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Abstract. We introduce a geometric operation, which we call the relative Whitney trick, that

removes a single double point between properly immersed surfaces in a 4-manifold with boundary.

Using the relative Whitney trick we prove that every link in a homology sphere is homotopic to
a link that is topologically slice in a contractible topological 4-manifold. We further prove that

any link in a homology sphere is order k Whitney tower concordant to a link in S3 for all k.

Finally, we explore the minimum Gordian distance from a link in S3 to a homotopically trivial
link. Extending this notion to links in homology spheres, we use the relative Whitney trick to make

explicit computations for 3-component links and establish bounds in general.

1. Introduction

The Whitney trick is a fundamental technique of geometric topology and its general failure in 4-
manifolds is widely cited as the reason that topology in this dimension is so interesting and unusual.
In ambient dimension four, the (topological) Whitney trick seeks to remove a pair of oppositely
signed transverse intersection points between two locally flat immersed surfaces. In this article, we
will introduce a geometric technique called the relative Whitney trick that removes a single point
of intersection between properly immersed locally flat surfaces in a 4-manifold with boundary. The
details of the relative Whitney trick are given in Section 2, but we sketch the procedure now.
Suppose S1 and S2 are surfaces in a 4-manifold W and p ∈ S1 ∩ S2. We find an immersed disk with
an embedded arc of its boundary lying on the boundary of the 4-manifold and use it to guide a
regular homotopy of S1 that removes the point of intersection p, at the cost of changing ∂S1 by a
homotopy along that arc in the boundary; see Figure 1.

∂W

S1

S2p p

∆p

Figure 1. A schematic for the relative Whitney trick. Possible singularities on the
interior of the relative Whitney disk not depicted.

In comparison, the ordinary Whitney trick begins with two intersection points p, q ∈ S1 ∩ S2 with
opposite sign that are paired by a Whitney disk. This immersed disk guides the (ordinary) Whitney
trick, which is a regular homotopy of S1 with the effect of removing both intersection points p and
q; see Figure 2. Any singularities present in the guiding Whitney disk will yield new singularities in
the result of the Whitney move, and similarly for the relative Whitney trick.
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p

q

Figure 2. A schematic for the ordinary Whitney trick. Possible singularities on
the interior of the Whitney disk not depicted.

Our applications of the relative Whitney trick all concern the study of links in homology 3-spheres.
In this article, links L = L1 ∪ · · · ∪ Ln will be ordered and oriented. Given a homology 3-sphere Y ,
recall it bounds a contractible topological 4-manifold [11, Theorem 1.4’], which we usually denote
by X. The uniqueness of this 4-manifold, up to homeomorphisms fixing the boundary, follows from
a standard argument using topological surgery theory and the 5-dimensional h-cobordism theorem.

1.1. Slicing links in homology spheres up to homotopy. We say a link L is slice if it bounds a
collection of disjoint locally flat embedded disks D in X, and is moreover freely slice if π1(X rD) is
a free group generated by the meridians of L. Two links L and L′ are freely homotopic if there exists
a continuous function F : S1 × {1, . . . , n} × [0, 1]→ Y with F (S1, i, 0) = Li and F (S1, i, 1) = L′i for
all i = 1, . . . , n.

The relative Whitney trick will be used in the proof of the following theorem, the first main result
of the article.

Theorem 1.1. Every link in a homology sphere is freely homotopic to a freely slice link.

This result should be compared to the work of Austin-Rolfsen [2], who proved that any knot in a
homology sphere is freely homotopic to a knot with trivial Alexander polynomial. Combined with
a result of Freedman-Quinn [12, Theorem 11.7B], the Austin-Rolfsen result shows that any knot
in a homology sphere can be reduced by a free homotopy to a freely slice knot. (For a historical
discussion of Alexander polynomial 1 knots see [3, §21.6.3].) To extend this to links we will use the
relative Whitney trick, together with the methods of topological surgery theory and a generalization
of results of Cha-Kim-Powell [5] which give a sufficient condition for a link in a homology sphere to
be freely slice. This condition arises from a surgery-theoretic link slicing approach as we now outline.

A link L = L1 ∪ · · · ∪Ln in a 3-manifold Y is a boundary link if there exists a collection of pairwise
disjoint surfaces F = F1 ∪ · · · ∪ Fn in Y , where Fi is a Seifert surface for Li. Such F is called a
boundary link Seifert surface for the boundary link L. A surgery-theoretic strategy to slice L is to
construct a 4-manifold W with boundary ML, the 0-surgery on L, such that when we glue 2-handles
to the boundary, reversing the 0-surgery, we obtain a contractible 4-manifold. The desired slice disks
are then the cocores of the 2-handles.

In an attempt to construct such a W , begin by pushing a boundary link Seifert surface F = F1 ∪
· · ·∪Fn for L into the contractible 4-manifold bounded by Y . Excise a tubular neighbourhood of the
pushed in surface to obtain a 4-manifold XF with free fundamental group generated by the meridians

of L, and whose boundary decomposes as ∂XF = (S1 ×
⋃
i(Fi \ D̊2)) ∪XL, where XL denotes the

link exterior. Let H = H1 ∪ · · · ∪Hn be a collection of 3-dimensional handlebodies where Hi has the
same genus as Fi, and let ϕ : F ∼= ∂H denote a collection of homeomorphisms ϕi : Fi ∼= ∂Hi. Form
a new manifold VF := XF ∪ (S1 ×H) by using the homeomorphism

id×ϕ : S1 ×
⋃
i

(Fi \ D̊2) ∼= S1 ×
⋃
i

(∂Hi \ φ(D̊2))
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to glue only along this part of the boundary. The resulting 4-manifold VF has boundary the 0-surgery
ML, as desired, and it is moreover possible to choose ϕ so that π1(VF ) is still free and generated by
the meridians of L. We would now like to know that there exist framed embedded 2-spheres in VF
that can be removed by surgery to kill the second homology.

As in Cha-Kim-Powell, we will obtain these embedded 2-spheres via a theorem of Freedman-
Quinn [12, Theorem 6.1]. This theorem states that the presence of certain configurations of framed
immersed spheres (specifically π1-null immersions of a union of transverse pairs with algebraically
trivial intersections; see Appendix A) imply the existence of the embedded spheres required for
surgery. To build these configurations, Cha-Kim-Powell find properly immersed disks in the exterior
of the pushed in boundary link Seifert surface, bounded by a basis for that surface, and cap them
off with properly embedded discs in H ⊆ VF that are dual to the cores of the handlebodies Hi in
VF . They derive conditions on L ⊆ S3 sufficient to ensure the described immersed sphere collection
satisfies the hypotheses of [12, Theorem 6.1]. In Section 4, we produce a straightforward generaliza-
tion of their conditions for links in a homology sphere and in Appendix A we confirm that links in
homology spheres satisfying the generalized conditions are freely slice.

Thus our real challenge in the proof of Theorem 1.1 becomes finding a way to freely homotope an
arbitrary link to one satisfying the generalized Cha-Kim-Powell conditions. For this we will need
a mechanism for separating properly immersed disk collections in 4-manifold, at the expense of
changing the link on the boundary by a free homotopy. In Section 3, we use the relative Whitney
trick to achieve this goal, proving the following (in fact, we prove a more general statement in
Proposition 3.2).

Proposition 1.2. If L is a link in a homology sphere Y , and X is a contractible 4-manifold bounded
by Y , then L is freely homotopic to a link whose components bound disjoint locally flat immersed
disks in X. Moreover, if X is smooth, then these disks may be smoothly immersed.

We end this subsection by pointing out that it is not known whether Theorem 1.1 can be extended
to the smooth category or not. Concretely, we ask the following question.

Question 1.3. Let L be a link in a homology sphere Y and X be a smooth contractible 4-manifold
bounded by Y . Is L freely homotopic to a link J in Y so that the link J bounds a collection of
disjoint smooth disks in X? Can this question be answered if L is a knot?

In the case that L is a knot, the question was answered affirmatively by the first named author, under
the assumption that X admits a handle structure with no 3-handles [9, Theorem 1.5]. Compare this
with [8, Remark 1.6], where Daemi shows the answer to Question 1.3 is negative if one requires X
to be only a homology ball. Indeed, he shows there is a knot in Y# − Y , where Y is the Poincaré
homology sphere, such that the knot, even up to free homotopy, does not bound a smooth immersed
disk in any smooth homology ball bounded by Y#− Y .

We finally remark that if a link L ⊂ Y bounds a collection of disjoint piecewise linear disks in a
4-manifold then that link may be changed by a homotopy in Y to a link bounding a collection of
disjoint smooth disks in that 4-manifold; see e.g. [16, Proof of Proposition 1.3] for a technique to
achieve this by “tubing into the singularities”. Thus we compare Question 1.3 with results proving
the non-existence of piecewise linear disks for certain knots in the boundaries of contractible 4-
manifolds [24, 1, 16, 15, 25], and suggest our question is a natural refinement of the general problem
of finding piecewise linear slice disks in contractible 4-manifolds.

1.2. Whitney tower concordance. Our second application of the relative Whitney trick concerns
homology concordance of links. Links L and J in homology spheres Y and Y ′ are homology concordant
if there is a disjointly embedded union of locally flat annuli each one bounded by a component of
L and a component of J in a homology cobordism from Y to Y ′. It is conjectured by the first
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named author [10] that every link in a homology sphere is homology concordant to a link in S3. This
conjecture is particularly intriguing because the corresponding statement is known to be false in the
smooth category [16, 15, 25, 8]. Evidence for this conjecture was provided in [9, 10] and we provide
a similar type of evidence in this article. Our evidence will come in the language of Whitney tower
concordance. A formal definition of a Whitney tower appears in Section 5; see also [6]. Informally, a
Whitney tower is a 2-complex given by starting with an immersed surface in a 4-manifold (a union
of annuli in a homology cobordism in our case) and iteratively pairing up intersection points with
Whitney disks, while accepting that each added Whitney disk will introduce more intersection points
which must be paired with new Whitney disks. The order of a Whitney tower records roughly how
far into this tower one must go before seeing intersection points which are not paired with Whitney
disks. Two links L and J in homology spheres Y and Y ′ are order k Whitney tower concordant
and we write L 'k J if they bound a collection of immersed annuli which extend to an order k
Whitney tower in a simply connected homology S3 × [0, 1]; cf. [6, Definition 3.2]. Hence if two links
are homology concordant then they are order k Whitney tower concordant for all k. We will use the
relative Whitney trick to prove the following.

Theorem 1.4. If L is link in a homology sphere and k is a nonnegative integer, then there is a link
J in S3 such that L 'k J .

We point out an interesting consequence. Consider now an n-component link L in a homology sphere.
By Theorem 1.4 there is a link J in S3 so that L and J cobound an order n Whitney tower. According
to [22, Theorem 4], if n-component links cobound an order n Whitney tower, then this Whitney
tower can be used to guide a sequence of Whitney tricks to produce a disjoint union of immersed
annuli. As observed in [22, Remark 3], these annuli can be made smooth. We arrive at the following
corollary.

