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ON THE GROTHENDIECK–SERRE CONJECTURE ON

PRINCIPAL BUNDLES IN MIXED CHARACTERISTIC

ROMAN FEDOROV

Abstract. Let R be a regular local ring. Let G be a reductive R-group scheme.
A conjecture of Grothendieck and Serre predicts that a principal G-bundle over R
is trivial if it is trivial over the quotient field of R. The conjecture is known
when R contains a field. We prove the conjecture for a large class of regular local
rings not containing fields in the case when G is split.

1. Introduction and main results

Let R be a regular local ring; let G be a reductive group scheme over R. A conjec-
ture of Grothendieck and Serre (see [36, Remarque, p.31], [12, Remarque 3, p.26-27],
and [19, Remarque 1.11.a]) predicts that a principal G-bundle over R is trivial, if
it is trivial over the fraction field of R. Recently this has been proved in the case
when R contains a field in [10], it was extended to the case of finite fields in [31]. In
this paper we consider the case when R contains no field, that is, the case of mixed
characteristic.

Note that a regular local ring R contains no field if and only if there is a prime
number p (necessarily unique) such that p is neither invertible nor zero in R. In this
case R contains the localization Z(p) of Z at the prime ideal (p) = pZ.

Thus, we assume that R is a Z(p)-algebra. We will also assume that R/pR is a
regular ring. In this case a theorem of Popescu [35, 37, 38] reduces the question to
the case when R is a localization of a finitely generated smooth Z(p)-algebra A at a

maximal ideal. Taking the closure of SpecA in PN
Z(p)

, we may assume that R is the

local ring of a closed point x on an integral scheme X projective over Z(p).
Additionally, we will assume that (I) the fiber Xp is generically reduced, and that

(II) the set of points where X is not regular intersects Xp in a subset of codimension
at least two in Xp. Note that condition (I) is satisfied if the fiber Xp is irreducible
because the projection is smooth at x. On the other hand, both conditions are
satisfied if the set of points where the projection X → SpecZ(p) fails to be smooth,
has codimension at least 3 in X .

Below we will prove the conjecture of Grothendieck and Serre under the above
assumptions when the group scheme G is split; see Theorem 1. We work in a slightly
greater generality: we weaken condition (I) and we consider projective schemes over
any excellent discrete valuation ring Λ, not just Z(p)-schemes. In particular, Λ can be
a localization of any number ring at a maximal ideal.

We note that previously the conjecture was known in a very few mixed character-
istic cases, namely, when G is a torus [7], when dimR = 1, when R is Henselian [26].
Next, the case of G = PGL(n,R) follows from a similar statement for Brauer
groups [7, Thm. 4.3] (more generally, one can derive the statement for G = PGL(A),
where A is an Azumaya algebra over R). Also, in [27] the conjecture is proved when
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2 ROMAN FEDOROV

G is quasisplit and dimR = 2 but there it is assumed that the residue field of R is
infinite. Thus our results are new even in dimension two. We also note that while the
current paper was under review, the subject was further developed, see [4].

1.1. Definitions and conventions. A group scheme G over a scheme S is called
reductive if it is affine and smooth as an S-scheme and if, moreover, all its geometric
fibers are connected reductive algebraic groups. This definition of a reductive R-group
scheme coincides with [8, Exp. XIX, Def. 2.7].

A reductive group scheme G over a local scheme S is split if it contains a maximal
torus T ⊂ G such that T ≃ (Gm,S)

r for some r (cf. [8, Exp. XXII, Prop. 2.2]).
Note that such a group scheme comes as a pullback from SpecZ (see [8, Exp. XXV,
Thm. 1.1]).

Let G be a group scheme faithfully flat and finitely presented over S. An S-
scheme G with a left action of G is a principal G-bundle over S, if G is faithfully
flat and finitely presented over S, and the morphism G ×S G → G ×S G, whose first
component is the action and the second is the projection, is an isomorphism (see [20,
Sect. 6]). A principal G-bundle E over S is trivial if there is an isomorphism of
S-schemes E ≃ G compatible with the action of G, where G acts on itself by left
multiplication. A principal G-bundle is trivial if and only if it has a section as an
S-scheme.

If T is an S-scheme, we will use the term “principal G-bundle over T ” to mean a
principal G ×S T -bundle over T . We usually skip the adjective ‘principal’ as we are
only considering principal G-bundles.

Assume that G is affine over S. In this case, we denote by H1
fppf(S,G) the pointed

set of isomorphism classes of G-bundles over S (as every such bundle is locally trivial
in the fppf topology). The subset corresponding to étale locally trivial bundles is
denoted by H1

ét(S,G). We note that if G is smooth over S, then we have

H1
ét(S,G) = H1

fppf(S,G).

If T is an S-scheme and s ∈ S is a point, we write Ts for the fiber T ×S s. We write
k(s) for the residue field of s.

The symbol ‘≃’ means that two objects are isomorphic; we use the equality ‘=’ to
emphasize that the isomorphism is canonical. We use boldface font for group schemes
(e.g G, B, etc.) and the calligraphic font for principal bundles (e.g. G, E , etc.).

The notation #A stands for the number of elements of the finite set A.

1.2. Main result.

Theorem 1. Let Λ be an excellent discrete valuation ring; let b ∈ Spec Λ be the closed
point. Let X be an integral scheme and π : X → Spec Λ be a flat projective morphism.
Denote by Xsing the set of y ∈ X such that the local ring OX,y is not a regular ring.
Assume that π : X → SpecΛ satisfies the following properties

(I) The smooth locus of Xb is dense in Xb.
(II) The intersection Xsing ∩Xb has codimension at least two in Xb.

Let x ∈ X be a closed point such that π is smooth at x. Let GX,x be a split reductive
OX,x-group scheme. Then a principal GX,x-bundle over OX,x is trivial, if it has a
rational section.

The proof of the theorem occupies Sections 2–4.

Remarks. • The setXsing is closed inX , since Λ is excellent; see [16, Scholie 7.8.3(iv)].
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• We note that Xsing ∩Xb is in general smaller than the set of points where Xb is
not regular.

• The condition that Λ is excellent is not needed. Indeed, the Grothendieck–Serre
conjecture is known for regular local rings containing finite fields [31, 28, 32]. Thus
we may assume that Λ does not contain a finite field. In this case Λ is automatically
excellent; see [16, Scholie 7.8.3(iii)]. However, we prefer to keep this assumption in
order to have our theorem independent from Panin’s results [31, 28, 32].

• Condition (I) is satisfied if Xb is irreducible, because π is smooth at x.
• If the residue field of b is perfect, then Condition (I) is equivalent to the condition

that Xb has no multiple components.
• We expect that, more generally, the theorem and its proof hold for the semi-local

rings of finitely many closed points on X . Note that the conjecture is proved in the
case of semi-local Dedekind domains in [21], which extends the results of [26]. See
also [33] in the split case.

The following result of independent interest will be used in the proof.

Theorem 2. Let R be a Noetherian local ring. Let H be a split reductive group
scheme over R. Let F be a principal H-bundle over A1

R := SpecR[t] such that F is
trivial over the complement of a closed subscheme that is finite over SpecR. Then F
is trivial.

This theorem is similar to [29, Thm. 1.3] and to [10, Thm. 3]. It will be proved in
Section 2. Note that the ring R is not required to be regular.

1.3. Example: quadratic forms. We have the following relative result. Let R be
a regular local ring and let the R-group scheme SOn be the split form of the special
orthogonal group scheme.

Theorem 3. Let R be a regular local ring such that the Grothendieck–Serre conjecture
holds for R and SO2n. Assume that 2 is invertible in R. Let Q =

∑

i,j qijxixj and

Q′ =
∑

i,j q
′
ijxixj be quadratic forms in n variables with coefficients in R such that

their discriminants are invertible in R. Assume that there is a linear transformation
with coefficients in the fraction field of R, taking Q to Q′. Then there is a linear
transformation with coefficients in R taking Q to Q′.

When 2 is not necessarily invertible in R we have the following result. Define the
split quadratic form over R as follows

Qn = x1xm+1 + · · ·+ xmx2m if n = 2m

and

Qn = x1xm+1 + · · ·+ xmx2m + x2
2m+1 if n = 2m+ 1.

Note that SOn is the special orthogonal group scheme associated to Qn (see [22,
Ch. IV, Sect. 5] for the correct definition in the case when 2 is not invertible in R).
Recall (see e.g. [22, Ch. IV, Sect. 3]) that if n is odd and Q is a quadratic form with
coefficients in R, then one can define its half-discriminant (which is just 1/2 times the
discriminant if 2 is invertible in R).

Theorem 4. Let R be a regular local ring such that the Grothendieck–Serre conjecture
holds for R and SOn. Let Q =

∑

i,j qijxixj be a quadratic form in n variables
with coefficients in R such that its discriminant is invertible in R if n is even, and
its half-discriminant is invertible in R if n is odd. Assume that there is a linear
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transformation with coefficients in the fraction field of R, taking Q to Qn. Then there
is a linear transformation with coefficients in R taking Q to Qn.

Note that, if X and x are as in Theorem 1, then the conditions of the above two
theorems are satisfied for R = OX,x. Theorems 3 and 4 are proved in the last section.

1.4. Outline of the paper. We start by proving Theorem 2 in Section 2. After that
we proceed with the proof of Theorem 1. Let us give a brief overview of the proof.
By [26] we may assume that the relative dimension of the flat morphism X → SpecΛ
is at least one.

The fist step in the proof is to fiber a neighborhood of x in X into curves. Thus
we choose an appropriate neighborhood X ′ of x in X and a smooth fibration X ′ → S
of relative dimension one, having some nice properties (see Definition 3.2 below). We
extend G to a principal bundle F over X ′ such that F is trivial over the complement
of a subscheme finite over S. This step, carried out in Section 3 differs crucially
from the equal characteristic case. In particular, we use the fact that a generically
trivial principal bundle can be reduced to a Borel subgroup on the complement of a
codimension two subscheme, see Proposition 3.10.

In Section 4 we complete the proof of Theorem 1 as follows. We pull F back to
an open subset of X ′ ×S U , where U := SpecOX,x. Then, we descend the bundle
obtained to A1

U , employing the theory of nice triples of Panin (cf. [29, Def. 3.1] and
Definition 4.2 below), reducing Theorem 1 to Theorem 2. See Remark 4.11 regarding
the rationale for using nice triples.

In Section 5 we prove Theorems 3 and 4.

