}$ so that there exists a collection of disjoint immersed disks $\left\{D_{i}, D_{i}^{+}\right\}_{1 \leq i \leq n}$ in W such that $\partial D_{i}=J_{i}$ and $\partial D_{i}^{+}=\left(J_{i}\right)^{+}$, where $\left(J_{i}\right)^{+}$is a zero linking parallel copy of J_{i}.

Proof. Pick n distinct points p_{1}, \ldots, p_{n} in Y. As each L_{i} is nullhomologous in Y, we see that L_{i} is freely homotopic to a product of commutators $\prod_{j=1}^{g_{i}}\left[\alpha_{i, j}, \beta_{i, j}\right]$ for some $\alpha_{i, j}, \beta_{i, j} \in \pi_{1}\left(Y, p_{i}\right)$. By Proposition 3.2, there is a link

$$
\mathcal{L}:=\bigcup_{i=1}^{n} \bigcup_{j=1}^{g_{i}} a_{i, j} \cup b_{i, j}
$$

such that for each i, j, the components $a_{i, j}$ and $b_{i, j}$ are freely homotopic to $\alpha_{i, j}$ and $\beta_{i, j}$ respectively, and there are disjoint immersed disks

$$
\left\{\Delta_{a_{i, j}}, \Delta_{b_{i, j}} \mid 1 \leq i \leq n, 1 \leq j \leq g_{i}\right\}
$$

in W bounded by \mathcal{L}. Thus, for each i, j, there exist embedded $\operatorname{arcs} c_{i, j}$ and $d_{i, j}$ from p_{i} to a point on $a_{i, j}$ and $b_{i, j}$ respectively, so that, as elements in $\pi_{1}\left(Y, p_{i}\right)$

$$
\alpha_{i, j}=c_{i, j} * a_{i, j} * c_{i, j}^{-1} \quad \text { and } \quad \beta_{i, j}=d_{i, j} * b_{i, j} * d_{i, j}^{-1}
$$

As in Figure 8, we construct a collection of disjoint surfaces F_{1}, \ldots, F_{n} in Y so that for each i,

- F_{i} is a Seifert surface for some knot, denoted by J_{i}, which is freely homotopic to L_{i},
- F_{i} has a symplectic basis $\left\{A_{i, j}, B_{i, j}\right\}_{1 \leq j \leq g_{i}}$ so that as curves in $Y, A_{i, j}=a_{i, j}$ and $B_{i, j}^{\prime}=b_{i, j}$ for each j. Here, the curve $B_{i, j}^{\prime}$ is the positive pushoff of $B_{i, j}$ with respect to F_{i}.
- The framing of $a_{i, j}=A_{i, j}$ induced by F_{i} extends over $\Delta_{a_{i, j}}$ and the framing of $b_{i, j}=B_{i, j}^{\prime}$ induced by F_{i}^{+}, the result of pushing F_{i} off itself, extends over $\Delta_{b_{i, j}}$. (This can be arranged by adding twists to the bands of F_{i}.)
Finally, for each i, the disk D_{i} required by the theorem is produced by starting with F_{i} and performing ambient surgery using the disks $\left\{\Delta_{a_{i, j}}\right\}_{1 \leq j \leq g_{i}}$. The disk D_{i}^{+}is produced similarly by starting with F_{i}^{+}and performing ambient surgery using $\left\{\Delta_{b_{i, j}}\right\}_{1 \leq j \leq g_{i}}$. This completes the proof.

Figure 8. Above: The elements $\alpha_{i, 1}, \beta_{i, 1}, \ldots, \alpha_{i, g}, \beta_{i, g} \in \pi_{1}\left(Y, p_{i}\right)$ are given by conjugating the components of a link $a_{i, 1}, b_{i, 1}, \ldots, a_{i, g}, b_{i, g}$ whose components bound disjoint immersed disks in a contractible 4 -manifold by embedded arcs $c_{i, 1}, d_{i, 1}, \ldots c_{i, g}, d_{i, g}$. Below: A knot L_{i} which is freely homotopic to $\prod_{j=1}^{g_{i}}\left[\alpha_{i, j}, \beta_{i, j}\right]$ which bounds a Seifert surface S_{i} so that $a_{i, 1}, \ldots, a_{i, g}$ sit on S_{i} and $b_{i, 1}, \ldots, b_{i, g}$ sit on the normal pushoff S_{i}^{\prime}.

We are ready to prove Theorem 1.1, which we restate here.
Theorem 1.1. Every link in a homology sphere is freely homotopic to a freely slice link.

Proof. Let L be a link in a homology sphere Y, and X be the unique contractible 4-manifold bounded by Y. As in the proof of Proposition 4.5, pick n distinct points p_{1}, \ldots, p_{n} in Y. Since Y is a homology sphere, each L_{i} is freely homotopic to a product of commutators $\prod_{j=1}^{g_{i}}\left[\alpha_{i, j}, \beta_{i, j}\right]$ for some $\alpha_{i, j}, \beta_{i, j} \in \pi_{1}\left(Y, p_{i}\right)$. So far the proof is similar to the proof of Proposition 4.5, but now we replace the reference to Proposition 3.2 with the reference to Proposition 4.5, so that we obtain a link

$$
\mathcal{L}:=\bigcup_{i=1}^{n} \bigcup_{j=1}^{g_{i}} a_{i, j} \cup b_{i, j}
$$

such that for each i, j, the components $a_{i, j}$ are $b_{i, j}$ are freely homotopic to $\alpha_{i, j}$ and $\beta_{i, j}$ respectively. Moreover, there are disjoint immersed disks

$$
\left\{\Delta_{a_{i, j}}, \Delta_{b_{i, j}}, \Delta_{a_{i, j}}^{+}, \Delta_{b_{i, j}}^{+} \mid 1 \leq i \leq n, 1 \leq j \leq g_{i}\right\}
$$

in X bounded by $\mathcal{L} \cup \mathcal{L}^{+}$where \mathcal{L}^{+}is a zero linking parallel copy of \mathcal{L}.
As in the proof of Proposition 4.5, we obtain a boundary link $J=J_{1} \cup \cdots \cup J_{n}$ which is freely homotopic to L, a boundary link Seifert surface $F=F_{1} \cup \cdots \cup F_{n}$ for J, and a symplectic basis $\left\{A_{i, j}, B_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq g_{i}}$ on F such that $A_{i, j}=a_{i, j}$ and $B_{i, j}^{\prime}=b_{i, j}$ for each i, j. Again, here $B_{i, j}^{\prime}$ is the positive pushoff of $B_{i, j}$ with respect to F_{i}, and we may assume that the Seifert framings on $A_{i, j}$ and $B_{i, j}$ are the zero framings.
We claim that J satisfies all of the assumptions of Theorem 4.4. Since linking numbers can be computed in terms of intersections of bounded disks, we see that the Seifert matrix for F with
respect to the basis $\left\{A_{i, j}, B_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq g_{i}}$ has the form
$\left[\begin{array}{cc|cc|cc|c|cc}0 & \epsilon_{1} & 0 & * & 0 & * & & 0 & * \\ 1-\epsilon_{1} & 0 & 0 & * & 0 & * & & 0 & * \\ 0 & 0 & 0 & \epsilon_{2} & 0 & * & \cdots & 0 & * \\ * & * & 1-\epsilon_{2} & 0 & 0 & * & \cdots & 0 & * \\ 0 & 0 & 0 & 0 & 0 & \epsilon_{3} & \cdots & 0 & * \\ * & * & * & * & 1-\epsilon_{3} & 0 & \cdots & 0 & * \\ \hline \vdots & \vdots & \vdots & & \ddots & \vdots & \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & \epsilon_{g} \\ * & * & * & * & * & * & \cdots & 1-\epsilon_{g} & 0\end{array}\right]$
with each $*$ and each ϵ_{i} equal to zero. We have now produced a good basis. The existence of the disjoint disks $\left\{\Delta_{a_{i, j}}, \Delta_{b_{i, j}}, \Delta_{b_{i, j}}^{+}\right\}_{1 \leq i \leq n, 1 \leq j \leq g_{i}}$ implies that $\left\{a_{i, j}, b_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq g_{i}}$ is a good disky basis. Thus, by Theorem 4.4 we conclude that J is freely slice.

