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INTEGRAL HASSE PRINCIPLE AND STRONG

APPROXIMATION FOR MARKOFF SURFACES

DANIEL LOUGHRAN AND VLADIMIR MITANKIN

Abstract. We study the failure of the integral Hasse principle and strong
approximation for Markoff surfaces, as studied by Ghosh and Sarnak, using
the Brauer–Manin obstruction.
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1. Introduction

For each m ∈ Z, we consider the affine surfaces

Um : u21 + u22 + u23 − u1u2u3 = m. (1.1)

We denote by Um the integral model of Um defined over Z by the same equation.
In a recent paper [GS17], Ghosh and Sarnak studied integral points and failures
of the integral Hasse principle for such surfaces. In our paper we extend their
analysis using the Brauer–Manin obstruction.

Here we say that Um fails the integral Hasse principle if Um(AZ) 6= ∅ but
Um(Z) = ∅, where AZ = R×∏p Zp. We say that Um satisfies weak approximation

if the image of Um(Q) in
∏

v Um(Qv) is dense, where the product is over all places
of Q. Finally, we say that Um satisfies strong approximation if U(Z) is dense
in Um(AZ)• := π0(Um(R)) ×

∏

p Um(Zp), where π0(Um(R)) denotes the set of

connected components of Um(R). Note that we work with π0(Um(R)) since U(Z)
is never dense in Um(R) for simple topological reasons.

We first note that the natural compactification of (1.1) in P3 is a smooth cubic
surface for m 6= 0, 4, and the hyperplane at infinity consists of three coplanar
lines. In particular, the rational points on Um are Zariski dense by [Kol02], so
that Um(Q) 6= ∅. On the other hand, by [GS17, Prop. 6.1] for every integer m
we have Um(AZ) 6= ∅ unless m ≡ 3 mod 4 or m ≡ ±3 mod 9. In particular, a
positive proportion of these surfaces have an AZ-point.

2010 Mathematics Subject Classification. 14G05 (primary), 11D25, 14F22 (secondary).

http://arxiv.org/abs/1807.10223v3


2 DANIEL LOUGHRAN AND VLADIMIR MITANKIN

Our first theorem shows that these surfaces almost always fail weak approxi-
mation.

Theorem 1.1. We have

#{m ∈ Z : |m| ≤ B, Um satisfies weak approximation} ≪ B1/2.

Theorem 1.1 is sharp, since weak approximation holds when m− 4 is a square
as such surfaces are rational (see Lemma 3.3).

Our method shows that for ≫ B1/2 ofm, there are elements of
∏

p|2(m−4) Um(Zp)
which cannot be approximated by a rational point, so that the failure of weak
approximation yields a failure of strong approximation. More naively: for almost
all m, there are solutions to the equation (1.1) modulo some integer (depending
on m) which cannot be realised by a rational solution.

In fact, we are also able to show that there is almost always a failure of strong
approximation which is not explained by a failure of weak approximation. To
make this precise: Let Um(Q) be the closure of Um(Q) in

∏

v Um(Qv) and let

Um(Z) be the closure of Um(Z) in Um(AZ)•. We clearly have Um(Q) ⊆∏v Um(Qv)

and Um(Z) ⊆ Um(AZ)• ∩ Um(Q) (here we abuse notation slightly and consider

the image of Um(Q) inside π0(Um(R))×
∏

p Um(Qp)). Theorem 1.1 says that the
former inclusion is strict for almost all Um; our next theorem shows that the
second inclusion is also strict for almost all Um.

Theorem 1.2. We have

#{m ∈ Z : |m| ≤ B,Um(AZ) 6= ∅ but Um(Z) = Um(AZ)• ∩ Um(Q)} ≪ B1/2.

Explicit examples illustrating these results can be found in §5.4. On the other
hand, we show that if there is a Brauer–Manin obstruction to the integral Hasse
principle, then there are only finitely many explicit possibilities for m−4 modulo
squares. This result may be viewed as an analogue of the finiteness of excep-
tional spinor classes in the study of the representation of an integer by a ternary
quadratic form, as studied in [CTX09, §7].

Theorem 1.3. Assume that m ∈ Z is such that Um has a Brauer–Manin ob-
struction to the integral Hasse principle. Then

m− 4 mod Q∗2 ∈ 〈±1, 2, 3, 5〉 ⊂ Q∗/Q∗2.

This qualitative statement shows that there is a Brauer–Manin obstruction to
the integral Hasse principle for at most O(B1/2) of the surfaces Um for m ∈ Z
with |m| ≤ B. A more in-depth analysis of the Brauer–Manin obstruction allows
us to prove that not only is m− 4 a product of small primes times a square, but
all the prime divisors of m − 4 must satisfy very strong congruence conditions.
This allows us to show the improved upper bound O(B1/2/(logB)1/2), which is
sharp by the following theorem.

Theorem 1.4. We have

#{m ∈ Z : |m| ≤ B,Um(AZ) 6= ∅ but Um(AZ)
Br = ∅} ≍ B1/2

(logB)1/2
.
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Note that [GS17, Thm. 1.2.(i)] claims to obtain the lower boundB1/2/(logB)1/4

for the number of Hasse failures. In fact we shall see in the proof of Theorem 1.4
that their method only gives the lower bound B1/2/(logB)1/2, which agrees with
Theorem 1.4.

General methods were developed in [BBL16] and [Bri18] which, when they
apply, show that almost all of the varieties in the family fail weak approximation
and almost all also have no Brauer-Manin obstruction to the Hasse principle.
These results do not apply here as they concern smooth projective varieties. But
a similar method may be employed in our case to obtain bounds of the shape
O(B/(logB)) in the setting of Theorems 1.1 and 1.4 (see [BBL16, Prop. 6.1]).
In particular, our upper bounds are stronger than what these general methods
would give.

In [GS17], Ghosh and Sarnak presented numerical evidence that at least Bγ ,
for some 1/2 < γ < 1, of the surfaces Um fail the integral Hasse principle for
|m| ≤ B. In particular, Theorem 1.4 implies that almost all of these hypothetical
Hasse failures are not explained by the Brauer–Manin obstruction. In our last
result we make modest progress towards this by confirming the existence of
infinitely many such surfaces.

Theorem 1.5. We have

#{m ∈ Z : |m| ≤ B,Um(AZ)
Br 6= ∅ but Um(Z) = ∅} ≫ B1/2

logB
.

We prove our results by explicitly calculating the Brauer group of the surfaces
Um for “general” m (namely, for all m outside an explicit thin set). We find
that BrUm/BrQ ∼= (Z/2Z)3, generated by explicit quaternion algebras. Once
we know the Brauer group, we then perform a detailed analysis of the Brauer–
Manin obstruction associated to these quaternion algebras. The Hasse failures
which we use in Theorem 1.5 were already considered in [GS17], where reduction
theory was used to show the failure of the Hasse principle. We show that there
is no Brauer–Manin obstruction in this case using our knowledge of the Brauer
group.

An interesting feature of our results is that the Brauer group of Um over Q̄ is
isomorphic to Q/Z, with the Galois invariant part being Z/2Z. Nonetheless we
will show that the non-trivial Galois invariant element does not descend to Q for
general m, hence the transcendental Brauer group is in fact trivial. A similar
phenomenon was observed by Colliot-Thélène and Wittenberg in their study of
sums of three cubes [CTW12, Prop. 3.1].

The structure of the paper is as follows. In §2 we study affine cubic surfaces
given by the complement of three coplanar lines and their transcendental and
algebraic Brauer groups. In §3 we turn our attention to the natural smooth
projective compactifictions of the surfaces (1.1), where we explicitly calculate the
algebraic Brauer group of the compactification. In §4 we complete our analysis
of the Brauer group by calcuating the Brauer group of the affine surface (1.1).
We then use the Brauer group in §5 to give explicit examples of Brauer-Manin
obstructions to the integral Hasse principle and strong approximation, and prove
the results from the introduction.
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Whilst preparing our paper for publication, we learnt of the work of Colliot-
Thélène, Wei and Xu [CTWX18], also studying Markoff surfaces, which appeared
on arXiv very shortly after our work. There is an overlap between our papers con-
cerning the calculations of the Brauer groups in §2,3,4 and some of the examples
of the Brauer-Manin obstruction in §5.4. However, our methods for calculating
the Brauer groups are on the whole quite different, with us opting for more geo-
metric arguments whereas they use more algebraic approach. Our work contains
a more detailed analysis of the possibilities for the local invariant maps in §5.3.
This is crucial in the proofs of our main theorems on the Brauer–Manin obstruc-
tion to the integral Hasse principle (Theorems 1.3 and 1.4), which do not follow
from their work. In [CTWX18] they use reduction theory to show that strong
approximation always fails, which improves on our Theorems 1.1 and 1.2. They
also obtain an improvement over Theorem 1.5, by giving a lower bound with
B1/2/(logB) replaced by B1/2/(logB)1/2 [CTWX18, Thm 5.8]. It would be in-
teresting to find a lower bound here of the shape B1/2/(logB)γ for some γ < 1/2,
which, combined with Theorem 1.4, would show that almost all counter-examples
the integral Hasse principle are not explained by the Brauer-Manin obstruction.