1.5. Acknowledgments. The author is very grateful to Ivan Panin for introducing
him to the subject and to the techniques. In fact, the main ideas of this paper grew
out of a conversation with Panin at the University of Mainz. The author also wants
to thank Dima Arinkin and Kestutis Česnavičius for useful comments. The author
is particularly grateful to Brian Conrad for explaining to him how to obtain a result
about quadratic forms in the case when 2 is not invertible in the ring (Theorem 4)
and for other comments. The author thanks the anonymous referees for very valuable
suggestions. One of the referees explained to the author how to simplify certain proofs
and how to strengthen the statement of Theorem 3.

The author is partially supported by NSF grants DMS-1406532 and DMS-2001516.
A major part of the paper was written, while the author held a fellowship at Max
Planck Institute for Mathematics in Bonn. He wants to thank the Institute for the
hospitality.

2. Bundles over A1: Proof of Theorem 2

2.1. Horrocks type statement. The following statement and its proof are close
to [29, Thm. 9.6].

Proposition 2.2. Let R be a Noetherian local ring, U := SpecR. Let x ∈ U be
the closed point. Let H be a reductive group scheme over U such that there is an
embedding H → GL(n, U) for some positive integer n. Let P1

x be the x-fiber of the
projection P1

U → U , let Hx be the x-fiber of H. Let H be an H-bundle over P1
U such

that its restriction to P1
x is a trivial Hx-bundle. Then H is isomorphic to the pullback

of an H-bundle over U .



ON THE GROTHENDIECK–SERRE CONJECTURE IN MIXED CHARACTERISTIC 5

Proof. By [6, Cor. 6.12(ii)] the quotient X := GL(n, U)/H is represented by an affine
scheme.

Consider the associated GL(n, U)-bundle H′ := GL(n, U) ×H H. Let, under the
equivalence between GL(n, U)-bundles and rank n locally free coherent sheaves, H′

correspond to the sheaf S on P1
U . By the assumption on H, Sx is isomorphic to

⊕n
i=1OP1

x
. Thus

H1(P1
x,Hom(Sx,Sx)) = H1(P1

x,⊕
n2

i=1OP1
x
) = 0.

Therefore, according to [14, Cor. 4.6.4], S is a free sheaf. Thus H′ is trivial.
Consider the morphism of exact sequences, induced by the canonical projection

prU : P1
U → U ,

MorU (U,X )
∂

−−−−→ H1
ét(U,H) −−−−→ H1

ét(U,GL(n, U))

pr∗U





y





y





y

MorU (P
1
U ,X )

∂
−−−−→ H1

ét(P
1
U ,H) −−−−→ H1

ét(P
1
U ,GL(n, U)).

The class of [H] ∈ H1
ét(P

1
U ,H) is in the image of ∂, because H′ is trivial. It remains

to show that the morphism pr∗U is surjective. This follows from [25, Prop. 6.1]. This
proposition is applicable because P1

x is projective and Xx is affine, so any morphism
P1
x → Xx must be constant. �

2.3. Gluing principal bundles. As before, let R be a Noetherian local ring, U :=
SpecR. Let H be a split reductive group scheme over U . Let Y = 0 × U be
the zero section in P1

U . Let DY := SpecR[[t]] be the “formal disc around Y ”, let

ḊY := SpecR((t)) be the “punctured formal disc.” There is commutative diagram of
morphisms of U -schemes (see [9, Sect. 4.1] for details)

ḊY −−−−→ DY




y





y

P1
U − Y −−−−→ P1

U .

Further, we explained in [9] that given an H-bundle over P1
U − Y , an H-bundle over

DY , and an isomorphism between their restrictions to ḊY , we can glue the bundles
to make an H-bundle over P1

U ; see [9, Prop. 4.4].
This construction can be used to modify H-bundles over P1

U in the following sense.

Given an H-bundle H over P1
U , its trivialization over ḊY , and a loop α ∈ H

(

R((t))
)

,

we construct a new H-bundle H(α) over P1
U as follows. We view α as an isomorphism

between H|ḊY
and the trivial H-bundle over ḊY , and use it to glue H|P1

U
−Y with the

trivial H-bundle over DY .

2.4. End of the proof of Theorem 2. We use the notations from the statement of
Theorem 2. As before, let U := SpecR and let Y = 0×U ⊂ P1

U . Since P
1
U −Y ≃ A1

U ,
we may view F as an H-bundle over P1

U − Y . Let us trivialize F on a complement of
a subscheme Z ⊂ P1

U −Y finite over U . Note that Z is closed in P1
U . Let us extend F

to an H-bundle F̃ over P1
U by gluing F with the trivial bundle over P1

U − Z (observe
that both bundles are trivial over the intersection P1

U − Y − Z).
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Consider the Hx-bundle F̃x over P1
x obtained by restricting F̃ . Note that F̃x is

generically trivial because it is trivial over P1
x − Zx. Thus it is trivial over P1

x − 0
by [11, Cor. 3.10(a)]. Fix such a trivialization.

On the other hand, F̃ is trivialized over DY , as the morphism DY → P1
U factors

through P1
U − Z. Fix such a trivialization, it gives rise to a trivialization of F̃x

over DYx
.

Thus we get two trivializations of F̃x over ḊYx
; they differ by an element

α ∈ H(ḊYx
) = H

(

k((t))
)

,

where k := k(x).

Lemma 2.5. The natural map H
(

R((t))
)

→ H
(

k((t))
)

is surjective.

Proof. Let T be a split maximal torus in H. Let B be a Borel subgroup scheme such
that T ⊂ B ⊂ H. Let B− be the opposite Borel subgroup scheme (see [8, Exp. XXII,
Prop. 5.9.2]). Let U− and U be the unipotent radicals of B− and B respectively.
Let E be the subgroup of the abstract group H

(

k((t))
)

generated by U−
(

k((t))
)

and

U
(

k((t))
)

. It follows from [8, Exp. XXVI, Cor. 5.2] that H
(

k((t))
)

= T
(

k((t))
)

·E.

Next, every element of E extends to H
(

R((t))
)

, see [10, Lemma 5.24]. Thus, it

remains to show that every element of T
(

k((t))
)

extends to T
(

R((t))
)

. Since T is
split, it is enough to show that every non-zero element of k((t)) extends to an invertible
element of R((t)), which is obvious because R is local. �

By the previous lemma, we can extend the loop α to a loop α̃ ∈ H
(

R((t))
)

. Since

F̃ is trivialized over ḊY and α̃−1 ∈ H
(

R((t))
)

, we obtain a new principal bundle

F̃(α̃−1) over P1
U (see the end of Section 2.3).

It is easy to see from the construction, that the restriction of F̃(α̃−1) to P1
x is a

trivial Hx-bundle. Indeed, F̃(α̃−1)|P1
x
≃ F̃x(α

−1) and α was chosen in such a way

that the trivialization of F̃x on P1
x − Yx extends to a trivialization of F̃x(α

−1) on P1
x

(cf. [10, Prop. 5.22]).
By [6, Cor. 6.12(i)] there is an embeddingH → GL(n, U). Then by Proposition 2.2,

F̃(α̃−1) is isomorphic to a pullback of an H-bundle over U . Since the restriction of

F̃(α̃−1) to Y = 0× U is trivial, we see that F̃(α̃−1) is trivial. Finally, we see that

F ≃ F̃(α̃−1)|P1
U
−(0×U)

is trivial. The proof of Theorem 2 is complete. �

3. Quasi-elementary fibrations

Now we start the proof of Theorem 1, which will occupy this and the next sections.
In this section we introduce the notion of a quasi-elementary fibration. The main
result is Proposition 3.22, which lets us construct a quasi-elementary fibration from the
data of Theorem 1. We keep the notations from Theorem 1. Set U := SpecOX,x. We
may identify the unique closed point of U with x; denote the residue field of x by k(x).
As we have already mentioned, there is a split reductive Z-group scheme GZ such that
GX,x ≃ GZ×ZSpecOX,x (see [8, Exp. XXV, Thm. 1.1]). Set G := GZ×ZSpec Λ; this
is a split reductive Λ-group scheme. Then we have GX,x ≃ G×Λ SpecOX,x. We use
this isomorphism to identify the group schemes. Thus, according to our convention,
principal GX,x-bundles are the same as principal G-bundles.



ON THE GROTHENDIECK–SERRE CONJECTURE IN MIXED CHARACTERISTIC 7

3.1. Definition of quasi-elementary fibrations. The notion of an elementary fi-
bration was introduced in [1, Exp. XI, Def. 3.1]. The following notion is a weak
version of elementary fibration: we only assume that the projection is smooth over
the open part, we do not require the fibers to be integral, and we only require the
divisor to be finite surjective over the base (see also [29, Def. 2.1]).

Definition 3.2. A quasi-elementary fibration is an affine smooth morphism of Noe-
therian schemes p : X ′ → S that can be included in a commutative diagram

X ′
j

//

p
  ❆

❆❆
❆❆

❆❆
❆ X

p̄

��

Y
ioo

q
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

S

satisfying the following conditions
(i) p̄ is flat projective of pure relative dimension one;
(ii) j is an open embedding, i is a closed embedding, and X ′ = X − Y ;
(iii) X is a regular scheme of pure dimension;
(iv) q is finite surjective.

We note that S is automatically regular, see [15, Prop. 17.3.3(i)].

Convention 3.3. Let S be a scheme, let Ti be S-schemes, and let s ∈ S be a point. By
shrinking (S, s) we mean replacing S by a Zariski neighborhood S′ of s and replacing
each Ti by Ti ×S S′.

3.4. General preliminaries. The following lemma will be used many times, in par-
ticular, for constructing quasi-elementary fibrations.

Lemma 3.5. Let T and S be Noetherian schemes. Let ϕ : T → S be a projective
morphism with fibers of dimension one (but not necessarily of pure dimension), let
s ∈ S be a closed point. Let T1, T2 ⊂ T be closed subschemes finite over S and such
that T1 ∩ T2 = ∅. Then

(i) If L is an S-ample line bundle over T , then for all large N we may shrink (S, s)
so that we can find σ ∈ H0(T,L⊗N ) such that σ vanishes on T1 and does not vanish
at any point of T2.

(ii) After shrinking (S, s), we can find a closed subset D ⊂ T such that D is finite
over S, T1 ⊂ D, T2 ∩D = ∅, and T −D is affine over S.