5. Whitney tower concordance and links in homology spheres

In this section, we will explain how to use the relative Whitney trick to construct Whitney towers. We will begin by recalling the definition of a (non-relative) Whitney disk, and Whitney tower; see also [4, Section 2.1], for example.
Let S be an immersed oriented surface in a 4-manifold W with double points p and q of opposite signs. Let α_{1} and α_{2} be embedded arcs in S, running from p to q and q to p respectively. Assume that α_{1} and α_{2} meet the double point set of S only at $\{p, q\}$, that $\alpha_{1} \cap \alpha_{2}=\{p, q\}$, and that near both p and q the arcs are in different local sheets. Let Δ be an immersed disk in W bounded by the circle $\gamma:=\alpha_{1} * \alpha_{2}$, and with interior transverse to S. The normal bundle of Δ has a unique trivialisation; its restriction to γ determines a choice of framing for the trivial 2-plane bundle over γ. At each point on α_{i} let v_{i} be the tangent direction in S normal to α_{i}, and let u_{i} be a common normal to both Δ and S, chosen to be a section of the normal bundle of Δ restricted to α_{i}. These can moreover be chosen so that at p and q, we have $u_{1}=v_{2}$ and $u_{2}=v_{1}$. These combine to determine a second framing for the trivial 2 -plane bundle over γ. If the two framings described above agree, then Δ is a called a Whitney disk pairing the double points at p and q.
A Whitney tower is a special type of union of immersed surfaces. The precise definition is recursive. A union of properly immersed oriented surfaces in a 4-manifold W which are transverse to each other is a Whitney tower. Let T be a Whitney tower and Δ be a Whitney disk pairing two intersections of opposite signs between surfaces in T. Suppose also that Δ is disjoint from the boundary of every surface in T. Then $T \cup \Delta$ is a Whitney tower.
The various immersed surfaces which make up a Whitney tower have an associated order. The initial surfaces in a Whitney tower T are called order 0 surfaces in T. A point in the intersection of an order k and an order ℓ surface in T is called an order $k+\ell$ intersection. A Whitney disk pairing two order k intersections is called an order $k+1$ Whitney disk. If all intersection points of order less than k are paired by Whitney disks, then T is called an order k Whitney tower.
Given an intersection point p in a Whitney tower T, it may be that in the 4 -manifold W there is no Whitney disk pairing p with another intersection point in T; as a consequence, there is a filtration of link concordance, as we now describe. Suppose that W is a 4 -manifold with $\partial W=\partial_{+} W \cup-\partial_{-} W$. Two n-component links $L \subseteq \partial_{+} W$ and $J \subseteq \partial_{-} W$ are order k Whitney tower concordant in W if there is an order k Whitney tower T in W so that the order 0 surfaces of T are n immersed annuli A_{1}, \ldots, A_{n} with $\partial A_{i}=L_{i} \cup-J_{i}$.

Definition 5.1. If L and J are links in homology spheres that are order k Whitney tower concordant in a simply connected homology cobordism between the homology spheres, then we say that L and J are order k Whitney tower concordant and write $L \simeq_{k} J$.

Remark 5.2. Particularly for links in S^{3}, the equivalence relation from Definition 5.1 has been the subject of deep study and is known to be highly nontrivial. The reader is directed to [4, 6, 7], for example, for further background and results.

The main goal of this section is to prove Theorem 1.4. For convenience, we recall the statement.
Theorem 1.4. If L is link in a homology sphere and k is a nonnegative integer, then there is a link J in S^{3} such that $L \simeq_{k} J$.

In order to construct the link J in Theorem 1.4, as well as the needed Whitney tower concordance, we extend the idea of a relative Whitney disk to an object analogous to a Whitney tower with relative Whitney disks in place of Whitney disks.

A relative Whitney tower is recursively defined as follows. A union of properly immersed oriented surfaces in a 4-manifold W which are transverse to each other is a relative Whitney tower. Let T be a relative Whitney tower and Δ be a relative Whitney disk associated with a double point in T. Suppose that Δ is disjoint from the boundary of every surface in T other than the endpoints of its relative Whitney arc. Then $T \cup \Delta$ is a relative Whitney tower.
Similarly to Whitney towers, relative Whitney towers have an associated order. The initial surfaces in a Whitney tower T are called order 0 surfaces of T. A point in the intersection of an order k and an order ℓ surface in T is called an order $k+\ell$ intersection. A relative Whitney disk associated to an order k intersection is called an order $k+1$ relative Whitney disk. If all intersection points of order less than k have relative Whitney disks in T, then T is called an order k relative Whitney tower.

Remark 5.3. The proof of Proposition 3.2 involved the construction of an object which is a relative Whitney tower.

The proof of Theorem 1.4 will require two lemmas which we hope also provide evidence that relative Whitney towers are interesting and useful. First, in Lemma 5.4 we show that they exist much more readily than Whitney towers. Secondly, in Lemma 5.5 we explain how a relative Whitney tower can be modified to produce a Whitney tower.

Lemma 5.4. Let W be a 4-manifold and $S=S_{1} \cup \cdots \cup S_{n}$ be a union of properly immersed connected oriented surfaces in W. If Y is a connected submanifold of ∂W such that $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is surjective, and $\partial S_{i} \cap Y \neq \emptyset$ for each i, then for any nonnegative integer k, there is an order k relative Whitney tower T whose order 0 surfaces are precisely S and for which all relative Whitney arcs are contained in Y.

Lemma 5.5. Let W be a 4-manifold and T be an order k relative Whitney tower. If Y is a connected submanifold of ∂W and contains all relative Whitney arcs of T, then there exists an order k Whitney tower T^{\prime} such that the order 0 surfaces of T and T^{\prime} differ by a homotopy which is constant outside of a small neighbourhood of Y.

Armed with these lemmas we can prove Theorem 1.4.
Proof of Theorem 1.4 (assuming Lemmas 5.4 and 5.5). Let L be a link in a homology sphere Y, let k be a nonnegative integer, and let X be the contractible 4 -manifold bounded by Y. Let W be a 4 -manifold obtained by removing an open 4 -ball from X. Note that W is a simply connected homology cobordism from Y to S^{3}. Since W is simply connected, the components of L are freely
homotopic in W to the components of the unlink in S^{3}. Thus, there exists a collection of immersed annuli A_{1}, \ldots, A_{n} so that A_{i} is bounded by L_{i} and the $i^{\text {th }}$ component of the unlink in S^{3}.
By Lemma 5.4, there is an order k relative Whitney tower T whose order 0 surfaces are precisely A_{1}, \ldots, A_{n}. Moreover, we can ensure that all relative Whitney arcs of T are contained in S^{3}. By Lemma 5.5, there is an order k Whitney tower T^{\prime} whose order 0 surfaces are homotopic to A_{1}, \ldots, A_{n} by a homotopy which is constant away from a neighbourhood of S^{3}. In particular, the $i^{\text {th }}$ component of the order 0 surface of T^{\prime} is bounded by L_{i} in Y and by some knot J_{i} in S^{3}. Setting $J=J_{1} \cup \cdots \cup J_{n}$, we conclude that $L \simeq_{k} J$, completing the proof.

Next, we prove Lemmas 5.4 and 5.5. The proof of Lemma 5.4 follows a relatively straightforward induction, which we now present.

