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Abstract  33 

As humans we communicate important information through fine nuances in our facial expressions, 34 
but because conscious motor representations are noisy, we might not be able to report these fine 35 

but meaningful movements. Here we measured how much explicit metacognitive information 36 

young adults have about their own facial expressions. Participants imitated pictures of themselves 37 
making facial expressions and triggered a camera to take a picture of them while doing so. They 38 

then rated confidence (how well they thought they imitated each expression). We defined 39 
metacognitive access to facial expressions as the relationship between objective performance 40 

(how well the two pictures matched) and subjective confidence ratings. Metacognitive access to 41 
facial expressions was very poor when we considered all face features indiscriminately. Instead, 42 

machine learning analyses revealed that participants rated confidence based on idiosyncratic 43 
subsets of features. We conclude that metacognitive access to own facial expressions is partial, 44 

and surprisingly limited.  45 

  46 
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Introduction 47 

Precise motor planning and execution can occur without the brain having explicit, conscious 48 
access to the exact position of our limbs, or the exact degree of contraction of our muscles1–3. For 49 

instance, we can simultaneously walk, speak, and gesticulate successfully while concentrating on 50 

an argument and not on the movements that enable it, and we are furthermore unable to 51 
accurately report the state of each of our muscles. Although explicit access to proprioceptive 52 

signals in highly routinary tasks like walking or talking may be unnecessary, it might be beneficial 53 
in some other cases. For example, it has been suggested4 that metacognitive reasoning plays a 54 

central role in developing and improving motor expertise: if an experienced actor has a detailed 55 
and sophisticated representation of an ideal facial expression to communicate emotion, they are 56 

better able to detect and correct deviations from the ideal, leading in turn to more accurate and 57 
consistent performance. 58 

Proprioceptive information about our limbs and their movements is thought to originate primarily 59 

from muscle spindles, together with skin receptors, Golgi tendon organs, and joint receptors5–7. 60 
Artificial vibration of the muscles can lead to activation of the muscle spindles, showing that their 61 

activation is sufficient to alter the representation of the body and its position8,9. In addition, position 62 
estimates have been found to be more precise following active vs. passive movements, 63 

suggesting that efferent motor commands may either affect or inform proprioceptive 64 

representations10–12. Finally, proprioceptive information is combined with visual information, when 65 
available, to form a multisensory and integrated representation13–17. 66 

Facial expressions present a particularly important yet poorly studied instance of motor control. 67 
On the one hand, we communicate a great deal of information with small, nuanced facial 68 

movements (on the order of 10 mm or less18,19). On the other hand, we hardly ever see ourselves 69 

while making them. Perhaps with the exception of actors or public speakers who practice in front 70 
of a mirror (or the increased number of video-conferences during the 2020 SARS-CoV-2 71 

pandemic), we do not usually have online visual feedback about our facial muscles. If visual 72 
feedback information is indeed critical to give rise to precise motor representations, facial 73 

movements might be very poorly represented. Together, the combination of the high social 74 
relevance of small movements in our facial muscles and the general lack of visual information 75 

about them raise the interesting question: How much do we know about how we look when we 76 
communicate with others? 77 
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Previous studies have focused on related questions. One line of research has quantified 78 

metacognitive access to others’ facial expressions20–22 and operationalized metacognitive 79 
performance as the precision of participants’ representations of uncertainty. While our ability to 80 

accurately represent both the facial expressions of others and our certainty about them is clearly 81 
critical for social interactions, it is equally important to correctly represent and adequately control 82 

one’s own expressions23. In line with this notion, another line of research has aimed at measuring 83 
how accurate the representation of one’s own face is (under a neutral facial expression). One 84 

study24 found that participants showed a systematic bias to underestimate the length of their faces 85 
and slightly overestimate their width, mimicking what has been described for whole bodies25 and 86 

hands26. More recently, large inter-individual differences have been described in how accurately 87 
healthy young adults can represent their own faces27. These previous studies investigated relaxed 88 

faces with neutral expressions and captured, in essence, individuals’ ability to accurately describe 89 

their face, or to discriminate it from the face of another. Importantly, static features of one's face 90 
are irrelevant to social interactions, which instead are based on dynamic information. Here, we 91 

focussed instead on metacognitive knowledge about how one’s face varies when making different 92 
expressions. In a pre-registered experiment, we asked participants to imitate expressions shown 93 

in pictures of themselves and to rate how well they thought they had imitated the expression. We 94 
then measured participants’ metacognitive access to their own facial expressions as the 95 

correspondence between subjective ratings and an objective measure of performance. 96 

First, participants completed a task to measure their metacognitive access to facial expressions 97 
(Figure 1), consisting of three parts. Briefly, in the first part of the task, participants took pictures 98 

of themselves imitating different cue images done by actors28 to generate 32 participant-specific 99 
target images. In the second part, participants saw each of the target images on the screen and, 100 

while still looking directly into the digital camera, imitated themselves (Figure 1.B). In both the first 101 
and second parts of the task, participants pressed a keyboard key to trigger the digital camera. In 102 

the second part only, they additionally rated how confident they were in their own performance on 103 

a continuous confidence scale ranging from “Very unsure” to “Very sure”. Finally, in the third part 104 
of the task, participants saw the target and response pictures side-by-side and rated them for 105 

similarity on a continuous scale with the same labels as for the confidence rating. We quantified 106 
the distance between each image pair based on landmarks placed automatically on the pictures.  107 
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 108 
Figure 1: Experimental Design. (A.) Procedure. Cue stimuli were pictures of facial expressions taken 109 
from the MPI Small Facial Expression Database (Cunningham et al., 2005), but the images were replaced 110 
here with illustrations, to comply with the journal’s data privacy regulations. They were performed by actors 111 
and represented non-stereotypical expressions (e.g., “You lose the way in a foreign city”, see Methods for 112 
further details). Participants used these images as cues to produce 32 participant-specific target images. 113 
In part 2, each of the 32 target images (of the participants’ faces displaying the expression generated in 114 
part 1) was shown eight times (256 trials total). Participants reproduced their own expressions shown in the 115 
target pictures, pressed a key while holding their expression, and subsequently rated confidence in their 116 
own performance. The experiment was self-paced. Squares around the pictures indicate that they were 117 
displayed to participants, whereas pictures without a square frame around them represent pictures collected 118 
but not shown back to participants. (Expression drawing: Freepik.com) (B.) Predictions. The correlation 119 
between the two variables indicates the precision of the metacognitive representation. Confidence ratings 120 
were expected to be negatively correlated with the distance between two images if participants have 121 
metacognitive access to the low-level aspects of their facial expressions (solid line). Confidence ratings 122 
were not expected to vary with distance if participants had no metacognitive access to their own facial 123 
expressions (dashed line.   124 

 125 
 126 
Results 127 

Confirmatory Analyses 128 
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The distance between any pair of images is an inverse measure of performance in the task, as 129 

greater distance corresponds to a poorer match between target and response expressions. Thus, 130 
we reasoned that participants with precise metacognitive access to their facial expressions would 131 

have a sharp relationship between the distance between two images and the confidence ratings. 132 
The estimated regression coefficients from a multilevel model of these data should be negative 133 

and clearly different from 0. On the other hand, if a participant had no access to their own 134 
performance, their judgments would bear no relationship to the distance between two images, 135 

and the regression coefficients would be indistinguishable from 0 (Figure 1B, Predictions).  136 

To arbitrate between these two possibilities, we first quantified our participants’ metacognitive 137 
access to their own facial expressions using a Bayesian linear mixed-effects regression model of 138 

participants’ confidence ratings. The model included the log-transformed distances as a fixed 139 
effect (for all 68 landmarks combined), as well as random intercepts for participant and facial 140 

expression. We found that participants’ confidence ratings had a small negative relationship to 141 
the distance measured (Figure 2.A, M = -0.03 ± 0.01, CI = [-0.05, -0.01], R2 = 0.21, see also 142 

Appendix 1-Figure 1 for the participant-wise data). However, when compared to the null model 143 

without the effect of distance, we found only anecdotal evidence29 for the relationship between 144 
the two (BF10= 2.20). Further, a robustness check revealed that, as expected given the proximity 145 

of the posterior samples to the region of practical equivalence (ROPE, defined following the 146 
default criterion of the region corresponding to a Cohen's d of 0.1, Figure 2.B), the choice of the 147 

SD of the prior distribution had a strong effect on the BF10: Widening the prior distribution from 148 
0.4 to 0.7 led to a BF10 = 1.02, and greater SDs also strongly reduced the value of the BF10. 149 

Together, these results point to no evidence for a relationship between confidence and distance. 150 
For illustration purposes, we plot the participant-wise posterior draws, in relationship to the ROPE 151 