(iii) After shrinking (S, s), we can find a finite surjective S-morphism Π: T → P1
S

such that Π(T1) ⊂ 0× S, Π(T2) ⊂ ∞× S.

Proof. For part (i), consider T0 := T1 ∪ (T2)s and let IT0 be the sheaf of ideals of T0.
Notice that R1ϕ∗(L⊗N ⊗IT0) vanishes in a neighborhood of s for large N . Thus, after
shrinking (S, s), we can find a section of L⊗N such that this section vanishes on T1

and does not vanish at any point of (T2)s. It remains to shrink (S, s) again.
For part (ii), we may choose a very ample line bundle L over T/S. By enlarging T2,

we may assume that it contains a closed point in each one-dimensional irreducible
component of Ts. Let σ be a section of L⊗N provided by the first part, let D be the
zero locus of σ. Then the fiber of D over s is finite. Since D is projective over S,
dimensions of the fibers are upper semicontinuous (see [17, Cor. 13.1.5]). Thus, after
shrinking (S, s), we may assume that D is quasi-finite over S. Since D is projective
over S, it is finite over S. Now T −D is affine over S because L⊗N is very ample.
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For part (iii), we may assume that each of T1 and T2 contains at least one point on
each irreducible one-dimensional component of Ts. Let L be a very ample line bundle
on T/S. Thus, by part (i), by shrinking (S, s) and replacing L by its power, we can
find a section τ1 of L such that τ1 vanishes on T1 but not at the points of T2. Let T

′

be the zero set of τ1.
As in part (ii), we may assume that T ′ is finite over S. Shrinking (S, s) and

applying part (i) again, we see that there is a section τ2 of L⊗N for some N > 0 such
that τ2 vanishes on T2 but not at the points of T ′.

Consider the projective morphism Π: T → P1
S given by [τN1 : τ2]. Its restriction

to Ts is finite because it is a morphism of one-dimensional projective schemes Ts → P1
s

such that both the preimage of zero and the preimage of infinity intersect all one-
dimensional components of Ts. Thus, by shrinking (S, s), we may assume that Π is
finite. Clearly, we have Π(T1) ⊂ 0× S and Π(T2) ⊂ ∞× S.

It remains to show that Π is surjective. Since Π is closed (being finite), we only need
to check that for any generic point ω of S the base-changed morphism Πω : Tω → P1

ω

is surjective. If not, then its image is finite, so Πω cannot be finite because Tω is
one-dimensional. This contradiction completes the proof of surjectivity. �

3.6. Weighted blow-ups. The scheme X in Definition 3.2 will be constructed via
blowing up, similarly, to the Artin’s result [1, Exp. XI, Prop. 3.3]. However, since
Proposition 3.12 below produces hypersurfaces rather than hyperplanes, we will need
to do a weighted version of blowing up. Denote by PZ(l0, . . . , lm) the weighted pro-
jective space, that is,

PZ(l0, . . . , lm) := Proj(Z[x0, . . . , xm]), deg xi = li.

For a Noetherian scheme S, set PS(l0, . . . , lm) := PZ(l0, . . . , lm)× S.
Let Z be a reduced Noetherian scheme, let L be an invertible sheaf on Z and let

σi ∈ H0(Z,L⊗li), i = 0, . . . ,m.

Let Z0 be the intersection of the zero loci of σi. The sections σi give rise to a morphism

Z − Z0
µ
−→ PZ(l0, . . . , lm).

Denote by Blσ0,...,σm
(Z) the closure of the graph of µ in

PZ(l0, . . . , lm) = Z × PZ(l0, . . . , lm).

We call it a weighted blow-up of Z along Z0. We view it as a scheme with reduced
scheme structure. We note that it is quite different from the usual blow-up. In
particular, it depends on sections σ0, . . . , σm and not just on their common zero-
locus Z0.

We have a projection

λ : Blσ0,...,σm
(Z) → Z;

this is a projective morphism. Note the following easy lemma.

Lemma 3.7. Notation as above, the base change of λ with respect to the inclusion
Z − Z0 →֒ Z is an isomorphism.

Proof. Results from the construction. �

We will consider weighted blow-ups only in the case, when l0 = 1. For a scheme S,

denote by ÂS the open subset of PS(1, l1, . . . , lm) given by x0 6= 0. If S = SpecA, then
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ÂS = SpecA[y1, . . . , ym], where yi = xi/x
li
0 . Thus, for any S, we have a canonical

isomorphism ÂS = Am
S , in particular, ÂS is smooth over S.

In our applications, Z and Z0 will be of pure dimensions and we will have dimZ −
dimZ0 = m+ 1, in particular, Z0 will be a complete intersection in Z.

It is well-known that the blow-up of a regular scheme along a regular closed sub-
scheme is regular (see e.g. [23, Thm. 8.1.19]). We prove a slightly weaker statement
in the weighted case, which is still sufficient for our purposes.

Lemma 3.8. Notation as above, assume that Z and Z0 are regular schemes and that

Z0 is of pure codimension m+ 1 in Z. Then Blσ0,...,σm
(Z) ∩ ÂZ is a regular scheme.

The dimension of Blσ0,...,σm
(Z) ∩ ÂZ at a closed point x is equal to the dimension of

Z at λ(x).

Proof. The statement is local over Z, so we may assume that Z = SpecA is affine
and that L is a trivial line bundle. Choosing a trivialization of L, we may view σi as

elements of A. Put Z ′ := Blσ0,...,σm
(Z)∩ÂZ . By [23, Cor 4.2.17] we only need to show

that Z ′ is regular at each closed point x. Let x ∈ Z ′ lie over z := λ(x) ∈ Z = SpecA.
Viewing z as a prime ideal of A, we may assume that z ⊃ (σ0, . . . , σm) (otherwise we
are done by Lemma 3.7).

Claim. Let dσi be the image of σi in the cotangent space T ∗
z of Z at z. Then the

vectors dσ0, . . . , dσm are linearly independent.

Proof. Consider the local rings OZ,z and OZ0,z = OZ,z/(σ0, . . . , σm). Since Z0 is of
codimension m + 1 in Z, we easily see that the height of the ideal (σ0, . . . , σm) in
OZ,z is at least m+ 1. Thus

(1) dimOZ,z ≥ dimOZ0,z +m+ 1.

Next, the maximal ideal of OZ0,z can be generated by m0 := dimOZ0,z elements
because Z0 is regular. Let τ1, . . . , τm0 be such generators. Then the maximal ideal
of OZ,z is

(σ0, . . . , σm, τ̃1, . . . , τ̃m0)

for any lift of τi to τ̃i ∈ OZ,z . If dσ0, . . . , dσm were linearly dependent, we would have
dimT ∗

z < (m+ 1) +m0, which gives a contradiction with (1). �

Recall that ÂZ = SpecA[y1, . . . , ym], where yi = xi/x
li
0 . Thus we have sections

dyi of the cotangent sheaf of ÂZ . Let T ∗
x be the cotangent space of ÂZ at x. Since

x is closed in Z ′, it is also closed in the z-fiber of Z ′. Thus we can identify T ∗
x =

(T ∗
z ⊗k(z) k(x)) ⊕ V , where V is the k(x)-vector space with basis dy1, . . . , dym.
Let T ∗ be the cotangent space of Z ′ at x. We have the surjective projection

T ∗
x → T ∗; denote the kernel of this projection by K. Since σi − yiσ

li
0 vanishes on Z ′,

and dσi are linearly independent, the dimension of K is at least m. Thus

(2) dimT ∗ ≤ dimz Z.

We need a general statement about dimensions.
Claim. Let f : S′ → S be a closed and surjective morphism of Noetherian schemes.

Let s ∈ S′ be a schematic point. Then dims S
′ ≥ dimf(s) S.

Proof. We will prove by induction on n the following statement: let f : S′ → S be
a closed and surjective morphism of Noetherian schemes. Let s ∈ S′ be a schematic
point. If dimf(s) S ≥ n, then dims S

′ ≥ n. If n = 0, the statement is obvious. Assume
that the statement is true for n = k − 1, let us prove the statement for n = k.
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Assume that dimf(s) S ≥ k. We easily reduce to the case, when S′ is integral. We
have a chain of prime ideals:

Of(s),S ) Ik+1 ) · · · ) I1.

The ideal I1 corresponds to the generic point of an integral closed subscheme S1 ⊂ S
such that f(s) ∈ S1. We have dimf(s) S1 ≥ k − 1. By induction hypothesis we have

dims f
−1(S1) ≥ k − 1. But f−1(S1) is a proper closed subset of S′ containing s and

S′ is irreducible, so dims S
′ ≥ k. �

If follows from this claim that the dimension of Z ′ at x is greater than or equal to
the dimension of Z at z because the morphism λ : Blσ0,...,σm

(Z) → Z is closed and
surjective (being projective and dominant). Combining this inequality with (2), we
see that Z ′ is regular at x. The statement about the dimensions is now also clear.
The proof of Lemma 3.8 is complete. �

3.9. Reductions of principal bundles to Borel subgroups. LetH be a reductive
group scheme over a Noetherian scheme T . Let B be a Borel subgroup scheme of H
(assumed to exist). Recall that a B-bundle B induces an H-bundle H ×B B. By
a B-reduction of an H-bundle H we mean a pair (B, s), where B is a B-bundle,
s : H×B B → H is an isomorphism. If such a reduction exists, we say that H can be
reduced to B.

Proposition 3.10. Let H be a reductive group scheme over a Noetherian normal
scheme T . Let B be a Borel subgroup scheme of H (assumed to exist). Assume that
H is an H-bundle. Then a B-reduction of H over a dense open subset of T can be
extended to an open subset whose complement has codimension at least two in T .

Proof. By [8, Exp. XXVI, Cor. 3.6, Lm. 3.20] the quotient H/B is represented by a
projective scheme. It is easy to see from the étale descent that this quotient classifies
B-reductions ofH. Thus, we just need to show that a section ofH/B over a dense open
subset of T can be extended to an open subset whose complement has codimension
at least two in T . However, H/B is proper over T , so the statement follows from [13,
Cor. 7.3.5, Remarque 7.3.7]. �

3.11. Bertini type Theorems. Let us define the dimension of the empty scheme to
be −1. The following proposition follows easily from results of [34].

Proposition 3.12. Assume that T1, . . . , Tn are non-empty locally closed subschemes
of PN

k , where k is a finite field. Let T ′ ⊂ T be smooth locally closed subschemes of
PN
k , and let F be a finite set of closed points of PN

k . Assume that for all i such that
Ti is finite, we have Ti ∩ F = ∅. Then there is a hypersurface H ⊂ PN

k such that
the scheme theoretic intersections H ∩ T and H ∩ T ′ are smooth, F ⊂ H, and for
i = 1, . . . , n we have dim(H ∩ Ti) < dimTi.