Corollary 1.5. If L is link in a homology sphere Y , then there is a link J in S3 and a simply
connected homology cobordism from Y to S3 such that the components of L and J cobound disjoint
immersed annuli in the cobordism. Moreover, if the cobordism is smooth, then these annuli may be
smoothly immersed.

1.3. Gordian distance and link homotopy. Freedman-Teichner [13] say L ⊂ Y is 4D-
homotopically trivial if it bounds disjoint immersed disks in a contractible 4-manifold. Suppose
L intersects a 3-ball B ⊂ Y so that (B,B ∩ L) is orientation preserving homeomorphic to one of
the tangles in Figure 3. A crossing change is the local tangle replacement operation of replacing a
positive crossing with a negative crossing, or vice-versa. The reader may notice that this construction
depends on the choice of identification of B to the 3-ball, but this subtlety will not be relevant in
our analysis.

Figure 3. Left: A positive crossing. Right: A negative crossing.

We define the homotopy trivializing number nh(L) to be the minimum number of crossing changes
required to transform L into a 4D-homotopically trivial link. If L is a link in S3, then the homotopy
trivializing number of L is the minimum Gordian distance from L to a homotopically trivial link (in
the sense of Milnor [18]).
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In Subsection 6.1, we use the relative Whitney trick to prove that this number can be computed by
counting the number of intersections between distinct generically immersed disks bounded by the
link in a contractible 4-manifold. More concretely, we prove the following.

Proposition 1.6. If L is a link in a homology sphere Y , then

nh(L) = min
{∑

i<j #(Di ∩Dj)
}

where the minimum is taken over all collections of immersed disks D1 ∪ · · · ∪Dn in the contractible
4-manifold bounded by Y , with boundary the link, and meeting one-another transversely.

In Subsection 6.2, we combine Proposition 1.6 with results of Habegger-Lin [14] to obtain upper and
lower bounds for nh(L). Moreover, for links with 3 or fewer components we completely determine
nh(L). We remark that the upper bound we establish depends only on the linking numbers and the
number of components, and in particular, it is independent of any of the higher order link homotopy
invariants of Milnor [18].

Theorem 1.7. Let L be a link in a homology sphere and Λ(L) :=
∑
i<j | lk(Li, Lj)|. If L is a

2-component link, then nh(L) = Λ(L). If L is a 3-component link, then

nh(L) =


Λ(L) if Λ(L) 6= 0

2 if Λ(L) = 0 and µ123(L) 6= 0

0 otherwise.

In general, there is some Cn ∈ N so that for every n-component link L,

Λ(L) ≤ nh(L) ≤ Λ(L) + Cn.

1.4. Comparison with the ordinary Whitney trick. In high-dimensions, ordinary Whitney
disks are usually assumed to be (and can always be arranged to be) embedded with interiors disjoint
from the submanifolds containing their boundary arcs (with the framing condition guaranteed by
the opposite signs of the paired intersections). In dimension four, ordinary Whitney disks are gen-
erally assumed to contain self-intersections and intersections with other surfaces (as well as framing
obstructions) which are then studied or controlled.

In dimension four, it is not always possible to find a Whitney disk. Their existence is obstructed
by the self-intersection invariant in a quotient of the fundamental group ring of the ambient 4-
manifold. In comparison, under appropriate conditions, it is always possible to find relative Whitney
disks. For instance if the map on fundamental groups induced by the inclusion of the boundary is
surjective then every point of intersection will admit a relative Whitney disk. Notice that our setting
of homology spheres bounding contractible 4-manifolds certainly satisfies this condition.

Organization of the paper. The reader will have noticed that Theorems 1.1, 1.4, and 1.7 seem
disparate. They are related by their reliance on the relative Whitney trick as a means to separate
immersed disks. In Section 2, we give a precise description of the relative Whitney trick, and in
Section 3, we use it to separate immersed disks, proving Proposition 1.2. These two sections are
prerequisite to the remaining sections of the paper, which are then more or less independent of each
other. In Section 4, we state a sufficient condition, Theorem 4.4, for freely slicing a boundary link
in a homology sphere generalizing [5, Theorem A], and use it to prove Theorem 1.1. The proof of
Theorem 4.4 uses the same ideas as appear in [5] and so is delayed until Appendix A. In Section 5,
we apply the relative Whitney trick to the construction of Whitney towers and prove Theorem 1.4.
In Section 6, we relate nh(L) to the minimum number of intersection points amongst immersed disks
bounded by a link L and prove Theorem 1.7.

Notation and conventions. In this article, links are ordered and oriented. All manifolds are
assumed oriented and compact. We will denote by −Y the manifold Y with reversed orientation.
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2. The relative Whitney trick

In this section, we review some of the terminology and conventions we will use throughout the paper,
working in the category of topological manifolds. We then give a detailed description of the relative
Whitney trick.

2.1. Conventions for topological manifolds. We recall some definitions used in [19, Section 3].
A continuous map between topological manifolds is a generic immersion if it is locally a smooth
immersion (in particular a generic immersion is locally flat away from double points). For (Σ, ∂Σ) a
compact surface with boundary and (W,∂W ) a compact 4-manifold with boundary, any continuous
map (Σ, ∂Σ) → (W,∂W ) is homotopic to a generic immersion; this follows from [12, Theorem
8.2], see [19, Proposition 3.1] for an argument. We will henceforth assume generic immersions of
surfaces in 4-manifolds have at worst double points. We will call the image of a generically immersed
surface simply an immersed surface from now on and call it an embedded surface if it has no double
points. If p ∈ S is a double point of an immersed surface S ⊆ W then by definition there is a
neighbourhood U of p in W such that S ∩U is homeomorphic to (R2×{0})∪ ({0}×R2) ⊆ R4. The
submanifolds S1 ⊆ S and S2 ⊆ S identified with R2 × {0} and {0} × R2 (respectively) under this
homeomorphism are called local sheets of S near p. If S ⊆W is an immersed surface, it follows that
S has a neighbourhood homeomorphic to a self plumbing of a vector bundle over S; see [19, Remark
3.2]. Such a neighbourhood is called a tubular neighbourhood and the bundle is called the normal
vector bundle. All the surfaces in this section are compact and each component has boundary. As
a consequence, if the normal vector bundle is orientable then it is also trivializable. If a choice of
trivialization has been made, we will say S is framed.

We say two (locally flat) immersed submanifolds are transverse if they are locally transverse in the
sense of smooth manifolds. Note that if connected embedded surfaces N1 and N2 meet transversely,
this is equivalent to saying N1 ∪N2 is immersed, so in particular it makes sense to talk about local
sheets near transverse intersections of embedded surfaces. We say a proper submanifold (N, ∂N) ⊆
(W,∂W ) is transverse to the boundary if it is locally transverse to the boundary in the sense of
smooth manifolds. Transversality is generic in the topological category as follows. Given locally flat
proper submanifolds N1, N2 of a 4-manifold W that are transverse to the boundary ∂W , there is
an isotopy of W , supported in any given neighbourhood of N1 ∩N2 taking N1 to a submanifold N ′1
that is transverse to N2; see [20, 21] and [12, Section 9.5].

2.2. The relative Whitney trick. Let S be a generically immersed oriented surface in an oriented
4-manifold, (possibly disconnected and possibly with corners). Assume S is transverse to ∂W . Then
∂S ⊆W is embedded, so that S ∩ ∂W ⊆ ∂S is a union of embedded circles and arcs with endpoints
at corners of S.

Let p be a double point of S and write S1, S2 for two local sheets of the immersion near p. Assume
both sheets belong to components of S that have nonempty intersection with ∂W . For i = 1, 2,
choose embedded arcs αi ⊆ S running from some qi ∈ ∂S ∩ ∂W to p; see Figure 4 for a labelled
schematic.

We assume that αi ∩ (S1 ∪ S2) ⊆ Si, and that α1 and α2 are disjoint from each other and from all
double points of S other than their common endpoint at p. Suppose that there exists an embedded
arc α3 ⊆ ∂W running from q2 to q1 with interior disjoint from ∂S such that the concatenation
α1 ∗ α2 ∗ α3 is nullhomotopic in W . Let ∆p be an immersed disk in W transverse to S bounded by
α1 ∗ α2 ∗ α3.
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∂W

S1

S2p

q1
q2

α1

α2

α3

p

∆p

Figure 4. Left to right: A transverse point of intersection p in S1 ∩ S2. A relative
Whitney disk, ∆p for p. The result of modifying S1 by the relative Whitney trick.

Definition 2.1. Let S be an immersed oriented surface in an oriented 4-manifold W and p be a
double point of S. Any disk ∆p as above is called a relative Whitney disk for p, and we call the
corresponding α3 the relative Whitney arc of ∆p.

As we are working in the topological category, we take a moment to justify our later use of smooth
concepts, such as tangent and normal vectors, by arranging the Whitney disk into a generic position
near its boundary. Let U1, U2 ⊆ S be closed regular neighbourhoods of α1, α2 ⊆ S respectively; each
Ui is thus homeomorphic to a closed disk, so that αi is interior to Ui except for its endpoint at qi.
We may assume, for some local sheets S1 and S2 of p, that Ui ∩ (S1 ∪ S2) = Si. By taking these
neighbourhoods small enough we arrange that U1 ∩U2 = {p} and U1 and U2 are disjoint from every
double point of S other than p. As a consequence U1 and U2 are each embedded in W . Since S is
immersed, so is U := U1 ∪ U2. Thus U has a tubular neighbourhood NU ⊆ W homeomorphic to
the result of plumbing together U1 ×D2 and U2 ×D2 and we may regard U1 and U2 as smoothly
embedded disks in NU with the smooth structure pulled back from this plumbing. After changing ∆p

by a homotopy fixing its boundary we may assume that ∆p∩NU ⊆ NU is a smooth submanifold with
corners. In the complement of the interior of NU we now see a properly immersed disk, ∆print(NU ).
Let N ⊆W r int(NU ) be its tubular neighbourhood. We now have that N∆ := NU ∪N is the result
of gluing together NU and a tubular neighbourhood of ∆p r int(NU ) (a self plumbing of a disk)
along a 3-ball in their shared boundary. Being the result of gluing together two smooth 4-manifolds
along a shared submanifold in their boundary, N∆ is a smooth 4-manifold and ∆p, U1 and U2 are
smoothly immersed surfaces in N∆.

Introducing some notation, for points a, b, c ∈ R2 denote by ab the straight line segment between a
and b, and by ∆abc the triangle with vertices at a, b, and c. We will parametrize ∆p by the triangle
∆xyz ⊆ R2 of Figure 5, sending the line segments xy, yz, and zx to α1, α2, and α3 respectively.
By taking the neighbourhood NU small enough we may assume that ∆p ∩ NU is parametrized by
the region R depicted in Figure 5. We also construct a slightly larger immersed disk ∆+

p ⊂ N∆ as
follows. Let w be the normal vector to α2 ⊆ N∆ given by the outward tangent to ∆p ⊆ N∆. Define
∆+
p by extending ∆p in the w-direction along the length of the arc α2. We parametrize ∆+

p by the

larger triangle ∆+
xyz := ∆xy+z+ ⊆ R2 of Figure 5. Note that at p, the vector w is tangent to α1 and

to S1.