(Figure 2.C). 152 

 153 
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 154 
Figure 2. Poor metacognitive access to facial expressions (A.) Group effects reflecting mean 155 
metacognitive access, namely the relationship between confidence ratings and distance between two 156 
images (inverse of performance). A small but consistently negative slope suggests that participants had 157 
minimal metacognitive access to their own expressions. The solid line represents the mean of the posterior 158 
draws, the shaded region represents the 95% credibility interval  (B.) Posterior draws for the group-level 159 
fixed effect of distance, shown in relation to the ROPE, marked with dashed lines. The black horizontal line 160 
indicates the mean and 95% HDI. (C.) Posterior draws for each participant, shown in relationship to the 161 
ROPE. Note that the y-axis is clipped to better display the distributions around the ROPE and therefore 162 
excludes the long tails of some of the distributions. Participants are ordered following the mean slope 163 
estimate and might not be aligned across figures.  164 

 165 

Then, to quantify the relationship between distance and similarity, we built a regression model of 166 
participants’ similarity ratings including, as before, the log-transformed landmark distances as a 167 

fixed effect (for all 68 landmarks combined), as well as random intercepts for participant and facial 168 

expression. Here, similarity ratings did track the distance (Figure 3 and Appendix 1-Figure 2). We 169 
found a clear and, as expected, negative relationship between the two (M = -0.12 ± 0.01, CI = [-170 

0.14, -0.09], BF10 = 8.01x108, R2 = 0.26). This shows that the distance we measured carried 171 
information relevant for similarity ratings and thus the null effect above cannot be simply due to a 172 

poor measure of distance. Additionally, because the same participants rated both confidence and 173 
similarity, the differences between the two ratings cannot be attributed to trivial effects such as a 174 

poor understanding of the confidence scale or task instructions, or simple lack of motivation.  175 
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We emphasize that an advantage of similarity as compared to confidence ratings is almost trivial, 176 

as participants could see the picture pairs side-by-side to rate similarity, but not confidence. 177 
Hence, we simply take this result as a positive control to ensure that the landmark distances were 178 

at all related to similarity, but make no formal comparisons between the two kinds of ratings.  179 

 180 

 181 

Figure 3. The distance between two images captures relevant information. (A.) Group effects 182 
reflecting the information contained in the distance between two images, namely the relationship between 183 
the similarity ratings provided by participants (when viewing each image pair side-by-side) and distance 184 
between two images. The solid line represents the mean of the posterior draws, and the shaded region 185 
represents the 95% credibility interval. (B.) Posterior draws for the group-level fixed effect of distance, 186 
shown in relation to the ROPE, marked with dashed lines. The black horizontal line indicates the mean and 187 
95% HDI. (C.) Posterior draws for each participant, shown in relation to the ROPE. Note that the y-axis is 188 
clipped to better display the distributions around the ROPE  and therefore excludes the long tails of some 189 
of the distributions. Participants are ordered following the mean slope estimate and might not be aligned 190 
across figures.  191 

 192 

Finally, following our pre-registered plan, we explored relationships between the participant-wise 193 

random slopes with Mratio, a measure of visual metacognitive efficiency30 in a visual task. We 194 
found that visual Mratio was consistently above the chance level of 0 (M= 0.75, SD = 0.57, t(38) 195 

= 8.15, p < 0.001, BF10 = 1.54x107, estimated with a default Cauchy prior) but that it did not 196 
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correlate with participant-wise effects of distance on confidence (Figure 4.A, r = -0.19, p = 0.25, 197 

BF10 = 0.64, with a default shifted beta prior distribution). While the two measures of metacognitive 198 
access are not strictly comparable (the visual Mratio is controlled for first-order performance but 199 

the individual effects of distance on confidence are not), this analysis shows that poor 200 
metacognitive access to facial expressions cannot be attributed to generally poor domain-general 201 

metacognitive insight31.  202 

Using Pearson correlations, we also measured potential associations between the inter-individual 203 
differences in metacognitive access to facial expressions and Alexithymia scores, as an indication 204 

of each participant’s ability to identify and describe their own feelings. We found no conclusive 205 
evidence for or against any relationships between alexithymia score and the participant-wise 206 

effect of distance on confidence (BF10  = 0.70, Figure 4.B) or on similarity ratings (BF10 = 0.43).  207 

 208 

 209 

Figure 4: Correlations between participant-wise estimates of metacognitive access to facial 210 
expressions and other measures of insight. Each dot corresponds to one participant’s performance 211 
estimate, and the box- and density plots on the right represent the marginal distribution of the corresponding 212 
variable on the y axis. A. Metacognitive efficiency (Mratio) in a visual task. Participants’ metacognitive 213 
efficiency was significantly better than chance performance (marked with the horizontal dashed line). B. 214 
Alexithymia score (TAS). We found no evidence for a correlation between metacognitive estimates and 215 
these measures of insight.   216 

 217 

Exploratory Analyses 218 

For completeness, we studied the relationship between similarity and confidence ratings. We built 219 
a Bayesian linear regression model of participants’ confidence ratings, this time including the 220 
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similarity ratings as a fixed effect and random intercepts for participant and facial expression. We 221 

found a clear positive relationship between the two ratings (M = 0.10 ± 0.01, CI = [0.09, 0.12], 222 
BF10 = 6.36 x 1031, R2 = 0.21, Figure 5 and Appendix 1-Figure 6). This suggests that participants’ 223 

confidence ratings were not random or noisy but rather that they simply did not reflect the low-224 
level features captured by the distance.   225 

 226 

 227 

Figure 5: Similarity ratings vary with confidence ratings. (A.) Group effects showing the relationship 228 
between the two ratings on image pairs provided by participants (similarity vs. confidence). The solid line 229 
represents the mean of the posterior draws, and the shaded region represents the 95% credibility interval. 230 
(B.) Posterior draws for the group-level fixed effect of confidence on similarity, shown in relation to the 231 
ROPE, marked with dashed lines. The black horizontal line indicates the mean and 95% HDI.  (C.) Posterior 232 
draws for each participant, shown in relation to the ROPE. Participants are ordered following the mean 233 
slope estimate and might not be aligned across figures.  234 

  235 

 236 

Our results so far suggest that participants’ confidence ratings did not reflect performance, 237 

calculated as the Euclidean distance over all landmarks. In a final set of exploratory analyses, we 238 
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therefore aimed at identifying which pieces of information participants may have taken into 239 

account when rating confidence. 240 

The Euclidean distance between image pairs assigns equal weights to the distances of all facial 241 

landmarks and is therefore a relatively naive measure of the difference between expressions, in 242 

that it does not allow for potential differences between landmarks in their contribution to different 243 
individuals’ confidence. However, it is in principle possible that participants attended to different 244 

parts of their faces to different degrees and, further, that this differential attention was not 245 
consistent across participants. For example, one participant may have focused almost exclusively 246 

on how well their mouth matched the target image to rate their confidence, and another participant 247 
may have focused exclusively on the eyes and ignored the mouth. While this was against the task 248 

instructions, it remains a possibility that would undermine the strong claim that most participants 249 
did not base their confidence ratings on the landmark distances. To obtain a more fine-grained 250 

and flexible measure of performance we used a simple linear regression machine learning (ML) 251 
model to predict each participant’s confidence ratings using a principal component (PC) 252 

decomposition of the distances between corresponding landmarks as features. Building 253 

participant-wise models provided the maximum flexibility in feature weight assignment and was 254 
therefore the harshest test to the conclusion that metacognitive access to facial expressions is 255 

poor. We found that these models could in fact predict confidence ratings (median r = 0.26 ± 256 
0.15), suggesting that participants did indeed base their confidence ratings on (specific subsets 257 

of) landmark distances. Further, because confidence is known to correlate negatively with 258 
response times32,33, we also asked whether RTs could have served as a proxy for distance. We 259 

found that the landmark distances could be used to build ML models that predicted confidence 260 
ratings above and beyond RT information alone, confirming that participants did use some of the 261 

landmark distance information to rate confidence (see Appendix 1-Figure 4). 262 

To better understand which information participants used to rate their own performance, we 263 
reconstructed the weights of each feature in landmark space (based on the model’s weighting of 264 

each principal component and each feature’s loading on that component, see Methods). We first 265 
plotted the resulting landmark weights on their corresponding mean locations to explore potential 266 

patterns among participants based on the set of landmarks with the highest weights (both visually 267 

and by considering the median weight over all landmarks); however, we could not identify any 268 
landmarks or features that were consistently prioritized across participants (Figure 6). Individual 269 

participants’ ML feature weights can be seen at 270 
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https://gitlab.com/elisa.filevich/cistonetal_metacognitionoffacialexpressions/). Finally, we 271 

estimated the relationship between the new landmark distance (this time considering the 272 
participant-specific weights) and confidence ratings using, as before, a linear mixed-effects 273 

regression model. In line with the non-zero r values from the ML models, the reconstructed 274 
distances did in fact show a significant relationship with confidence ratings (M = 0.04 ± 0.004, CI 275 