We remark that if Ti is a point, then the condition dim(H ∩ Ti) < dimTi means
that H ∩ Ti = ∅.

Proof. Replacing each Ti by the set of its top-dimensional irreducible components,
we may assume that each Ti is irreducible. For i = 1, . . . , n choose a closed point
pi ∈ Ti − F . We claim that there is a hypersurface H such that

• H ∩ T and H ∩ T ′ are smooth;
• F ⊂ H ;
• For all i, we have pi /∈ H .
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Then the statement follows from [34, Thm. 1.3]. In more detail, for a point p ∈ PN
k ,

let Ôp be the completion of the local ring OP
N
k
,x. We apply [34, Thm. 1.3] with the

following local conditions. If p = pi for some i, then Up ⊂ Ôp is the condition that
H does not pass through p. If p ∈ F , then the conditions is that H passes through p
and the intersections H ∩T and H ∩T ′ are smooth at p (by definition, an intersection
is smooth at p, if p does not belong to this intersection). In the remaining case,
the condition is just that H ∩ T and H ∩ T ′ are smooth at p (cf. the proof of [34,
Thm. 3.3]). The hypersurface H satisfies conditions of the proposition. �

The following proposition will be used to construct quasi-elementary fibrations.

Proposition 3.13. Let k be a field and let X ⊂ PN1

k be a closed subscheme of pure
dimension n, let Xsm ⊂ X be an open subscheme smooth over k and let x ∈ X be a
closed point. Let n = dimX and Let T1 and T2 be closed subsets of X of dimensions at
most n−1 and n−2 respectively such that x /∈ T2. For an integer r consider the r-fold
Veronese embedding PN1

k →֒ PNr

k and identify X with a closed subscheme of PNr

k , using

this embedding. Then there are a positive integer r and sections σ0 ∈ H0(PNr

k ,O(1)),

σ1 ∈ H0(PNr

k ,O(l1)), . . . , σn−1 ∈ H0(PNr

k ,O(ln−1)) for some positive integers li such
that

(i) σ0(x) 6= 0.

(ii) Let ϕ : PNr

k 99K Pk(1, l1, . . . , ln−1) be the rational morphism defined by the
sections σi. Then the subscheme ϕ−1(ϕ(x)) ∩Xsm is smooth of dimension one over
k(ϕ(x)).

(iii) ϕ−1(ϕ(x)) ∩ T1 is finite.
(iv) ϕ−1(ϕ(x)) ∩ T2 = ∅.
(v) {σ0 = σ1 = · · · = σn−1 = 0} ∩Xsm is finite and étale over k.
(vi) {σ0 = σ1 = · · · = σn−1 = 0} ∩ Ti = ∅ for i = 1, 2.

The proof of this proposition in the finite field case is significantly different from
the proof in the infinite case.

Proof of Proposition 3.13 in the case, when k is finite. We inductively construct σ0,
. . . , σn−1 such that σ0(x) 6= 0, and for m = 1, . . . , n− 1 we have σm(x) = 0,

dim({σ0 = · · · = σm = 0} ∩ Ti) < n−m− i,

dim({σ1 = · · · = σm = 0} ∩ Ti) ≤ n−m− i,

and the intersections

{σ0 = · · · = σm = 0} ∩Xsm and {σ1 = · · · = σm = 0} ∩Xsm

are smooth over k of dimensions n−m− 1 and n−m respectively.
For m = 0 we apply Proposition 3.12 with T1, T2, T3 = x, F = T ′ = ∅, and T =

Xsm. We get σ0 ∈ H0(PN1

k ,O(r)). We can view it as an element of H0(PNr

k ,O(1)).
We have σ0(x) 6= 0, {σ0 = 0} ∩ Xsm is smooth of dimension n − 1 over k, and
dim({σ0 = 0} ∩ Ti) < n− i.

Assume that σ0, . . . , σm−1 are already constructed. To construct σm we apply
Proposition 3.12 to {σ0 = · · · = σm−1 = 0} ∩ Ti, T

′ = {σ0 = · · · = σm−1 = 0}∩Xsm,
T = {σ1 = · · · = σm−1 = 0} ∩Xsm, and F = {x}.

By construction, σ0, . . . , σn−1 satisfy the conditions of the proposition. (Note that
ϕ−1(ϕ(x)) is contained in {σ1 = . . . = σn−1 = 0}). �
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Proof of Proposition 3.13 in the case, when k is infinite. We will take r = 2 and l1 =
· · · = ln−1 = 1. Set V := H0(PN2

k ,O(1)); we view the vector space V as a scheme
over k.

Lemma 3.14. Assume that k is algebraically closed. Let X, Xsm, x, T1, T2 be as in
the statement of Proposition 3.13. Then there is a non-empty open subset W ⊂ V n

such that every point (σ0, . . . , σn−1) ∈ W satisfies the conditions of the proposition.
More precisely, conditions (ii) and (v) mean that ϕ−1(ϕ(x)) and {σ0 = · · · = σn−1 =
0} intersect Xsm transversally.

Proof. Recall that we have a 2-fold Veronese embedding PN1

k →֒ PN2

k . Let Grx(N2 +
1, n) stand for the Grassmannian of codimension n − 1 subspaces containing x in

PN2

k . It follows from [1, Exp. XI, Thm. 2.1(ii)] that there is a non-empty open subset
U ⊂ Grx(N2+1, n) such that every subspace from U intersectsXsm transversally. Let
W ′ ⊂ V n be the open subspace defined by the conditions that for all (σ0, . . . , σn−1) ∈
W ′

i we have σ0(x) 6= 0, and the rational morphism ϕ : PN2

k 99K Pn−1
k defined by

σ0, . . . , σn−1 is such that the Zariski closure of ϕ−1(ϕ(x)) is a codimension n − 1

projective subspace of PN2

k . We get a morphism π : W ′ → Grx(N2 + 1, n) sending
(σ0, . . . , σn−1) ∈ W ′ to the Zariski closure of ϕ(ϕ−1(x)). Set W ′′ := π−1(U). Clearly,
W ′′ is open. Since π is dominant, W ′′ is non-empty. For each (σ0, . . . , σn−1) ∈ W ′′ the
intersection ϕ−1(ϕ(x)) ∩Xsm is transversal. We show similarly that for every other
condition of the proposition there is a non-empty open subset in V n whose points
possess the property (use [1, Exp. XI, Thm. 2.1(i)] for (v), use an inductive argument
similar to the proof in the finite field case for the other properties). The intersection of
these open subsets is non-empty, since V n is irreducible; it is the required set W . �

We return to the proof of Proposition 3.13. Let k̄ be an algebraic closure of k.
Consider the finite scheme x ×k k̄. Let x1, . . . , xm ∈ Xk̄ be all its closed points.
Applying the previous lemma to Xk̄, X

sm
k̄

, xi, (T1)k̄, and (T2)k̄, we get a dense open

subset W̃i ⊂ Ṽ := H0(PN2

k̄
,O(1)). Let p : Ṽ → V be the projection. There is a

non-empty open subset W ⊂ V such that p−1(W ) ⊂ ∩m
i=1W̃i. Since k is infinite, we

can find a k-rational point (σ0, . . . , σn−1) ∈ W . We claim that this point satisfies the
conditions of the proposition.

Let us check condition (ii) first. Set s := ϕ(x), k′ := k(s), Y := ϕ−1(s). Then Y
is smooth over s. We need a lemma whose meaning is that Y and Xsm intersect
transversally.

Lemma 3.15. Let Z be the scheme theoretic intersection of Xsm and Y . Then the
canonical morphism of sheaves

α : Ω
P
N2
k

/k
|Z → ΩY/s|Z ⊕ ΩXsm/k|Z

is injective and locally split.

Proof. Note that the sheaves Ω
P
N2
k

/k
|Z and ΩY/s|Z ⊕ΩXsm/k|Z are locally free. Thus,

it is enough to check that for every geometric point z̄ ∈ Z(k̄) the pullback of this

morphism to z̄ is injective. Let ϕ̄ : PN2

k̄
99K Pn−1

k̄
be the rational morphism defined by

the sections σ̄i := σi×k k̄. Set x̄ := x×kSpec k̄, s̄ := s×kSpec k̄. Set Y i := ϕ̄−1(ϕ̄(xi))

and X
sm

:= Xsm ×k Spec k̄. Note that ϕ(z̄) = ϕ(xi) for some i. The pullback of α
to z̄ is the canonical morphism

ᾱ : Ω
P
N2
k̄

/k̄
|z̄ → Ω(Y×kSpec k̄)/s̄|z̄ ⊕ ΩX

sm
/k̄|z̄.
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We also have a canonical isomorphism

Ω(Y ×kSpec k̄)/s̄|z̄ ⊕ ΩX
sm

/k̄|z̄
≃
−→ ΩY i/k̄

|z̄ ⊕ ΩX
sm

/k̄|z̄ .

Indeed, Y i is the fiber of Y ×k Spec k̄ over ϕ(z̄) = ϕ(xi) ∈ s̄. The composition of

these two morphisms is injective because X
sm

and Y i intersect transversally. It follow
that ᾱ is injective. �

If follows from the above lemma that the cokernel of α is a locally free sheaf of
rank one. On the other hand, we have a surjective morphism Cokerα ։ ΩZ/k′ . We
will use the following lemma.

Lemma 3.16. Let Z be a scheme of finite type over a field k′ such that all its
components are of dimension at least one and the sheaf ΩZ/k′ is locally generated by
one element. Then Z is smooth over k′.