By restricting the normal bundle E of ∆+
p to α1∗α2 we obtain a 2-plane bundle E|α1∗α2

over xy∪yz.
At each point in αi let vi be the tangent direction in Si normal to αi, and let ui be a common normal
to both ∆p and Si, chosen to vary continuously (i.e. to form a section of E|αi

). Moreover, choose ui
so that u1 = v2 and u2 = v1 at p. Together these give a framing of E|α1∗α2

. Since ∆+
xyz deformation

retracts to xy ∪ yz, this framing extends to a framing of E. By the tubular neighbourhood theorem
we find an identification of a (possibly smaller) tubular neighbourhood of ∆+

p with a plumbed disk,

which we parametrize by an immersion Φ : ∆+
xyz × R2 # N∆ such that:

• Φ (xy × {(0, 0)}) = α1, Φ|
xy+×R×{0} is an embedding with image in U1,
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z x

y

R

zz+
x

y

y+

Figure 5. Left: The triangle ∆xyz used to parametrize ∆p, together with R, the
preimage of ∆p ∩NU . Right: A larger triangle ∆+

xyz := ∆xy+z+ .

• Φ
(
xy+ × {(0, 0)}

)
⊆ U1 is α1 extended slightly on S1 along the direction tangent to α1 at p,

• Φ(yz × {(0, 0)}) = α2, Φ|yz×{0}×R is an embedding with image in U2,

• otherwise Φ
((
xy+ ∪ yz

)
× R2

)
is disjoint from S, and

• Φ(zx× {(0, 0)}) = α3 and Φ
(
zx× R2

)
⊆ ∂W is a tubular neighbourhood of α3.

We now take U1, remove a neighbourhood of α1, and replace it with pushed-off copies of ∆+
p together

with a thickened α2, pushed up in the outwards facing tangent direction to ∆p. Precisely, we form
the following:

U ′1 :=
(
U1 r Φ

(
xy+ × [−1, 1]× {0}

))
∪ Φ

(
∆+
xyz × {−1, 1} × {0}

)
∪ Φ

(
y+z+ × [−1, 1]× {0}

)
.

We will refer to the act of modifying S by replacing U1 by U ′1 the relative Whitney trick along ∆p.

Remark 2.2. Here are some observations.

(1) U ′1 and U2 are disjoint.

(2) The image Φ(∆+
xyz × [−1, 1] × {0}) parametrizes a homotopy from U1 to U ′1. If ∆p is not

embedded then U ′1 is not embedded.

(3) The homotopy describing the relative Whitney trick changes ∂S by a finger move as depicted
in Figure 6. In general, a finger move between embedded arcs A1 and A2 in a 3-manifold is
band-sum operation from A1 to a meridional circle of A2. This operation is specified by a
choice of embedded arc from A1 to A2, together with a choice of framing for that arc relative
to a fixed framing on the boundary of the arc. In our case α3 is this arc from A1 to A2, and
the framing is determined by Φ. For the purposes of this paper, we will not need to keep track
of this specific framing, but we note that for future applications it might be desirable to do so.

(4) If F is an immersed surface in W (for example a subsurface of S), meeting the interior of
∆p transversely n times, then the relative Whitney trick adds 2n points of intersection to
U ′1 ∩ F . Moreover, for every point of self-intersection of ∆p, there are four new points of self
intersection are added to U ′1 by performing the relative Whitney trick.



THE RELATIVE WHITNEY TRICK 9

(5) If W is a smooth 4-manifold in which S and ∆p are smoothly immersed, then the result
of modifying S by the Whitney trick using ∆p is still smoothly immersed (after smoothing
corners).

∂U2 ∂U1

Φ
(
z+x× [−1, 1]× {0}

)

∂U2
∂U ′1

Figure 6. The relative Whitney trick affects ∂S ∩ ∂W by a finger move.

3. Separating an immersed disk collection

Let L be a link in a 3-manifold, whose components bound immersed disks in a bounded 4-manifold.
In this section, we explain how to use the relative Whitney trick to homotope away all intersections
between these disks.

Lemma 3.1. Let W be a 4-manifold, Y be a connected 3-manifold in ∂W , and L = L1 ∪ L2 be a
link in Y whose components are nullhomotopic in W . If the inclusion induced map π1(Y )→ π1(W )
is surjective, then there exists a link J = J1 ∪ J2 in Y which is freely homotopic to L and bounds
disjoint immersed disks in W . If W is smooth, then these disks may be smoothly immersed.

Moreover, if D1 and D2 are transverse immersed disks in W bounded by L, then we may choose a
homotopy from L to J which restricts to an isotopy on each component of L and changes a crossing
between L1 and L2 exactly once for each point in D1 ∩D2.

Proof. Let D1 and D2 be transverse immersed disks bounded by L. We will show how to reduce the
number |D1 ∩D2| by one, via the relative Whitney trick. Notice that each point in D1 ∩D2 can be
thought of as a double point in D1 ∪D2, and so it makes sense to apply the relative Whitney trick
as outlined in Section 2. As in Figure 6 this relative Whitney trick has the effect of changing a single
crossing between L1 = ∂D1 and L2 = ∂D2.

First, we alter D1 and D2 by a homotopy which is constant on the boundary so that D1 and D2

intersect transversely. Let p ∈ D1 ∩ D2, q1 ∈ L1, q2 ∈ L2, α1 be an embedded arc in D1 running
from q1 to p, and α2 be an embedded arc in D2 running from p to q2. We may assume that α1

and α2 are disjoint from all double points of D1 and D2 and miss all points in D1 ∩D2 other than
their common endpoint at p. Since π1(Y )→ π1(W ) is surjective, there is an embedded arc α3 in Y
running from q2 to q1 so that the concatenation α1 ∗ α2 ∗ α3 is nullhomotopic in W . Thus, there is
a relative Whitney disk ∆p for p.

Performing the relative Whitney trick using ∆p to modify D1 will add two points to D1 ∩ D2 for
each point in ∆p ∩D2. As the objective is to reduce the number |D1 ∩D2|, our next goal must be
the removal of all points in ∆p ∩D2. Let r ∈ ∆p ∩D2. Pick an embedded arc β in ∆p from r to a
point t interior to α2 ⊆ D2 and disjoint from all double points and points of intersection. Perform
a 4-dimensional finger move on D2 along β (cf. [12, §1.5]); a visualization of how this move changes
D2 appears in Figure 7. We will refer to the modified D2 by the same name. The cost of the finger
move is to add two new points of self-intersection to D2, but this will not concern us. Repeat this
process at each point in ∆p ∩D2. A similar procedure may be used to remove points in D1 ∩∆p,
although this is not required in the proof of the lemma.
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s
β

Figure 7. Left: A point s in the intersection of ∆p (gray) with D2 (red) together
with an embedded arc β in ∆p from s to α2 ⊆ ∆2. Right: A homotopy of D2 removes
the point of intersection at φ(s) and introduces two new points of self intersection
for D2.

Now perform the relative Whitney trick using ∆p to modify D1. As we have D2 ∩ ∆p = ∅, the
relative Whitney trick reduces |D1 ∩D2| by one. By iterating the procedure above, we achieve that
|D1 ∩ D2| = 0. Since each application of the relative Whitney trick reduces |D1 ∩ D2| by one and
changes one crossing between L1 and L2, the last claim of the lemma follows.

For the statement regarding smoothly immersed disks, if W is smooth, then we can arrange that
D1, D2 as well as each ∆p are smoothly immersed. As a consequence of Remark 2.2 (5), this would
result in the disjoint disks produced being smoothly immersed. �

When one tries to extend Lemma 3.1 to links with more components, a new complication arises.
Assume the hypotheses of the lemma, but now assume that D1, . . . , Dn is a collection of n transverse
immersed disks. Consider two of these immersed disks Di and Dj . We wish to separate them by
removing intersection points with the relative Whitney trick. Let p ∈ Di ∩Dj and ∆p be a relative
Whitney disk for p. If ∆p intersects a disk Dk for some k /∈ {i, j}, then performing the relative
Whitney trick using ∆p to modify Di will produce new points in Di ∩Dk. Hence, we would need a
way to arrange that the relative Whitney disk ∆p is disjoint from Dk for all k /∈ {i, j}. Also, note
that if k ∈ {i, j}, as in the proof of Lemma 3.1, we may perform a finger move on Dk to remove the
intersection points in ∆p ∩Dk for the price of introducing more self intersections.

Suppose k /∈ {i, j} and let r ∈ ∆p ∩ Dk. Our strategy to remove r is to modify the disk ∆p itself
by a relative Whitney trick using some relative Whitney disk ∆r for r. Of course, the use of ∆r

may add new intersection points to ∆p, according to what intersects ∆r, so we pause to consider
this. Intersection points in ∆r ∩Di and ∆r ∩Dj are not a problem because performing the relative
Whitney trick using ∆r to modify ∆p only adds points to ∆p ∩Di and ∆p ∩Dj , and these points
can be removed by performing finger moves as in the proof of Lemma 3.1. In fact, an intersection
point in ∆r ∩Dk is also not a problem, as we can now perform a finger move on Dk to remove it,
at the cost of adding two self-intersections to Dk. So intersections between ∆r and each of Di, Dj

and Dk are all unproblematic for us, whereas on ∆p we could only deal with the first two types.
The above argument allows us to extend Lemma 3.1 to 3-component links. For links with more than
3-components there may be further intersection types in ∆r that we cannot yet deal with. This
suggests an induction: adding relative Whitney disks at each stage, and increasing the number of
intersection types we know how to remove with finger moves. Eventually we know how to deal with
all intersection types. Then a series of finger moves and relative Whitney tricks will remove the
intersection point r, with the only cost a possible increase in self-intersection for the disks. We now
give more detailed proof. Note that the following statement is more general than Proposition 1.2.
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Proposition 3.2. Let W be a 4-manifold, Y be a connected 3-manifold in ∂W , and L = L1∪· · ·∪Ln
be a link in Y whose components are nullhomotopic in W . If the inclusion induced map π1(Y ) →
π1(W ) is surjective, then there exists a link J = J1∪· · ·∪Jn in Y which is freely homotopic to L and
bounds disjoint immersed disks in W . If W is smooth, then these disks may be smoothly immersed.

Moreover, if D1, . . . , Dn are transverse immersed disks in W bounded by L, then we may choose
a homotopy from L to J which restricts to an isotopy on each component of L and for any i 6= j
changes a crossing between the ith and jth components exactly once for each intersection point in
Di ∩Dj.