= [0.03, 0.04], BF10 = 1.34 x 107, R2 = 0.24). Note that the slope estimate is now positive, because 276 
the feature weights must incorporate the negative relationship between landmarks and 277 

confidence, in order to predict confidence ratings. Taken together, the results suggest that 278 
participants were indeed able to base their confidence ratings on the distances between facial 279 

landmarks, but only on a subset of them; and that each participant had access to, or focused on, 280 
different aspects of their facial expressions. 281 

 282 

 283 

Figure 6: Machine Learning analyses. Average feature weights for participant-wise models of 284 
confidence ratings. Each dot represents the median feature weight for each landmark in models excluding 285 
RTs. Green and red correspond to positive and negative weights, respectively. The size of the dot 286 
corresponds to the relative magnitude of the landmark’s approximated weight within the model, and their 287 
positions correspond to a normalized face. Each landmark is split into the four cardinal directions, to yield 288 
four independent features (see Methods for details). We found no consistent pattern over participants where 289 
some features are weighted more strongly than others, see 290 
https://gitlab.com/elisa.filevich/cistonetal_metacognitionoffacialexpressions for an interactive table with 291 
participant-wise weights.  292 

  293 
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Discussion 294 

We asked how much we know about how our faces look when we make expressions. We 295 
quantified young, healthy adults’ metacognitive access to the low-level details of their own facial 296 

expressions. We emphasized to participants that we were focused on the specific shape of the 297 

face and activation of the muscles, not on the emotion that the expression conveyed. Surprisingly, 298 
our results suggest that participants were only very poorly able to consistently base their 299 

confidence ratings on the complete set of facial features. A priori, this can be interpreted in two 300 
(non-exclusive) ways: Participants' confidence ratings may not have strongly relied on the 301 

distance between a pair of images because they truly had little or no metacognitive access to their 302 
own facial expressions. Alternatively, our measured distance based on the whole set of landmarks 303 

may have been a very noisy or even invalid measure of performance. In turn, this alternative 304 
explanation would mean that it would be invalid to quantify metacognitive access as we did. To 305 

ensure that the second alternative could not fully explain our results, we quantified the relationship 306 
between ratings of similarity (provided by the participants themselves while viewing image pairs 307 

side-by-side) and distance (based on the whole set of landmarks, combined with equal weights). 308 

Here, we did find a clear relationship between the two, suggesting that the distance between 309 
image pairs does carry information that is — to some extent — relevant for similarity. This result 310 

also shows that a poor relationship between confidence and distance cannot be attributed simply 311 
to poor use or understanding of the confidence scale. It is important to emphasize that we draw 312 

no conclusions from the direct comparison of the strengths of the association between distance 313 
and the two kinds of ratings (namely confidence and similarity), as it would not be a valid 314 

comparison. Participants had no visual information about the expression they were making when 315 
rating confidence, whereas they could do careful comparisons of image pairs using all available 316 

visual information to rate similarity. Instead, we make separate inferences based solely on the 317 
estimation of the effect size and reliability for each of the associations, and the comparison 318 

between each full model including the effect of interest and its null counterpart. Simply put, the 319 

analysis of the relationships between confidence and distance suggests that participants could 320 
access their performance only poorly. On the other hand, the analysis of the relationships 321 

between similarity and distance suggests that we measured performance adequately. 322 

Beyond the group-level effects, we found variation between individuals. We aimed at explaining 323 
this variation by exploring correlations between these individual estimates of the relationship 324 

between distance and confidence and other measures of insight, namely visual metacognitive 325 
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efficiency and alexithymia score. No conclusive relationships emerged that could explain the 326 

variations between individuals.   327 

Further, in another exploratory analysis, we considered that the summary distance measure could 328 

not discriminate between landmarks that heavily informed participants’ confidence ratings and 329 

those that were ignored. In other words, confidence ratings may have depended on performance 330 
defined by a subset of landmarks, which may not have been the same for all participants. To 331 

examine this possibility, we built linear regression ML models on confidence ratings that included 332 
the differences for each landmark as individual features (each of them separated into the four 333 

cardinal directions). This analysis revealed that the models built for all participants could predict 334 
confidence from the combined features (and could do so with better accuracy than the models 335 

relying solely on reaction times, which we expected to be predictive of confidence based on 336 
previous literature32,33). This result suggests that participants’ confidence ratings do indeed carry 337 

information about the landmark distance between target and response expressions. But, unlike 338 
what the linear regression analyses assumed, not all landmarks contribute equally. In fact, some 339 

landmarks contributed in a way that was contrary to what was expected (i.e. larger distances were 340 

associated with higher confidence). Further, the contributions from each landmark were not 341 
consistent between participants. In sum, because some variability in facial expressions did not 342 

appear to inform confidence ratings, we argue that these findings show that there is a disconnect 343 
between participants’ ability to control their faces (through their low level features) and their 344 

assessment of performance. While some aspects of participants’ facial expressions led 345 
(idiosyncratically) to higher confidence ratings, these ratings were not indicative of performance.  346 

If it is indeed the case that young, healthy volunteers have only partial access to their own facial 347 

expressions, the obvious question arises: How do we communicate effectively in society? 348 
Drawing from previous literature, we assume that each facial expression carries both low-level 349 

information (the specific degree of contraction of each muscle and consequent location of the 350 
landmarks) and high-level information (the emotion conveyed) and that these two bits of 351 

information are not necessarily correlated. We note that the effects we observed here are valid 352 
for the low-level features which we asked participants to concentrate on, but they may not 353 

extrapolate to the high-level features of facial expressions.  354 

In fact, we suggest a simple model (Figure 7) consistent with our results where these two aspects 355 
are dissociated. We obtained the distance using an algorithm that, we assume, has no access to 356 
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high-level information. Similarity ratings, on the other hand, were made by human observers (the 357 

study participants) and therefore were based on both the low-level features (by design, in line with 358 
our instructions) and high-level emotional information that is automatically processed34, as we 359 

discussed above. On the basis of our results, we contend that confidence ratings may be based 360 
chiefly on high-level information, as they can only poorly incorporate low-level information. Then, 361 

the shared (high-level) information between similarity and confidence ratings explains why they 362 
correlate and the dissociation between low- and high-level information, together with their unequal 363 

contribution to different ratings, explains why confidence and distance are in turn dissociated.  364 

 365 

Figure 7: Suggested model for metacognitive access to facial expressions. We consider that each 366 
facial expression carries both low-level and high-level information (here depicted as circles because they 367 
are akin to latent variables in a structural equation model, whereas the measured variables of Distance and 368 
Confidence are depicted as squares). We also consider that the distance we measured is solely based on 369 
low-level information that the algorithm has access to. Thus, this simple suggested model (where 370 
confidence has accurate access to high-level but poor or partial access to low-level information, and where 371 
similarity ratings by human judges are informed by both low- and high-level aspects of each image) is 372 
sufficient to explain both, on the one hand, the relationships that we observed between distance and 373 
similarity and between similarity and confidence, and on the other hand, the dissociations we found between 374 
confidence and distance.   375 

 376 

The distinction between metacognitive access to high- and low-level features of facial expressions 377 
is compatible with previous literature. It has been shown that the brain regions involved in 378 

assigning confidence to the accuracy of purely perceptual decisions (the thickness of a horizontal 379 
bar presented above-fixation) were different from those assigning confidence to decisions about 380 
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emotional faces20. Two recent studies presented participants with two conditions with more 381 

closely matched stimuli. In the first one, two groups of participants underwent one of two kinds of 382 
perceptual learning21. One group trained to discriminate between two faces based either on their 383 

identity (high-level features) and the other group trained to discriminate the contrast between two 384 
faces (low-level features). The results showed that, while there was perceptual learning (first-385 

order performance remained stable despite increased task difficulty) in both groups, 386 
metacognitive accuracy improved for the low-, but not high-level features training group. The 387 

authors argued for a dissociation between metacognitive access to these two levels and for a 388 
dual-stage model of metacognition whereby perceptual learning reduces noise in the 389 

representations for low- (but not high-) level facial features. A second study used a causal 390 
intervention22 to show that continuous theta-burst suppression to the lateral prefrontal cortex led 391 

to a decrease in metacognitive performance in a task that relied on the low-level aspects of faces 392 

(discriminating between the orientation of two faces) but not one that relied on high-level aspects 393 
(discriminating the expression they communicated). Together, these results support a distinction 394 

between metacognitive access to high- and low-level features of seen faces (i.e., others’ faces). 395 
We extend these results and suggest that this distinction may also apply to the case of one’s own 396 

face, even when not seen. 397 

Facial muscles appear to lack muscle spindles35–38, which are the main sensors for skeletal 398 
muscle stretching5–7. Instead, other mechanoreceptors have been suggested to replace muscle 399 

spindles in their transduction of electric signals elicited by facial muscles39. In contrast to what we 400 
described for facial muscles, young, healthy participants have above-chance and precise 401 

metacognitive access to movements that are controlled by skeletal muscles40. Moreover, unlike 402 
the case of metacognition of facial expressions, measures of metacognitive performance in motor 403 

control do partially correlate with those from a visual task41. Speculatively, at least two factors 404 
may explain these discrepancies. First, different stretch receptors may lead to different kinds of 405 

representations that may be differentially accessible to metacognitive monitoring. Second, visual 406 

feedback during development and motor learning might play an important role. Extensive motor 407 
learning and concomitant visual information for limbs that are in the field of view may shape and 408 

lead to sharper conscious representations in a way that is not possible for facial expressions.  409 