Proof. It is enough to prove the statement after a base change to an algebraic closure
of k′. Thus, we may assume that k′ is algebraically closed. In this case, for every
closed point of Z we have (ΩZ/k′ )z = mz/m

2
z, where mz is the maximal ideal of the

local ring OZ,z . Since this vector space is generated by one element, we see that Z
is regular at z. Thus Z is regular. Since k′ is algebraically closed, we see that Z is
smooth over k′. �

Now condition (ii) follows from the above lemma. Condition (v) is verified similarly.
The remaining conditions are clear. �

3.17. Constructing quasi-elementary fibrations. In this section we prove the
following proposition.

Proposition 3.18. Let X → SpecΛ and x ∈ X be as in Theorem 1. That is, Λ is an
excellent discrete valuation ring, b ∈ SpecΛ is the closed point. Also, X is an integral
scheme, X is flat and projective over SpecΛ, and X satisfies conditions (I) and (II)
of Section 1.2. The projection X → Spec Λ is smooth at the closed point x ∈ X. We
also assume that the relative dimension of the flat morphism X → SpecΛ is at least
one. Let X0 be an open subscheme of X such that x ∈ X0. Assume also that the
intersection of X0 with the fiber Xb is dense in this fiber. Assume that Z is a closed
subset of X0 of codimension at least two. Then there is an open subscheme X ′ ⊂ X0

containing x, a connected Λ-scheme S smooth over Λ, and a Λ-morphism p : X ′ → S
such that p is a quasi-elementary fibration and Z ∩X ′ is finite over S.

Proof. The proof is somewhat technical but it follows the same strategy as the proofs
of [29, Prop. 2.3] and of Artin’s result [1, Exp. XI, Prop. 3.3].

We may assume that X0 is smooth over SpecΛ (use condition (I) and openness
of smoothness). Set Y 0 := X − X0. Set n = dimX − 1 = dimXb. Note that
dimY 0

b ≤ n − 1. Denote by Z the Zariski closure of Z in X . Then (Z)b is the

intersection of Z with Xb, which is in general larger than the closure of Zb. In any
case,

dim(Z)b ≤ dimZ ≤ n− 1.

Lemma 3.19. There is a Λ-embedding X →֒ PN
Λ for some N , a section σ0 ∈

H0(PN
k(b),O(1)), and sections σi ∈ H0(PN

k(b),O(li)) for some positive integers li, sat-

isfying the following conditions

• σ0(x) 6= 0;
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• (Xsing)b ∩ ϕ−1(ϕ(x)) = ∅, where ϕ : PN
k 99K Pk(1, l1, . . . , ln−1) is the rational

morphism defined by the sections σi;
• Y 0

b ∩ ϕ−1(ϕ(x)) is finite;

• (Z)b ∩ ϕ−1(ϕ(x)) is finite;
• (Z − Z)b ∩ ϕ−1(ϕ(x)) = ∅;
• (Z)b ∩ {σ0 = σ1 = · · · = σn−1 = 0} = ∅;
• X0

b ∩ ϕ−1(ϕ(x)) is smooth of dimension one over b;
• (Xsing)b ∩ {σ0 = σ1 = · · · = σn−1 = 0} = ∅.
• Xb ∩ {σ0 = σ1 = · · · = σn−1 = 0} is finite and étale over b;

Proof. Note that

• dim(Xsing)b ≤ n− 2 by condition (II) on X ;
• x /∈ Xsing by assumption;
• dim(Z − Z)b ≤ dim(Z − Z) ≤ n− 2;
• x /∈ Z − Z because Z is closed in X0

b and x ∈ X0
b .

Consider any Λ-embedding X →֒ PN1

Λ for an integer N1. We apply Proposi-

tion 3.13 with Xb, X0
b , x, T1 = Y 0

b ∪ (Z)b and T2 = (Z − Z)b ∪ (Xsing)b. We

claim that the composition of X →֒ PN1

Λ with the r-fold Veronese embedding satisfies
the requirements. In fact, all conditions except the last one are immediate. Since
{σ0 = σ1 = . . . = σn−1 = 0} ∩ Y 0

b = ∅, we get the last condition. �

We can lift each σi to a section σ̃i ∈ H0(PN
Λ ,O(li)), because the reduction map from

the Λ-module H0(PN
Λ ,O(li)) to the k(b)-vector space H0(PN

k(b),O(li)) is surjective.

Similarly, we can lift σ0 to a section σ̃0 ∈ H0(PN
Λ ,O(1)). Set L := OP

N
Λ
(1)|X , σ′

i :=

σ̃i|X , so that σ′
i ∈ H0(X,L⊗li). Set XBl := Blσ′

0,...,σ
′

n−1
(X) (see Section 3.6).

Denote by ϕ̃ the rational morphism PN
Λ 99K PΛ(1, l1, . . . , ln−1) defined by σ̃0, . . . ,

σ̃n−1. Let λ : XBl → X be the canonical morphism. Denote by E the exceptional
locus of λ, that is, E = λ−1(X ∩ {σ̃0 = · · · = σ̃n−1 = 0}). By Lemma 3.7, λ induces

an isomorphism XBl − E = X − {σ̃0 = · · · = σ̃n−1 = 0}). Set Ẑ := λ−1(Z) and

Ŷ := λ−1(Y 0). We identify x with its unique λ-preimage in XBl, see Lemma 3.7.
We have a projective morphism p̄ : XBl → S := PΛ(1, l1, . . . , ln−1), defined as the

composition of the closed embedding XBl → PX(1, l1, . . . , ln−1) and the projection
PX(1, l1, . . . , ln−1) → PΛ(1, l1, . . . , ln−1). Set s := p̄(x) = ϕ̃(x) and F := p̄−1(s).

Lemma 3.20. Denote by Xs
Bl the set of points of XBl, where p̄ is not smooth. Then

(i) F is the Zariski closure of λ−1(ϕ̃−1(s) ∩X0);
(ii) F is of pure dimension one;
(iii) XBl is regular at the points of F ;
(iv) p̄ is flat at the points of F ;
(v) Xs

Bl ∩ F is finite;

(vi) E ∩ F , Ŷ ∩ F , and Ẑ ∩ F are finite;

(vii) Ẑ ∩ F = λ−1(Z) ∩ F ;

(viii) Ẑ ∩ E ∩ F = Ẑ ∩ Ŷ ∩ F = Ẑ ∩Xs
Bl ∩ F = ∅.

Proof. According to Lemma 3.19, {σ0 = · · · = σn−1 = 0} is finite over b. It follows
that p̄|E is a finite morphism. Using this fact and the fact that λ−1(ϕ̃−1(s) ∩ Y 0) is
finite, we see that F is a union of λ−1(ϕ̃−1(s) ∩X0) and a finite set. However, since
XBl is irreducible of dimension n+1 all the components of F have dimension at least
one. Now (i) follows and (ii) follows from (i).
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Next, we have a regular open subscheme X −Xsing ⊂ X . Set

L̃ := {σ̃0 = · · · = σ̃n−1 = 0}.

We claim that X ∩ L̃ is contained in X −Xsing. Indeed, the intersection Xsing ∩ L̃ is
proper over Λ, so, if it is nonempty, it must intersect the closed fiber, which contradicts
the penultimate statement in Lemma 3.19.

Further, we claim that X ∩ L̃ is a locally complete intersection in X − Xsing.
Indeed, the integral scheme X −Xsing is of dimension n+ 1 because the closed fiber
Xb −Xsing

b is of dimension n, and X −Xsing is flat over Λ. Further, X ∩ L̃ is locally
given by n equations. So to show that it is a locally complete intersection we just
need to show that every component of X ∩ L̃ has dimension at most one. Again, the
morphism X ∩ L̃ → SpecΛ is proper, so it is enough to show that the central fiber
Xb∩L̃ is finite, which is a part of Lemma 3.19. We see that X∩L̃ is a locally complete
intersection in the regular scheme X −Xsing. Now by [24, Thm. 23.1] X ∩ L̃ is flat
over SpecΛ. It follows from Lemma 3.19 and openness of étalness for flat morphisms
that X ∩ L̃ is étale over SpecΛ. Since

λ(F ) ⊂ ϕ̃−1(s) ∪ (Xb ∩ L̃) ⊂ X −Xsing,

part (iii) follows from Lemma 3.8.
Next, let x be a closed point of F . Then λ(x) is a closed point of X because λ is

proper. Applying Lemma 3.8, we see that we have

dimxXBl = dimλ(x) X = n+ 1 = dimp̄(x) S + dimx F,

where we used part (ii). Thus p̄ is flat at x by [24, Thm. 23.1] and part (iii). Now (iv)
follows because the set of points, where p̄ is flat is open, and closed points are dense
in F because F is a scheme of finite type over a field.

To prove (v) note that p̄, being flat on F , is smooth exactly where the fiber is
smooth. Now use part (i) and Lemma 3.19. The remaining statements follow from (i)
and the respective properties of L and H0 (see Lemma 3.19). �

Lemma 3.21. After shrinking (S, 1b) in the sense of Convention 3.3 and replacing

XBl, E, Ŷ , and Ẑ by their intersections with p̄−1(S), we may assume that
(i) S is connected, affine, and smooth over Λ;
(ii) XBl is regular;
(iii) p̄ is flat of pure relative dimension one;

(iv) Xs
Bl, E, Ŷ , and Ẑ are finite over S;

(v) There is a closed subset Y ⊂ XBl finite and surjective over S such that Y ⊃

E ∪Xs
Bl ∪ Ŷ , Y ∩ Ẑ = ∅, x /∈ Y , and XBl − Y is affine.

Proof. First of all, (i) is obvious, (ii) follows from the fact that the set of points, where
XBl is regular is open in XBl (because Λ is excellent) and the fact that p̄ is closed.
Next, flatness in (iii) follows from Lemma 3.20(iv) together with the fact that set of
points, where a morphism of finite type is flat, is open.

Further, it follows from the construction that XBl and S are irreducible. Since
p̄ is flat, it is open, hence we can apply [17, Cor. 14.2.2.(i)] to conclude that p̄ is
equidimensional. The set F = p̄−1(1b) is of pure dimension one by Lemma 3.20(ii).
We see that p̄ is of pure relative dimension one.