Proof. Let D1, . . . , Dn be transverse immersed disks bounded by L. Consider two of these immersed
disks Di and Dj and let p ∈ Di∩Dj . We will modify D1∪· · ·∪Dn by a homotopy which is constant
on the boundary and which does not change |Dk ∩D`| for any k 6= `. Afterwards we will produce
a relative Whitney disk ∆p associated with p so that ∆p ∩ Dk = ∅ for all k 6= i. Once we have
accomplished this, the relative Whitney trick using ∆p to modify Di preserves |Dk ∩ D`| for all
{k, `} 6= {i, j} and will reduce this number by one if {k, `} = {i, j}. As in Lemma 3.1, it also affects
L by a homotopy obtained by changing a crossing between the ith and the jth component.

We will call the point p ∈ Di ∩Dj an order zero intersection point. Choose a relative Whitney disk
∆p associated with p and call it an order one relative Whitney disk. As in the proof of Lemma 3.1,
a relative Whitney disk exists since the induced map π1(Y ) → π1(W ) is surjective. In fact, for
any double point, we can find an associated relative Whitney disk. We define the set of acceptable
numbers for ∆p to be Ap = {i, j}. An intersection point r ∈ ∆p ∩ Dk is called unacceptable for
∆p if k 6∈ Ap. We now make an inductive definition. Let m ∈ N, suppose that ∆q is an order m
relative Whitney disk with set of acceptable numbers Aq ⊆ {1, . . . , n} and that r ∈ ∆q ∩ Dk is
some unacceptable intersection point for ∆q. We will call the point r an order m intersection point.
An associated relative Whitney disk ∆r is called an order m + 1 relative Whitney disk. The set of
acceptable numbers for ∆r is defined to be Ar := Aq ∪ {k}. It follows from induction that if ∆q is
an order m relative Whitney disk, then |Aq| = m+ 1. In particular, if ∆q is an order n− 1 relative
Whitney disk, then Aq = {1, . . . , n} and every intersection point r ∈ ∆q ∩Dk is acceptable.

Let D1 = {∆p}. We make an inductive construction. Let m ∈ N and suppose Dm is a set of order m
relative Whitney disks. For each ∆q ∈ Dm and for each unacceptable order m intersection r ∈ ∆q,
choose an order m+1 relative Whitney disk ∆r. Write Dm+1 for the set consisting of a single choice
of ∆r for each such q and r. Write D := D0 ∪ D1 ∪ · · · ∪ Dn−1. We now organize D into a tree with
root ∆p by declaring that for any ∆q ∈ Dm and any unacceptable intersection point r ∈ ∆q ∩Dk

the relative Whitney disk ∆r is a descendent of ∆q. Notice that a vertex ∆q on this graph is a leaf if
and only if it has no unacceptable intersections. Consequentially, any order n− 1 relative Whitney
disk in D is a leaf.

Suppose that ∆r ∈ Dm is a leaf of order m > 1. We will homotope D1 ∪ · · · ∪Dn while preserving
Dk ∩ D` for all k 6= `, preserving D, and without introducing any new unacceptable intersection
points. The end result will have that the interior of ∆r is disjoint from D1 ∪ · · · ∪Dn.

Proceeding, since ∆r is order m > 1, it is a descendent of some ∆q. Thus for some k, we have that
r ∈ ∆q ∩ Dk where r is an unacceptable intersection point of order m − 1, and Ar = Aq ∪ {k}.
Suppose ∆r ∩ D` is nonempty for some `. If ` = k, then for each point perform a finger move on
Dk, along an embedded arc in ∆r, to remove this intersection point, with the cost of producing two
new self-intersections in Dk. If ` 6= k, then we perform a finger move on D`, along an embedded arc
in ∆r, to remove this point of intersection, with the cost of producing two new points in ∆q ∩D`.
Since ∆r is a leaf, ` must be in Ar = Aq ∪ {k}. As ` 6= k, it must be that ` ∈ Aq, and so these two
new points of intersection are acceptible. We have now arranged that the interior of ∆r is disjoint
from D1 ∪ · · · ∪Dn. Importantly, we have created no new unacceptable intersections.
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We now modify ∆q by the relative Whitney trick using ∆r. This reduces the number of unacceptable
intersections in ∆q by one and eliminates the leaf at ∆r. The possible cost of this procedure is to
produce new self-intersections in Dk and new acceptable intersections in ∆q. The affect on the
boundary of this move is to change the relative Whitney arc associated with ∆q by a homotopy
passing it through a component of L. In particular, the original link L is preserved.

Iterate the modification of the previous three paragraphs until the tree D has no leaves of order
m > 1. This means that D = {∆p} and so ∆p is a leaf. Thus ∆p ∩ Dk = ∅ for all k /∈ {i, j}. By
performing finger moves as in Lemma 3.1, we arrange that ∆p is disjoint from Dj at a cost of adding
self intersections to Dj . Modifying Di by the relative Whitney trick using ∆p reduces |Di ∩Dj | by
exactly one at the possible expense of increasing the self-intersections of Di. On the boundary this
relative Whitney move affects a single crossing change between Li and Lj as claimed.

Again, the same argument from the proof of Lemma 3.1 gives the statement regarding smoothly
immersed disks. �

Remark 3.3. The idea of finding increasingly high order relative Whitney disks used in the proof of
Proposition 3.2 is reminiscent of the concept of a Whitney tower; see for example [6, 4]. It motivates
and is an example of what we call a relative Whitney tower, a concept whose formal definition
appears in Section 5.

4. Every link in a homology sphere is freely homotopic to a slice link

Cha-Kim-Powell [5] have obtained conditions that ensure a link in S3 is freely slice. We now describe
a generalization of these conditions for links in a general homology sphere. Links satisfying the
generalized conditions are also freely slice, as we confirm in Appendix A. We then describe how
the disk separation results from Section 3 are used to modify any link in a homology sphere by a
homotopy to satisfy the generalized Cha-Kim-Powell conditions. This will prove Theorem 1.1, the
main theorem of the paper. We first give some definitions. Recall that a link L in a homology sphere
Y is a boundary link if it bounds pairwise disjoint Seifert surfaces in Y and a collection of such
surfaces is called a boundary link Seifert surface for L. Lastly, a link L is freely slice if it bounds a
collection of disjoint locally flat disks D in the contractible topological 4-manifold X bounded by Y
such that π1(X rD) is a free group generated by the meridians of L.

Definition 4.1. Given a boundary link L together with a boundary link Seifert surface F , a good
basis is a collection {ai, bi}1≤i≤g of simple closed curves on F , whose geometric intersections are
symplectic, that represent a basis for H1(F ;Z), and such that the Seifert matrix of F with respect
to this basis is reducible by a sequence of elementary S-reductions to the null matrix

0 ε1
1− ε1 0

0 ∗
0 ∗

0 ∗
0 ∗ . . .

0 ∗
0 ∗

0 0
∗ ∗

0 ε2
1− ε2 0

0 ∗
0 ∗ . . .

0 ∗
0 ∗

0 0
∗ ∗

0 0
∗ ∗

0 ε3
1− ε3 0

. . .
0 ∗
0 ∗

...
...

...
. . .

...
0 0
∗ ∗

0 0
∗ ∗

0 0
∗ ∗ . . .

0 εg
1− εg 0


where εi ∈ {0, 1} for each i and each ∗ represents some integer.

Definition 4.2. Let L be a boundary link in a homology sphere Y , F be a boundary link Seifert
surface for L, and {ai, bi}1≤i≤g be a good basis for L on F . For each i, let b′i be the result of pushing
bi off of F such that it has zero linking with ai, and (b′i)

+ be a zero linking parallel copy of b′i.
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We say that {ai, bi}1≤i≤g is a good disky basis for L if there exist immersed disks{
∆+
j ,∆i | 1 ≤ j ≤ 2g, 1 ≤ i ≤ g

}
in the contractible 4-manifold bounded by Y , such that ∂∆+

i = ai, ∂∆+
g+i = (b′i)

+, and ∂∆i = b′i for

each i and all disks are pairwise disjoint except possibly for intersections among {∆+
j }1≤j≤2g.

Remark 4.3. Cha-Kim-Powell use the condition of ‘homotopy trivial+’ in addition to being a good
basis. As in the proof of [5, Proposition 4.3] it follows from [5, Remark 3.2 (1) and Lemma 3.3] that
a homotopy trivial+ good basis for a boundary link in S3 satisfies the conditions of Definition 4.2.

We can now state a version of the Cha-Kim-Powell theorem for links in general homology spheres.

Theorem 4.4. A boundary link in a homology sphere with a good disky basis is freely slice.

The proof of Theorem 4.4 is essentially the same as Cha-Kim-Powell’s proof of [5, Theorem A]. A
sketch of this argument, together with the minor adjustments required to confirm their argument
transfers over to general homology spheres, are found in Appendix A. The current section will
proceed assuming that Theorem 4.4 is proved.

Next we show how a link in a 3-manifold can be modified by a homotopy to a boundary link with a
good disky basis.

Proposition 4.5. Let W be a simply connected 4-manifold, Y be a connected 3-manifold in ∂W ,
and L = L1 ∪ · · · ∪ Ln be a link in Y whose components are nullhomologous in Y . Then L is freely
homotopic to a link J = J1 ∪ · · · ∪ Jn so that there exists a collection of disjoint immersed disks
{Di, D

+
i }1≤i≤n in W such that ∂Di = Ji and ∂D+

i = (Ji)
+, where (Ji)

+ is a zero linking parallel
copy of Ji.

Proof. Pick n distinct points p1, . . . , pn in Y . As each Li is nullhomologous in Y , we see that Li
is freely homotopic to a product of commutators

∏gi
j=1[αi,j , βi,j ] for some αi,j , βi,j ∈ π1(Y, pi). By

Proposition 3.2, there is a link

L :=

n⋃
i=1

gi⋃
j=1

ai,j ∪ bi,j

such that for each i, j, the components ai,j and bi,j are freely homotopic to αi,j and βi,j respectively,
and there are disjoint immersed disks{

∆ai,j ,∆bi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ gi
}

in W bounded by L. Thus, for each i, j, there exist embedded arcs ci,j and di,j from pi to a point
on ai,j and bi,j respectively, so that, as elements in π1(Y, pi)

αi,j = ci,j ∗ ai,j ∗ c−1
i,j and βi,j = di,j ∗ bi,j ∗ d−1

i,j .

As in Figure 8, we construct a collection of disjoint surfaces F1, . . . , Fn in Y so that for each i,

• Fi is a Seifert surface for some knot, denoted by Ji, which is freely homotopic to Li,

• Fi has a symplectic basis {Ai,j , Bi,j}1≤j≤gi so that as curves in Y , Ai,j = ai,j and B′i,j = bi,j
for each j. Here, the curve B′i,j is the positive pushoff of Bi,j with respect to Fi.

• The framing of ai,j = Ai,j induced by Fi extends over ∆ai,j and the framing of bi,j = B′i,j
induced by F+

i , the result of pushing Fi off itself, extends over ∆bi,j . (This can be arranged
by adding twists to the bands of Fi.)