 410 

 411 
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Relationship to other metacognitive tasks  412 

Many of the recent studies measuring metacognitive performance have capitalized on a relatively 413 
rigid operationalization of metacognition that quantifies metacognitive performance as the 414 

relationship between subjective confidence ratings (the second-order task) and objective 415 

performance in a 2AFC (the first-order task), and especially in whether a participant is able to 416 
assign high confidence exclusively to correct trials42. Unlike most experiments on metacognition, 417 

where experimenters can very easily control the (often visual) stimuli that they present to 418 
participants, the study of motor metacognition requires participants to make a movement in the 419 

first place, thereby adding another task to the standard operationalization. Participants make a 420 
movement (zero-order), then make a (first-order) judgment about it, and finally provide a (second-421 

order) subjective confidence rating. Examples of a zero-order task include moving a finger at a 422 
given pace40 or throwing a ball to hit a target41. A different approach, which we took here, consists 423 

in operationalizing the metacognitive judgment not as confidence in accuracy of a binary choice, 424 
but instead as a judgment of performance43–45. While both operationalizations may be valid, it is 425 

important to note the differences between them to prevent assuming unwarranted relationships: 426 

The first approach, borrowed from paradigms developed for perceptual tasks, makes a very clear 427 
distinction between three different tasks with, in principle, independent performance levels. In a 428 

ball-throwing task, a person could miss a target often (poor zero-order performance), be good at 429 
discriminating whether the movement they made would hit the target or not (high first-order 430 

performance), but assign high and low confidence equally often to correct and incorrect 431 
discrimination trials (low second-order performance). This sharp distinction between three 432 

cognitive levels is elegant and makes metacognitive motor tasks directly comparable to 433 
perceptual ones. On the other hand, the comparison may not be as straightforward as it appears 434 

to be46. It has been argued that this rigid operationalization ignores a distinctive feature of 435 
(sensori)motor performance monitoring: In making a movement, we must monitor our 436 

performance in relationship to the intended goal, which includes not only perceptual uncertainty 437 

but also motor noise and skill43,47. Thus, the approach of asking participants to rate their own 438 
performance allowed us to measure metacognitive access as the relationship between true 439 

performance and the (arguably) ecologically relevant estimate of subjective performance.  440 

 441 

 442 
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Introspective vs. extrospective access 443 

These results contribute with an interesting case to the question of introspective privilege. A 444 
classic view has argued that introspection has privileged first-person access to — and is thus the 445 

ultimate authority on — mental and emotional states48. In the motor domain, this would mean that 446 

the agents always have the most precise representation of their movement. This makes intuitive 447 
sense, as a precise representation of an ongoing movement is presumably a prerequisite for fine 448 

and efficient motor control and execution, as well as for the emergence of a sense of agency49,50. 449 
On the other hand, a reading of the empirical literature does not provide a clear answer, perhaps 450 

due to the diversity of motor paradigms examined. Some studies have shown that precise access 451 
to movements is not always available at an explicit representational level. Participants failed to 452 

report large corrections to their ongoing movements51, and explicit instructions about how to solve 453 
a visuomotor rotation task can in fact be detrimental for performance, because explicit control is 454 

not a substitute for implicit corrections, which occur without participants’ awareness52. Healthy 455 
participants also appear to have poor access to their own eye movements and a poor (i.e., noisy) 456 

representation of their own bodies that can be easily affected by visual cues13,14. On the other 457 

hand, almost directly contradicting the results above, other studies have shown that metacognitive 458 
representations of movements are as precise as those of exteroceptive signals40 and that explicit 459 

instructions can sometimes be indeed beneficial for performance by leading to quicker adaptation 460 
times and shorter after-effects, as compared to no explicit instructions53. To understand these 461 

discrepancies, it may be helpful to measure metacognitive access systematically across different 462 
muscle effectors and motor and metacognitive tasks. By examining healthy participants’ explicit 463 

knowledge of their own facial expressions, then, we explored another — and in our view very 464 
important — instance of motor control. We suggest that, perhaps just like eye movements, some 465 

parts of motor control might be opaque to explicit introspective access. This contributes to the 466 
body of literature questioning the privileges that introspective access has been argued to have as 467 

a matter of principle and levels the balance of epistemic access towards the complementary 468 

notion of extrospection48,54.  469 

Limitations 470 

One important limitation in our analyses is related to one basic assumption of our approach. In 471 

our exploratory analyses, we found a clear relationship between confidence and similarity ratings 472 
at the single-participant level. We explicitly relied on the distance estimated by the algorithms as 473 
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the ‘true’ measure of performance. We argue that this assumption is valid for two main reasons. 474 

First, we specifically instructed participants to focus on these low-level aspects. Second, we found 475 
very similar results using two completely different algorithms to place facial landmarks (see SI), 476 

suggesting that this measure of distance captures true differences in facial features and does not 477 
depend heavily on the idiosyncrasies of the algorithm. However, it could be argued that similarity 478 

ratings are in fact a better, truer measure of performance because they reflect how similarly two 479 
faces are perceived by a person (either a judge or the very same participant) in an ecologically 480 

valid setting. Against this intuition, we argue that similarity ratings could have been subject to the 481 
same biases and heuristics that confidence may have relied on. As a very simplistic example, a 482 

given participant could have consistently rated positive expressions with higher confidence and 483 
similarity than negative expressions, leading to a relationship between the two kinds of ratings 484 

that needn’t be explained by metacognitive access. We note, however, that this alternative 485 

analysis of the data, based on different assumptions, would have led to the cardinally opposite 486 
conclusion that participants do have precise metacognitive access to their own expressions.   487 

A second limitation has to do with the predictive power of our statistical models. Despite robust 488 

effects in the Bayesian mixed models, a significant amount of variability is left unexplained (see 489 
SI). Better measures of distance, more precise motion tracking technologies (like infrared 490 

reflectors placed on the face), or different analysis methods may have reduced this unexplained 491 
variance. Additionally, we note that our analyses are based on static images, namely the 492 

endpoints of otherwise dynamic expressions. But, important information is conveyed in the 493 
dynamic pattern of facial expressions55–57, and a future direction of this work might be to relate 494 

confidence to dynamic aspects of facial expressions instead.  495 

Finally, while the exploratory machine learning analyses allowed us to identify potential aspects 496 
of the face that participants attended to while ignoring others, we might have failed to detect any 497 

true effects where the relationship between confidence and distance differed between 498 
expressions, or relationships that changed significantly over the course of the experimental 499 

session.  500 

It could be argued that the use of non-canonical expressions limits the ecological validity of our 501 
paradigm. However, we note that in this study we were interested in studying a potential 502 

disconnect between (zero-order) motor control and (second-order) metacognitive access to it. 503 
Canonical expressions, where a highly trained and stereotypical set of movements correspond, 504 
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one-to-one, to a specific expression, confound motor control with emotional content and would 505 

not have allowed us to make any inferences about which kind of information participants were 506 
accessing to make their judgments. For instance, had we asked participants to make a 507 

stereotypical “happy” expression and then rated confidence, we would not have been able to 508 
determine whether their confidence judgments were well calibrated with the emotional state they 509 

recreated, the highly-trained motor program, or the end state of the target expression. In short, 510 
canonical expressions would have carried with them a set of confounds that our paradigm 511 

avoided. 512 

Conclusion 513 

Our analyses suggest that healthy young volunteers were only able to estimate their performance 514 
in producing non-stereotypical facial expressions based on partial information. This indicates that 515 

we not only do not have metacognitive access to the low-level details of our facial expressions, 516 
but also suggest that we cannot access them, even when explicitly asked to do so under 517 

experimental conditions. This is surprising, we argue, because it sets facial movements apart 518 
from other body movements (namely those of arms and fingers), for which, as previous studies 519 

have shown, we do have precise metacognitive access to lower-level motor information, even 520 
when this information is decoupled from the motor goal. We speculate that this distinction might 521 

be related to the lack of concurrent visual information during social interactions, but our 522 

speculation will need to be examined in future studies. 523 

 524 

Material and Methods 525 

Participants 526 

Following our pre-registered plan (https://osf.io/pnyw3), 40 healthy participants took part in the 527 

study after giving informed consent (21 female, 19 male mean ± SD: 28.2 ± 4.6 years). We based 528 
the sample size on pilot data from 12 participants (see SI) and previous studies of motor 529 

metacognition from our group. Exclusion criteria were a recent history of psychiatric disease or 530 
having a heavy beard, as we reasoned that it would occlude the view of part of the face and 531 

placing of the landmarks. The local ethics committee approved all procedures (Nr. 2017-23-R), 532 
which conformed to the Declaration of Helsinki.  533 