Proof of Lemma 5.4. Let W be a 4-manifold and suppose Y is a submanifold of ∂W such that $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is surjective. Consider also a collection of connected oriented properly immersed surfaces S_{1}, \ldots, S_{n} in W such that $\partial S_{i} \cap Y \neq \emptyset$ for each i.
We will inductively prove that for every nonnegative integer k, there is an order k relative Whitney tower with order 0 surfaces S_{1}, \ldots, S_{n} and whose relative Whitney arcs are contained in Y. When $k=0$ there is nothing to prove.
Let T be an order k relative Whitney tower satisfying the above properties. Let p be an order k intersection point in T. Then p is contained in the intersection of two surfaces A and B in T of order a and b respectively where $a+b=k$. If $a=0$, then A is an order 0 surface S_{i} and by assumption, there is an embedded arc α in A running from p to a point q in Y. If $a>0$, then A is a relative Whitney disk of T and there is an embedded arc α in A running from p to a point q on the associated relative Whitney arc. A schematic including α appears to the left of Figure 9. By assumption this relative Whitney arc is contained in Y and hence so is q. For any other relative Whitney disk Δ in T, we have that $\partial \Delta \cap A$ is either empty or is an embedded arc in A with one endpoint in ∂A and the other interior to A. Thus, we can arrange that except for its endpoint on $\partial A, \alpha$ is disjoint from the boundary of every surface in T. Similarly, there is an embedded arc β contained in B running from p to a point r in Y.

Figure 9. Left: A relative Whitney disk in T containing an intersection point p along with arcs α and β in different sheets of T from p to the boundary. Right: A relative Whitney disk associated with p.

Since $\pi_{1}(Y) \rightarrow \pi_{1}(W)$ is onto, there is an embedded arc γ in Y from r to q so that $\alpha * \beta * \gamma$ bounds an immersed disk Δ_{p} in W. Thus every order k intersection point in Y admits a relative Whitney disk with relative Whitney arc in Y. After isotoping the interior of Δ_{p} we have that it is disjoint from the boundary of each surface in T. By replacing T by $T \cup \Delta_{p}$ we arrange that the order k intersection now has a relative Whitney disk in T. Observe that Δ_{p} has order $k+1$, so any intersections in its interior are of order at least $k+1$; adding Δ_{p} to T adds no new intersections of order up to k. By
adding a relative Whitney disk to T for every such intersection point, we produce an order $k+1$ relative Whitney tower and complete the proof.

Next we explain how to use a relative Whitney tower to find an honest Whitney tower, and prove Lemma 5.5. Our argument will employ objects interpolating between Whitney towers and relative Whitney towers. They are akin to both Whitney towers and relative Whitney towers, allowing for both Whitney disks and relative Whitney disks.
A mixed Whitney tower is defined recursively as follows. A union of properly immersed surfaces in a 4-manifold W which are transverse to each other is a mixed Whitney tower. Let T be a mixed Whitney tower and Δ be either a Whitney disk pairing two intersection points between surfaces in T or a relative Whitney disk associated with a single intersection between surfaces in T. If Δ is a Whitney disk then we require Δ be disjoint from the boundary of any surface in T. If Δ is a relative Whitney disk then Δ is disjoint from the boundary of any surface in T away from the endpoints of its relative Whitney arc. Then $T \cup \Delta$ is a mixed Whitney tower.
Mixed Whitney towers have an associated order. The initial surfaces in a mixed Whitney tower T are called order 0 surfaces in T. A point in the intersection of an order k and an order ℓ surface in T is called an order $k+\ell$ intersection. A Whitney disk pairing two order k intersections is called an order $k+1$ Whitney disk. A relative Whitney disk associated to an order k intersection is called an order $k+1$ relative Whitney disk. If all intersection points of order less than k have either associated Whitney disks or relative Whitney disks in T, then T is called an order k mixed Whitney tower.

Proof of Lemma 5.5. For an order k mixed Whitney tower T and a natural number $\ell \leq k$, if T has no relative Whitney disks of order greater than ℓ then we say T transitions at ℓ. Clearly a relative Whitney tower of order k is a mixed Whitney tower which transitions at k. Additionally, a mixed Whitney tower is a Whitney tower if and only if it transitions at 0 . Thus if we can explain how to lower the parameter ℓ at which a given mixed Whitney tower transitions, then induction will complete the proof. Precisely, let W be a 4-manifold containing a mixed Whitney tower T of order k which transitions at ℓ. Moreover, suppose Y is a submanifold of ∂W and contains all relative Whitney arcs of T. We claim that there exists a Whitney tower T^{\prime} of order k which transitions at $\ell-1$, so that all relative Whitney arcs are contained in Y, and so that the order 0 surfaces of T and T^{\prime} differ by a homotopy which is constant outside of a small neighbourhood of Y.
The proof of this claim will proceed by changing T by homotopies introducing new intersection points so that order ℓ relative Whitney disks become Whitney disks. Let p be an order $\ell-1$ intersection point sitting in the intersection of surfaces A and B in T and let Δ_{p} be an associated order ℓ relative Whitney disk. The move drawn schematically in Figure 10 changes A by a homotopy, and adds a new intersection point in $A \cap B$. A subdisk Δ^{\prime} of Δ_{p} forms a Whitney disk pairing p and this new intersection point. We proceed to explain this move.
As in Section 2, and using the same notation, we find an immersion $\Phi: \Delta_{x y z} \times \mathbb{R}^{2} \rightarrow W$ parametrizing a tubular neighbourhood of Δ_{p}. Since T contains no relative Whitney disks of order greater than ℓ, we see that T contains no relative Whitney disks associated with intersection points on Δ_{p}. As a consequence, if we take the regions Q and R in Figure 11 close enough to $\overline{x z}$ then Φ will be an embedding when restricted to $Q \cup R \times \mathbb{R}^{2}$ and will have image disjoint from T except that $\Phi(Q \cup R \times\{(0,0)\}) \subseteq \Delta_{p}, \Phi\left(\overline{x x^{\prime}} \times \mathbb{R} \times\{0\}\right) \subseteq A$ and $\Phi\left(\overline{z z^{\prime \prime}} \times\{0\} \times \mathbb{R}\right) \subseteq B$.
Modify A and B using $\Phi(Q \times[-1,1] \times\{0\})$ and $\Phi(R \times\{0\} \times[-1,1])$ as guides. That is, set

$$
\begin{aligned}
A^{\prime}:=\left(A \backslash \Phi\left(\overline{x x^{\prime}} \times[-1,1] \times\{0\}\right)\right) \cup \Phi(Q \times\{-1,1\} \times\{0\}) & \\
& \cup \Phi\left(\left(\overline{x^{\prime} z^{\prime \prime}} \cup \overline{z^{\prime \prime} z}\right) \times[-1,1] \times\{0\}\right),
\end{aligned}
$$

Figure 10. Left: A relative Whitney disk associated to the point $p \in A \cap B$. Right: After changing A by a homotopy, we see a new point of intersection and a Whitney disk.

Figure 11. The triangle $\Delta_{x y z}$, with a highlighted quadrilaterals Q and R having vertex sets $\left\{x, x^{\prime}, z^{\prime \prime}, z\right\}$ and $\left\{z, z^{\prime}, w, z^{\prime \prime \prime}\right\}$ respectively.
and

$$
\begin{aligned}
B^{\prime}:=\left(B \backslash \Phi\left(\overline{z z^{\prime \prime}} \times\{0\} \times[-1,1]\right)\right) \cup \Phi(R \times\{0\} \times\{-1,1\}) & \\
& \cup \Phi\left(\left(\overline{z^{\prime \prime \prime} w} \cup \overline{w z^{\prime}}\right) \times\{0\} \times[-1,1]\right) .
\end{aligned}
$$

The embedded (but non-disjoint) cubes $\Phi(Q \times[-1,1] \times\{0\})$ and $\Phi(R \times\{0\} \times[-1,1])$ parametrize a homotopy from $A \cup B$ to $A^{\prime} \cup B^{\prime}$ which is constant outside of $\Phi(Q \cup R \times[-1,1] \times[-1,1])$. The relative Whitney arc associated to Δ_{p} is parametrized by $\Phi(\overline{x y})$, and by assumption this is contained in Y. Thus, by taking the tubular neighbourhood of Δ_{p} small enough, and the regions Q and R close enough to $\overline{x z}$, we can arrange that $\Phi(Q \cup R \times[-1,1] \times[-1,1])$ is contained in a small neighbourhood of Y. The homotopy constructed is constant outside of this small neighbourhood of Y.