Notation. For a variety X over a field k, we denote by BrX = H2(X,Gm) its
Brauer group. We let Br1X = ker(BrX → BrXk̄) denote the algebraic Brauer
group of X. Elements of BrX which do not belong to Br1X are called transcen-
dental.

Acknowledgements. We thank Tim Browning, Jean-Louis Colliot-Thélène,
Dasheng Wei, Olivier Wittenberg, and Fei Xu for useful discussions, and Martin
Bright and Damián Gvirtz for help with magma computations. The first-named
author is supported by EPSRC grant EP/R021422/1. The second-named au-
thor would like to thank CAPES for the financial support while working on this
project.

2. Geometry of affine cubic surfaces

By an affine cubic surface, we mean an affine surface of the form

U : f(u1, u2, u3) = 0

where f is a polynomial of degree of 3. The closure of U in P3 is a cubic surface
S. The complement H = S \ U is a hyperplane section on S. Much of the
geometry of U can be understood in terms of the geometry of S and H . We
begin with some basic remarks.

2.1. Basic geometry.

Lemma 2.1. Let S be a smooth cubic surface over a field k, let H be a hyperplane
section and set U = S \H. Then O(U)∗ = k∗.

Proof. To prove the result, we may assume that k is algebraically closed. Suppose
that there is a non-constant function f ∈ O(U)∗ and consider D = div f . As
f is invertible on U , we see that D is supported on the boundary H . Write
D =

∑

i∈I aiDi as a sum of irreducible divisors, for some index set I, where
ai 6= 0. We shall consider the various possibilities for the Di.
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If #I = 1 then we find that either D or −D is a non-zero principal effective
divisor; this is clearly a contradiction. If #I = 2, we have either

(1) D1 and D2 are both lines.
(2) D1 is a line and D2 is an irreducible conic.

In the first case we have D2
1 = D2

2 = −1 and D1 ·D2 = 1. As D is principal we
find that

0 = D ·D1 = −a1 + a2, 0 = D ·D2 = a2 − a1, 0 = D ·H = a1 + a2.

This is clearly a contradiction. In the second case we have D2
1 = −1, D2

2 = 0 and
D1 ·D2 = 2. We find that

0 = D ·D1 = −a1 + 2a2, 0 = D ·D2 = 2a1,

which again gives a contradiction.
If #I = 3 then the Di are all lines. A similar argument to the above also gives

a contradiction. We deduce that I = ∅, so that D = 0 and so f ∈ k∗. �

Lemma 2.2. Let S be a smooth surface over a field k of characteristic 0. Let
π : S ′ → S be the blow-up of S in a rational point P with exceptional curve E.
Then inclusion and pull-back via π induces isomorphisms

Br(S ′ \ E) ∼= BrS ′ ∼= BrS ∼= Br(S \ P ).
Proof. Let π : S ′ → S be the blow-up map and E the exceptional curve of the
blown-up point P . Then we have

BrS ′ ⊂ Br(S ′ \ E) ∼= Br(S \ P ) = BrS,

by Grothendieck’s purity theorem. However pull-back clearly gives BrS ⊂ BrS ′,
as required. �

2.2. Cubic surfaces with 3 coplanar lines.

2.2.1. The conic bundle. Let S be a smooth cubic surface over a field k with a
line L. Let H be a hyperplane containing L. Then S ∩H = L ∪ C, where C is
a (possibly singular) plane conic. Varying H we obtain a conic bundle structure

π : S → P1

on S. This is not an arbitrary conic bundle: the line L gives a degree 2 multi-
section of π, i.e. the induced map πL : L → P1 has degree 2. Moreover π has 5
singular fibres over k̄, each given as the union of 2 lines meeting in a single point.

Let P ∈ P1
k be a closed point such that π−1(P ) is singular; this consists of

2 lines over the algebraic closure of the residue field κ(P ) of P . We define the
residue of π at P to be the class in κ(P )∗2/κ(P )∗ = H1(k,Z/2Z) corresponding
to the splitting field of these irreducible components.

2.2.2. Brauer group. There has been much work already on the Brauer groups of
affine cubic surfaces when the hyperplane section H is smooth; here the Brauer
group is closely related to the torsion points on the Jacobian ofH (see for example
[CTW12] or [BL17]).

We shall be interested in the case where the hyperplane H is singular. We
focus on the case where H is given by 3 coplanar lines, though similar results
also hold when H is a union of a line and smooth plane conic.
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To help calculate the Brauer group of the surface, we will require the following
version of the Gysin sequence (see [Mil80, Cor. VI.5.3] or [CT95, Thm.3.4.1]).

Lemma 2.3 (Gysin sequence). Let X be a smooth variety over a field k of
characteristic 0 and Z ⊂ X a smooth divisor. Let n ∈ N and U = X \ Z. Then
there is an exact sequence

0 → H1(X, µn) → H1(U, µn) → H0(Z,Z/nZ) →
→ H2(X, µn) → H2(U, µn) → H1(Z,Z/nZ) → · · ·

Our first result calculates the Brauer group over the algebraic closure as a
module for the absolute Galois group Gk = Gal(k̄/k). In the statement, we let
µ∞ = lim−→µn be the direct limit of all groups µn of nth roots of unity in C.
Moreover, recall that an Eckardt point on a cubic surface is a point where three
lines meet.

Proposition 2.4. Let S be a smooth cubic surface over a field k of characteristic
0. Let H ⊂ S be a hyperplane section which is the union of 3 lines L1, L2, L3

and let U = S \H. Then as Gk-modules we have

BrUk̄
∼=
{

0, if L1, L2, L3 meet in an Eckardt point,

Q/Z(−1) := Hom(µ∞,Q/Z), otherwise.

In particular, if k contains no non-trivial roots of unity and L1, L2, L3 do not
meet in an Eckardt point then

(BrUk̄)
Gk ∼= Z/2Z.

Proof. Blow down L3 to obtain a del Pezzo surface ψ : S → S ′ of degree 4 and
let Ci = ψ(Li). Then by Lemma 2.2 we have Br(S \H) ∼= Br(S ′\(C1∪C2)). The
curves C1 and C2 are smooth conics on S ′. Moreover, we have −KS′ = C1 + C2

in PicS ′ and

#(C1 ∩ C2) =

{

1, if L1, L2, L3 meet in an Eckardt point,

2, otherwise.

Let U1 = S ′\C1 and U2 = U1\C2. We apply the Gysin sequence from Lemma 2.3
to (S ′, U1) to find the exact sequence

H2(S ′
k̄, µn) → H2(U1,k̄, µn) → H1(C1,k̄,Z/nZ).

As C1
∼= P1 we have H1(C1,k̄,Z/nZ) = 0, hence the map H2(S ′

k̄
, µn) → H2(U1,k̄, µn)

is surjective. Applying Gysin to (S ′, U1) again we obtain

H3(S ′
k̄, µn) → H3(U1,k̄, µn) → H2(C1,k̄,Z/nZ) → H4(S ′

k̄, µn) → H4(U1,k̄, µn).

As U1 is non-proper we have H4(U1,k̄, µn) = 0. The map H2(C1,k̄,Z/nZ) →
H4(S ′

k̄
, µn) is therefore an isomorphism as both groups have the same cardinality.