 534 
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Apparatus 535 

The experimental setup consisted of a stimulus computer, a digital camera, a screen, and a half-536 
silvered mirror tilted 45° from the vertical (Figure 8). Participants saw the image displayed on the 537 

screen by the stimulus computer indirectly through its reflection on the half-silvered mirror. Behind 538 

the mirror, a digital camera (Fire-i, UniBrain, Athens, Greece) connected to the computer took 539 
pictures of the participants’ facial expressions. This setup allowed participants to look at the 540 

pictures displayed while simultaneously looking directly into the camera. As a result, we obtained 541 
pictures of participants looking straight ahead and not downwards at the image, as would have 542 

been the case if we had used e.g. a simple laptop computer with a digital camera just above the 543 
screen.  544 

Participants sat at approximately 60 cm from the middle-point of the half mirror, which was in turn 545 

45 cm away from the display screen. In order to reduce head movements, we held participants' 546 
torsos loosely in place with an elastic band tied to the chair. Additionally, at the beginning of the 547 

experiment, we showed participants the image collected by the camera in real time and asked 548 
them not to make large head movements or rotations. While it would have been desirable to 549 

further limit whole-head movements using, e.g., a chin rest, we opted against this as it would have 550 
made expressions unnatural and, more importantly, because it would have provided a form of 551 

sensory feedback, interfering with the experimental design. We ensured that participants’ faces 552 

were well-lit and took care that participants did not see any reflections of their own face on the 553 
mirror.  554 

 555 

 556 

 557 
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 558 

Figure 8. Experimental Apparatus. Participants sat in front of a dark display box and saw the pictures 559 
projected from a computer screen reflected on a half-plated mirror (tilted 45°). Behind the mirror, positioned 560 
directly in front of participants’ gaze, a digital camera took pictures of the participants when they pressed 561 
the corresponding key. This way, participants could look simultaneously directly at the to-be-imitated picture 562 
and into the camera.  563 

 564 

  565 
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Procedure 566 

All experimental tasks were written on MATLAB (R2016b, The Mathworks, Natick, MA), using 567 

Psychtoolbox-358–60 and ran on MacOS. All tasks were self-paced with no time deadlines. All 568 

participants (except for one, due to technical problems) completed all tasks in the same order.  569 

Facial Expressions Task 570 

The facial expressions task consisted of three parts. In the first part (Figure 1.A), participants saw 571 

32 different pictures of four different actors in pseudorandomized order (see the description of 572 

Cue images, below) and imitated each expression as best they could. Participants pressed a key 573 
(the space bar) once they considered that their expression was as close as possible to the actor’s 574 

expression. We asked participants to try to match the low-level physical features of the face — 575 
the curvature of the lips, the elevation of the eyebrows — rather than the emotion conveyed by 576 

the expression. Upon pressing the spacebar, the digital camera behind the half-plated mirror took 577 
a picture of the participant’s facial expression, and a new trial started. On a separate test, we had 578 

determined that there was a minimum delay of approximately 80 ms between the time of key 579 
press and the time stamp of the image. Accordingly, we included in our instructions to participants 580 

to hold the expression in place after they had pressed the key that would trigger the image 581 

acquisition. 582 

The 32 pictures of participants generated in this way served as target images for the second part 583 

of the paradigm. Here, participants saw the target images and tried to reproduce their own 584 
expressions. Once again, we emphasized that the goal was to match the low-level physical 585 

features of the face rather than the emotion conveyed. After each trial, participants used a mouse 586 

to rate their confidence (on a visual analog scale) regarding how well they thought that they had 587 
imitated their own previous expression. Participants saw each of their 32 target expressions 588 

repeated 8 times in random order (256 trials in total). We only revealed that they would have to 589 
reproduce their own expressions after the first part of the experiment was complete. Parts 1 and 590 

2 of the experiment took on average approximately 50 minutes. Before starting part 1, participants 591 
completed four practice trials where they simply imitated pictures of famous celebrities and took 592 

pictures. They did not see the resulting pictures of themselves.  593 
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In the third part of the task, participants saw each of the 256 pairs of pictures (target and response) 594 

and rated them for similarity on a scale exactly like the one they had used for confidence. This 595 
part of the experiment took on average 30 minutes.  596 

Cue images 597 

We used 32 different facial expressions as cue pictures (14 from two different male actors, 18 598 
from three different female actors) which would be used to generate participant-specific target 599 

expressions. To prevent participants from producing stereotypical target expressions, we sought 600 
pictures representing expressions that could not be unambiguously categorized as one of the 601 

basic emotions61. We selected pictures from the MPI Small Facial Expression Database28, which 602 

includes video sequences of expressions based on a method acting protocol in which actors 603 
produce non-standard expressions by imagining themselves in a situation described by a brief 604 

scenario and reacting accordingly. Example descriptions of expressions include: “Somebody 605 
suggests to try something. You hesitate at first, then you agree”, or “You have reached a goal and 606 

you are happy to have accomplished it”. Additionally, we selected still images from the video 607 
sequence that did not correspond to the peak expression, but instead to an intermediate step. As 608 

a result, the cue images could not easily be labeled as stereotypical expressions (e.g., “happy”, 609 
“sad”) for which participants might have a predefined motor program but could instead be 610 

assumed to be the result of an unusual and idiosyncratic combination of gestures. Note that, as 611 

the samples in Figure 1.C show, these cue images were not unnatural grimaces and so the 612 
paradigm remains ecologically valid. We reasoned that these non-canonical expressions would 613 

maximize motor variability, ensuring that confidence ratings could be based only on a true 614 
evaluation of trial-by-trial performance and not on a general knowledge of how reproducible a 615 

given expression was.  616 

Visual Task 617 

Each participant completed 200 trials of a visual metacognition task 618 

(https://github.com/metacoglab/meta_dots). On each trial of this task, two circles enclosing sets 619 

of dots appeared for 200 ms on either side of a central fixation cross (each circle with a radius of 620 
5 degrees of visual angle, located along the middle of the screen, with an eccentricity from the 621 

vertical midline of 5.5 degrees of visual angle). One of the two circles always contained 50 dots 622 
while the other varied in dot number, and the position (left/right) of the circles was randomized on 623 

each trial. In a 2-alternative forced-choice (2AFC) task, participants discriminated which of the 624 
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circles contained more dots by pressing the left or right arrow keys on the keyboard. The 625 

difference in the number of dots was determined by a pair of interleaved 2-down-1-up adaptive 626 
staircases aimed at fixing performance at around 71% accuracy. After each response, participants 627 

reported their confidence in the accuracy of their own response using the same vertical visual 628 
analog scale that they had used for the two previous tasks rating confidence and similarity for 629 

facial expressions. 630 

Before the main visual task, we ran 80 trials of a staircase procedure where participants did only 631 
the discrimination task without rating confidence. Here we also included two interleaved 2-down-632 

1-up staircases starting from a difference of 3 and 20 dots respectively. One participant 633 
(unintentionally) received feedback about the accuracy of the discrimination task while rating 634 

confidence, so we excluded their data from the analysis. The visual task took approximately 20 635 
minutes. Over all participants, we also excluded 2% of the trials where the reaction times to either 636 

the discrimination task or the confidence rating were faster than 300 ms or slower than 5 s. We 637 
estimated metacognitive efficiency as Mratio30 after scaling and binning confidence into four 638 

discrete confidence levels based on uniform intervals.   639 

Toronto Alexithymia Scale 640 

At the end of the experiment we collected responses to a computerized version of the Toronto 641 
Alexithymia Scale (TAS62) running on a browser, and the data were stored locally63 (jatos.org).  642 

Most participants completed a German version of the scale, except for seven non-German 643 
speakers who completed an English version instead. The TAS-20 consists of 20 items that can 644 

each be answered on a 5-point Likert scale. We considered three out of the four subscales 645 
(Difficulty identifying feelings, Difficulty describing feelings, and Externally-oriented thinking, but 646 

excluded the Daydreaming subscale). We calculated Bayes Factors (BF10) for correlations 647 

between these covariates and individual slopes from the estimated models using the BayesFactor 648 
package64 in R (version 3.6.2).   649 