By direct inspection, $A^{\prime} \cap B^{\prime}=(A \cap B) \cup\{q\}$ where $q=\Phi(u, 0,0)$. Moreover, Δ^{\prime}, the closure of $\Phi\left(\Delta_{x y z} \backslash(Q \cup R)\right)$, gives a Whitney disk pairing p and q. Thus if T^{\prime} is given by replacing A, B, and Δ_{p} by A^{\prime}, B^{\prime}, and Δ^{\prime} then T^{\prime} is still an order k mixed Whitney tower and it has one fewer relative Whitney disks of order ℓ than T.
By iterating the procedure above, we replace all order ℓ relative Whitney disks in T with Whitney disks. The result is an order k mixed Whitney tower which transitions at $\ell-1$. Induction on ℓ now completes the proof.

6. Homotopy trivializing numbers for Links in homology spheres.

In the method we described for separating an immersed disk collection in Section 3, we obtained a precise relationship between the number of crossing changes between link components in the boundary, and the number of intersection points removed in the cobounding disk collection. In this section, we study this relationship in more detail. We introduce two link homotopy invariants (which we then prove to be the same). We provide precise calculations of these invariants for links of up to 3 components and more generally we provide bounds for these invariants.

6.1. The homotopy trivializing number coincides with the disk intersection number.

Definition 6.1. Let $L=L_{1} \cup \cdots \cup L_{n}$ be a link in a homology sphere Y. The disk intersection number of L is

$$
n_{d}(L):=\min \left\{\sum_{i<j} \#\left(D_{i} \cap D_{j}\right)\right\}
$$

where the minimum is taken over all collections of immersed disks $D_{1} \cup \cdots \cup D_{n}$ in the contractible 4-manifold bounded by Y, with boundary the link, and meeting one-another transversely.

Recall that a link in a homology sphere is called $4 D$-homotopically trivial if it bounds disjoint immersed disks in the unique contractible 4-manifold bounded by the homology sphere.

Definition 6.2. The homotopy trivializing number of a link L is given by minimizing the Gordian distance d_{G} from L to a 4D-homotopically trivial link. That is,

$$
n_{h}(L):=\min \left\{d_{G}(L, J) \mid J \text { is 4D-homotopically trivial }\right\}
$$

In more detail, we say that $d_{G}(L, J) \leq m$ if there is a collection of disjoint 3 -balls B_{1}, \ldots, B_{m} in Y so that $\left(B_{i}, B_{i} \cap L\right)$ is orientation preserving homeomorphic to one of the tangles in Figure 3 and that J is isotopic to the result of changing L by a homotopy supported on $B_{1} \cup \cdots \cup B_{m}$ replacing each positive crossing by a negative crossing and conversely.

We now recall Proposition 1.6 with this added language and give a proof.
Proposition 1.6. For any link L in any homology sphere Y there is an equality $n_{d}(L)=n_{h}(L)$.
Proof. Let L be an n-component link in Y with $n_{d}(L)=m$. Let X be the contractible 4-manifold bounded by Y and $D=D_{1} \cup \cdots \cup D_{n} \subseteq W$ be a collection of immersed disks bounded by the components of L with $\sum_{i<j} \#\left(D_{i} \cap D_{j}\right)=m$. Since X is contractible, the inclusion induced map $\pi_{1}(Y) \rightarrow \pi_{1}(X)$ is trivially surjective and we may apply Proposition 3.2 to see that there is a homotopy consisting of m crossing changes from L to a new link J which is 4D-homotopically trivial. Thus, $n_{d}(L) \geq n_{h}(L)$, proving one of the needed inequalities.

Now assume that $n_{h}(L)=m$ and let J be a 4D-homotopically-trivial link obtained from L by making m crossing changes. If we cap off the trace of the homotopy from L to J in $Y \times[0,1]$ with a collection of disjoint immersed disks in X bounded by the components of J then we see a collection of immersed disks $D_{1} \cup \cdots \cup D_{n}$ bounded by the components of L with $\sum_{i<j} \#\left(D_{i} \cap D_{j}\right) \leq m$. Thus, $n_{d}(L) \leq n_{h}(L)$.

Remark 6.3. The disk intersection number $n_{d}(L)$ is invariant under link homotopy. As a consequence of Proposition 1.6, so is $n_{h}(L)$. We take a moment to explain. Let L and J be links in Y. If they are link homotopic, then the trace of a link homotopy from L to J is an union of disjoint immersed annuli in $Y \times[0,1]$ cobounded by $L \times\{0\}$ and $J \times\{1\}$. Let X be the contractible 4 -manifold bounded by Y. By capping $J \times\{1\}$ with a collection of immersed disks bounded by J in X we see that $n_{d}(L) \leq n_{d}(J)$. By symmetry $n_{d}(L)=n_{d}(J)$.
6.2. Computations of the homotopy trivializing number. Any 4D-homotopically trivial link has vanishing linking numbers and each time when we perform a crossing change the linking number changes at most by one. Hence we have the following obvious lower bound on the homotopy trivializing number:

$$
\begin{equation*}
\Lambda(L):=\sum_{i<j}\left|\operatorname{lk}\left(L_{i}, L_{j}\right)\right| \leq n_{h}(L) \tag{1}
\end{equation*}
$$

Moreover, since the linking number $\mathrm{lk}\left(L_{i}, L_{j}\right)$ can be computed by taking any immersed disks bounded by L_{i} and L_{j} in a homology ball, and counting points of intersection with sign, we see that $n_{h}(L)=n_{d}(L) \equiv \Lambda(L)(\bmod 2)$.

For a link with 2 or 3 components we determine $n_{h}(L)$ completely. For links of more than 3 components we find a bound on the difference between $n_{h}(L)$ and $\Lambda(L)$. Remarkably, this upper bound depends only on the number of components of L, and in particular is independent of the higher order link homotopy invariants of Milnor [18]. We restate Theorem 1.7.

Theorem 1.7. Let L be a link in a homology sphere. The the following holds.

- If L is a 2-component link, then

$$
n_{h}(L)=\Lambda(L)
$$

- If L is a 3-component link, then

$$
n_{h}(L)= \begin{cases}\Lambda(L) & \text { if } \Lambda(L) \neq 0 \\ 2 & \text { if } \Lambda(L)=0 \text { and } \mu_{123}(L) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- In general, there is some C_{n} so that for every n-component link L,

$$
\Lambda(L) \leq n_{h}(L) \leq \Lambda(L)+C_{n} .
$$

Remark 6.4. By Corollary 1.5, for any link L in a homology sphere, there is a link J in S^{3} such that in a simply connected homology cobordism from Y to S^{3} the components of L and J cobound disjoint immersed annuli. It follows that $n_{d}(L)=n_{d}(J)$. By Proposition 1.6, we have that $n_{h}(L)=n_{h}(J)$. Lastly, recall that if two links in homology spheres cobound disjoint immersed annuli, then they have the same pairwise linking number and Milnor's triple linking number. Therefore it suffices to prove Theorem 1.7 for links in S^{3}, and for which the notion of 4D-homotopically trivial and Milnor's more classical notion of link homotopically trivial are the same.