As H3(S ′
k̄
, µn) = 0, it follows that H3(U1,k̄, µn) = 0. We now apply the Gysin

sequence to (U1, U1 ∩ C2) to find

H2(U1,k̄, µn) → H2(U2,k̄, µn) → H1(U1,k̄ ∩ C2,k̄,Z/nZ) → H3(U1,k̄,Z/nZ) = 0.
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From the Kummer sequence we have the commutative diagram with exact rows

0 // (PicS ′
k̄
)/n //

f

��

H2(S ′
k̄
, µn)

��

// (BrS ′
k̄
)[n]

��

// 0

0 // (PicU2,k̄)/n // H2(U2,k̄, µn) // (BrU2,k̄)[n] // 0.

As S ′ is smooth the map f is surjective. Moreover, BrS ′
k̄
= 0 as S ′ is a smooth

projective geometrically rational surface. As the map H2(S ′
k̄
, µn) → H2(U1,k̄, µn)

is surjective, we therefore deduce the Galois equivariant isomorphism

(BrU2,k̄)[n] ∼= H1(U1,k̄ ∩ C2,k̄,Z/nZ).

We may now complete the proof. If L1, L2, L3 meet in an Eckardt point then
U1∩C2

∼= A1, thus H1(U1,k̄ ∩C2,k̄,Z/nZ) = 0. Otherwise we have U1∩C2
∼= Gm.

In this case Kummer theory yields the isomorphism H1(Gm,k̄, µn) = Z/nZ, thus

twisting coefficients shows that H1(Gm,k̄,Z/nZ) = Hom(µn,Z/nZ). The result
now follows on applying this to all n, as the Brauer group is torsion. �

Proposition 2.5. Let S be a smooth cubic surface over a field k of characteristic
0. Let H ⊂ S be a hyperplane section which is the union of 3 lines L1, L2, L3

and let U = S \H. Then PicUk̄ is torsion free and Br1 U/Br k ∼= H1(k,PicUk̄)
is isomorphic to one of the following groups

0, Z/4Z, Z/2Z× Z/4Z, (Z/2Z)r (r = 1, 2, 3, 4).

Proof. The isomorphism Br1 U/Br k ∼= H1(k,PicUk̄) is a well-known consequence
of the fact that U(k) 6= ∅, O(Uk̄)

∗ = k̄∗ (Lemma 2.1) and the Hochshild–Serre
spectral sequence (see e.g. [San81, Lem. 6.3(iii)]). We have the exact sequence

0 → Z3 i→ Pic S̄ → Pic Ū → 0 (2.1)

of Gk-modules, where i(n1, n2, n3) = n1[L1]+n2[L2]+n3[L3]. Moreover, we have
the exact sequence

0 → PDiv S̄ → Lines S̄ → Pic S̄ → 0,

where Lines S̄ is the free abelian group generated by the 27 lines of S̄ and PDiv S̄
is the subgroup of principal divisors. These two sequences give an explicit descrip-
tion of Pic Ū as a quotient of a permutation module by a submodule. Moreover,
the absolute Galois group Gal(k̄/k) acts on Lines S̄ via a subgroup of the Weyl
group W (E6), which is well-defined up to conjugacy.

This data can all be fed into magma. One enumerates all 350 conjugacy classes
of subgroups of W (E6) together with the corresponding action on Z27. One finds
that 48 of these subgroups correspond to smooth cubic surfaces with 3 coplanar
lines. One then constructs Pic Ū together with the action of the Galois group G
using the above sequences and computes H1(G,Pic Ū) with standard commands
in magma. (Note that, by inflation-restriction H1(k,Pic Ū) = H1(G,Pic Ū), as
one checks in magma that Pic Ū is a free Z-module). This gives the possible list
of Brauer groups stated in the proposition. �
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Remark 2.6. It is interesting to see the group Z/4Z occurring here. This
occurs for a unique group action on the lines by a group of order 8. The group
Z/2Z× Z/4Z occurs for a unique group action by a group of order 4.

Remark 2.7. There is a direct proof, without magma, that every element of
Br1 U/Br k is 4-torsion. Consider the exact sequence (2.1) and define the map

j : Pic S̄ → Z3, j : [D] 7→ ([D] · ([L2]+[L3]), [D] · ([L1]+[L3]), [D] · ([L1]+[L2])).

A simple calculation shows that j ◦ i is multiplication by 2 on Z3. We now apply
cohomology to obtain the exact sequence

0 → Br1 S/Br k → Br1 U/Br k → H2(k,Z3)
i∗→ H2(k,Pic S̄),

on using the vanishing H1(k,Z3) = 0. As S is a conic bundle surface, it is
well-known that Br1 S/Br k is 2-torsion (this follows for example from [Lou18,
Thm. 2.11]). However for b ∈ Br1 U/Br k, its image in H2(k,Z3) is easily seen to
have order 2 since j∗ ◦ i∗ is multiplication by 2 on H2(k,Z3). The result follows.

Remark 2.8. The complement of a smooth hyperplane section on a smooth cubic
surface over an algebraically closed field always has non-trivial Brauer group (see
e.g. [BL17, §2.2]). Proposition 2.4 shows however that this is not the case for
the complement of a singular hyperplane section given by three lines meeting in
an Eckardt point.

3. Geometry of projective Markoff surfaces

We now consider the geometry of the natural compactifications of the Markoff
surfaces. We work over a field k of characteristic 0 and study the cubic surfaces
with the equation

Sm : x0(x
2
1 + x22 + x23)− x1x2x3 = mx30 ⊂ P3, (3.1)

for m ∈ k. We assume throughout that Sm is smooth; this is equivalent to
m 6= 0, 4. The surfaces Sm contain the three coplanar lines

Li : x0 = 0, xi = 0.

In particular, each Sm comes equipped with 3 conic bundle structures. There is
an obvious action of the symmetric group of order 3 on Sm which permutes these
lines. We focus our attention on the line L3 and denote the associated conic
bundle by π : Sm → P1. Analysing the conic bundle structure, one finds that
this is given by

Sm : s(x2 + y2)− txy + s(t2 −ms2)z2 = 0 ⊂ F(0, 0, 1) (3.2)

where F(0, 0, 1) := P(OP1 ⊕ OP1 ⊕OP1(1)) is viewed as the quotient ((A2 \ 0)×
(A3 \ 0))/G2

m for the action

(λ, µ) · (s, t; x, y, z) = (λs, λt;µx, µy, λ−1µz).

(See [FLS18, §2] for more information about how to write down equations for
conic bundle surfaces.) One sees that this surface is isomorphic to the original
Sm via the map

F(0, 0, 1) → P3, (x, y, z; s, t) 7→ (sz, x, y, tz), (3.3)
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which also realises F(0, 0, 1) as the blow-up of P3 in the line L3. The conic bundle
map π is given by mapping to (s : t).

Lemma 3.1. The following holds.

(1) The map π : Sm → P1 has 5 singular geometric fibres.
(2) The discriminant is given by

∆(s, t) = s(t− 2s)(t+ 2s)(t2 −ms2).

Assume that m /∈ k∗2. Let P1, P2, P3, P4 be the points corresponding the zero locus
of ∆(s, t) in P1. Let ki = κ(Pi) be the residue fields of the Pi.

(3) The fibre over each Pi has the following residue in ki.

P1 : 1, P2 : m− 4, P3 : m− 4, P4 : m− 4.

Proof. Follows immediately from the explicit equation (3.2) and a simple calcu-
lation. �

Lemma 3.2. Assume that [k(
√
m,

√
m− 4) : k] = 4. Then

BrSm/Br k ∼= (Z/2Z),

with generator given by the quaternion algebra

α = ((x3/x0)
2 − 4, m− 4).

Proof. Note that our assumptions imply that (m − 4) /∈ k(
√
m)∗2. Lemma 3.1

and standard formulae for Brauer groups of conic bundle surfaces (e.g. [Lou18,
Thm. 2.11]) show that BrSm/Br k is generated by ((t/s)2 − 4, m − 4). With
respect to the map (3.3), this gives the stated quaternion algebra. �

We finish with the following observation.

Lemma 3.3. The surface Sm is rational if and only if m− 4 ∈ k(
√
m)∗2.