Data processing and analysis 650 

Following the pre-registered plan, we excluded trials from the facial expressions task at the single 651 
participant level if RTs (time between image onset and key press) were above the 95 percentile 652 

for that participant. This cutoff was necessary because we noticed that participants sometimes 653 

laughed at their own picture or got otherwise distracted. This resulted in seven trials excluded 654 
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from the entire dataset where the time to take a picture was below 300 ms, and a mean lower 655 

threshold of exclusion of 9.43 s (range: 4.0 - 18.0 s). 656 

For each of the pictures taken, we obtained the x,y coordinates of landmarks distributed on the 657 

face. In our pre-registered plan we stated that we would estimate the landmark positions using 658 

two different toolboxes and choose the best one to estimate distance based on the quality of the 659 
relationship to the similarity ratings. Instead, due to technical problems in running one of the 660 

toolboxes we opted for the Face Alignment package65 alone (https://github.com/1adrianb/face-661 
alignment v.1.0.0), a fully automated deep-learning based face alignment network (FAN) that 662 

places landmarks on the pictures. We used the face-alignment package together with scikit-image 663 
and pytorch to extract the landmarks from the faces, running on Python v3 in a Jupyter notebook 664 

v5. The face-alignment package automatically places 68 landmarks on the face and excludes the 665 
forehead and hairline.  666 

Using MATLAB (R2020a), we computed the distance (in coordinate space) between each pair of 667 

target and response images. Using the x,y coordinates for all landmarks, we ran a Procrustes 668 
rigid alignment of each face in a pair to a standardized set of coordinates. We used three minimally 669 

variant reference points for this alignment: the outer corners of each eye and a point just below 670 
the nose. The transformation allowed for translation, orthogonal rotation, and scaling. Thus, these 671 

linear transformations minimized the variance in the distance data that could be accounted for by 672 
head rotations and general enlargement or shrinkage due to change in the face position. It did 673 

not account for other rotations (yaw and pitch), where the relative distance between some face 674 
components can change without the facial expression being different. After rigid transformation, 675 

we calculated the total distance for each pair of target and response images as the Euclidean 676 
distance (the root of the sum of squares, see equation in Figure 1) over all 68 landmarks between 677 

the two images. We refer to this measure simply as the distance between two images. We then 678 

log-transformed the obtained distances to ensure that the data were normally distributed before 679 
fitting the Bayesian mixed models.  680 

Bayesian mixed models  681 

In our central analysis we computed metacognitive access to facial expressions as the 682 
relationship between confidence ratings and performance. We take the distance as an inverse 683 

measure of performance: if a response image closely matches the target image, the distance 684 
between them will be small. Furthermore, a strong negative relationship between confidence 685 
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ratings and distance will indicate that participants had metacognitive access to their own facial 686 

expressions, as they (correctly) provided low ratings in trials where the two images differed the 687 
most. Conversely, no relationship between confidence and distance would indicate that 688 

participants had no metacognitive access to their own expressions.      689 

Because finding no relationships between variables was a plausible outcome from our analyses, 690 
we used Bayesian statistics that, unlike frequentist statistics, provide evidence for the null 691 

hypotheses. We analyzed the data using Bayesian mixed models created in Stan (http://mc-692 
stan.org/) through the brms package66,67. In all cases, we ran 4 chains with 15,000 iterations, 693 

5,000 burn-in samples each, and no thinning. We checked for convergence by visually examining 694 
the MCMC chains and ensured that the scale reduction factor (Rhat) of all models was equal or 695 

close to 1. We considered that ratings might vary across participants both in their mean and in 696 
their relationship to the landmark distance, and that different facial expressions might vary in their 697 

associated difficulty to both reproduce (leading to greater variability in the landmark distance) and 698 
to rate (leading to differences in the ratings). Thus, in all models and unless otherwise stated, we 699 

included random slopes for both participants and facial expressions (see the explicit model syntax 700 

in Table 1). We extracted the participant-wise random slopes using the mixedup package 701 
(https://m-clark.github.io/mixedup/). 702 

Because, to the best of our knowledge, there was no existing data to inform our priors, we followed 703 

recommendations68 to use heuristics to define prior distributions. We built the prior for the slope 704 
between ratings and distance based on the ratio-of-scales heuristic: we found that the range of 705 

(log-transformed) distances was approximately 3 a.u. (arbitrary units), whereas the range of 706 
confidence ratings is 1 point (minimum: 0). Therefore we used a normal prior centered on 0 with 707 

an SD = ⅓ (which corresponds to the ratio between confidence range and distance range) for the 708 
slope parameter. To find a prior for the model intercept we followed the logic behind the room-to-709 

move heuristic. Note that raw distances ranged between [131.36 - 2493.78] a.u., hence the 710 
expected rating at 0 distance (i.e., perfect performance) can be well approximated by the 711 

expected rating at distance = 1, which corresponds to the intercept in a linear model with log-712 
transformed distances. We reasoned that a participant with maximum metacognitive performance 713 

would consistently rate their confidence as 1, when the distance between the two images was 0. 714 

Because we realistically expect participants to have (at most) less than perfect metacognitive 715 
access to their own expressions, we centered the prior at 0.8 with an SD = 0.5. Following a similar 716 

logic, we set the prior slope between the two ratings to be centered at 0 with SD = 1, and an 717 
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intercept of 0 with an SD = ½. For all models, we report the estimate, its associated error mean, 718 

the 95% credibility interval (CI), and the BF10, estimated using the bayestestR package69, to 719 
compare each model against its null counterpart, containing the same random effects structure 720 

but not the fixed effect of interest. We also include the posterior draws for each participant in 721 
relation to the region of practical equivalence (ROPE). We set the ROPE to a default range from 722 

-0.1 to 0.1 of a standardized parameter, which corresponds to a negligible effect size70,71. Finally, 723 
we estimated R2 values as implemented by the brms package72. 724 

 725 

Table 1: Formulas for the Bayesian mixed models employed   726 

Hypothesis Model Formula Corresponding 
Figures 

Participants’ confidence in their 
own performance is inversely 
related to the distance between 
two images 

confidence ~ logDistance +  
(1 + logDistance | participantID) +  
(1 | expressionID) 

Figure 2 
Appendix 1-
Figure 5  

The (mean) similarity ratings 
are inversely related to the 
distance between two images 

meanSimilarity ~ logDistance +  
(1+ logDistance | participantID) +  
(1 | expressionID) 

Figure 3 
Appendix 1-
Figure 7  

Confidence and similarity 
ratings of the same participant 
are related 

confidence ~ similarity +  
(1 | participantID) + 
(1 | expressionID) 

Figure 4 

Confidence and reaction times 
are negatively related 

confidence ~ RT +  
(RT | participantID) + 
(1 | expressionID) 

- 

Confidence and ML-weighted 
distances are related 

confidence ~ MLweightDist +  
(1 + MLweightDist | participantID) +  
(1 | expressionID) 

- 

 727 

 728 

We computed metacognitive access to faces using only linear regression and estimated the 729 

correlation with visual Mratios, deviating from the pre-registered plan. We initially planned to also 730 
calculate the area under a type-2 ROC curve (AUROC2) by arbitrarily assuming that first-order 731 
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performance on the Faces task was at 70% accuracy and by classifying trials with distances 732 

above the corresponding threshold as “incorrect”. This analysis had the advantage that it would 733 
have allowed us to correlate metacognitive performance measured on the same scale for both 734 

tasks (Faces and Visual), but we later reasoned that it would make the results less easily 735 
interpretable while not adding explanatory power and therefore decided to omit it.  736 

Machine learning models 737 

Using Python v3, and scikit-learn, we created a separate model for each subject wherein, first, 738 
each landmark distance was determined by (x,y) coordinate differences between the two images. 739 

We further decomposed the differences into four zero- or positive features (one for each cardinal 740 

direction). This allowed different directions of movement to be weighted differently by the model. 741 
We normalized each feature by dividing it by its median. Then, we applied dimensionality 742 

reduction using principal component analysis with a set number of principal components (66, or 743 
approximately 90% of the variance from all subjects) in order to avoid multicollinearity among the 744 

features. Finally, a least squares linear regression model was trained for each participant using 745 
trial-wise leave-one-out cross-validation. 746 

The resulting ML model weights referred to features in principal component space. We translated 747 

the model weights back into landmark space (i.e., x,y coordinates of the facial landmarks). To do 748 

so, we approximated the weight 𝑤 of each feature 𝑓 using the expression in (1): 749 

𝑤𝑓 = ∑ 𝜆𝑓,𝑐×𝜔𝑐66
𝑐=1           (1) 750 

Where 𝜆𝑓,𝑐  is the loading of feature 𝑓  on principal component 𝑐 , and 𝜔𝑐  is the ML model’s 751 

weighting of principal component 𝑐.  752 

To reconstruct the distances weighted by the results of each ML model, we used expression (2): 753 

𝑅𝑆𝑆𝑄𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = #∑ 𝑤𝑓 × 𝑓2272
𝑓=1               (2) 754 