The proof of Theorem 1.7 passes though the string link classification of Habegger-Lin [14]. We take a moment and recall some of their definitions and tools.
Pick n points p_{1}, \ldots, p_{n} in the disk D^{2}. An n-component string link $T=T_{1} \cup \cdots \cup T_{n}$ is a disjoint union of embedded arcs in $D^{2} \times[0,1]$ with T_{i} running from $p_{i} \times\{0\}$ to $p_{i} \times\{1\}$. Let $\mathcal{L} \mathcal{H}_{n}$ denote the set of n-component string links in S^{3}.
The notion of link homotopy extends in an obvious way to string links; let $\mathcal{S} \mathcal{L} \mathcal{H}_{n}$ denote the set of string links up to link homotopy. Importantly, $\mathcal{S L} \mathcal{H}_{n}$ is a group under the stacking operation of Figure 12a. The definition of homotopy trivializing number n_{h} extends to string links and, just as for links in S^{3}, depends only on the link homotopy class. Notice that n_{h} is subadditive under the stacking operation. The operation of Figure 12b given by sending a string link T to its closure \widehat{T} gives a surjection $\mathcal{S L H} \mathcal{H}_{n} \rightarrow \mathcal{L} \mathcal{H}_{n}$. For any string link T, it is now immediate that

$$
\begin{equation*}
n_{h}(\widehat{T}) \leq n_{h}(T) \tag{2}
\end{equation*}
$$

(a) $A * B$: The result of stacking string links A and B.

(b) The closure \widehat{T} of a string link T.

(c) $\phi: R F(n-1) \rightarrow \mathcal{S} \mathcal{L} \mathcal{H}_{n}$ sends x_{i} to the string link T above.

Figure 12. The stacking and closure operations, together with the map ϕ.

The key tool we will use in our proof of Theorem 1.7 is the split exact sequence of [14, Lemma 1.8]:

$$
\begin{equation*}
1 \longrightarrow R F(n-1) \xrightarrow{\phi} \mathcal{S L H}_{n} \underset{K \ldots, \ldots}{\psi} \mathcal{S} \mathcal{L H}_{n-1} \longrightarrow 1 \tag{3}
\end{equation*}
$$

Here, $R F(n-1)$ indicates the reduced free group. That is, $R F(n-1)$ is the quotient of the free group $F(n-1)$ with generators x_{1}, \ldots, x_{n-1} so that for each i any conjugate of x_{i} commutes with any other conjugate of x_{i}. The map $\phi: R F(n-1) \rightarrow \mathcal{S L} \mathcal{H}_{n}$ is the homomorphism sending a generator x_{i} to the string link of Figure 12c. The fact that this is well defined follows from work in [14]. The map $\psi: \mathcal{S} \mathcal{L H}_{n} \rightarrow \mathcal{S} \mathcal{L H}_{n-1}$ is given by deleting the $n^{\text {th }}$ component of a string link. The splitting $s: \mathcal{S L H}_{n-1} \rightarrow \mathcal{S L} \mathcal{H}_{n}$ of ψ is given by adding to an $(n-1)$-component string link T an unknotted component which does not interact with the components of T. In summary, any $T \in \mathcal{S} \mathcal{L} \mathcal{H}_{n}$ decomposes as $T=s(\psi(T)) * \phi(\gamma)$ for some $\gamma \in R F(n-1)$.

Definition 6.5. Let $w=x_{i_{1}}^{\epsilon_{1}} x_{i_{2}}^{\epsilon_{2}} \ldots x_{i_{\ell}}^{\epsilon_{\ell}}$ be a word in the letters $x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}$. The trivializing number of w, denoted by $Z(w)$, is the minimum number of deletions needed to reduce w to a word representing the trivial element of the free group $F(n)$.
Let $\gamma \in R F(n)$ be an element of the reduced free group. The reduced trivializing number of γ, denoted by $R Z(\gamma)$, is the minimum of $Z(w)$ among all words $w \in F(n)$ which represent γ.

The proof of Theorem 1.7 will be inductive with the inductive step requiring bounds on $n_{h}(\phi(\gamma))$ where γ is an element of $R F(n)$. Since $n_{h}\left(\phi\left(x_{i}^{ \pm 1}\right)\right)=1$ for each generator of $R F(n)$, it follows that

$$
\begin{equation*}
n_{h}(\phi(\gamma)) \leq R Z(\gamma) \tag{4}
\end{equation*}
$$

During the proof of Theorem 1.7, we will furthermore derive an upper bound on $R Z(\gamma)$ in terms of the classical concepts of basic commutators and their weights, so we recall the definition of these now.

Definition 6.6. Writing $\left\{x_{1}, \ldots, x_{n}\right\}$ for a generating set of $F(n)$, the ordered set $\left\{c_{1}, c_{2}, \ldots\right\}$ of basic commutators, along with associated integer valued weights $w\left(c_{1}\right) \leq w\left(c_{2}\right) \leq \ldots$, are defined by the following:

- If $i=1, \ldots, n$, then $c_{i}=x_{i}$ and $w\left(c_{i}\right)=1$.
- If $i<j$, then $w\left(c_{i}\right) \leq w\left(c_{j}\right)$.
- If $i>n$, then $c_{i}=\left[c_{\ell}, c_{j}\right]$ for some $\ell<j<i$. Additionally $w\left(c_{i}\right)=w\left(c_{\ell}\right)+w\left(c_{j}\right)$.
- If $c_{i}=\left[c_{\ell}, c_{j}\right]$ and $c_{j}=\left[c_{r}, c_{s}\right]$, then $r \leq \ell$.
- Every $\left[c_{i}, c_{j}\right]$ satisfying the conditions above is a basic commutator.

The next lemma studies the reduced trivializing number for basic commutators.
Lemma 6.7. Let $c_{i} \in F(n)$ be a basic commutator. Then, considering c_{i} as an element of the reduced free group $R F(n)$, we have

$$
\left\{\begin{array}{rll}
R Z\left(c_{i}^{a}\right) & =|a| & \text { if } 1 \leq i \leq n, \\
R Z\left(c_{i}^{a}\right) \leq w\left(c_{i}\right) & & \text { otherwise } .
\end{array}\right.
$$

Proof. First suppose $1 \leq i \leq n$. Then $c_{i}^{a}=x_{i}^{a}$ is a length $|a|$ word, and so $R Z\left(c_{i}^{a}\right) \leq|a|$. In order to see the reverse inequality, note that $\phi\left(c_{i}^{a}\right)$ is an $(n+1)$-component string link with $\Lambda\left(\phi\left(c_{i}^{a}\right)\right)=|a|$. Thus by inequalities (1) and (4) we have $R Z\left(c_{i}^{a}\right) \geq n_{h}\left(\psi\left(c_{i}^{a}\right)\right) \geq \Lambda\left(\psi\left(c_{i}^{a}\right)\right)=|a|$.
The proof of the result when $n<i$ begins with an inductive argument showing that each basic commutator c_{i} is a product of conjugates of a single generator x_{t} for some t and that $R Z\left(c_{i}\right) \leq w\left(c_{i}\right)$. When $w\left(c_{i}\right)=1$, then $c_{i}=x_{i}$ and so we are done. When $w\left(c_{i}\right)>1$, then $c_{i}=\left[c_{\ell}, c_{j}\right]$ where $w\left(c_{i}\right)=w\left(c_{\ell}\right)+w\left(c_{j}\right)$. In particular, $w\left(c_{j}\right)<w\left(c_{i}\right)$. We can therefore inductively assume that c_{j} is a product of conjugates of some x_{t}. Thus, $c_{i}=\left[c_{\ell}, c_{j}\right]=\left(c_{\ell} c_{j} c_{\ell}^{-1}\right) c_{j}^{-1}$, and so since both $\left(c_{\ell} c_{j} c_{\ell}^{-1}\right)$ and c_{j}^{-1} are products of conjugates of x_{t}, we have now expressed c_{i} as a product of conjugates of x_{t}. Notice next that in the expression $\left(c_{\ell} c_{j} c_{\ell}^{-1}\right) c_{j}^{-1}$ if we make $2 \cdot R Z\left(c_{\ell}\right)$ letter deletions then we may replace the c_{ℓ} and c_{ℓ}^{-1} subwords with words representing the trivial element. As a consequence $R Z\left(c_{i}\right) \leq 2 \cdot R Z\left(c_{\ell}\right)$. By the definition of basic commutators we have $w\left(c_{\ell}\right) \leq w\left(c_{j}\right)$ and $w\left(c_{i}\right)=$ $w\left(c_{\ell}\right)+w\left(c_{j}\right)$. Therefore $w\left(c_{\ell}\right) \leq \frac{1}{2} w\left(c_{i}\right)$. By our inductive assumption, $R Z\left(c_{\ell}\right) \leq w\left(c_{\ell}\right)$. Thus

$$
R Z\left(c_{i}\right) \leq 2 \cdot R Z\left(c_{\ell}\right) \leq 2 w\left(c_{\ell}\right) \leq w\left(c_{i}\right)
$$