Proof. If m − 4 /∈ k(
√
m)∗2, then one verifies in a similar manner to the proof

of Lemma 3.2 that BrSm/Br k is non-trivial, hence Sm is non-rational. On the
other hand, if m− 4 ∈ k(

√
m)∗2 and m /∈ k∗2, then the fibre over P4 is split (see

Lemma 3.1). A component in the fibre can therefore be blown-down. Blowing
down a component over P1, it follows that Sm is birational to a conic bundle
surface with at most 2 singular fibres over k̄. Such surfaces are well-known to be
rational once they have a rational point (see e.g [KM17, §1] and the references
therein). A similar argument applies if m ∈ k∗2 and m− 4 ∈ k∗2, and completes
the proof. �

4. Brauer group of affine Markoff surfaces

We now calculate the Brauer groups of the affine surfaces

Um : u21 + u22 + u23 − u1u2u3 = m.

It will be convenient to have an alternative shape for this equation, as in [GS17,
§8]. Let i, j, k be distinct members of the set {1, 2, 3}. Then

Um : (2ui − ujuk)
2 − (m− 4)22 = (u2j − 4)(u2k − 4). (4.1)
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The change of variables w = 2ui−ujuk here corresponds to blowing down the line
Li (as already used in Proposition 2.4). In particular, this shows the alternative
formulae

α = (u21 − 4, m− 4) = (u22 − 4, m− 4) = (u23 − 4, m− 4) (4.2)

for the element α from Lemma 3.2.

4.1. Transcendental Brauer group.

Proposition 4.1. Let k be a field of characteristic 0 and let m ∈ k∗ be such
that m − 4 ∈ k∗2. Then the natural map BrSm → Br1 Um is an isomor-
phism. Moreover, if k contains no non-trivial roots of unity, then the natural
map BrSm → BrUm is an isomorphism.

Proof. Our argument is inspired by the proof of [CTW12, Prop. 3.1]. Let b ∈
BrUm. To show that b ∈ BrSm, it suffices to show that b is unramified along the
three lines Li on Sm. To do so, we are free to multiply b by constant algebra, so
by Proposition 2.4 and Remark 2.7 we may assume that b has order dividing 4.

Let L = L3 and C = L1 ∪ L2. Let UL = L \ C. Note that L meets C in two
rational points, hence L is non-canonically isomorphic to Gm. We choose the
point (0 : 1 : 1 : 0) ∈ UL to be the identity element of the group law. Then the
isomorphism with Gm is realised via

Gm → Sm, t 7→ (0 : 1 : t : 0). (4.3)

The residue of b along L lies inside H1(UL,Z/4Z). We will show by contradiction
that it is trivial. So assume that the residue is non-trivial. Replacing b by 2b,
if necessary, we may assume that the residue has order 2. This means that the
residue corresponds to some irreducible degree 2 finite étale cover f : V → UL.

As m − 4 ∈ k∗2, the fibres C2 and C3 over P2 and P3, respectively, are both
split (i.e. a union of two lines over k). It turns out that L meets C2 and C3

each in exactly one point with multiplicity two; i.e. these are Eckardt points
on the surface. Let Q2 = (0 : 1 : 1 : 0) and Q3 = (0 : 1 : −1 : 0) be the
corresponding rational points (note that Q2 is the identity element of UL). Let
F2 be an irreducible component of C2 and consider the restriction of b to F2.
This is well-defined outside of Q2. However F2 \ Q2

∼= A1 has constant Brauer
group, so b in fact extends to all of F2. As F2 meets L transversely, we deduce
from [LTBT18, Prop. 4.15] that the evaluation of the residue of b at Q2 is also
trivial, so that f−1(Q2) consists of exactly 2 rational points. This shows that V
is geometrically irreducible, and hence V ∼= Gm non-canonically.

If b ∈ Br1 Um, then the residue lies in H1(k,Z/2Z), so if it is non-trivial then
it corresponds to some quadratic extension of k. Hence if it is non-trivial then V
must be geometrically irreducible, which contradicts the above. We deduce that
b is unramified along L. However, running the same argument with the other 2
lines shows that b is unramified hence b ∈ BrSm as claimed.

Assume now that k contains no non-trivial roots of unity. Choosing a rational
point over Q2 and using (4.3), we may therefore identity the cover V → UL with
the map

Gm → Sm, t 7→ (0 : 1 : t2 : 0). (4.4)



MARKOFF SURFACES 11

However, we may run the exact same argument with C3 to deduce that the fibre
of f over Q3 = (0 : 1 : −1 : 0) contains a rational point. But our assumptions
imply that −1 /∈ k∗2, which is a contradiction. Thus the residue of b along L is
trivial. Considering the other lines, as above, we conclude that b is everywhere
unramified, hence b ∈ BrSm. �

In [CTWX18, §4], further cases are given where the transcendental Brauer
group is trivial. For completeness we give our own proof of these results using
our method.

Proposition 4.2. Let k be a field of characteristic 0 and let m ∈ k∗ be such

that m ∈ k∗2 and m − 4 ∈ k∗2. If
√
m+

√
m−4

2
/∈ k∗2, then the natural map

BrSm{2} → BrUm{2} is an isomorphism.

Proof. The proof is a minor variant of the proof of Proposition 4.1. Let b have
reside of order 2 along L3. As in the proof of Proposition 4.1, we find that this
residue corresponds to (4.4). Since m and m − 4 are both squares in k, each
fibre of the conic bundle morphism is split. We consider the lines in one of the
fibres over P4. They are contained in the hyperplane x0 =

√
mx23 and given by

the equation x21 + x22 −
√
mx1x2 = 0. The components are

2x1 = (
√
m±

√
m− 4)x2.

These meet the line L3 in the points
(

0 : 1 :

√
m±

√
m− 4

2
: 0

)

.

As in the proof of Proposition 4.1, we find that the fibres over these points

contain a rational point. But
√
m+

√
m−4

2
is not a square by assumption, which is

a contradiction so b is unramified along L3. Arguing with the lines L1 and L2

shows that b is everywhere unramified, as required. �

Corollary 4.3. Let m ∈ Q∗ with m 6= 0, 4. If −(m − 4) is a square in Q, then

assume further that
√
m+

√
m−4

2
is not a square in Q(

√
m,

√
m− 4). Then Um has

trivial transcendental Brauer group.

Proof. Let b ∈ BrUm be a transcendental Brauer group element. Modifying b
by a constant algebra, we may assume that b has order 2 by Proposition 2.4.
Assume first that −(m− 4) is not a square. Then Q(

√
m− 4) contains no non-

trivial root of unity of even order, hence by (the proof of) Proposition 4.1 the
element becomes unramified over Q(

√
m− 4). But Sm has trivial Brauer group

over Q̄, which is a contradiction.

On the other hand, if −(m−4) is a square in Q, then by assumption
√
m+

√
m−4

2

is not a square in Q(
√
m,

√
m− 4) . The result in this case now follows from a

similar application of Proposition 4.2. �

It is shown in [CTWX18, §4] that if the assumptions of Corollary 4.3 fail,
then the transcendental Brauer group can in fact be non-trivial. In particular,
Corollary 4.3 is sharp.
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Remark 4.4. Note that (BrUm,Q̄)
GQ = Z/2Z by Proposition 2.4. Nevertheless,

in Corollary 4.3 the Galois invariant element of order 2 does not descend to a
Brauer group element over Q.

4.2. Algebraic Brauer group.

Proposition 4.5. Let k be a field of characteristic 0 and m ∈ k∗ such that
[k(

√
m,

√
m− 4) : k] = 4. Then Br1 Um/Br k ∼= (Z/2Z)3. A complete set of

representatives for the non-trivial elements are given by the quaterion algebras

αi,± = (ui ± 2, m− 4), i ∈ {1, 2, 3}, α = (u21 − 4, m− 4),

which satisfy the following relations in Br1 Um:

αi,− + αi,+ = α, i ∈ {1, 2, 3}, (4.5)

α1,+ + α2,+ + α3,+ = 0, (4.6)

α1,− + α2,− + α3,− = α. (4.7)

Moreover Br1 Um/Br k is generated by the quaternion algebras αi,− for i ∈ {1, 2, 3}.
Proof. We first explain why αi,± ∈ Br1 Um. It suffices to show that αi,± is
unramified along the divisor ui ± 2 = 0. However, this is one of the non-split
singular fibres in the conic bundle, thus m − 4 is a square in the function field
by Lemma 3.1 whence αi,± is indeed unramified along this divisor.