Where wf denotes the weights for each feature f, which is in turn the difference between response 755 
and target images for each cardinal direction, for a given landmark, if the difference was positive, 756 

and 0 otherwise. The 272 features result from decomposing 68 landmarks into the four cardinal 757 

directions. Note that unlike the case for the Euclidean distance, where distances were forced to 758 
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be positive and each of them had an effective weight of 1, here we allowed the feature weights to 759 

be signed. For those cases where the term under the square root was negative, we calculated 760 
the root of the absolute value and then reversed the sign. Note that RSSQweighted is now better 761 

interpreted as a measure of performance, and not distance: because the ML-derived weights 762 
already account for the negative relationship between distance and confidence, RSSQweighted is 763 

expected to show a positive relationship to confidence.  764 

We obtained adjusted R2 for each (participant-specific) model values and compared them using 765 
a Bayesian Wilcoxon Signed-Rank test73 as implemented in JASP74 v0.14 with 10,000 MCMC 766 

samples and 5 chains, and a default Cauchy prior. 767 

 768 

  769 
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Appendix 1 786 

Supplementary Information 787 

Appendix 1-Figures 1-3 show the single-trial data (and linear regressions at the single-participant 788 
level) for the data reported in the main text. 789 

 790 
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Appendix 1-Figure 1: Linear regressions of confidence ratings as a function of distance (at 791 
the single-participant level, for Experiment 2). Note that all statistical inferences are made on the 792 
basis of Bayesian linear regressions, and this plot is for illustrative purposes only.  793 

 794 
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Appendix 1-Figure 2: Linear regressions of similarity ratings as a function of distance (at 795 
the single-participant level, for Experiment 2). Note that all statistical inferences are made on the 796 
basis of Bayesian linear regressions, and this plot is for illustrative purposes only.  797 

 798 
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Appendix 1-Figure 3: Linear regressions of confidence vs. similarity ratings (at the single-799 
participant level, for Experiment 2). Note that all statistical inferences are made on the basis of 800 
Bayesian linear regressions, and this plot is for illustrative purposes only.  801 

 802 

 803 

Supplementary analyses 804 

Machine Learning - Effects of RT 805 

Because confidence is known to correlate negatively with response times75,76 (RT), we first 806 
explored a potential relationship between the two and asked whether RTs could have served as 807 

a proxy for performance. We ran a Bayesian linear regression model of participants’ confidence 808 
ratings including the RT as a fixed effect and random intercepts for participant and facial 809 

expression, as well as a per-participant random slope for RT. We based the prior distribution for 810 
this analysis on previous data from our group3, and set a wide prior for the intercept centered at 811 

around confidence = 0.8 with SD = 0.5, and a prior for the slope centered on 0 with an SD = 0.20, 812 

which roughly corresponds to the ratio-of-scales. We confirmed that there was a small but 813 
consistent effect of RT on confidence (M = -0.01 ± 0.00, CI = [-0.02, -0.00], BF10 = 5.66 x 1039, R2 814 

= 0.20).  815 

To evaluate whether the landmarks informed confidence ratings above and beyond RT, we 816 
compared the resulting individual r values from the ML models (including both RTs and the x, y 817 

positions of the landmarks) to those of a ML model including only RTs as their single feature 818 
(Appendix 1-Figure 4). A non-parametric ANOVA computed with the ez package for R revealed 819 

an interaction effect (p = 0.001) on the r values between the variable predicted (confidence or 820 
similarity) and the features included in the model. Note that we do not interpret the main effect of 821 

the number of features included, as these are known to inflate the r values. Instead, we focus on 822 
the interaction effect. In particular, the interaction revealed higher r values for the models of 823 

similarity that included both landmarks and RT as compared to confidence (Wilcoxon signed rank 824 
test, p = 0.015), but lower r values for models including RTs only (Wilcoxon signed rank test, p = 825 

0.068). This pattern of results is consistent with landmarks being predictive of confidence ratings, 826 

above and beyond RTs To understand the contribution of RTs relative to the other features, we 827 
obtained the rank of importance of RTs within the ML model. We found that RTs varied in 828 

importance with each participant, but ranged between the 5th and the 100th percentile (Mean = 829 
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71.15, Median = 93.41), suggesting that, for some participants, RTs were the most reliable piece 830 

of information for confidence ratings, even if the variance explained by them was very low.  831 

 832 

 833 

Appendix 1-Figure 4: r values resulting from the linear regression models built using ML. A. 834 
Distributions of individual r values (summarized with boxplots and violin plots) for models on confidence or 835 
similarity ratings, using different sets of features. B. Bootstrapped predictions from a non-parametric 836 
ANOVA for models of confidence and similarity built using RTs alone or also including landmark 837 
information.  838 

 839 

Supplementary Pilot Experiment  840 

Prior to pre-registering and collecting the data reported in the main text, we collected a smaller 841 
dataset as a pilot. Because there are some important differences in the experimental details, we 842 

report the methods and results as supporting information, that serve as a conceptual replication.   843 

Supplementary Methods - Pilot Experiment 844 

The methods for the pilot experiment were largely similar to those of the main experiment. We 845 
only describe here the differences between the two.  846 

Participants 847 

Thirteen healthy participants took part in the experiment after giving informed consent (seven 848 
female, mean ± SD: 24 ± 3 years). One participant was excluded from the analysis because four 849 

external judges agreed (see below) that there was no variability in their facial expressions. 850 
Participants had no recent history of psychiatric disease. The local ethics committee approved all 851 

procedures, which conformed to the Declaration of Helsinki.  852 
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Apparatus 853 

Behind the mirror, a digital camera (Logitech HD C310) connected to the computer captured 854 
images of the participants’ facial expressions. The apparatus was similar to the one described in 855 

the main text, with some minor differences. Unlike in the main experiment, where the screen 856 

rested on top of the stimulus box and projected downwards, the screen lay on the table for the 857 
pilot experiment and projected upwards. From the point of view of the participants, this did not 858 

change the visual display.  859 

Procedure 860 

The task was programmed on GNU Octave and displayed stimuli using Psychtoolbox-358–60, and 861 

ran on a Linux Debian (Gnome 3.4.2) operating system. The task consisted of two parts (not 862 
three). Participants saw 30 (not 32) different photos of four different actors and imitated each 863 

expression as best they could. The images were presented in one of five possible pre-defined 864 

random orders to each participant. As in the main experiment, participants first generated 30 865 
participant-specific pictures that then served as target images for the second part of the paradigm. 866 

After each trial, participants rated their confidence (on a scale from 1 to 6) regarding how well 867 
they thought that they had imitated their own previous expression. To make the task intuitive, we 868 

kept the mapping of the scale consistent with the German education system, where the best grade 869 
is a 1.0. We then reversed the ratings for further analyses, so that a rating of 6 corresponds to 870 

the highest confidence. In all cases, we recorded each picture taken, the response time (RT, 871 
measured as the time between image onset and key press) and participants’ confidence ratings. 872 

Participants saw each of their 30 target expressions repeated 8 times in random order, for a total 873 
of 240 trials. We only revealed that they would have to reproduce their own expressions after the 874 

first part of the experiment was complete. On average, the experiment took approximately 50 875 

minutes.  876 

Data Processing and Analysis 877 

We first used the Face Modeling GUI78 to manually position 99 landmarks on their corresponding 878 

locations on a small subset of images (3-5) of each participant. The Face Modeling GUI then uses 879 
the location of these landmarks to automatically find their optimal locations in the remaining 880 

images. After the automatic fit, the landmarks in each of the images were corrected manually. In 881 

this way, we reduced the dimensionality of each of the 240 response images along with the 30 882 
target images for each of the participants to 99 pairs of (x,y) coordinates. We then did the same 883 
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Procrustes rigid-alignment as described in the main text, with 5 reference points instead of 3 (the 884 

inner and outer corners of each eye and a point just below the nose). We did not use a mean 885 
reference face, but instead minimized the distance of each response picture to its corresponding 886 

target picture.  887 

Similarity ratings by external judges 888 

Unlike what was the case in the main experiment, here four independent judges (student research 889 

assistants) rated the image pairs for similarity on a scale from 1 to 6, exactly like the one the 890 
participants had used.  891 

Data processing and analysis 892 

Here as well we followed recommendations68 to use heuristics to define prior distributions. We 893 

built the prior for the slope based on the ratio-of-scales heuristic: we found that the range of (log-894 
transformed) distances was approximately 4.93 a.u. (arbitrary units), whereas the maximum 895 

possible range of ratings is 5 points (maximum: 6, minimum: 1). The ratio between the two is 896 
approximately 1, so we used a normal prior centered on 0 with an SD = 1 for the slope parameter. 897 

To find a prior for the model intercept (the expected rating at 0 distance, i.e., perfect performance), 898 

we followed the logic behind the room-to-move heuristic. We reasoned that a participant with 899 
maximum metacognitive performance would consistently rate their confidence as 6, when the 900 

distance between the two images was 0. Because we realistically expect participants to have (at 901 
most) less than perfect metacognitive access to their own expressions, we centered the prior at 902 