This completes the inductive argument.
Midway through that induction, we saw that both $c_{\ell} c_{j} c_{\ell}^{-1}$ and c_{j}^{-1} are products of conjugates of a single x_{t} for some t. By the definition of $R F(n)$, they commute. Thus,

$$
c_{i}^{a}=\left(\left(c_{\ell} c_{j} c_{\ell}^{-1}\right) c_{j}^{-1}\right)^{a}=\left(c_{\ell} c_{j}^{a} c_{\ell}^{-1}\right) c_{j}^{-a}
$$

Similarly to our inductive argument, by making $2 \cdot R Z\left(c_{\ell}\right)$ letter deletions, the c_{ℓ} and c_{ℓ}^{-1} subwords appearing in the expression above can be reduced to words representing the trivial element of $R F(n)$. Thus, just as in the inductive argument, $R Z\left(c_{i}^{a}\right) \leq 2 \cdot R Z\left(c_{\ell}\right) \leq 2 w\left(c_{\ell}\right) \leq w\left(c_{i}\right)$.

In [14, Lemma 1.3], Habegger-Lin prove that the reduced free group $R F(n)$ is nilpotent of class n. In the proof of Theorem 1.7, we will use a simple expression for elements of $R F(n)$ that is obtained by combining their result with the following classical theorem; see e.g. [17, Theorem 5.13A].

Theorem 6.8 (P. Hall's Basis Theorem). Any $\gamma \in F(n) / F(n)_{n+1}$ can be expressed as

$$
\gamma=c_{1}^{a_{1}} c_{2}^{a_{2}} \ldots c_{N}^{a_{N}} \in F(n) / F(n)_{n+1}
$$

where N is the number of basic commutators of weight at most n and $a_{1}, \ldots, a_{N} \in \mathbb{Z}$.
We now have everything we need to complete the proof of Theorem 1.7.
Proof of Theorem 1.7. Let L be a 2-component link in S^{3}. Since the linking number is a complete homotopy invariant for 2-component links [18], we have that $n_{h}(L)=\Lambda(L)$.
Now let L be an 3 -component link in S^{3}. Assume first that $\Lambda(L) \neq 0$ and after reordering the components of L and changing the orientations of a component, if needed, we may assume that $\operatorname{lk}\left(L_{2}, L_{3}\right)>0$. Let $T \subseteq D^{2} \times[0,1]$ be a string link with $\widehat{T}=L$. Using short exact sequence (3), we have that $T=s(\psi(T)) * \phi(\gamma) \in \mathcal{S} \mathcal{L H}_{3}$ for some $\gamma \in R F(2)$. Note that the linking number of $\psi(T) \in \mathcal{S} \mathcal{L} \mathcal{H}_{2}$ is equal to $\operatorname{lk}\left(L_{1}, L_{2}\right)$. Therefore $n_{h}(s(\psi(T)))=\left|\operatorname{lk}\left(L_{1}, L_{2}\right)\right|$.

As mentioned above, the reduced free group $R F(2)$ is nilpotent of class 2 [14, Lemma 1.3]. Hence by Theorem 6.8 , we may express γ in terms of basic commutators: $\gamma=x_{1}^{a} * x_{2}^{b} *\left[x_{1}, x_{2}\right]^{c}$ for some $a, b, c \in \mathbb{Z}$. It follows by inspection that $a=\operatorname{lk}\left(L_{1}, L_{3}\right)$ and $b=\operatorname{lk}\left(L_{2}, L_{3}\right)>0 . \operatorname{In} R F(2), x_{2}$ and $x_{1} x_{2} x_{1}^{-1}$ commute as do x_{1} and $x_{2} x_{1}^{-1} x_{2}^{-1}$. Thus,

$$
\begin{aligned}
\gamma & =x_{1}^{a} x_{2}^{b}\left[x_{1}, x_{2}\right]^{c} \\
& =x_{1}^{a} x_{2}^{b}\left(\left(x_{1} x_{2} x_{1}^{-1}\right) x_{2}^{-1}\right)^{c} \\
& =x_{1}^{a}\left(x_{1}\left(x_{2} x_{1}^{-1} x_{2}^{-1}\right)\right)^{c} x_{2}^{b} \\
& =x_{1}^{a} x_{1}^{c}\left(x_{2} x_{1}^{-1} x_{2}^{-1}\right)^{c} x_{2}^{b} \\
& =x_{1}^{a} x_{1}^{c} x_{2} x_{1}^{-c} x_{2}^{b-1}
\end{aligned}
$$

Deleting $|a|=\left|\operatorname{lk}\left(L_{1}, L_{3}\right)\right|$ instances of x_{1} and $1+|b-1|=b=\operatorname{lk}\left(L_{2}, L_{3}\right)$ instances of x_{2} reduces this word to $x_{1}^{c} x_{1}^{-c}$ which is the trivial word. Thus, by using inequality (4), we obtain $n_{h}(\phi(\gamma)) \leq R Z(\gamma) \leq$ $\left|\operatorname{lk}\left(L_{1}, L_{3}\right)\right|+\left|\operatorname{lk}\left(L_{2}, L_{3}\right)\right|$. Finally, by using the above inequalities combined with inequality (2), we conclude that

$$
\begin{aligned}
n_{h}(L) \leq n_{h}(T) \leq n_{h}(s(\psi(T)))+n_{h}(\phi(\gamma)) & \\
& \leq\left|\operatorname{lk}\left(L_{1}, L_{2}\right)\right|+\left|\operatorname{lk}\left(L_{1}, L_{3}\right)\right|+\left|\operatorname{lk}\left(L_{2}, L_{3}\right)\right|=\Lambda(L)
\end{aligned}
$$

This gives the claimed result when L has 3 components and $\Lambda(L) \neq 0$.
Now suppose that the 3 -component link L has $\Lambda(L)=0$ and $\mu_{123}(L) \neq 0$. As above, if $T \subseteq D^{2} \times[0,1]$ is a string link with $\widehat{T}=L$, then by short exact sequence (3), we have that $T=s(\psi(T)) * \phi(\gamma) \in \mathcal{S} \mathcal{L} \mathcal{H}_{3}$ for some $\gamma \in R F(2)$. In this case, $\psi(T)$ is a 2 -component string link with vanishing linking numbers so that $\psi(T)$ is homotopically trivial. Furthermore, for some $c \in \mathbb{Z}$,

$$
\gamma=\left[x_{1}, x_{2}\right]^{c}=\left(x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}\right)^{c}=x_{1}^{c}\left(x_{2} x_{1}^{-1} x_{2}^{-1}\right)^{c}=x_{1}^{c} x_{2} x_{1}^{-c} x_{2}^{-1}
$$