We now show that the αi,± give distinct elements of the Brauer group. One
calculates that αi,± is unramified along the line Li, but has residue m− 4 along
Lj for j 6= i, j ∈ {1, 2, 3}, on the compactification Sm (3.1). Thus αi,± 6= αj,±
for i 6= j. Moreover the relation (4.5) is trivially verified, which shows that
αi,− 6= αi,+ in Br1 Um. Next one uses the equation (1.1) to deduce that

(u1 + 2)(u2 + 2)(u3 + 2) = (u1 + u2 + u2 + 2)2 − (m− 4),

whence (4.6) easily follows. Then (4.7) follows from (4.6) and (4.5). This shows
that the αi,− generate a subgroup of Br1 Um isomorphic to (Z/2Z)3.

To show that these also generate Br1 Um/Br k, one can just construct the group
action in our list from Proposition 2.5 using magma, and see that Br1 Um/Br k ∼=
(Z/2Z)3 in this case.

For completeness, we also give a geometric argument that we have found all
the elements. Let β ∈ Br1 Um/Br k. By Proposition 4.1, we find that β becomes
unramified over k(

√
m− 4). This implies that the residue of β along each line

Li is killed after this extension, thus the residue is either 1 or m − 4. If β is
unramified on all Li then β ∈ {0, α}. So assume β is ramified along some Li.
First note that β cannot be ramified along just one of the Li by Lemma 2.2. It
also follows that β cannot we ramified along all 3 lines; indeed then β+α1,− would
be only ramified along L1, which is impossible. Hence β is ramified along exactly
2 lines; say L2 and L3. But then β+α1,− is unramified, hence β+α1,− ∈ {0, α},
whence β = α1,− or α1,+ by our above arguments. This shows that β is in the
list of already found Brauer group elements, hence we are done. �

Corollary 4.6. Let m ∈ Q∗ be such that none of m, (m− 4), nor m(m− 4) is a

square in Q. Moreover, if −(m−4) is a square in Q, then assume that
√
m+

√
m−4

2
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is not a square in Q(
√
m,

√
m− 4). Then BrUm/BrQ ∼= (Z/2Z)3, generated by

the quaternion algebras αi,−.

Proof. Our assumptions imply that [Q(
√
m,

√
m− 4) : Q] = 4. The result then

follows from Corollary 4.3 and Proposition 4.5. �

5. The Brauer–Manin obstruction

We now calculate the Brauer–Manin obstruction for Um for m ∈ Z.

5.1. Set-up. Recall that Um is given by (1.1) and Um is its obvious integral
model over Z. For convenience let u = (u1, u2, u3).

We make great use of the alternative equation (4.1). This gives us an alterna-
tive expression of the model Um, at least away from 2.

Um ⊗ Z[1/2] : (2ui − ujuk)
2 − (m− 4)22 = (u2j − 4)(u2k − 4). (5.1)

We assume throughout §5.2–5.3 that m ∈ Z satisfies the hypotheses of Corol-
lary 4.6. Thus the group BrUm/BrQ is generated by the quaternion algebras
αi,− from Proposition 4.5. We let A = 〈α1,−, α2,−, α3,−〉 be the subgroup of
BrUm generated by these elements. We will also make use of the element α, its
alternative representations (4.2) and the relations from Proposition 4.5.

5.1.1. Assumptions of Corollary 4.6. Let us note that the assumptions of Corol-
lary 4.6 are not very restrictive if one is interested in Brauer–Manin obstructions
to the integral Hasse principle. Indeed, assume that these conditions fail. Then

m− 4, m,m(m− 4), or − (m− 4) ∈ Q∗2.

In the first case we have BrUm = BrQ by Lemma 3.3 and Proposition 4.1. In
the second case, there is no obstruction to the integral Hasse principle, as there
is always the integral point (

√
m, 0, 0). The third case does not occur under the

assumption that Um is smooth, as the following shows.

Lemma 5.1. Let m ∈ Z be such that m(m− 4) is a square. Then m = 0, 4.

Proof. Consider the Diophantine equation m(m−4) = a2. If this has an integral
solution, then the discriminant, viewed as a polynomial in m, must be a square.
This shows that 16+4a2 is a square, hence 4+a2 = b2 for some b. But then this
factorises as (b+ a)(b− a) = 4, which is easily checked to imply that a = 0 and
b ∈ {±2}, hence m(m− 4) = 0, as claimed. �

We calculate explicitly the conditions in Corollary 4.6 when −(m− 4) ∈ Q∗2.

Proposition 5.2. Let d be a positive integer and m = 4−d2. Then
√
m+

√
m−4

2
is

a square in Q(
√
m,

√
m− 4) if and only if d = 2(n2±1) for some positive n ∈ Z.

Proof. Let i =
√
−1 and let K = Q

(√
m− 4,

√
m
)

= Q(i,
√
4− d2). If d = 2,

then
√
m+

√
m−4

2
= i /∈ K2. So assume throughout that d 6= 2. One easily verifies

(for example by taking 1, i as a basis for the Gaussian integers over Z) that 4−d2
is not a square in Q(i) as d 6= 2, and thus [K : Q] = 4. Our condition is

di+
√
4− d2

2
∈ K×2. (5.2)
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Observe that 2i = (1 + i)2 and thus 2i ∈ K×2. Multiplying (5.2) by 2i shows
that it is equivalent to −d+ i

√
4− d2 ∈ K×2. Since 1, i,

√
4− d2, i

√
4− d2 are a

basis for K as a Q-vector space we deduce that (5.2) holds if and only if

− d+ i
√
4− d2 =

(

a0 + a1i+ a2
√
4− d2 + a3i

√
4− d2

)2

6= 0 (5.3)

for some a0, a1, a2, a3 ∈ Q. Comparing the coefficients of i and
√
4− d2 we get

a0a1 + a2a3(4− d2) = 0,

a0a2 − a1a3 = 0.
(5.4)

Firstly, assume that a2a3 6= 0. The bottom equation in (5.4) gives
a1
a2

=
a0
a3

= µ ∈ Q.

Dividing through by a2a3 in the top equation of (5.4) translates it into µ2 = d2−4.
The equation 4 + µ2 = d2 was analysed in the proof of Lemma 5.1 and it is
insoluble as d 6= ±2. Hence (5.3) is not satisfied.

Therefore we may assume that a2a3 = 0. We consider first the case a3 = 0, so
that the equations (5.4) become a0a1 = a0a2 = 0. If a1 = a2 = 0, then (5.3) is
not satisfied as K 6= Q. If a0 = 0, then (5.3) becomes

−d + i
√
4− d2 = −a21 + a22(4− d2) + 2a1a2i

√
4− d2.

Comparing the terms shows that a2 = 1/2a1, and yields the biquadratic equation

4a41 − 4da21 − (4− d2) = 0.

It is soluble over Q and its solutions are of the shape a21 = ±1 + d/2. Since
there are no half integers which are squares in Q we must have d even, and that
d = 2(n2 ± 1) for some positive integer n.

The case a2 = 0 is completely analogous to a3 = 0, except one obtains the
biquadratic equation 4a40 + 4da20 − (4− d2) = 0. It has no real solutions as d 6= 2
and thus (5.3) in soluble for a2 = 0. This completes the proof. �

5.2. Review of the Brauer–Manin obstruction. We briefly recall how the
Brauer–Manin obstruction works in our setting, following [Poo17, §8.2] and
[CTX09, §1]. For each place v of Q there is a pairing

Um(Qv)× BrUm → Q/Z

coming from the local invariant map invv BrQv → Q/Z from local class field
theory (this is an isomorphism if v is a prime number). This pairing is locally
constant on the left [Poo17, Prop. 8.2.9].

Any element β ∈ BrSm pairs trivially on Um(Qv) for almost all v, thus taking
the sum of the local pairings gives a pairing

∏

v

Um(Qv)× BrSm → Q/Z.

This factors through the group BrSm/BrQ and pairs trivially with the elements
of U(Q). For B ⊆ BrSm, we let (

∏

v Um(Qv))
B be the left kernel of this pairing

with respect to B. By Corollary 4.6, the group BrSm/BrQ is generated by the
algebra α. Thus in our case it suffices to consider the sequence of inclusions
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Um(Q) ⊂ (
∏

v Um(Qv))
α ⊆ ∏

v Um(Qv). In particular, if the latter inclusion is
strict, then α gives an obstruction to weak approximation on Um.