Finally, for each i, the disk Di required by the theorem is produced by starting with Fi and perform-
ing ambient surgery using the disks {∆ai,j}1≤j≤gi . The disk D+

i is produced similarly by starting

with F+
i and performing ambient surgery using {∆bi,j}1≤j≤gi . This completes the proof. �
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pi

ci,1

di,1ci,2

di,2

di,g

ci,g

ai,1

bi,1

ai,2

bi,2

ai,gbi,g

Figure 8. Above: The elements αi,1, βi,1, . . . , αi,g, βi,g ∈ π1(Y, pi) are given by
conjugating the components of a link ai,1, bi,1, . . . , ai,g, bi,g whose components
bound disjoint immersed disks in a contractible 4-manifold by embedded arcs
ci,1, di,1, . . . ci,g, di,g. Below: A knot Li which is freely homotopic to

∏gi
j=1[αi,j , βi,j ]

which bounds a Seifert surface Si so that ai,1, . . . , ai,g sit on Si and bi,1, . . . , bi,g sit
on the normal pushoff S′i.

We are ready to prove Theorem 1.1, which we restate here.

Theorem 1.1. Every link in a homology sphere is freely homotopic to a freely slice link.

Proof. Let L be a link in a homology sphere Y , and X be the unique contractible 4-manifold
bounded by Y . As in the proof of Proposition 4.5, pick n distinct points p1, . . . , pn in Y . Since Y is a
homology sphere, each Li is freely homotopic to a product of commutators

∏gi
j=1[αi,j , βi,j ] for some

αi,j , βi,j ∈ π1(Y, pi). So far the proof is similar to the proof of Proposition 4.5, but now we replace
the reference to Proposition 3.2 with the reference to Proposition 4.5, so that we obtain a link

L :=

n⋃
i=1

gi⋃
j=1

ai,j ∪ bi,j

such that for each i, j, the components ai,j are bi,j are freely homotopic to αi,j and βi,j respectively.
Moreover, there are disjoint immersed disks{

∆ai,j ,∆bi,j ,∆
+
ai,j ,∆

+
bi,j
| 1 ≤ i ≤ n, 1 ≤ j ≤ gi

}
in X bounded by L ∪ L+ where L+ is a zero linking parallel copy of L.
As in the proof of Proposition 4.5, we obtain a boundary link J = J1 ∪ · · · ∪ Jn which is freely
homotopic to L, a boundary link Seifert surface F = F1 ∪ · · · ∪ Fn for J , and a symplectic basis
{Ai,j , Bi,j}1≤i≤n,1≤j≤gi on F such that Ai,j = ai,j and B′i,j = bi,j for each i, j. Again, here B′i,j is
the positive pushoff of Bi,j with respect to Fi, and we may assume that the Seifert framings on Ai,j
and Bi,j are the zero framings.

We claim that J satisfies all of the assumptions of Theorem 4.4. Since linking numbers can be
computed in terms of intersections of bounded disks, we see that the Seifert matrix for F with
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respect to the basis {Ai,j , Bi,j}1≤i≤n,1≤j≤gi has the form

0 ε1
1− ε1 0

0 ∗
0 ∗

0 ∗
0 ∗ . . .

0 ∗
0 ∗

0 0
∗ ∗

0 ε2
1− ε2 0

0 ∗
0 ∗ . . .

0 ∗
0 ∗

0 0
∗ ∗

0 0
∗ ∗

0 ε3
1− ε3 0

. . .
0 ∗
0 ∗

...
...

...
. . .

...
0 0
∗ ∗

0 0
∗ ∗

0 0
∗ ∗ . . .

0 εg
1− εg 0


with each ∗ and each εi equal to zero. We have now produced a good basis. The existence of the
disjoint disks {∆ai,j ,∆bi,j ,∆

+
bi,j
}1≤i≤n,1≤j≤gi implies that {ai,j , bi,j}1≤i≤n,1≤j≤gi is a good disky

basis. Thus, by Theorem 4.4 we conclude that J is freely slice. �

5. Whitney tower concordance and links in homology spheres

In this section, we will explain how to use the relative Whitney trick to construct Whitney towers.
We will begin by recalling the definition of a (non-relative) Whitney disk, and Whitney tower; see
also [4, Section 2.1], for example.

Let S be an immersed oriented surface in a 4-manifold W with double points p and q of opposite
signs. Let α1 and α2 be embedded arcs in S, running from p to q and q to p respectively. Assume
that α1 and α2 meet the double point set of S only at {p, q}, that α1 ∩ α2 = {p, q}, and that near
both p and q the arcs are in different local sheets. Let ∆ be an immersed disk in W bounded by
the circle γ := α1 ∗ α2, and with interior transverse to S. The normal bundle of ∆ has a unique
trivialisation; its restriction to γ determines a choice of framing for the trivial 2-plane bundle over
γ. At each point on αi let vi be the tangent direction in S normal to αi, and let ui be a common
normal to both ∆ and S, chosen to be a section of the normal bundle of ∆ restricted to αi. These can
moreover be chosen so that at p and q, we have u1 = v2 and u2 = v1. These combine to determine
a second framing for the trivial 2-plane bundle over γ. If the two framings described above agree,
then ∆ is a called a Whitney disk pairing the double points at p and q.

A Whitney tower is a special type of union of immersed surfaces. The precise definition is recursive.
A union of properly immersed oriented surfaces in a 4-manifold W which are transverse to each other
is a Whitney tower. Let T be a Whitney tower and ∆ be a Whitney disk pairing two intersections
of opposite signs between surfaces in T . Suppose also that ∆ is disjoint from the boundary of every
surface in T . Then T ∪∆ is a Whitney tower.

The various immersed surfaces which make up a Whitney tower have an associated order. The initial
surfaces in a Whitney tower T are called order 0 surfaces in T . A point in the intersection of an
order k and an order ` surface in T is called an order k+ ` intersection. A Whitney disk pairing two
order k intersections is called an order k + 1 Whitney disk. If all intersection points of order less
than k are paired by Whitney disks, then T is called an order k Whitney tower.

Given an intersection point p in a Whitney tower T , it may be that in the 4-manifold W there is no
Whitney disk pairing p with another intersection point in T ; as a consequence, there is a filtration of
link concordance, as we now describe. Suppose that W is a 4-manifold with ∂W = ∂+W ∪ −∂−W .
Two n-component links L ⊆ ∂+W and J ⊆ ∂−W are order k Whitney tower concordant in W if
there is an order k Whitney tower T in W so that the order 0 surfaces of T are n immersed annuli
A1, . . . , An with ∂Ai = Li ∪ −Ji.
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Definition 5.1. If L and J are links in homology spheres that are order k Whitney tower concordant
in a simply connected homology cobordism between the homology spheres, then we say that L and
J are order k Whitney tower concordant and write L 'k J .

Remark 5.2. Particularly for links in S3, the equivalence relation from Definition 5.1 has been the
subject of deep study and is known to be highly nontrivial. The reader is directed to [4, 6, 7], for
example, for further background and results.

The main goal of this section is to prove Theorem 1.4. For convenience, we recall the statement.

Theorem 1.4. If L is link in a homology sphere and k is a nonnegative integer, then there is a link
J in S3 such that L 'k J .

In order to construct the link J in Theorem 1.4, as well as the needed Whitney tower concordance,
we extend the idea of a relative Whitney disk to an object analogous to a Whitney tower with
relative Whitney disks in place of Whitney disks.

A relative Whitney tower is recursively defined as follows. A union of properly immersed oriented
surfaces in a 4-manifold W which are transverse to each other is a relative Whitney tower. Let T
be a relative Whitney tower and ∆ be a relative Whitney disk associated with a double point in T .
Suppose that ∆ is disjoint from the boundary of every surface in T other than the endpoints of its
relative Whitney arc. Then T ∪∆ is a relative Whitney tower.

Similarly to Whitney towers, relative Whitney towers have an associated order. The initial surfaces
in a Whitney tower T are called order 0 surfaces of T . A point in the intersection of an order k and
an order ` surface in T is called an order k+ ` intersection. A relative Whitney disk associated to an
order k intersection is called an order k + 1 relative Whitney disk. If all intersection points of order
less than k have relative Whitney disks in T , then T is called an order k relative Whitney tower.

Remark 5.3. The proof of Proposition 3.2 involved the construction of an object which is a relative
Whitney tower.

The proof of Theorem 1.4 will require two lemmas which we hope also provide evidence that relative
Whitney towers are interesting and useful. First, in Lemma 5.4 we show that they exist much more
readily than Whitney towers. Secondly, in Lemma 5.5 we explain how a relative Whitney tower can
be modified to produce a Whitney tower.

Lemma 5.4. Let W be a 4-manifold and S = S1 ∪ · · · ∪ Sn be a union of properly immersed
connected oriented surfaces in W . If Y is a connected submanifold of ∂W such that π1(Y )→ π1(W )
is surjective, and ∂Si ∩ Y 6= ∅ for each i, then for any nonnegative integer k, there is an order k
relative Whitney tower T whose order 0 surfaces are precisely S and for which all relative Whitney
arcs are contained in Y .

Lemma 5.5. Let W be a 4-manifold and T be an order k relative Whitney tower. If Y is a connected
submanifold of ∂W and contains all relative Whitney arcs of T , then there exists an order k Whitney
tower T ′ such that the order 0 surfaces of T and T ′ differ by a homotopy which is constant outside
of a small neighbourhood of Y .

Armed with these lemmas we can prove Theorem 1.4.

Proof of Theorem 1.4 (assuming Lemmas 5.4 and 5.5). Let L be a link in a homology sphere Y , let
k be a nonnegative integer, and let X be the contractible 4-manifold bounded by Y . Let W be
a 4-manifold obtained by removing an open 4-ball from X. Note that W is a simply connected
homology cobordism from Y to S3. Since W is simply connected, the components of L are freely
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homotopic in W to the components of the unlink in S3. Thus, there exists a collection of immersed
annuli A1, . . . , An so that Ai is bounded by Li and the ith component of the unlink in S3.

By Lemma 5.4, there is an order k relative Whitney tower T whose order 0 surfaces are precisely
A1, . . . , An. Moreover, we can ensure that all relative Whitney arcs of T are contained in S3. By
Lemma 5.5, there is an order k Whitney tower T ′ whose order 0 surfaces are homotopic to A1, . . . , An
by a homotopy which is constant away from a neighbourhood of S3. In particular, the ith component
of the order 0 surface of T ′ is bounded by Li in Y and by some knot Ji in S3. Setting J = J1∪· · ·∪Jn,
we conclude that L 'k J , completing the proof. �

Next, we prove Lemmas 5.4 and 5.5. The proof of Lemma 5.4 follows a relatively straightforward
induction, which we now present.

Proof of Lemma 5.4. Let W be a 4-manifold and suppose Y is a submanifold of ∂W such that
π1(Y ) → π1(W ) is surjective. Consider also a collection of connected oriented properly immersed
surfaces S1, . . . , Sn in W such that ∂Si ∩ Y 6= ∅ for each i.