where the third equality follows since x_{1} commutes with $\left(x_{2} x_{1}^{-1} x_{2}^{-1}\right)$. The resulting word reduces to the trivial element of the free group after two letter deletions (specifically, deleting x_{2} and x_{2}^{-1}). As we have explained above, this affects $\phi(\gamma)$ by two crossing changes. Thus, $n_{h}(L) \leq n_{h}(T) \leq 2$. Since $\mu_{123}(L) \neq 0, L$ is not homotopically-trivial, and so $n_{h}(L)>0$. As $n_{h}(L) \equiv \Lambda(L)(\bmod 2)$, we conclude that $n_{h}(L)=2$, as claimed.
Next we address the case that L has 3 components and $\Lambda(L)=\mu_{123}(L)=0$. In this case, Milnor [18] concludes that L is link homotopically trivial and so $n_{h}(L)=0$, as claimed.
We now move on to the proof of the statement concerning links with 4 or more components. We begin with the inductive assumption that there is a constant C_{n} so that for every string link $Q \in \mathcal{S} \mathcal{L} \mathcal{H}_{n}$ there is an inequality $n_{h}(Q) \leq \Lambda(Q)+C_{n}$. Let $T \in \mathcal{S} \mathcal{L} \mathcal{H}_{n+1}$, then by short exact sequence (3), we have that $T=s(\psi(T)) * \phi(\gamma)$ for some $\gamma \in R F(n)$.
As before, combining the fact that $R F(n)$ is nilpotent of class n with Theorem 6.8 , we may express $\gamma \in R F(n)$ in terms of basic commutators:

$$
\gamma=c_{1}^{a_{1}} c_{2}^{a_{2}} \ldots c_{N}^{a_{N}}
$$

where N is the number of basic commutators of weight at most n and $a_{1}, \ldots, a_{N} \in \mathbb{Z}$. By inspection $a_{i}=\operatorname{lk}\left(L_{n+1}, L_{i}\right)$ for $i=1, \ldots n$. Appealing to Lemma 6.7, we have that

$$
n_{h}(\phi(\gamma)) \leq R Z(\gamma) \leq \sum_{i=1}^{N} R Z\left(c_{i}^{a_{i}}\right) \leq \sum_{i=1}^{n}\left|a_{i}\right|+\sum_{i=n+1}^{N} w\left(c_{i}\right)
$$

Thus, by the above inequality combined with the inductive hypothesis we get

$$
\begin{aligned}
n_{h}(T) \leq n_{h}(s(\psi(T)))+n_{h}(\phi(\gamma)) & \leq \Lambda(s(\psi(T)))+C_{n}+\sum_{i=1}^{n}\left|a_{i}\right|+\sum_{i=n+1}^{N} w\left(c_{i}\right) \\
& =\Lambda(T)+C_{n}+\sum_{i=n+1}^{N} w\left(c_{i}\right)
\end{aligned}
$$

Setting $C_{n+1}=C_{n}+\sum_{i=n+1}^{N} w\left(c_{i}\right)$ completes the induction.
Remark 6.9. The statement of Theorem 1.7 does not give a precise value for the sequence of numbers C_{n} when $n>3$. We note that by combining the recurrence relation $C_{n+1}=C_{n}+\sum_{i=n+1}^{N} w\left(c_{i}\right)$ (from the end of the proof) with Witt's formula for the number of basic commutators of a fixed weight [23] one can find an upper bound for the C_{n} constructed in the proof, and these upper bounds could themselves function as the C_{n} in the statement of the theorem. However, a formula produced this way would be far from sharp. This is because any basic commutator with repeated indices ($\left[x_{2},\left[x_{1}, x_{2}\right]\right]$ for instance) is zero in $R F(n)$ and so should not be counted in a formula for C_{n}. Thus to obtain a less crude formula for C_{n} we would desire a Witt-type formula counting only the number of basic commutators without repeated indices. While such a result might be within reach of current technology, it is definitely beyond the scope of this paper.

Appendix A. Freely slicing boundary links

Cha-Kim-Powell [5] describe a set of conditions on a link in S^{3} that ensure the link is freely slice. In Section 4, we generalized these conditions to links in a general homology 3 -sphere Y and claimed in Theorem 4.4 that our conditions guaranteed the link was freely slice in the contractible 4-manifold X bounded by Y. The proof of this is a close imitation of the argument from Cha-Kim-Powell $[5, \S 4 \&$ $\S 5]$ and, as such, we only sketch the argument below. An attempt has been made to include enough detail to follow the argument, but without repeating too much of what already appears in [5].

We begin by recalling some terminology and a theorem from Freedman-Quinn [12]. A transverse pair is two copies of $S^{2} \times D^{2}$ plumbed together at one point. This model is a neighbourhood of the pair of spheres

$$
\left(S^{2} \times\{p t\}\right) \cup\left(\{p t\} \times S^{2}\right) \subseteq S^{2} \times S^{2}
$$

Take the disjoint union N_{1}, \ldots, N_{ℓ} of copies of the transverse pair and perform further plumbings between the copies, possibly including self-plumbings, then map the result into a topological 4manifold W via a continuous map that is a homeomorphism to its image. The result of this process is a map $f: \coprod_{i} N_{i} \rightarrow W$ which is called an immersion of a union of transverse pairs.
An immersion of a union of transverse pairs is said to have algebraically trivial intersections if the images of the further plumbings we performed can be arranged in pairs by Whitney disks in W (that may a priori meet $\coprod_{i} N_{i}$). Such a map f is called π_{1}-null if the inclusion induced map $\pi_{1}\left(f\left(\coprod_{i} N_{i}\right)\right) \rightarrow \pi_{1}(W)$ is trivial.
If middle-dimensional homology classes can be represented in this arrangement, then one is able to use a result of Freedman-Quinn [12, Theorem 6.1] to conclude that f is s-cobordant rel. boundary to an embedding. In the particular case of interest to us, this gives the following.

Theorem A.1. Suppose W is a compact topological 4-manifold, bounded by M_{L}, with $\pi_{1}(W)$ free and generated by the meridians of L. Let $f: \coprod_{i} N_{i} \rightarrow W$ be a π_{1}-null immersion of a union of transverse pairs with algebraically trivial intersections, and inducing an isomorphism $f_{*}: H_{2}\left(\coprod_{i} N_{i}\right) \rightarrow H_{2}(W)$.

Then there exists a compact topological 4-manifold W^{\prime}, bounded by M_{L}, with $\pi_{1}\left(W^{\prime}\right)$ free and generated by the meridians of L, and a locally flat embedding $f^{\prime}: \coprod_{i} N_{i} \hookrightarrow W^{\prime}$ inducing an isomorphism $f_{*}^{\prime}: H_{2}\left(\coprod_{i} N_{i}\right) \rightarrow H_{2}\left(W^{\prime}\right)$.

We now follow the standard surgery-theoretic approach to slice L, sketched in the introduction. Recall that the 0 -surgery on L is denoted by M_{L}.

Proposition A.2. Let L be a boundary link with a good disky basis in a homology sphere Y, then M_{L} bounds a compact oriented 4-manifold W such that
(1) $\pi_{1}(W)$ is free and generated by the meridians of L, and
(2) $H_{2}(W ; \mathbb{Z})$ is free and represented by a π_{1}-null immersion of a union of transverse pairs with algebraically trivial intersections.

The argument we now use is almost identical to that appearing in [5, Section 5].
Summary of the proof of Proposition A.2. Let $F=F_{1} \cup \cdots \cup F_{n}$ be a boundary link Seifert surface for L and let $\left\{a_{i}, b_{i}\right\}_{1 \leq i \leq g}$ be a good disky basis, with

$$
\left\{\Delta_{j}^{+}, \Delta_{i} \mid 1 \leq j \leq 2 g, 1 \leq i \leq g\right\}
$$

the immersed disks as in Definition 4.2. Recalling these conditions, for each $i, \partial \Delta_{i}^{+}=a_{i}, \partial \Delta_{g+i}^{+}=$ $\left(b_{i}^{\prime}\right)^{+}$, and $\partial \Delta_{i}=b_{i}^{\prime}$, where b_{i}^{\prime} is the result of pushing b_{i} off F such that it has zero linking with a_{i}, and $\left(b_{i}^{\prime}\right)^{+}$is a zero linking parallel copy of b_{i}^{\prime}. These disks are all disjoint except that the disks $\left\{\Delta_{j}^{+}\right\}_{1 \leq j \leq 2 g}$ might intersect each other. Write X for the contractible 4-manifold bounded by Y.