For integral points, any element β ∈ BrUm pairs trivially on Um(Zp) for almost
all p, so we obtain a pairing Um(AQ)× BrUm → Q/Z. As the local pairings are
locally constant, we obtain a well-defined pairing

Um(AZ)• × BrUm → Q/Z.

For B ⊆ BrUm we let Um(AZ)
B
• be the left kernel with respect to B, and let

Um(AZ)
Br
• = Um(AZ)

BrUm
• . By Corollary 4.6, the map A → BrUm/BrQ is an

isomorphism, hence Um(AZ)
Br
• = Um(AZ)

A
• . We have the inclusions Um(Z) ⊆

Um(AZ)
A
• ⊆ Um(AZ)•, so that A can obstruct the integral Hasse principle or

strong approximation.
Let W be dense Zariski open in Um. As Um is smooth the set W (Qv) is

dense in Um(Qv) for all places v. Moreover, Um(Zp) is open in Um(Qp), hence
W (Qp) ∩ Um(Zp) is dense in Um(Zp). As the local pairings are locally constant,
to calculate the local invariants of a given element we may restrict our attention
to W . We often take the open subset W given by (u21 − 4)(u22 − 4)(u23 − 4) 6= 0.

5.3. Calculating the local invariants. We now calculate the possible values
for the local invariants of the elements αi,−. We do this using the following
formula for the local invariants

invp αi,−(u) =
1− (ui − 2, m− 4)p

4
, (5.5)

in terms of Hilbert symbols, which holds for all u ∈ Um(Zp) with ui 6= 2. We
begin with an elementary lemma.

Lemma 5.3. Let p | (m − 4) be odd. Then the singular locus of Um mod p is
given by the points (2, 2, 2), (−2,−2, 2), (2,−2,−2), (−2, 2,−2).

Moreover assume that vp(m− 4) = 1. Then for all u ∈ Um(Zp), the reduction
u mod p ∈ Um(Fp) is a smooth Fp-point.

Proof. The scheme Um mod p is isomorphic to (an open subset of) the Cayley
cubic surface. This is well-known to have exactly 4 singular points which are all
rational, and are easily verified to be the above 4 points.

For the second part, suppose that u ≡ (2, 2, 2) mod p (the other cases being
similar). Then vp((2u3 − u1u2)

2) ≥ 2 and vp((u
2
1 − 4)(u22− 4)) ≥ 2, but from the

equation (5.1) this contradicts vp(m− 4) = 1. �

We first consider the trivial cases.

Lemma 5.4. Let i ∈ {1, 2, 3}. Then invp αi,−(u) = 0 for all u ∈ Um(Zp) if one
of the following conditions holds:

(1) p ∤ 2(m− 4).
(2) m− 4 ∈ Q∗2

p .
(3) p = ∞ and m > 4.

Proof. In cases (2) and (3), the Hilbert symbol in (5.5) is trivial over Qp as m−4
is a square in Q∗

p. Thus the invariant map is obviously zero in these cases.
So we can assume that p is an odd prime not dividing m − 4 and such that

m−4 /∈ Q∗2
p . Let u ∈ Um(Zp) be such that (u1−2)(u2−2)(u3−2) 6= 0. We claim
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that the p-adic valuation of each uj − 2 is zero. Indeed, since p ∤ (m − 4) and
m− 4 mod p is not a quadratic residue it follows that the left hand side of (5.1)
is not divisible by p. Hence the right hand side has zero p-adic valuation. But
uj − 2 divides the right hand side of (5.1) and hence has zero p-adic valuation as
well. As p is odd, the Hilbert symbol is trivial (both entries being units). �

We next consider large primes which divide m− 4 to odd valuation.

Proposition 5.5. Let p > 5 and let m be such that vp(m − 4) is odd. Let
A = 〈αi,−〉 ⊂ BrUm. Then the map

Um(Zp) → Hom(A,Q/Z), u 7→ (β 7→ invp β(u)),

induced by the Brauer–Manin pairing, is surjective.

Proof. It suffices to show that for all (ε1, ε2, ε3) ∈ (Z/2Z)3, there exists u ∈
Um(Zp) such that

(invp α1,−(u), invp α2,−(u), invp α3,−(u)) = (ε1, ε2, ε3). (5.6)

To prove (5.6), we claim that for all y1, y2, y3 ∈ F∗
p it suffices to show the existence

of an Fp-point on the variety

(2u1 − u2u3)
2 = (u22 − 4)(u23 − 4), u1 − 2 = y1z

2
1 , u2 − 2 = y2z

2
2 , u3 − 2 = y3z

2
3

which satisfies z1z2z3 6= 0. Indeed; firstly as (u1− 2)(u2− 2)(u3− 2) 6= 0, we find
from Lemma 5.3 that this gives rise to a smooth Fp-point of Um, hence a Zp-point
with vp(ui − 2) = 0 by Hensel’s lemma. Moreover ui − 2 is a square in Qp if and
only if yi is a quadratic residue. A simple Hilbert symbol calculation using (5.5)
and the fact that vp(m− 4) is odd shows that we can obtain all possible choices
for the invariants in (5.6) on taking all possible combinations for the yi.

To construct the given Fp-point, without loss of generality we may assume
that y2 = y3 (since #F∗

p/F
∗2
p = 2). We restrict our attention to the subvariety

given by u2 = u3. Our equations then become

(2u1 − u22)
2 = (u22 − 4)2, u1 − 2 = y1z

2
1 , u2 − 2 = y2z

2
2 .

Factoring the left hand side, it suffices to solve the equations

u1 = u22 − 2, u1 − 2 = y1z
2
1 , u2 − 2 = y2z

2
2 .

This then gives the equation

y1z
2
1 = y22z

4
2 + 4y2z

2
2 .

This defines a curve with the unique singular point (z1, z2) = 0. The compacti-
fication of the normalisation is isomorphic to P1, with at most 2 rational points
at infinity and at most 2 rational points over the singular point, thus the affine
curve has p−2 many Fp-points. Of these points at most 3 satisfy z1z2 = 0, hence
providing p−5 > 0, there exists a rational point with the required properties. �

For even valuation, we have the following.

Proposition 5.6. Let p > 5 and let m be such that p | (m− 4), with vp(m− 4)
even but m− 4 /∈ Q∗2

p . Then for all u ∈ Um(Zp) we have

{invp α1,−(u), invp α2,−(u), invp α3,−(u)} ∈ {{0, 0, 0}, {0, 0, 1/2}, {1/2, 1/2, 1/2}}
as multisets, and every such element arises for some u ∈ Um(Zp).
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Proof. We first show that the local invariants must take one of the stated values.
As m−4 /∈ Q∗2

p and vp(m−4) is even, the left hand side of (5.1) has even p-adic

valuation for any choice of i, j, k ∈ {1, 2, 3}. It follows that vp((u
2
j − 4)(u2k − 4))

is also even for all j, k.
If vp(u

2
j − 4) and vp(u

2
k − 4) are both even then a permutation of i, j, k implies

that vp(u
2
i − 4) is even for all i. But one of ui− 2 or ui+2 must be a p-adic unit

as p is odd, hence vp(ui − 2) is even for all i. It follows that all local invariants
are 0 in this case.

Assume next that vp(u
2
j − 4) and vp(u

2
k − 4) are both odd. Then invp α(u) =

1/2. Moreover, exactly one of vp(ui ± 2) is odd for each i. If vp(u1 − 2) is odd,
then invp α1,−(u) = 1/2, hence {invp α2,−(u), invp α3,−(u)} ∈ {{0, 0}, {1/2, 1/2}}
by (4.7). If however vp(u1 + 2) is odd, then invp α1,+(u) = 1/2 and without loss
of generality we have invp α2,+(u) = 1/2 and invp α3,+(u) = 0 by (4.6). It follows
that vp(u1 − 2) and vp(u2 − 2) are both even and that vp(u3 − 2) is odd, hence
we obtain the local invariants 0, 0, 1/2, as claimed.

We now show that these possibilities for the local invariants can actually be
realised. A similar argument to the proof of Proposition 5.5 shows the existence
of u such that all the ui − 2 are units, hence the local invariants are all 0 in this
case (this is the only point in the proof we use that p 6= 3, 5).

For the non-trivial local invariants, we will construct p-adic solutions with
given valuations. Write m − 4 = pwz, where z ∈ Z∗

p, and make the change of

variables pv1 = u1 − 2 and pw−1v2 = u2 − 2. Then the equation (5.1) becomes

(2u3 − (pv1 + 2)(pw−1v2 + 2))2 − 4zpw = pwv1v2(pv1 + 4)(pw−1v2 + 4).