Next, (iv) follows because the dimensions of fibers of a projective morphism are
upper semicontinuous (see [17, Cor. 13.1.5]) and a quasi-finite projective morphism is
finite; finally, (v) follows from Lemma 3.5(ii) (note that Y is automatically surjective
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over S because the fibers of XBl are projective, while the fibers of XBl − Y are
affine). �

Let us summarize. Just before Lemma 3.21 we constructed a projective mor-
phism p̄ : XBl → S, a morphism λ : XBl → X and a subscheme Ŷ ⊂ XBl. Then in
Lemma 3.21 we replaced S, XBl, and Ŷ by open subschemes following Convention 3.3.
We also constructed a closed subset Y ⊂ XBl. The restriction of λ to X ′ := XBl − Y
is an open embedding, so we can identify X ′ with an open subset of X0. Now it fol-
lows from the construction and Lemma 3.21 that p̄|X′ : X ′ → S is a quasi-elementary
fibration (with X = XBl). Also, shrinking (S, 1b) again if necessary, we may assume

that under the identification of X ′ and λ(X ′) we have Ẑ = Z ∩X ′, so Z ∩X ′ is finite
over S (use Lemma 3.21(vii)). This completes the proof of Proposition 3.18. �

Proposition 3.22. Let Λ, X, x and GX,x be as in Theorem 1 and let G be a split
Λ-group scheme such that GX,x ≃ G ×Λ SpecOX,x. Assume also that the relative
dimension of X → SpecΛ is at least one. Let G be a GX,x-bundle having a rational
section. Then there are

• an open affine subscheme X ′ ⊂ X containing x;
• a quasi-elementary fibration p : X ′ → S with S connected and smooth over Λ;
• a principal divisor Z ′ ⊂ X ′ finite over S;
• a G-bundle F over X ′ extending G such that F is trivial over X ′ − Z ′;
• a finite surjective S-morphism X ′ → A1

S.

3.23. Proof of Proposition 3.22. We will use the notations and the assumptions
from the statement of the proposition. We start with a lemma.

Lemma 3.24. We can find a regular open subscheme X0 ⊂ X such that x ∈ X0,
X0 ∩ Xb is dense in Xb, and G can be extended to a G-bundle G0 over X0 that is
trivial over a dense open subset of X0.

Proof. We can find an open subscheme X1 ⊂ X such that x ∈ X1, and G can be
extended to a G-bundle G1 over X1. Since G is generically trivial, G1 is trivial on the
complement of a proper closed subscheme Z1 ⊂ X1. Since Xb is smooth at x, we see
that x lies on a single irreducible component of Xb. Thus we may assume that X1

does not intersect irreducible components of Xb other than that containing x.
Denote by n the dimension of Xb. It follows from the flatness of the morphism

π : X → SpecΛ that the Krull dimension of X is n+1. Let Z1 be the Zariski closure
of Z1 in X . We have

dim(Z1 − Z1) < dimZ1 ≤ n.

It follows that Z1−Z1 cannot contain an irreducible component of Xb (use flatness of
π : X → SpecΛ again). Thus Z1 cannot contain irreducible components of Xb other
than the component containing x. Consider the trivial G-bundle Gtriv over X − Z1.
The trivialization of G1 is an isomorphism between G1 and Gtriv over the open subset
X1 − Z1. Thus we can glue G1 with Gtriv over X1 − Z1 to make a G-bundle G2 over
X2 := (X − Z1) ∪ X1. One now takes X0 to be the regular locus of X2 and sets
G0 := G2|X0 . It follows from the construction and property (II) of π : X → SpecΛ,
that X0 satisfies the requirements of the lemma. �

Fix such X0 and G0 provided by the above lemma. Since G is split, there is a
split maximal torus T ⊂ G and a Borel subgroup B ⊂ G containing T. Fix such
T ⊂ B. The trivialization of G0 over a dense open subset of X0 gives a B-reduction
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of G0 over this subset. Thus, according to Proposition 3.10, G0 can be reduced
to B over X0 − Z, where Z is closed and of codimension at least two in X0. By
Proposition 3.18, there is an open subscheme X ′ ⊂ X0 containing x, and a quasi-
elementary fibration p : X ′ → S with S connected and smooth over SpecΛ such that
Z ∩ X ′ is finite over S. We may assume that S is affine. We will use the notations
from Definition 3.2. In particular, we have a flat projective morphism p̄ : X → S. Set
s := p̄(x) and F := p̄−1(s).

Note that Z ∩ X ′ is closed in X (being finite over S), so applying Lemma 3.5(ii)
to Z ∩ X ′, Y ⊂ X, we find a closed subscheme Z1 ⊂ X ′ such that Z ∩ X ′ ⊂ Z1,
Z1 is finite over S, and X − Z1 is an affine scheme (we might need to shrink (S, s)).
Then X ′ − Z1 = (X − Z1) ∩ X ′ is also affine as the intersection of two open affine
subschemes of a separated scheme.

Set F := G0|X′ . Note that F is reduced to the Borel subgroup B over X ′ − Z1,
that is, there is a B-bundle B over X ′ − Z1 such that the G-bundles G ×B B and
F|X′−Z1 are isomorphic. Let U be the unipotent radical of B, then the quotient B/U
is isomorphic to the split torus T. Let B/U be the induced T-bundle (this quotient
is representable by a scheme because of the étale descent, see [2, VIII, Cor. 7.9] for
a stronger statement). We claim that (after shrinking (S, s) again) we can find a
closed subset Z2 ⊂ X ′ − Z1 such that Z2 is finite over S, the bundle B/U is trivial
over X ′ − Z1 − Z2, and X ′ − Z1 − Z2 is affine. Since a principal bundle for a split
torus corresponds to a collection of line bundles, and the intersection of open affine
subschemes of a separated scheme is affine, this follows from the next lemma.

Lemma 3.25. Let ℓ be a line bundle over X ′′ := X ′ − Z1. Then (after shrinking
(S, s)) there is a subscheme Z ′′ ⊂ X ′′ finite over S such that ℓ is trivial over X ′′−Z ′′

and X ′′ − Z ′′ is affine.

Proof. First of all, we may extend ℓ to X because X is a regular scheme. Set X∞ :=
(X −X ′′) ∩ F , this is a finite scheme. Adding finitely many points to X∞, we may
assume that it intersects each irreducible component of F . Since X is projective over
an affine scheme, X∞ is contained in an open affine subscheme of X. Thus we can
consider the semilocal ring of X∞ in X; denote it by A. Since A is semilocal, ℓ is
trivial over A. Thus there is a closed subscheme Z ′′ ⊂ X such that ℓ|X−Z′′ is trivial
and Z ′′∩X∞ = ∅. In particular, Z ′′∩F is finite by our choice of X∞. Shrinking (S, s),
we may assume that Z ′′ is finite over S and that Z ′′ ⊂ X ′′. Now by Lemma 3.5(ii)
we may assume that X − Z ′′ (and thus X ′′ − Z ′′) are affine. �

Now we finish the proof of the proposition. Choose Z2 ⊂ X ′ − Z1 such that B/U
is trivial over X ′ − Z1 − Z2, X

′ − Z1 − Z2 is affine, and Z2 is finite over S. By [8,
Exp. XXVI, Cor. 2.3] we see that B and thus F are trivial over X ′ − Z1 − Z2.

Note that Z1 ∪ Z2 is closed in X . By Lemma 3.5(iii), by shrinking (S, s) we can
find a finite surjective morphism Π: X → P1

S such that

Z1 ∪ Z2 ∪ {x} ⊂ Z ′ := Π−1(0× S), Y ⊂ Y ′ := Π−1(∞× S).

Clearly, X ′′′ := X − Y ′ is smooth and affine over S. Also, Z ′ is finite over S. It is
easy to check that the restriction of p to X ′′′ is a quasi-elementary fibration. Next, Z ′

is a principal divisor in X ′′′ because 0 × S is a principal divisor in A1
S . Clearly, F is

trivial over X ′′′ − Z ′. This completes the proof of Proposition 3.22. �
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4. End of Proof of Theorem 1

In this section, we use the notion of a nice triple to reduce Theorem 1 to The-
orem 2. We keep the notations and the assumptions from Theorem 1. As before,
U := SpecOX,x and G is a Λ-group scheme such that GX,x = G×OX,x

Spec Λ. Let G
be a generically trivial G-bundle over U . We need to show that G is trivial. By [26]
we may assume that the relative dimension of the flat morphism X → SpecΛ is at
least one (though, in fact, it is easy to prove the theorem if this dimension is zero,
see Remark 4.12).

4.1. Nice triples. Recall the notion of a nice triple from [29, Def. 3.1].

Definition 4.2. A nice triple over U is a triple (qU : X → U, f,∆), where X is
an irreducible affine scheme smooth over U and such that all its fibers are of pure
dimension one, f ∈ Γ(X ,OX ) is such that its zero locus Z is finite over U , and
∆: U → X is a section of qU such that ∆∗(f) 6= 0. These data are subject to the
condition that there exists a finite U -morphism X → A1

U .

Remark 4.3. The finiteness of Z is equivalent to the condition that

Γ(X ,OX )/f · Γ(X ,OX )

be finite as a Γ(U,OU )-module.

Proposition 4.4. Assumptions being as in Theorem 1, let U := SpecOX,x and let G
be a principal G-bundle over U having a rational section. Then there are a nice triple
(qU : X → U, f,∆) and a G-bundle E over X such that
(i) ∆∗E ≃ G;
(ii) E is trivial over the complement of the zero locus Z of f .

Moreover, if the field k(x) is finite, then we may choose this nice triple so that
(iii) There is at most one point z ∈ Zx rational over k(x);
(iv) For any integer r ≥ 1 one has

#{z ∈ Zx| [k(z) : k(x)] = r} ≤ #{z ∈ A1
x| [k(z) : k(x)] = r}.

The proof, given below, is similar to [28, Thm. 4.3], [29, Prop 6.1], and [30, Sect. 3–
4].

Proof. By Proposition 3.22 there are

• an open affine subscheme X ′ ⊂ X containing x;
• a quasi-elementary fibration p : X ′ → S with S connected and smooth over Λ;
• a principal divisor Z ′ ⊂ X ′ finite over S;
• a G-bundle F over X ′ extending G and such that F is trivial over X ′ − Z ′;
• a finite surjective S-morphism X ′ → A1

S .

Put X ′ := X ′ ×S U , let q′U : X ′ → U be the projection. Let g ∈ H0(X ′,OX′) be
an equation of Z ′, set f ′ = p∗1(g) ∈ H0(X ′,OX ′). Let ∆ be the composition

U
diag
−−−→ U ×S U

can×IdU−−−−−→ X ′ ×S U = X ′.

Let X be the connected component of X ′ containing ∆(U). Then X is irreducible
because it is regular and connected. Since p : X ′ → S is flat (even smooth) of rela-
tive dimension one, q′U is also so, and we see that every component of each fiber is
one-dimensional. Next, ∆∗(f ′) = g|U 6= 0 because g 6= 0 and X ′ is integral. By con-
struction (q′U |X , f ′|X ,∆) is a nice triple. Let E ′ be the pullback of F to X ′ and E be
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the restriction of E ′ to X . It is clear that E satisfies the conditions of our proposition,
so this completes the proof in the case when the field k(x) is infinite.