We will inductively prove that for every nonnegative integer k, there is an order k relative Whitney
tower with order 0 surfaces S1, . . . , Sn and whose relative Whitney arcs are contained in Y . When
k = 0 there is nothing to prove.

Let T be an order k relative Whitney tower satisfying the above properties. Let p be an order k
intersection point in T . Then p is contained in the intersection of two surfaces A and B in T of order
a and b respectively where a+ b = k. If a = 0, then A is an order 0 surface Si and by assumption,
there is an embedded arc α in A running from p to a point q in Y . If a > 0, then A is a relative
Whitney disk of T and there is an embedded arc α in A running from p to a point q on the associated
relative Whitney arc. A schematic including α appears to the left of Figure 9. By assumption this
relative Whitney arc is contained in Y and hence so is q. For any other relative Whitney disk ∆ in
T , we have that ∂∆ ∩ A is either empty or is an embedded arc in A with one endpoint in ∂A and
the other interior to A. Thus, we can arrange that except for its endpoint on ∂A, α is disjoint from
the boundary of every surface in T . Similarly, there is an embedded arc β contained in B running
from p to a point r in Y .

p

α

β

Figure 9. Left: A relative Whitney disk in T containing an intersection point p
along with arcs α and β in different sheets of T from p to the boundary. Right: A
relative Whitney disk associated with p.

Since π1(Y )→ π1(W ) is onto, there is an embedded arc γ in Y from r to q so that α∗β∗γ bounds an
immersed disk ∆p in W . Thus every order k intersection point in Y admits a relative Whitney disk
with relative Whitney arc in Y . After isotoping the interior of ∆p we have that it is disjoint from the
boundary of each surface in T . By replacing T by T ∪∆p we arrange that the order k intersection
now has a relative Whitney disk in T . Observe that ∆p has order k + 1, so any intersections in its
interior are of order at least k + 1; adding ∆p to T adds no new intersections of order up to k. By
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adding a relative Whitney disk to T for every such intersection point, we produce an order k + 1
relative Whitney tower and complete the proof. �

Next we explain how to use a relative Whitney tower to find an honest Whitney tower, and prove
Lemma 5.5. Our argument will employ objects interpolating between Whitney towers and relative
Whitney towers. They are akin to both Whitney towers and relative Whitney towers, allowing for
both Whitney disks and relative Whitney disks.

A mixed Whitney tower is defined recursively as follows. A union of properly immersed surfaces in
a 4-manifold W which are transverse to each other is a mixed Whitney tower. Let T be a mixed
Whitney tower and ∆ be either a Whitney disk pairing two intersection points between surfaces in
T or a relative Whitney disk associated with a single intersection between surfaces in T . If ∆ is a
Whitney disk then we require ∆ be disjoint from the boundary of any surface in T . If ∆ is a relative
Whitney disk then ∆ is disjoint from the boundary of any surface in T away from the endpoints of
its relative Whitney arc. Then T ∪∆ is a mixed Whitney tower.

Mixed Whitney towers have an associated order. The initial surfaces in a mixed Whitney tower T
are called order 0 surfaces in T . A point in the intersection of an order k and an order ` surface in
T is called an order k+ ` intersection. A Whitney disk pairing two order k intersections is called an
order k + 1 Whitney disk. A relative Whitney disk associated to an order k intersection is called an
order k+1 relative Whitney disk. If all intersection points of order less than k have either associated
Whitney disks or relative Whitney disks in T , then T is called an order k mixed Whitney tower.

Proof of Lemma 5.5. For an order k mixed Whitney tower T and a natural number ` ≤ k, if T has
no relative Whitney disks of order greater than ` then we say T transitions at `. Clearly a relative
Whitney tower of order k is a mixed Whitney tower which transitions at k. Additionally, a mixed
Whitney tower is a Whitney tower if and only if it transitions at 0. Thus if we can explain how
to lower the parameter ` at which a given mixed Whitney tower transitions, then induction will
complete the proof. Precisely, let W be a 4-manifold containing a mixed Whitney tower T of order
k which transitions at `. Moreover, suppose Y is a submanifold of ∂W and contains all relative
Whitney arcs of T . We claim that there exists a Whitney tower T ′ of order k which transitions at
`− 1, so that all relative Whitney arcs are contained in Y , and so that the order 0 surfaces of T and
T ′ differ by a homotopy which is constant outside of a small neighbourhood of Y .

The proof of this claim will proceed by changing T by homotopies introducing new intersection points
so that order ` relative Whitney disks become Whitney disks. Let p be an order ` − 1 intersection
point sitting in the intersection of surfaces A and B in T and let ∆p be an associated order ` relative
Whitney disk. The move drawn schematically in Figure 10 changes A by a homotopy, and adds a
new intersection point in A ∩ B. A subdisk ∆′ of ∆p forms a Whitney disk pairing p and this new
intersection point. We proceed to explain this move.

As in Section 2, and using the same notation, we find an immersion Φ : ∆xyz×R2 →W parametrizing
a tubular neighbourhood of ∆p. Since T contains no relative Whitney disks of order greater than
`, we see that T contains no relative Whitney disks associated with intersection points on ∆p.
As a consequence, if we take the regions Q and R in Figure 11 close enough to xz then Φ will
be an embedding when restricted to Q ∪R× R2 and will have image disjoint from T except that
Φ(Q ∪R× {(0, 0)}) ⊆ ∆p, Φ(xx′ × R× {0}) ⊆ A and Φ(zz′′ × {0} × R) ⊆ B.

Modify A and B using Φ(Q× [−1, 1]× {0}) and Φ(R× {0} × [−1, 1]) as guides. That is, set

A′ :=
(
Ar Φ

(
xx′ × [−1, 1]× {0}

))
∪ Φ (Q× {−1, 1} × {0})

∪ Φ
((
x′z′′ ∪ z′′z

)
× [−1, 1]× {0}

)
,
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A

Bp

∆p

A′

B′p

∆′

Figure 10. Left: A relative Whitney disk associated to the point p ∈ A∩B. Right:
After changing A by a homotopy, we see a new point of intersection and a Whitney
disk.

z
z′

z′′
z′′′

x

y

x′
w

u

Q

R

Figure 11. The triangle ∆xyz, with a highlighted quadrilaterals Q and R having
vertex sets {x, x′, z′′, z} and {z, z′, w, z′′′} respectively.

and

B′ :=
(
B r Φ

(
zz′′ × {0} × [−1, 1]

))
∪ Φ (R× {0} × {−1, 1})

∪ Φ
((
z′′′w ∪ wz′

)
× {0} × [−1, 1]

)
.

The embedded (but non-disjoint) cubes Φ(Q× [−1, 1]× {0}) and Φ(R× {0} × [−1, 1]) parametrize
a homotopy from A ∪ B to A′ ∪ B′ which is constant outside of Φ(Q ∪ R × [−1, 1] × [−1, 1]). The
relative Whitney arc associated to ∆p is parametrized by Φ(xy), and by assumption this is contained
in Y . Thus, by taking the tubular neighbourhood of ∆p small enough, and the regions Q and R close
enough to xz, we can arrange that Φ(Q∪R× [−1, 1]× [−1, 1]) is contained in a small neighbourhood
of Y . The homotopy constructed is constant outside of this small neighbourhood of Y .

By direct inspection, A′ ∩ B′ = (A ∩B) ∪ {q} where q = Φ(u, 0, 0). Moreover, ∆′, the closure of
Φ(∆xyz r (Q∪R)), gives a Whitney disk pairing p and q. Thus if T ′ is given by replacing A, B, and
∆p by A′, B′, and ∆′ then T ′ is still an order k mixed Whitney tower and it has one fewer relative
Whitney disks of order ` than T .

By iterating the procedure above, we replace all order ` relative Whitney disks in T with Whitney
disks. The result is an order k mixed Whitney tower which transitions at `− 1. Induction on ` now
completes the proof. �
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6. Homotopy trivializing numbers for links in homology spheres.

In the method we described for separating an immersed disk collection in Section 3, we obtained
a precise relationship between the number of crossing changes between link components in the
boundary, and the number of intersection points removed in the cobounding disk collection. In this
section, we study this relationship in more detail. We introduce two link homotopy invariants (which
we then prove to be the same). We provide precise calculations of these invariants for links of up
to 3 components and more generally we provide bounds for these invariants.

6.1. The homotopy trivializing number coincides with the disk intersection number.

Definition 6.1. Let L = L1 ∪ · · · ∪ Ln be a link in a homology sphere Y . The disk intersection
number of L is

nd(L) := min
{∑

i<j #(Di ∩Dj)
}

where the minimum is taken over all collections of immersed disks D1 ∪ · · · ∪Dn in the contractible
4-manifold bounded by Y , with boundary the link, and meeting one-another transversely.

Recall that a link in a homology sphere is called 4D-homotopically trivial if it bounds disjoint
immersed disks in the unique contractible 4-manifold bounded by the homology sphere.

Definition 6.2. The homotopy trivializing number of a link L is given by minimizing the Gordian
distance dG from L to a 4D-homotopically trivial link. That is,

nh(L) := min{dG(L, J) | J is 4D-homotopically trivial}.

In more detail, we say that dG(L, J) ≤ m if there is a collection of disjoint 3-balls B1, . . . , Bm in Y
so that (Bi, Bi ∩ L) is orientation preserving homeomorphic to one of the tangles in Figure 3 and
that J is isotopic to the result of changing L by a homotopy supported on B1 ∪ · · · ∪Bm replacing
each positive crossing by a negative crossing and conversely.

We now recall Proposition 1.6 with this added language and give a proof.

Proposition 1.6. For any link L in any homology sphere Y there is an equality nd(L) = nh(L).

Proof. Let L be an n-component link in Y with nd(L) = m. Let X be the contractible 4-manifold
bounded by Y and D = D1 ∪ · · · ∪ Dn ⊆ W be a collection of immersed disks bounded by the
components of L with

∑
i<j #(Di ∩ Dj) = m. Since X is contractible, the inclusion induced map

π1(Y ) → π1(X) is trivially surjective and we may apply Proposition 3.2 to see that there is a
homotopy consisting of m crossing changes from L to a new link J which is 4D-homotopically
trivial. Thus, nd(L) ≥ nh(L), proving one of the needed inequalities.

Now assume that nh(L) = m and let J be a 4D-homotopically-trivial link obtained from L by
making m crossing changes. If we cap off the trace of the homotopy from L to J in Y × [0, 1] with a
collection of disjoint immersed disks in X bounded by the components of J then we see a collection
of immersed disks D1∪· · ·∪Dn bounded by the components of L with

∑
i<j #(Di∩Dj) ≤ m. Thus,

nd(L) ≤ nh(L). �

Remark 6.3. The disk intersection number nd(L) is invariant under link homotopy. As a consequence
of Proposition 1.6, so is nh(L). We take a moment to explain. Let L and J be links in Y . If they
are link homotopic, then the trace of a link homotopy from L to J is an union of disjoint immersed
annuli in Y × [0, 1] cobounded by L × {0} and J × {1}. Let X be the contractible 4-manifold
bounded by Y . By capping J × {1} with a collection of immersed disks bounded by J in X we see
that nd(L) ≤ nd(J). By symmetry nd(L) = nd(J).
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6.2. Computations of the homotopy trivializing number. Any 4D-homotopically trivial link
has vanishing linking numbers and each time when we perform a crossing change the linking num-
ber changes at most by one. Hence we have the following obvious lower bound on the homotopy
trivializing number:

(1) Λ(L) :=
∑
i<j

| lk(Li, Lj)| ≤ nh(L).