We make the change of variables 2u3 − (pv1 + 2)(pw−1v2 + 2) = pwv3 and cancel
pw to obtain

pwv23 − 4z = v1v2(pv1 + 4)(pw−1v2 + 4).

Modulo p, this becomes

z ≡ −4v1v2 mod p.

This clearly has the non-singular solution in units v1 ≡ 1 mod p and v2 ≡
−4−1z mod p. Thus we may apply Hensel’s lemma to show the existence of a
p-adic solution with vp(u1 − 2) and vp(u2 − 2) both odd. For such a solution
we have invp α1,−(u) = invp α2,−(u) = 1/2 as m − 4 /∈ Q∗2

p and w is even. This
realises the possibilities {1/2, 1/2, 1/2} by the first part of the lemma.

A similar argument shows the existence of a p-adic solution with vp(u1−2) and
vp(u2+2) both odd. This is easily seen to realise the local invariants {1/2, 0, 0},
as required. �

We now show that the conclusion of Proposition 5.5 does not hold for p = 3, 5,
so that Proposition 5.5 is sharp.

Proposition 5.7. Let p = 3, 5 and let m such that vp(m − 4) = 1. Let A =
〈αi,−〉 ⊂ BrUm.

(1) If p = 3, then for all u ∈ Um(Zp) we have

{invp α1,−(u), invp α2,−(u), invp α3,−(u)} = {0, 0, 1/2}
as multisets.
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(2) If p = 5, then the image of map induced by the Brauer pairing

Um(Zp) → Hom(A,Q/Z)
contains every element except the trivial homomorphism.

Proof. By Lemma 5.3 the reduction modulo p of each Zp-point is smooth.
p = 3: One checks that up to the S3-action, the only smooth rational points

modulo 3 are (0, 0, 1) and (0, 0, 2). Let u be a 3-adic lift of one of these points. We
first consider the element α = (u21 − 4, m− 4). As −4 is not a quadratic residue
modulo 3, we find that inv3 α(u) = 1/2. Moreover as u1 − 2 and u2 − 2 are
quadratic residues for both points, we find that inv3 α1,−(u) = inv3 α2,−(u) = 0.
Combining this with the relation (4.7) shows that inv3 α3,−(u) = 1/2. Consider-
ing permutations proves the result.
p = 5: Again, up to the S3-action, the only smooth rational points modulo 5

are (0, 0, 2), (0, 0, 3), (1, 1, 2), (1, 1, 4), (1, 3, 4), (2, 2, 4) and (4, 4, 4). One realises
the invariants

inv5 α1,−(u) = 0, inv5 α2,−(u) = 0, inv5 α3,−(u) = 1/2,

by considering 5-adic lifts of the point (1, 1, 4). The other non-trivial combina-
tions are obtained by considering permutations of the points (0, 0, 3) and (4, 4, 4).
To show that the trivial homomorphism is not realised, we can ignore those points
where at least one of ui − 2 is not a square. This leaves the point (1, 1, 2). Here
we have inv5 α(u) = 1/2 as u21− 4 ≡ 2 mod 5 is a quadratic non-residue, whence
inv5 α3,−(u) = 1/2 by (4.7). So the trivial homomorphism is not realised. �

We continue with the study of the local invariant map when p = 2.

Lemma 5.8. Let m ∈ Z be such that m 6≡ 3 mod 4. If m 6≡ 1 mod 8, then there
exists u ∈ Um(Z2) such that

(inv2 α1,−(u), inv2 α2,−(u) inv2 α3,−(u)) =

{

(0, 0, 0) if v2(m− 4) ≡ 0 mod 2,

(0, 0, 1/2) if v2(m− 4) ≡ 1 mod 2.

Alternatively, if m ≡ 1 mod 8, then for every u ∈ Um(Z2) we have

{inv2 α1,−(u), inv2 α2,−(u), inv2 α3,−(u)} = {0, 1/2, 1/2}
as multisets.

Proof. As m 6≡ 3 mod 4 we have Um(Z2) 6= ∅ by [GS17, §6.3].
Firstly, assume that 2 | m. Then 2 ∤ (3−m) and clearly (3, 3, 3−m) satisfies

the reduction of (1.1) mod 8. By Hensel’s lemma this lifts to a point u ∈ Um(Z2).
Moreover, u2i − 4 ≡ 5 mod 8 and thus

(u2i − 4, m− 4)2 = (−1)v2(m−4).

By (4.2) and (5.5) we have inv2 α(u) = 1/2 if v2(m) is odd or 0 otherwise.
On the other hand, (3 − 2, m− 4)2 = 1 and thus the local invariant maps for

α1,− and α2,− are trivial. What is left is to take into account the relation (4.7)
which implies that the local invariant map for α3,− is equal to 0 if v2(m − 4) is
even and 1/2 otherwise.

Assume now that 2 ∤ m, that is m ≡ 1 mod 4 by our assumption on m. If
m ≡ 5 mod 8, then m− 4 ∈ Q∗2

2 and hence inv2 αi,−(u) = 0 by Lemma 5.4.
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Finally, if m ≡ 1 mod 8, then the right hand side of (1.1) is odd and thus for
each u ∈ Um(Z2) exactly one its coordinates is a 2-adic unit, ui say. Moreover
the other two coordinates uj and uk must be divisible by 4. Hence v2(ui−2) = 0
while v2(uj − 2) = v2(uk − 2) = 1. Since m − 4 ≡ 5 mod 8, a simple Hilbert
symbol calculation and (5.5) imply our claim. This concludes the proof. �

Lastly, we show that the local invariant for α at ∞ is trivial for most choices
of m.

Lemma 5.9. Let m ∈ R \ [−8, 4]. Then inv∞ α(u) = 0 for all u ∈ Um(R).

Proof. If m− 4 > 0 then m− 4 ∈ R∗2 and the result follows from Lemma 5.4. If
m−4 < 0 then the left hand side of (5.1) is positive. Hence ui ∈ (−2, 2), i = 1, 2, 3
or each ui lies outside this interval. In the latter case we clearly have u21 − 4 > 0
so the local invariant is trivial. It therefore suffices to show that the former case
does not occur under our assumptions. But we have u21 + u22 + u23 − u1u2u3 ≥
−u1u2u3 ≥ −8 in the box [−2, 2]3. As m < −8, this therefore cannot equal m,
thus there are no such real points, as required. �

5.3.1. Consequences for the Brauer-Manin obstruction. We now use the above
results on the possibilities for the local invariants to study the Brauer-Manin
obstruction. We still assume that m satisfies the hypothesis of Corollary 4.6.

We first consider weak and strong approximation. (See the introduction for

the notation Um(Z) and Um(Q).)

Corollary 5.10. Assume there exists a prime p > 3 with vp(m− 4) odd. Then

Um(Q) 6=
∏

v

Um(Qv). (5.7)

Moreover, if Um(AZ) 6= ∅ then

Um(Z) 6= Um(AZ)• ∩ Um(Q), (5.8)

i.e. Um fails weak approximation and has a failure of strong approximation which
is not explained by the failure of weak approximation.

Proof. We only prove (5.8), as a similar argument shows that α gives an obstruc-
tion to weak approximation in this case.

To prove (5.8), we note from [SS91] that the Brauer-Manin obstruction is the
only one to weak approximation on Sm. But the Brauer group of Sm modulo
constants is generated by α by Lemma 3.2. In particular, it follows that

Um(Q) = (
∏

v

Um(Qv))
α.

Hence to prove (5.8), it suffices to show that Um(AZ)
A 6= Um(AZ)

α. To show
this, let u ∈ Um(AZ). By Propositions 5.5 and 5.7 and (4.7), on Um(Zp) the
tuple (invp α, invp α1,−) takes all possible values of (Z/2Z)2. Hence there ex-
ists up ∈ Um(Zp) such that invp α(up) = −∑v 6=p invv α(u) but invp α1,−(up) 6=
−∑v 6=p invv α1,−(u). Then the adele u′ given by replacing the pth part of u by

up satisfies u′ ∈ Um(AZ)
α but u′ /∈ Um(AZ)

α1,− , as required. �

We next consider the integral Hasse principle.