Figure 13. Curves $a_{i}, \beta_{i}, \gamma_{i}$ and δ_{i} sitting in a produce neighbourhood of a Seifert surface for L. Attaching a 1-handle using the dotted β_{i} curves and attaching 2handles along the 0 -framings of a_{i}, γ_{i}, and δ_{i}.

For each i, let $\beta_{i} \cup \gamma_{i}$ be the Bing double of b_{i} appearing in Figure 13. Attach 1-handles to X along β_{i} and 2-handles to X along the 0 -framings of a_{i}, γ_{i}, and δ_{i} to get a 4-manifold W. A straightforward argument shows that W has boundary M_{L} and has fundamental group freely generated by the meridians of L; see [5, Claim A] for details. Clearly $H_{2}(W ; \mathbb{Z}) \cong \mathbb{Z}^{2 g}$. This basis is generated by framed immersed spheres $\Sigma_{1}, \ldots, \Sigma_{2 g}$ described as follows. For each i, take $\Sigma_{2 i-1}$ to be the union of Δ_{i}^{+}and the core of the 2-handle attached to a_{i}. For each i, we can and will assume b_{i}^{\prime} and $\left(b_{i}^{\prime}\right)^{+}$ lie on the gray surface bounded by γ_{i} depicted in Figure 14 (left). We use this to define a planar surface P_{i} bounded by $\gamma_{i}, b_{i}^{\prime}$ and $\left(b_{i}^{\prime}\right)^{+}$as in Figure 14 (right). Take $\Sigma_{2 i}$ to be the union of Δ_{g+i}^{+}, Δ_{i}, the core of the handle attached to γ_{i}, and P_{i}; cf. [5, Claim B].
For each i, a regular neighbourhood of $\Sigma_{2 i-1} \cup \Sigma_{2 i}$ can now be viewed as an immersed transverse pair. The same arguments from [5, Claim C] and [5, Claim D] now reveal that $\cup_{i=1}^{2 g} \Sigma_{i}$ has algebraically trivial intersections and is π_{1}-null.

Figure 14. Left: A section of the surface F containing $\left\{a_{i}, b_{i}\right\}$ (b_{i} not depicted). The curves β_{i} and γ_{i} form a bing double of the curve b_{i} in a neighbourhood of F. A gray genus one surface disjoint from β_{i} with boundary γ_{i} is also depicted. Right: A close-up of the gray surface. The annulus A_{i} on the gray surface with boundary b_{i} and b_{i}^{\prime} is depicted. The complement of the interior of the annulus in the gray surface is the planar surface P_{i}.

Finally, we can confirm that Cha-Kim-Powell [5, Theorem A] generalizes as claimed.
Proof of Theorem 4.4. Let W be the 4-manifold and $f: \coprod_{i} N_{i} \rightarrow W$ the immersion of a union of transverse pairs representing $H_{2}(W ; \mathbb{Z})$ described in Proposition A.2. Applying Theorem A.1, we obtain W^{\prime} and f^{\prime}. Note that the image of f^{\prime} consists of a tubular neighbourhood of locally flat embedded 2-spheres representing generators for $H_{2}\left(W^{\prime} ; \mathbb{Z}\right) \cong H_{2}(W ; \mathbb{Z})$. These embedded 2-spheres come in transverse pairs and we now perform surgery on one sphere from each transverse pair. Since the second sphere from each transverse pair intersected the surgered sphere geometrically once, these surgeries preserve $\pi_{1}\left(W^{\prime}\right)$. Thus, we obtain $W^{\prime \prime}$ with boundary M_{L}, with $H_{2}\left(W^{\prime \prime} ; \mathbb{Z}\right)=0$, and with $\pi_{1}\left(W^{\prime \prime}\right)$ freely generated by the meridians of L. Now attach 2-handles to M_{L} along the meridians of the link components, with framing so that the 0 -surgery is reversed. This has Y as the effect of surgery, and by glueing across meridians we ensure that $\pi_{1}\left(W^{\prime \prime}\right)=0$. The resultant 4-manifold is contractible and has boundary Y. The link L has slice disks given by the cocores of the 2 -handles we have just attached so it is slice and moreover freely slice as $\pi_{1}\left(W^{\prime \prime}\right)$ is free.

References

[1] S. Akbulut. A solution to a conjecture of Zeeman. Topology, 30(3):513-515, 1991.
[2] D. Austin and D. Rolfsen. Homotopy of knots and the Alexander polynomial. Canad. Math. Bull., 42(3):257-262, 1999.
[3] S. Behrens, B. Kalmár, M. H. Kim, M. Powell, and A. Ray, editors. The Disc Embedding Theorem. Oxford University Press, 2021.
[4] J. C. Cha. Rational Whitney tower filtration of links. Math. Ann., 370(3-4):963-992, 2018.
[5] J. C. Cha, M. H. Kim, and M. Powell. A family of freely slice good boundary links. Math. Ann., 376(3-4):10091030, 2020.
[6] J. Conant, R. Schneiderman, and P. Teichner. Whitney tower concordance of classical links. Geom. Topol., 16(3):1419-1479, 2012.
[7] J. Conant, R. Schneiderman, and P. Teichner. Milnor invariants and twisted Whitney towers. J. Topol., 7(1):187224, 2014.
[8] A. Daemi. Chern-Simons functional and the homology cobordism group. Duke Math. J., 169(15):2827-2886, 2020.
[9] C. W. Davis. Concordance, crossing changes, and knots in homology spheres. Canad. Math. Bull., 63(4):744-754, 2020.
[10] C. W. Davis. Topological concordance of knots in homology spheres and the solvable filtration. J. Topol., 13(1):343-355, 2020.
[11] M. H. Freedman. The topology of four-dimensional manifolds. J. Differential Geometry, 17(3):357-453, 1982.
[12] M. H. Freedman and F. Quinn. Topology of 4-manifolds, volume 39 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1990.
[13] M. H. Freedman and P. Teichner. 4-manifold topology. II. Dwyer's filtration and surgery kernels. Invent. Math., 122(3):531-557, 1995.
[14] N. Habegger and X.-S. Lin. The classification of links up to link-homotopy. J. Amer. Math. Soc., 3(2):389-419, 1990.
[15] J. Hom, A. S. Levine, and T. Lidman. Knot concordance in homology cobordisms, 2018.
[16] A. S. Levine. Nonsurjective satellite operators and piecewise-linear concordance. Forum Math. Sigma, 4:e34, 47, 2016.
[17] W. Magnus, A. Karrass, and D. Solitar. Combinatorial group theory. Dover Publications Inc., Mineola, NY, second edition, 2004. Presentations of groups in terms of generators and relations.
[18] J. Milnor. Link groups. Ann. of Math. (2), 59:177-195, 1954.
[19] M. Powell, A. Ray, and P. Teichner. The 4-dimensional disc embedding theorem and dual spheres, 2020.
[20] F. Quinn. Ends of maps. II. Invent. Math., 68(3):353-424, 1982.
[21] F. Quinn. Topological transversality holds in all dimensions. Bull. Amer. Math. Soc. (N.S.), 18(2):145-148, 1988.
[22] R. Schneiderman and P. Teichner. Pulling apart 2-spheres in 4-manifolds. Doc. Math., 19:941-992, 2014.
[23] E. Witt. Treue Darstellung Liescher Ringe. J. Reine Angew. Math., 177:152-160, 1937.
[24] E. C. Zeeman. On the dunce hat. Topology, 2:341-358, 1964.
[25] H. Zhou. Homology concordance and an infinite rank subgroup, 2020.

Department of Mathematics, University of Wisconsin-Eau Claire
Email address: daviscw@uwec.edu

Department of Mathematics, ETH Zürich
Email address: patrick.orson@math.ethz.ch
Department of Mathematical Sciences, KAIST
Email address: jungpark0817@kaist.ac.kr

[^0]: Date: December 16, 2021.
 2020 Mathematics Subject Classification. 57K10, 57N70.
 Key words and phrases. link concordance, Whitney trick, Whitney tower.