4 with an SD = 3.  903 

 904 

Supplementary Results - Pilot Experiment 905 

Because ratings were not on a visual analog scale but instead on a Likert scale, we first quantified 906 

our participants’ metacognitive access to their own facial expressions using an ordinal Bayesian 907 
mixed-effects regression model of participants’ confidence ratings. The model included the log-908 

transformed landmark distances as a fixed effect (for all 99 landmarks combined) as well as 909 

random intercepts for participant and facial expression (See Appendix 1-Table 1). The estimated 910 
ordinal regression coefficient was indistinguishable from 0 (M = 0.04 ± 0.07, CI = [-0.10, 0.16]) 911 

and the evidence ratio favoured the (point) null hypothesis of no relationship between confidence 912 
and distance (BF10 = 0.082). This is illustrated by the flat probability profiles for each rating shown 913 
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in Appendix 1-Figure 5.A: while there were differences in the overall probability of each confidence 914 

rating (e.g. a rating of 5 occurring more often than others), the probability of a participant providing 915 
a given confidence rating was similar over all landmarks distances (see also Appendix 1-Figure 916 

6 for the single-participant data).  917 

 918 

 919 

Appendix 1-Figure 5. No evidence for metacognitive access to facial expressions (A.) Group effects 920 
reflecting mean metacognitive access, namely the relationship between confidence ratings and distance 921 
between two images (inverse of performance). While different confidence ratings appear at different 922 
frequencies in the data, they do not vary with distance as would be expected if participants had 923 
metacognitive access to their own expressions. Solid lines represent the mean of the posterior draws, the 924 
shaded regions represent the 95% credibility interval. (B.) Posterior draws for each subject, shown in 925 
relation to the ROPE. Note that the y-axis is clipped to better display the distributions around the ROPE 926 
and therefore excludes the long tails of some of the distributions.   927 

 928 
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 929 

Appendix 1-Figure 6: Linear regressions of confidence ratings as a function of distance (at the 930 
single-participant level, for Experiment 1). Note that all statistical inferences are made on the basis of 931 
Bayesian ordinal regressions, and this plot is for illustrative purposes only.  932 

 933 

That there is no observable relationship between the combined landmark distances and 934 
participants’ confidence ratings suggests, at face value, that participants did not have access to 935 

the details of their face. However, other alternative explanations must be considered. First, it is 936 
possible that the landmark distance measure, which is essentially the result of an algorithm 937 

placing landmarks based on pixel information plus some rigid transformations, may not capture 938 
enough information relevant for the similarity of two faces. If this were true, there should also be 939 

no relationship between the landmark distance and the similarity ratings provided by external 940 
judges looking at each image pair side by side. In fact, this was not the case. To evaluate this 941 

possibility we used a Bayesian linear mixed-effects regression model on the mean of four judges. 942 

The model included the same fixed and random effects factors as in the mixed ordinal model 943 
above (namely, the log-transformed distance as a fixed effect, intercepts for participant and 944 

expression as random effects, and a by-participant random slope for the fixed effect). However, 945 
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unlike in the mixed-effects regression model on participants’ confidence ratings, we did find a 946 

consistent negative relationship between the distance and the similarity ratings (M = -0.54 ± 0.06, 947 
CI = [-0.67, -0.42], BF10= 71551.85). That is, unlike the confidence ratings, the similarity ratings 948 

did show a consistent and (as expected) negative relationship to the distance (Appendix 1-Figure 949 
7.B and Appendix 1-Figure 8). This suggests that the distance did carry some information about 950 

face similarity meaningful to human observers. For illustration purposes only, we repeated the 951 
analysis between similarity ratings and distance but this time rounded the mean ratings and ran 952 

an ordinal model (Appendix 1-Figure 7.B). We do not make any statistical inferences from this 953 
analysis but use it only to illustrate the differences between the probability profiles of the ratings 954 

that vary with distance and those who do not (Appendix 1-Figure 5.A).  955 

As in the main experiment, here we also found that distance was related to similarity ratings. 956 
Neither the procedure to estimate distance nor the similarity ratings were identical between the 957 

two experiments (two different algorithms placed 68 or 99 landmarks respectively; and either the 958 
participants themselves or external judges rated similarity), which validated our measure of 959 

distance by showing that it does not depend on idiosyncratic properties of the algorithm or the 960 

rating process. 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 
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 969 
Appendix 1-Figure 7. The distance between two images captures relevant information. (A.) Group 970 
effects reflecting the information contained in the distance between two images, namely the relationship 971 
between the mean similarity ratings of four judges (who viewed each image pair side-by-side) and distance 972 
between two images. There is a clear relationship between mean similarity and distance, suggesting that 973 
distance contains meaningful variability. (B.) An ordinal version of the model shown in (A.) presented only 974 
to illustrate the contrast to Appendix 1-Figure 5. For both panels (A.) and (B.), solid lines represent the 975 
mean of the posterior draws, and the shaded regions represent the 95% credibility interval. (C.) Posterior 976 
draws for each subject, shown in relationship to the region of practical equivalence (ROPE). Note that the 977 
y-axis is clipped to better display the distributions around the ROPE and therefore excludes the long tails 978 
of some of the distributions.   979 

 980 

 981 
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 982 

Appendix 1-Figure 8: Linear regressions of mean similarity ratings as a function of distance. The y 983 
axis represents the mean of all four judges, and each panel represents a single participant, from the pilot 984 
experiment).  985 

 986 

Importantly, we note that the relationships shown in Appendix 1-Figure 7, panels B. and C. and 987 
Appendix 1-Figure 8 are the result of taking the mean of four judges. Thus, this significant 988 

relationship might be accounted for by a Wisdom of the crowds effect, whereby the mean of the 989 
estimates of many individuals is better than any single individual’s estimate79. To evaluate this 990 

possibility, we ran Bayesian ordinal mixed regressions for the similarity ratings of each individual 991 
judge. In all cases, we found that the estimates were negative, and clearly different from 0 (all 992 

mean slope estimates < -0.53, all BF10 > 554. See Appendix 1-Table 1 and Appendix 1-Figure 9 993 
for the model predictions and single-participant data, respectively).  994 

 995 

 996 

 997 
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 998 

 999 

Appendix 1-Table 1: Bayesian ordinal model estimates for the effect of distance on 1000 
similarity. Each row contains the estimates for a single judge (and all participants in the pilot 1001 
experiment) and includes the mean, standard deviation, 95% credibility interval and BF10 relative 1002 
to the null model.  1003 

Judge Effect of distance on similarity 
rating (M ± SD) 

95% CI BF10 

1 -0.53  ± 0.11     [-0.75, -0.32]  554.91 

2 -0.55 ± 0.07  [-0.70, -0.41] 15175.95 

3 -0.89 ± 0.11    [-1.11, -0.67] 57346.06 

4 -0.73 ± 0.11    [-0.95, -0.51] 7608.01 
 1004 

 1005 

 1006 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.08.434069doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.08.434069
http://creativecommons.org/licenses/by/4.0/


 

45 

 1007 

Appendix 1-Figure 9: Linear regressions of similarity ratings from each judge as a function 1008 
of distance. Each panel represents a single judge (columns) and participant (rows) from the pilot 1009 
experiment.  1010 

 1011 

 1012 

 1013 
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Brief Discussion - Pilot Experiment  1014 

Briefly, these results suggest that participants did not have access to the low-level details of their 1015 
own facial expressions. This could not be explained by any of the several alternatives we 1016 

explored: neither lack of variability in performance or a poor benchmark measure (similarity 1017 

ratings from external judges did show a clear relationship to the landmark distances, Appendix 1-1018 
Figure 7) nor the fact that the confidence ratings were from a single person (individual judges’ 1019 

similarity ratings also showed the same clear relationship, Appendix 1-Table 1) proved to be 1020 
sufficient to explain the apparent null relationship between confidence ratings and distance.  1021 

Despite these controls, alternative explanations remain in principle possible, which we 1022 

incorporated when designing the experiment reported in the main text. First, participants provided 1023 
their confidence ratings on a Likert scale from 1-6. Perhaps, a continuous scale would have given 1024 

them the opportunity to provide more nuanced and precise ratings. Second, metacognitive ability 1025 
— in both the visual80 and the motor41 domains — is known to vary in the normal population. 1026 

Perhaps, due to mere chance, participants with poor general metacognitive access to their own 1027 
facial expressions were overrepresented in the relatively small sample of 12 participants. Hence, 1028 

to exclude the possibility that our conclusions in this pilot experiment resulted from a small (and 1029 
potentially biased) sample of 12 participants, we tested a larger sample. Third, we considered the 1030 

possibility that the differences we observed in this pilot experiment between the relationships of 1031 

distance and confidence and similarity ratings could be attributed to differences in metacognitive 1032 
traits between groups of individuals. We therefore did not recruit external judges but asked the 1033 

same participants to rate their own performance in the image pairs.  1034 
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