Moreover, since the linking number lk(Li, Lj) can be computed by taking any immersed disks
bounded by Li and Lj in a homology ball, and counting points of intersection with sign, we see
that nh(L) = nd(L) ≡ Λ(L) (mod 2).

For a link with 2 or 3 components we determine nh(L) completely. For links of more than 3 com-
ponents we find a bound on the difference between nh(L) and Λ(L). Remarkably, this upper bound
depends only on the number of components of L, and in particular is independent of the higher
order link homotopy invariants of Milnor [18]. We restate Theorem 1.7.

Theorem 1.7. Let L be a link in a homology sphere. The the following holds.

• If L is a 2-component link, then

nh(L) = Λ(L).

• If L is a 3-component link, then

nh(L) =


Λ(L) if Λ(L) 6= 0

2 if Λ(L) = 0 and µ123(L) 6= 0

0 otherwise.

• In general, there is some Cn so that for every n-component link L,

Λ(L) ≤ nh(L) ≤ Λ(L) + Cn.

Remark 6.4. By Corollary 1.5, for any link L in a homology sphere, there is a link J in S3 such that in
a simply connected homology cobordism from Y to S3 the components of L and J cobound disjoint
immersed annuli. It follows that nd(L) = nd(J). By Proposition 1.6, we have that nh(L) = nh(J).
Lastly, recall that if two links in homology spheres cobound disjoint immersed annuli, then they
have the same pairwise linking number and Milnor’s triple linking number. Therefore it suffices to
prove Theorem 1.7 for links in S3, and for which the notion of 4D-homotopically trivial and Milnor’s
more classical notion of link homotopically trivial are the same.

The proof of Theorem 1.7 passes though the string link classification of Habegger-Lin [14]. We take
a moment and recall some of their definitions and tools.

Pick n points p1, . . . , pn in the disk D2. An n-component string link T = T1 ∪ · · · ∪ Tn is a disjoint
union of embedded arcs in D2 × [0, 1] with Ti running from pi × {0} to pi × {1}. Let LHn denote
the set of n-component string links in S3.

The notion of link homotopy extends in an obvious way to string links; let SLHn denote the set
of string links up to link homotopy. Importantly, SLHn is a group under the stacking operation of
Figure 12a. The definition of homotopy trivializing number nh extends to string links and, just as
for links in S3, depends only on the link homotopy class. Notice that nh is subadditive under the

stacking operation. The operation of Figure 12b given by sending a string link T to its closure T̂
gives a surjection SLHn � LHn. For any string link T , it is now immediate that

(2) nh(T̂ ) ≤ nh(T ).
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B

A

. . .

. . .

. . .

(a) A ∗B: The result of stacking
string links A and B.

T
. . .

. . .

(b) The closure T̂ of a string link
T .

T1
. . . Ti . . . Tn−1 Tn

(c) φ : RF (n−1)→ SLHn sends
xi to the string link T above.

Figure 12. The stacking and closure operations, together with the map φ.

The key tool we will use in our proof of Theorem 1.7 is the split exact sequence of [14, Lemma 1.8]:

(3) 1 RF (n− 1) SLHn SLHn−1 1.
φ ψ

s

Here, RF (n − 1) indicates the reduced free group. That is, RF (n − 1) is the quotient of the free
group F (n − 1) with generators x1, . . . , xn−1 so that for each i any conjugate of xi commutes
with any other conjugate of xi. The map φ : RF (n − 1) → SLHn is the homomorphism sending a
generator xi to the string link of Figure 12c. The fact that this is well defined follows from work
in [14]. The map ψ : SLHn → SLHn−1 is given by deleting the nth component of a string link.
The splitting s : SLHn−1 → SLHn of ψ is given by adding to an (n − 1)-component string link
T an unknotted component which does not interact with the components of T . In summary, any
T ∈ SLHn decomposes as T = s(ψ(T )) ∗ φ(γ) for some γ ∈ RF (n− 1).

Definition 6.5. Let w = xε1i1x
ε2
i2
. . . xε`i` be a word in the letters x±1

1 , . . . , x±1
n . The trivializing number

of w, denoted by Z(w), is the minimum number of deletions needed to reduce w to a word representing
the trivial element of the free group F (n).

Let γ ∈ RF (n) be an element of the reduced free group. The reduced trivializing number of γ,
denoted by RZ(γ), is the minimum of Z(w) among all words w ∈ F (n) which represent γ.

The proof of Theorem 1.7 will be inductive with the inductive step requiring bounds on nh(φ(γ))
where γ is an element of RF (n). Since nh(φ(x±1

i )) = 1 for each generator of RF (n), it follows that

(4) nh(φ(γ)) ≤ RZ(γ).

During the proof of Theorem 1.7, we will furthermore derive an upper bound on RZ(γ) in terms
of the classical concepts of basic commutators and their weights, so we recall the definition of these
now.

Definition 6.6. Writing {x1, . . . , xn} for a generating set of F (n), the ordered set {c1, c2, . . . } of
basic commutators, along with associated integer valued weights w(c1) ≤ w(c2) ≤ . . . , are defined
by the following:

• If i = 1, . . . , n, then ci = xi and w(ci) = 1.

• If i < j, then w(ci) ≤ w(cj).

• If i > n, then ci = [c`, cj ] for some ` < j < i. Additionally w(ci) = w(c`) + w(cj).

• If ci = [c`, cj ] and cj = [cr, cs], then r ≤ `.
• Every [ci, cj ] satisfying the conditions above is a basic commutator.
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The next lemma studies the reduced trivializing number for basic commutators.

Lemma 6.7. Let ci ∈ F (n) be a basic commutator. Then, considering ci as an element of the
reduced free group RF (n), we have{

RZ(cai ) = |a| if 1 ≤ i ≤ n,
RZ(cai ) ≤ w(ci) otherwise.

Proof. First suppose 1 ≤ i ≤ n. Then cai = xai is a length |a| word, and so RZ(cai ) ≤ |a|. In order to
see the reverse inequality, note that φ(cai ) is an (n + 1)-component string link with Λ(φ(cai )) = |a|.
Thus by inequalities (1) and (4) we have RZ(cai ) ≥ nh(ψ(cai )) ≥ Λ(ψ(cai )) = |a|.
The proof of the result when n < i begins with an inductive argument showing that each basic
commutator ci is a product of conjugates of a single generator xt for some t and that RZ(ci) ≤ w(ci).
When w(ci) = 1, then ci = xi and so we are done. When w(ci) > 1, then ci = [c`, cj ] where
w(ci) = w(c`) + w(cj). In particular, w(cj) < w(ci). We can therefore inductively assume that cj is

a product of conjugates of some xt. Thus, ci = [c`, cj ] = (c`cjc
−1
` )c−1

j , and so since both (c`cjc
−1
` )

and c−1
j are products of conjugates of xt, we have now expressed ci as a product of conjugates of xt.

Notice next that in the expression (c`cjc
−1
` )c−1

j if we make 2 · RZ(c`) letter deletions then we may

replace the c` and c−1
` subwords with words representing the trivial element. As a consequence

RZ(ci) ≤ 2 · RZ(c`). By the definition of basic commutators we have w(c`) ≤ w(cj) and w(ci) =
w(c`) + w(cj). Therefore w(c`) ≤ 1

2w(ci). By our inductive assumption, RZ(c`) ≤ w(c`). Thus

RZ(ci) ≤ 2 ·RZ(c`) ≤ 2w(c`) ≤ w(ci).

This completes the inductive argument.

Midway through that induction, we saw that both c`cjc
−1
` and c−1

j are products of conjugates of a

single xt for some t. By the definition of RF (n), they commute. Thus,

cai =
(
(c`cjc

−1
` )c−1

j

)a
= (c`c

a
j c
−1
` )c−aj

Similarly to our inductive argument, by making 2 ·RZ(c`) letter deletions, the c` and c−1
` subwords

appearing in the expression above can be reduced to words representing the trivial element of RF (n).
Thus, just as in the inductive argument, RZ(cai ) ≤ 2 ·RZ(c`) ≤ 2w(c`) ≤ w(ci). �

In [14, Lemma 1.3], Habegger-Lin prove that the reduced free group RF (n) is nilpotent of class n.
In the proof of Theorem 1.7, we will use a simple expression for elements of RF (n) that is obtained
by combining their result with the following classical theorem; see e.g. [17, Theorem 5.13A].

Theorem 6.8 (P. Hall’s Basis Theorem). Any γ ∈ F (n)/F (n)n+1 can be expressed as

γ = ca11 ca22 . . . caNN ∈ F (n)/F (n)n+1

where N is the number of basic commutators of weight at most n and a1, . . . , aN ∈ Z.

We now have everything we need to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. Let L be a 2-component link in S3. Since the linking number is a complete
homotopy invariant for 2-component links [18], we have that nh(L) = Λ(L).

Now let L be an 3-component link in S3. Assume first that Λ(L) 6= 0 and after reordering the
components of L and changing the orientations of a component, if needed, we may assume that

lk(L2, L3) > 0. Let T ⊆ D2 × [0, 1] be a string link with T̂ = L. Using short exact sequence (3),
we have that T = s(ψ(T )) ∗ φ(γ) ∈ SLH3 for some γ ∈ RF (2). Note that the linking number of
ψ(T ) ∈ SLH2 is equal to lk(L1, L2). Therefore nh(s(ψ(T ))) = | lk(L1, L2)|.
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As mentioned above, the reduced free group RF (2) is nilpotent of class 2 [14, Lemma 1.3]. Hence
by Theorem 6.8, we may express γ in terms of basic commutators: γ = xa1 ∗ xb2 ∗ [x1, x2]c for some
a, b, c ∈ Z. It follows by inspection that a = lk(L1, L3) and b = lk(L2, L3) > 0. In RF (2), x2 and
x1x2x

−1
1 commute as do x1 and x2x

−1
1 x−1

2 . Thus,

γ = xa1x
b
2[x1, x2]c

= xa1x
b
2((x1x2x

−1
1 )x−1

2 )c

= xa1(x1(x2x
−1
1 x−1

2 ))cxb2

= xa1x
c
1(x2x

−1
1 x−1

2 )cxb2

= xa1x
c
1x2x

−c
1 xb−1

2

Deleting |a| = | lk(L1, L3)| instances of x1 and 1+ |b−1| = b = lk(L2, L3) instances of x2 reduces this
word to xc1x

−c
1 which is the trivial word. Thus, by using inequality (4), we obtain nh(φ(γ)) ≤ RZ(γ) ≤

| lk(L1, L3)|+ | lk(L2, L3)|. Finally, by using the above inequalities combined with inequality (2), we
conclude that

nh(L) ≤ nh(T ) ≤ nh(s(ψ(T ))) + nh(φ(γ))

≤ | lk(L1, L2)|+ | lk(L1, L3)|+ | lk(L2, L3)| = Λ(L).