Consider the case when k(x) is finite. Let T be a finite subscheme of X intersecting
every component of Xx. Set Y := ∆(U) ∪ Z ∪ T . Clearly, Y is finite over U ; let
{y1, . . . , ym} be all of its closed points; let S := Spec(Oy1,...,ym

) be the corresponding
semilocal scheme. Clearly, ∆ factors through S.

Lemma 4.5. There exists a finite étale morphism ρ : S ′ → S and a section ∆′ : U →
S ′ such that ρ ◦∆′ = ∆, ∆′(x) is the only k(x)-rational point of the fiber S ′

x, and for
any integer r ≥ 1 one has

(3) #{z ∈ S ′
x| [k(z) : k(x)] = r} ≤ #{z ∈ A1

x| [k(z) : k(x)] = r}.

Proof. Let A := Oy1,...,ym
so that S = SpecA, let I be the ideal of ∆(U), so that

A = I ⊕ R. Let mi be the maximal ideal of A corresponding to yi so that m1, . . . ,
mm are all the maximal ideals of A. We may assume that y1 = ∆(x) so that m1 is
the ideal of ∆(x), that is, m1 ⊃ I.

Choose a large number N > 0 and for each i = 2, . . . ,m a monic polynomial
fi ∈ (A/mi)[t] of degree N and such that

• if A/mi is finite, then fi is irreducible;
• if A/mi is infinite, then fi is a product of distinct monic polynomials of degree
one.

Take f1 ∈ (A/m1)[t] of the form tg, where g is irreducible of degree N − 1. By the
Chinese Remainder Theorem applied coefficientwise we can find a monic polynomial
f ∈ A[t] such that deg f = N , f ∈ I + tA[t] and f mod mi = fi for all i. Set
S ′ := Spec(A[t]/(f)). Clearly, S ′ is finite and flat over S. Thus, to check that S ′ is
étale over S it is enough to check that the fiber of S ′ over each yi ∈ S is reduced. But
this follows from the definition of fi.

The morphism ∆′ is induced by the composition

A[t]/(f) → A[t]/(I + tA[t]) = R.

Next, for every i > 1 such that A/mi is finite, there is only one point of S ′
x lying over

yi. On the other hand, if a point of S ′
x lies over yi such that A/mi is infinite, then the

degree of this point over x is infinite as well (because we assumed that k(x) is finite).
Thus we have

#{z ∈ S ′
x| [k(z) : k(x)] = r}











= 1 if r = 1,

= 0 if 2 ≤ r ≤ N − 2,

≤ m if r ≥ N − 1.

It follows that ∆′(x) is the unique k(x)-rational point of the fiber S ′
x and that condi-

tion (3) is satisfied for N large enough. �

Take ρ, S ′ and ∆′ as in the above lemma. We can extend ρ and S ′ to a neighborhood
of S to get a diagram

S ′ �
�

//

ρ

��

V ′

θ

��
U

∆′

>>⑤⑤⑤⑤⑤⑤⑤⑤
∆ // S �

�

// V �

�

// X ,

where V is an open subscheme of X , θ is finite étale. Note that S ⊂ V implies that
Y ⊂ V by the definition of S.
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Lemma 4.6. There is an open subscheme W ⊂ V such that W ⊃ Y and W admits
a finite U -morphism to A1

U .

Proof. By definition of nice triples we have a dominant morphism X → A1
U , which

gives an embedding of the field of functions of A1
U into the field of functions of X .

Let X be the normalization of P1
U in the field of functions ofX . Note that U is excellent

and therefore Nagata ring, so normalization gives a finite morphism Π̃ : X → P1
U .

Since X is normal, Π̃−1(A1
U ) = X . Thus X − X is finite over ∞ × U and thus over

U . Next, X x − Vx = (X x − Xx) ∪ (Xx − Vx) is finite (the second term is finite
because it does not intersect Tx). It follows that X − V is finite over U (indeed, it
is projective and the closed fiber is finite). Using Lemma 3.5(iii), we find a finite
morphism Π: X → P1

U such that Π(Y) ⊂ 0 × U and Π(X − V) ⊂ ∞× U . It remains

to take W := Π
−1

(A1
U ). �

Let W be as in the above lemma. Let X ′′ be the connected component of θ−1(W)
containing ∆′(U). Set q′′U := qU ◦θ|X ′′ and f ′′ = f ◦θ|X ′′. Then (q′′U : X ′′ → U, f ′′,∆′)
is the sought-for nice triple. The proof of Proposition 4.4 is complete. �

Let (qU , f,∆) be a nice triple provided by the above proposition. We may assume
that f vanishes at ∆(x) (so that ∆(x) ∈ Z), otherwise the statement of Theorem 1
is obvious. If k(x) is finite, then by condition (iii) of Proposition 4.4 ∆(x) is the only
k(x)-rational point of Zx.

Proposition 4.7. Notation being as in Theorem 1, set R := OX,x and U := SpecR.
Let (qU , f,∆) be a nice triple over U such that ∆(x) ∈ Z. Assume that this nice triple
satisfies conditions (iii) and (iv) of Proposition 4.4 if k(x) is finite. Then there are
a finite surjective U -morphism σ : X → A1

U , a monic polynomial h ∈ R[t] vanishing
on σ(Z), and an element g ∈ Γ(X ,OX ) such that
(i) the morphism σg := σ|Xg

is étale, where Xg is the open subscheme of X given by
{g 6= 0};
(ii) the data (R[t], σ∗

g : R[t] → Γ(X ,OX )g, h) satisfy the hypothesis of [5, Prop. 2.6],
that is, R[t] is Noetherian, Γ(X ,OX )g is finitely generated as an R[t]-algebra, σ∗

g(h)
is not a zero divisor in Γ(X ,OX )g, and σ∗

g induces an isomorphism

R[t]/(h) ≃ Γ(X ,OX )g/(σ
∗
g(h) · Γ(X ,OX )g);

(iii) ∆(U) ∪ Z ⊂ Xg.

Proof. If R contains a field, then this follows from the proofs of [30, Thm 3.8 and
Cor. 7.2]. In our case the proof is completely similar but we will still give it for the
sake of completeness. Let, as in the proof of Lemma 4.6, X be the normalization of
P1
U in the field of functions of X , so we have a Cartesian diagram

X
Π

−−−−→ A1
U





y





y

X
Π̃

−−−−→ P1
U

with finite surjective horizontal morphisms and vertical morphisms being open em-
beddings.

Consider the reduced finite scheme (Zx)red. We can find a closed embedding
ι1 : (Zx)red → A1

x. Indeed, if k(x) is finite, this follows from condition (iv) in Propo-
sition 4.4 together with the fact that a finite extension of a finite field is determined
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up to isomorphism by its degree. If k(x) is infinite, the statement follows from the
fact that for any finite extension of k(x) there are infinitely many points in A1

x whose
residue field is isomorphic to this extension.

Next, let (Zx)(2) be the first infinitesimal neighborhood of (Zx)red in Xx. We can

extend ι1 to a closed embedding ι2 : (Zx)(2) → A1
x because Xx is smooth of dimension

one over k(x).

LetO(1) be the canonical line bundle on P1
U and set L := Π̃∗O(1). Let s0 (resp. s∞)

be the section of L vanishing exactly on Π̃−1(∞× U) (resp. on Π̃−1(0× U)).
Since Xx is of pure dimension one and Zx is a finite scheme, we can find a closed

subset W ⊂ Xx such that W ∩Zx = ∅ andW has exactly one point on each irreducible
component of Xx.

Lemma 4.8. For n ≫ 0 there is a section s1 ∈ H0(X ,L⊗n) such that

(i) The restriction of s1 to Π̃−1(∞× U) coincides with sn∞.
(ii) s1 equals zero on W .
(iii) The restriction of s1 to Z(2) is equal to ι∗2(t) · s

n
0 , where t is a coordinate on A1

x.

Proof. Let I be the ideal sheaf of Π̃−1(∞× U) ∪W ∪ Z(2) and let pU : X → U and

prU : P1
U → U be the projections. Then by the projection formula for n large enough

we have

R1(pU )∗(L
⊗n ⊗ I) = R1(prU )∗(O(1)⊗n ⊗ (Π̃)∗I) = 0.

The rest of the proof is completely similar to the proof of Lemma 3.5(i). �

Let s1 be as in the lemma, we set σ := s1/s
n
0 .

Claim 1. The morphism σ is finite, flat, and surjective. Indeed, consider the
projective morphism σ̄ : X → P1

U given by [s1 : sn0 ]. Note that, since Π̃ is finite, every

one-dimensional irreducible component of X x contains a point of Π̃−1(∞ × x). On
the other hand, every such component contains a point of W . Now it follows from
the construction that σ̄ is non-constant on each one-dimensional component of X x

(because every such component contains a point of W and a point of Π̃−1(∞× x)).
Arguing as in the proof of Lemma 3.5(iii), we see that σ̄ is finite and surjective. Since
X = σ̄−1(A1

U ), we see that σ is also finite and surjective. Since X and A1
U are regular

schemes, the flatness follows from [24, Thm. 23.1]. Claim 1 is proved. �

Since σ is flat, the set of points, where it is étale, is open. Denote this open subset
by X ′.

Claim 2. ∆(U)∪Z ⊂ X ′. First of all, the morphism σ is étale at the points of Zx.
Indeed, since σ is flat, it is enough to show that σx : Xx → A1

x is étale at the points
of Zx. This follows easily from condition (iii) of Lemma 4.8. Since all the closed
points of Z are in Zx, it follows that Z ⊂ X ′. Since the only closed point ∆(x) of
∆(U) is also in Zx, we see that ∆(U) ⊂ X ′. �

Claim 3. σ|Z is a closed embedding. Recall that U = SpecR. Let mx be the
maximal ideal of x ∈ U . We first show that σ|Zx

: Zx → A1
x is a closed embedding.

Since this morphism is set-theoretically injective, it is enough to show that for every
closed point y ∈ Zx the induced morphism (R/mx)[t] → OZx,y is surjective. By
construction the composition

(R/mx)[t] → OZx,y → OZx,y/m
2
y

is surjective, where my is the maximal ideal of OZx,y and the statement follows from
the Nakayama Lemma.
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It follows that the morphism (R/mx)[t] → Γ(Zx,OZx
) induced by σ is surjec-

tive. By the Nakayama Lemma it implies that the morphism of R-modules R[t] →
Γ(Z,OZ) induced by σ is also surjective because Γ(Z,OZ) is a finite R-module.
Claim 3 follows. �

Thus we can identify σ(Z) with a closed subscheme of A1
U . Moreover, Z ≃ σ(Z).

Claim 4. We have σ−1(σ(Z)) = Z ⊔ Z ′ for some closed subscheme Z ′ ⊂ X and
Z ′ ∩ ∆(U) = ∅. Indeed, the étale morphism σ|X ′ has a section over σ(Z). This
section can be viewed as a morphism s : Z → σ−1(σ(Z)). By [18, Cor. 17.3.5.], this
morphism is étale, so it is an open morphism. But it is also a closed embedding, so
σ−1(σ(Z)) = Z ⊔Z ′ for some closed subscheme Z ′. The unique closed point ∆(x) of
∆(U) is in Z, so it is not in Z ′. It follows that Z ′ ∩∆(U) = ∅. �

Claim 5. There is a monic polynomial h ∈ R[t] such that the zero locus of h
coincides with σ(Z). Let Z1, . . . , Zn be the irreducible components of Zred. Since X
is regular, it is locally factorial, so the principal ideal (f) can be written as pr11 . . . prnn ,
where pi ⊂ Γ(X ,OX ) is the prime ideal corresponding to Zi and ri are some positive
integers. Note that pi is of height one.

Let qi be the preimage of pi under σ∗ : R[t] → Γ(X ,OX ). By the going-down
property of flat extensions, qi is a height one prime ideal. Since R[t] is factorial, the
ideal qi is principal. Write qi = (hi) and set h = hr1

1 . . . hrn
n . By Claim 3 σ|Zi

is a
closed embedding, so (hi) is the ideal of σ(Zi).

Next, the closed embedding σ|Z : Z → A1
U corresponds to the surjective homo-

morphism of rings R[t] → Γ(Z,OZ) = Γ(X ,OX )/(f). Clearly, h is in the kernel of
this morphism. We need to show that the induced homomorphism

R[t]/(h) → Γ(X ,OX )/(f)

is an isomorphism. Since X is affine, we can find g′ ∈ Γ(X ,OX ) such that g′|Z = 1
and g′|Z′ = 0, where Z ′ is as in Claim 4. Let Xg′ be the corresponding principal open
subset of X and let σg′ := σ|Xg′

. Then the canonical morphism Γ(X ,OX )/(f) →

Γ(Xg′ ,OXg′
)/(f) is an isomorphism, so it is enough to show that the composed ho-

momorphism

(4) R[t]/(h) → Γ(X ,OX )/(f) → Γ(Xg′ ,OXg′
)/(f)

is an isomorphism. Consider the filtration of the R[t]-module R[t]/(h) by the quotients
of principal ideals:

R[t]/(h) ⊃ (h1)/(h) ⊃ . . . ⊃ (hr1
1 )/(h) ⊃ (hr1

1 h2)/(h) ⊃

. . . ⊃ (hr1
1 hr2

2 )/(h) ⊃ . . . ⊃ (h)/(h) = 0.

We also have a similar filtration of the R[t]-module M := Γ(Xg′ ,OXg′
)/(f):

M ⊃ h1M ⊃ . . . ⊃ hr1
1 M ⊃ hr1

1 h2M ⊃ . . . ⊃ hr1
1 hr2

2 M ⊃ . . . ⊃ hM = 0.

The homomorphism (4) is a homomorphism of filtered R[t]-modules, so we only need
to check that it induces an isomorphism on the associated graded modules. This boils
down to checking that for each i the canonical homomorphism

R[t]/(hi) → Γ(Xg,OXg
)/(hi)

is an isomorphism. Since (hi) is the ideal of σ(Zi), this is equivalent to the fact
that σ induces an isomorphism σ−1

g (σ(Zi)) → σ(Zi), which, in turn, follows from the
definition of g. Claim 5 is proved. �
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Now we can finish the proof Proposition 4.7. The closed subscheme ∆(U) ∪ Z is
contained in the open subset X ′ − Z ′. Thus we can find g ∈ H0(X ,OX ) such that
∆(U)∪Z ⊂ Xg ⊂ X ′−Z ′. By definition of X ′ the morphism σg := σ|Xg

is étale. Thus,
we only need to verify condition (ii) of the proposition. Obviously, R[t] is Noetherian
and Γ(X ,OX )g is finitely generated as an R[t]-algebra. Since X is integral and σ is
surjective, σ∗

g(h) is not a zero divisor in Γ(X ,OX )g. We have

σ−1
g (Z) = (Z ⊔ Z ′) ∩ Xg = Z.

Thus σg induces an isomorphism σ−1
g (σ(Z)) → σ(Z). This is equivalent to the

isomorphism of part (ii) of Proposition 4.7. The proof is complete. �

4.9. End of the proof of Theorem 1.

Proposition 4.10. The notation and assumptions being as in Theorem 1, put U :=
SpecOX,x and let G be a generically trivial principal G-bundle over U . Then there is
a G-bundle F over A1

U such that

• F is trivial over the complement of a closed subscheme Y ⊂ A1
U such that Y

is finite over U ;
• F|0×U ≃ G.

Proof. By Proposition 4.4, there is a nice triple (qU : X → U, f,∆) and a G-bundle E
over X such that
(i) ∆∗E ≃ G;
(ii) E is trivial over the complement of the zero locus Z of f .

Moreover, if the field k(x) is finite, this nice triple satisfies assumptions (iii) and (iv)
of Proposition 4.4. As we explained before the Proposition 4.7, we may assume that
∆(x) ∈ Z. Let a U -morphism σ : X → A1

U , a monic polynomial h ∈ R[t] vanishing
on σ(Z), and an element g ∈ Γ(X ,OX ) be those provided by Proposition 4.7. After
performing an affine transformation of A1

U , we may assume that ∆∗(σ) coincides with
the closed embedding 0×U →֒ A1

U . Condition (ii) of Proposition 4.7 together with [5,
Prop. 2.6] shows that the diagram

Xgσ∗(h) −−−−→ Xg




y

σg





y

(A1
U )h −−−−→ A1

U

can be used to glue principal G-bundles in the following sense: given a G-bundle over
(A1

U )h, a G-bundle over Xg, and an isomorphism of their pullbacks to Xgσ∗(h), we can

glue the bundles to make a G-bundle over A1
U . In particular, since Xgσ∗(h) ⊂ Xf , we

can glue E|Xg
with the trivial G-bundle over (A1

U )h to make a desired G-bundle F
over A1

U .
Clearly, all the conditions of the proposition are satisfied with Y := {h = 0}, which

is finite over U because h is monic. �

It remains to apply Theorem 2 to R = OX,x, H := GX,x = G×Λ U , and F . The
proof of Theorem 1 is complete. �

Remark 4.11. When the residue field k(x) is infinite, one can prove the main theorem
without using the nice triples by descending the G-bundle F from Proposition 3.22
to A1

S directly and applying Theorem 2. This would not work if k(x) is finite because
the analogue of conditions (iii) and (iv) of Proposition 4.4 might fail for the special
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fiber of the quasi-elementary fibration p : X ′ → S. The advantage of nice triples to
quasi-elementary fibrations, is that the original principal bundle is the pullback via
a closed morphism ∆. Thus we were able to “improve” the original nice triple by
replacing it with an étale base change having a section over ∆(U).

Remark 4.12. It is not necessary to use [26] in the case, when dimX = 1, as we
can easily re-prove the required statement in this case. Indeed, let a GX,x-bundle G
have a rational section. Then it is generically trivial, so it admits a generic reduction
to any Borel subgroup of GX,x. By Proposition 3.10, such a reduction extends to
SpecOX,x (because dimOX,x = 1). By [8, Exp. XXVI, Cor. 2.3] we see that G has a
reduction to a split maximal torus of GX,x. Now it is easy to see that G is trivial.

5. Proofs of Theorems 3 and 4

We keep the notation and assumptions from the statements of the theorems.

Proof of Theorem 4. Let On be the R-group scheme of orthogonal transformations of
Qn. The scheme of isomorphisms Isom(Q,Qn) is a principal On-bundle over SpecR.
This bundle is locally trivial in the fppf topology. (Note that if n is odd and 2 /∈ R×,
thenOn is not smooth overR.) Thus, we only need to show that the natural morphism
H1

fppf(R,On) → H1
fppf(K,On) has a trivial kernel.

Note that SOn is a split reductive group scheme. If n is odd, we have On ≃
µ2 × SOn, where µ2 is the group scheme of square roots of unity. Since we as-
sume that the Grothendieck–Serre conjecture holds for R and SOn, the natural mor-
phism H1

fppf(R,SOn) → H1
fppf(K,SOn) has a trivial kernel (recall that for smooth

group schemes there is no difference between fppf principal bundles and étale prin-
cipal bundles). On the other hand, we have H1

fppf(R, µ2) = R×/(R×)2 (because

H1(R,O×

R) = 1, since R is local). Similarly, H1
fppf(K,µ2) = K×/(K×)2. It follows

now from factoriality of R that the morphism H1
fppf(R, µ2) → H1

fppf(K,µ2) has a
trivial kernel. This completes the proof in the case, when n is odd.

If n is even, we have an exact sequence 1 → SOn → On → Z/2Z → 1 by [22,
Ch. 4, Prop. 5.2.2]. This gives an exact sequence of cohomology

Z/2Z(R) //

=

��

H1
fppf(R,SOn) //

��

H1
fppf(R,On) //

��

H1
fppf(R,Z/2Z)

��
Z/2Z(K) // H1

fppf(K,SOn) // H1
fppf(K,On) // H1

fppf(K,Z/2Z).

Note that the right vertical arrow has a trivial kernel. Next, the morphism On(K) →
Z/2Z(K) is surjective (again by [22, Ch. 4, Prop. 5.2.2]). Again, by our assumption
the middle vertical arrow has a trivial kernel. Now an easy diagram chase proves the
claim. The proof of Theorem 4 is complete. �

Assume now that 2 is invertible in R.

Proof of Theorem 3. According to [3, I, Cor. 4.7(i)], the orthogonal sum Q⊥(−Q) is
isomorphic to Q2n. Applying Theorem 4, we see that Q′⊥(−Q) ≃ Q⊥(−Q). Since 2
is invertible in R, we may apply Witt’s cancellation theorem (see [3, I, Cor. 4.3]) to
conclude that Q and Q′ are isomorphic. �
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[14] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux
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phismes des schémas, troisième partie. Inst. Hautes Études Sci. Publ. Math., (28):255, 1966.
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