This gives the claimed result when L has 3 components and Λ(L) 6= 0.

Now suppose that the 3-component link L has Λ(L) = 0 and µ123(L) 6= 0. As above, if T ⊆ D2×[0, 1]

is a string link with T̂ = L, then by short exact sequence (3), we have that T = s(ψ(T ))∗φ(γ) ∈ SLH3

for some γ ∈ RF (2). In this case, ψ(T ) is a 2-component string link with vanishing linking numbers
so that ψ(T ) is homotopically trivial. Furthermore, for some c ∈ Z,

γ = [x1, x2]c = (x1x2x
−1
1 x−1

2 )c = xc1(x2x
−1
1 x−1

2 )c = xc1x2x
−c
1 x−1

2

where the third equality follows since x1 commutes with (x2x
−1
1 x−1

2 ). The resulting word reduces
to the trivial element of the free group after two letter deletions (specifically, deleting x2 and x−1

2 ).
As we have explained above, this affects φ(γ) by two crossing changes. Thus, nh(L) ≤ nh(T ) ≤ 2.
Since µ123(L) 6= 0, L is not homotopically-trivial, and so nh(L) > 0. As nh(L) ≡ Λ(L) (mod 2), we
conclude that nh(L) = 2, as claimed.

Next we address the case that L has 3 components and Λ(L) = µ123(L) = 0. In this case, Milnor [18]
concludes that L is link homotopically trivial and so nh(L) = 0, as claimed.

We now move on to the proof of the statement concerning links with 4 or more components. We begin
with the inductive assumption that there is a constant Cn so that for every string link Q ∈ SLHn
there is an inequality nh(Q) ≤ Λ(Q) + Cn. Let T ∈ SLHn+1, then by short exact sequence (3), we
have that T = s(ψ(T )) ∗ φ(γ) for some γ ∈ RF (n).

As before, combining the fact that RF (n) is nilpotent of class n with Theorem 6.8, we may express
γ ∈ RF (n) in terms of basic commutators:

γ = ca11 ca22 . . . caNN

where N is the number of basic commutators of weight at most n and a1, . . . , aN ∈ Z. By inspection
ai = lk(Ln+1, Li) for i = 1, . . . n. Appealing to Lemma 6.7, we have that

nh(φ(γ)) ≤ RZ(γ) ≤
N∑
i=1

RZ(caii ) ≤
n∑
i=1

|ai|+
N∑

i=n+1

w(ci).
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Thus, by the above inequality combined with the inductive hypothesis we get

nh(T ) ≤ nh(s(ψ(T ))) + nh(φ(γ)) ≤ Λ(s(ψ(T ))) + Cn +

n∑
i=1

|ai|+
N∑

i=n+1

w(ci)

= Λ(T ) + Cn +

N∑
i=n+1

w(ci).

Setting Cn+1 = Cn +

N∑
i=n+1

w(ci) completes the induction. �

Remark 6.9. The statement of Theorem 1.7 does not give a precise value for the sequence of numbers

Cn when n > 3. We note that by combining the recurrence relation Cn+1 = Cn +
∑N
i=n+1 w(ci)

(from the end of the proof) with Witt’s formula for the number of basic commutators of a fixed
weight [23] one can find an upper bound for the Cn constructed in the proof, and these upper bounds
could themselves function as the Cn in the statement of the theorem. However, a formula produced
this way would be far from sharp. This is because any basic commutator with repeated indices
([x2, [x1, x2]] for instance) is zero in RF (n) and so should not be counted in a formula for Cn. Thus
to obtain a less crude formula for Cn we would desire a Witt-type formula counting only the number
of basic commutators without repeated indices. While such a result might be within reach of current
technology, it is definitely beyond the scope of this paper.

Appendix A. Freely slicing boundary links

Cha-Kim-Powell [5] describe a set of conditions on a link in S3 that ensure the link is freely slice. In
Section 4, we generalized these conditions to links in a general homology 3-sphere Y and claimed in
Theorem 4.4 that our conditions guaranteed the link was freely slice in the contractible 4-manifold X
bounded by Y . The proof of this is a close imitation of the argument from Cha-Kim-Powell [5, §4 &
§5] and, as such, we only sketch the argument below. An attempt has been made to include enough
detail to follow the argument, but without repeating too much of what already appears in [5].

We begin by recalling some terminology and a theorem from Freedman-Quinn [12]. A transverse
pair is two copies of S2 ×D2 plumbed together at one point. This model is a neighbourhood of the
pair of spheres

(S2 × {pt}) ∪ ({pt} × S2) ⊆ S2 × S2.

Take the disjoint union N1, . . . , N` of copies of the transverse pair and perform further plumbings
between the copies, possibly including self-plumbings, then map the result into a topological 4-
manifold W via a continuous map that is a homeomorphism to its image. The result of this process
is a map f :

∐
iNi →W which is called an immersion of a union of transverse pairs.

An immersion of a union of transverse pairs is said to have algebraically trivial intersections if
the images of the further plumbings we performed can be arranged in pairs by Whitney disks in
W (that may a priori meet

∐
iNi). Such a map f is called π1-null if the inclusion induced map

π1 (f (
∐
iNi))→ π1(W ) is trivial.

If middle-dimensional homology classes can be represented in this arrangement, then one is able to
use a result of Freedman-Quinn [12, Theorem 6.1] to conclude that f is s-cobordant rel. boundary
to an embedding. In the particular case of interest to us, this gives the following.

Theorem A.1. Suppose W is a compact topological 4-manifold, bounded by ML, with π1(W ) free and
generated by the meridians of L. Let f :

∐
iNi →W be a π1-null immersion of a union of transverse

pairs with algebraically trivial intersections, and inducing an isomorphism f∗ : H2(
∐
iNi)→ H2(W ).
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Then there exists a compact topological 4-manifold W ′, bounded by ML, with π1(W ′) free and gener-
ated by the meridians of L, and a locally flat embedding f ′ :

∐
iNi ↪→W ′ inducing an isomorphism

f ′∗ : H2(
∐
iNi)→ H2(W ′).

We now follow the standard surgery-theoretic approach to slice L, sketched in the introduction.
Recall that the 0-surgery on L is denoted by ML.

Proposition A.2. Let L be a boundary link with a good disky basis in a homology sphere Y , then
ML bounds a compact oriented 4-manifold W such that

(1) π1(W ) is free and generated by the meridians of L, and

(2) H2(W ;Z) is free and represented by a π1-null immersion of a union of transverse pairs with
algebraically trivial intersections.

The argument we now use is almost identical to that appearing in [5, Section 5].

Summary of the proof of Proposition A.2. Let F = F1 ∪ · · · ∪ Fn be a boundary link Seifert surface
for L and let {ai, bi}1≤i≤g be a good disky basis, with{

∆+
j ,∆i | 1 ≤ j ≤ 2g, 1 ≤ i ≤ g

}
the immersed disks as in Definition 4.2. Recalling these conditions, for each i, ∂∆+

i = ai, ∂∆+
g+i =

(b′i)
+, and ∂∆i = b′i, where b′i is the result of pushing bi off F such that it has zero linking with

ai, and (b′i)
+ is a zero linking parallel copy of b′i. These disks are all disjoint except that the disks

{∆+
j }1≤j≤2g might intersect each other. Write X for the contractible 4-manifold bounded by Y .

β1

a1

γ1
δ1

β2

a2

γ2
δ2

βg

ag

γg
δg−1

Figure 13. Curves ai, βi, γi and δi sitting in a produce neighbourhood of a Seifert
surface for L. Attaching a 1-handle using the dotted βi curves and attaching 2-
handles along the 0-framings of ai, γi, and δi.

For each i, let βi∪γi be the Bing double of bi appearing in Figure 13. Attach 1-handles to X along βi
and 2-handles to X along the 0-framings of ai, γi, and δi to get a 4-manifold W . A straightforward
argument shows that W has boundary ML and has fundamental group freely generated by the
meridians of L; see [5, Claim A] for details. Clearly H2(W ;Z) ∼= Z2g. This basis is generated by
framed immersed spheres Σ1, . . . ,Σ2g described as follows. For each i, take Σ2i−1 to be the union
of ∆+

i and the core of the 2-handle attached to ai. For each i, we can and will assume b′i and (b′i)
+

lie on the gray surface bounded by γi depicted in Figure 14 (left). We use this to define a planar
surface Pi bounded by γi, b

′
i and (b′i)

+ as in Figure 14 (right). Take Σ2i to be the union of ∆+
g+i,

∆i, the core of the handle attached to γi, and Pi; cf. [5, Claim B].

For each i, a regular neighbourhood of Σ2i−1∪Σ2i can now be viewed as an immersed transverse pair.

The same arguments from [5, Claim C] and [5, Claim D] now reveal that ∪2g
i=1Σi has algebraically

trivial intersections and is π1-null. �
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βi
ai

γi γiai

b′i

(b′i)
+ Ai!!!!

Figure 14. Left: A section of the surface F containing {ai, bi} (bi not depicted).
The curves βi and γi form a bing double of the curve bi in a neighbourhood of F .
A gray genus one surface disjoint from βi with boundary γi is also depicted. Right:
A close-up of the gray surface. The annulus Ai on the gray surface with boundary
bi and b′i is depicted. The complement of the interior of the annulus in the gray
surface is the planar surface Pi.

Finally, we can confirm that Cha-Kim-Powell [5, Theorem A] generalizes as claimed.

Proof of Theorem 4.4. Let W be the 4-manifold and f :
∐
iNi → W the immersion of a union of

transverse pairs representing H2(W ;Z) described in Proposition A.2. Applying Theorem A.1, we
obtain W ′ and f ′. Note that the image of f ′ consists of a tubular neighbourhood of locally flat
embedded 2-spheres representing generators for H2(W ′;Z) ∼= H2(W ;Z). These embedded 2-spheres
come in transverse pairs and we now perform surgery on one sphere from each transverse pair. Since
the second sphere from each transverse pair intersected the surgered sphere geometrically once, these
surgeries preserve π1(W ′). Thus, we obtain W ′′ with boundary ML, with H2(W ′′;Z) = 0, and with
π1(W ′′) freely generated by the meridians of L. Now attach 2-handles to ML along the meridians
of the link components, with framing so that the 0-surgery is reversed. This has Y as the effect of
surgery, and by glueing across meridians we ensure that π1(W ′′) = 0. The resultant 4-manifold is
contractible and has boundary Y . The link L has slice disks given by the cocores of the 2-handles
we have just attached so it is slice and moreover freely slice as π1(W ′′) is free. �
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