20 DANIEL LOUGHRAN AND VLADIMIR MITANKIN

Corollary 5.11. Suppose that there exists a prime p > 5 with p | (m − 4) such
that m − 4 /∈ Q∗2

p . Then there is no Brauer–Manin obstruction to the integral
Hasse principle for Um.

Proof. We can assume that Um(AZ) 6= ∅, otherwise there is nothing to prove.
We begin with the case where vp(m− 4) is odd. There is a standard argument
for deducing the result from Proposition 5.5, which we recall for completeness.
It suffices to show that Um(AZ)

A 6= ∅. Let u ∈ Um(AZ). By Proposition 5.5, we
find that there exists up ∈ Um(Zp) such that invp β(up) = −∑v 6=p invv β(u) for
all β ∈ A. Then the adele u′ given by replacing the pth part of u by up satisfies
u′ ∈ Um(AZ)

A, as required.
We now consider the case where vp(m − 4) is even and m − 4 /∈ Q∗2

p . Here
the argument is more involved as we need to consider more than one prime. We
may assume that we are not in the previous case, so that m = 4± nd2 for some
positive n, d ∈ Z such that the prime divisors of n are ≤ 5 while those of d are
> 5, and that m− 4 /∈ Q∗2

p for some p | d.
Let u ∈ Um(AZ) and let εi =

∑

v 6=p invv αi,−(u). We use our information
about the possibilities for the local invariants at p given in Proposition 5.6. A
similar argument to the one above verifies that we can modify u at p so that
u ∈ Um(AZ)

A unless {ε1, ε2, ε3} = {0, 1/2, 1/2} as multisets. But, if there was a
prime q | d with q 6= p and m− 4 /∈ Q∗2

q , then by Proposition 5.6 we can modify
u at q so that {ε1, ε2, ε3} 6= {0, 1/2, 1/2}. We can thus assume that p is the only
prime dividing d for which m − 4 /∈ Q∗2

p . To complete the proof, we will show
that u can be modified at 2, 3 and 5 or at ∞ so that {ε1, ε2, ε3} 6= {0, 1/2, 1/2}.

Firstly, we analyse the case m − 4 < 0. Without loss of generality assume
that (ε1, ε2, ε3) = (0, 1/2, 1/2). Since p | d and p > 5 we have m ≤ 4− 72 < −8
and thus as in the proof of Lemma 5.9 we see that |ui| > 2, i = 1, 2, 3 for any
real point (u1, u2, u3) on Um. The relation (4.7) and Lemma 5.9 imply that the
local invariant maps for αi,−(u) at infinity belong to {{0, 0, 0}, {0, 1/2, 1/2}}.
Replacing the real component (u1, u2, u3) of u by (u1,−u2,−u3), which is again
a real point on Um, shows that both possibilities for the local invariant maps at
∞ are realised. By doing so we modify u at ∞ so that (ε1, ε2, ε3) = (0, 0, 0), as
required.

We can now assume that m−4 = nd2 > 0. Since m−4 /∈ Q∗2
p then m 6= 4+d2

and hence n > 1. Thus at least one of 2, 3 or 5 must divide n. We will
modify u at 2, 3 and 5 in a way such that ε1 = ε2 = 0. This clearly implies
{ε1, ε2, ε3} 6= {0, 1/2, 1/2}. By Lemma 5.4 we have

∑

v 6=2,3,5,p invv αi,−(u) = 0
for i = 1, 2. Therefore it suffices to show that

∑

v∈{2,3,5}
invv αi,−(u) = 0, i = 1, 2. (5.9)

We keep the 3-adic component of u as is if 3 ∤ n. In this case inv3 αi,−(u) = 0
for i = 1, 2 by Lemma 5.4. Alternatively, if 3 | n, then we replace the 3-
adic component of u by a 3-adic lift of the smooth F3-point (0, 0, 1). A simple
calculation of Hilbert symbols and (5.5) show that inv3 αi,−(u) = 0 for i = 1, 2
regardless of the parity of the 3-adic valuation of n. Thus no matter if 3 | n or
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3 ∤ n we get

inv3 αi,−(u) = 0, i = 1, 2. (5.10)

For the primes 2 and 5 we follow different approaches depending on the residue
of m mod 8.

If m 6≡ 1 mod 8 we do the following. We replace the 2-adic component of u
with a point in Um(Z2) for which inv2 αi,−(u) = 0 for i = 1, 2. By Lemma 5.8
there is such a 2-adic point. If 5 | n we replace the 5-adic component of u by a
5-adic lift of the smooth F5 point (1, 1, 4). Once more a simple Hilbert symbol
calculation shows that inv5 αi,−(u) = 0 for i = 1, 2 regardless of the parity of
the 5-adic valuation of n. Lastly, if 5 ∤ n we keep the 5-adic component of u
as is, in which case the local invariant maps for α1,− and α2,− at 5 are zero by
Lemma 5.4. We conclude that our modifications in this case yield

inv2 αi,−(u) = inv5 αi,−(u) = 0, i = 1, 2.

This and (5.10) clearly imply (5.9).
Assume now that m ≡ 1 mod 8. Here we replace the 2-adic component of u

with a point in Um(Z2) for which the local invariant maps for αi,− at 2 are equal to
(1/2, 1/2, 0). We can do so by Lemma 5.8. We have m = 4+nd2 ≡ 4+n mod 8,
hence n must be congruent to 5 mod 8. Since the only primes which divide n
in this case are 3 and 5 this is only possible if v5(n) is odd while v3(n) is even.
We replace the 5-adic component of u by a 5-adic lift of the smooth F5-point
(0, 0, 3). Therefore

inv2 αi,−(u) = inv5 αi,−(u) =
1

2
, i = 1, 2.

Once more the above and (5.10) imply (5.9). This concludes the proof. �

5.4. Examples of Brauer–Manin obstruction. We now use the calculations
from the previous section to give examples of a Brauer–Manin obstruction to the
integral Hasse principle and strong approximation. For each prime p including
∞ let αp(u) denote the Hilbert symbol corresponding to α(u). Our results are
inspired by the results in [GS17, §8]; in particular we show how the counter-
examples to the integral Hasse principle given in [GS17, Prop. 8.1(i), 8.2, 8.3]
can be explained via the Brauer–Manin obstruction.

Proposition 5.12. Let m = 4 ± 2d2 where d is a positive integer whose prime
divisors are congruent to ±1 mod 8 if m−4 > 0 and to 1 or 3 mod 8 if m−4 < 0.
If m = 4 + 2d2 assume that d mod 9 ∈ {0,±3,±4}. Then there is a Brauer–
Manin obstruction to the integral Hasse principle for Um.

Proof. In the case m = 4+2d2 the assumption on the residue of d mod 9 ensures
that Um(AZ) 6= ∅ while if m = 4− 2d2 then Um(AZ) 6= ∅ for any d, as is verified
using [GS17, Prop. 6.1]. We will show that for each point u ∈ Um(Zp) we have

invp α(u) =

{

1/2 if p = 2,

0 otherwise.

This shows that α gives rise to a Brauer–Manin obstruction to the integral Hasse
principle.
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For each prime p ≤ ∞ and each u ∈ Um(Zp) with u2i 6= 4, by (4.2) we have

αp(u) = (u2i − 4,±2d2)p = (u2i − 4,±2)p, i ∈ {1, 2, 3}.

We make use of the relation (4.7). If p ∤ 2d the correctness of our claim follows
from case (1) of Lemma 5.4. On the other hand, if p | d, then the congruence
restrictions modulo 8 on p imply that the second argument of the Hilbert symbol
is a square in Q∗

p. By case (2) of Lemma 5.4 we are done. If m − 4 > 0 our
statement holds for p = ∞ by Lemma 5.9. Alternatively, if m− 4 < 0 then the
assumption on the residue of d mod 9 implies that d > 1. Moreover, the least
prime that can divide d is 3 and hence m ≤ −14. The result for p = ∞ now
follows from Lemma 5.9.

We can now assume that p = 2. For each point u ∈ Um(Z2) we have 2 ∤ u.
Indeed, if 2 | u, then the left hand side of (1.1) would have been congruent to
0 or 4 mod 8, while the right hand is congruent to 2 or 6 mod 8 since d is odd
and d2 ≡ 1 mod 8; contradiction. Let ui be the coordinate of u which is a 2-adic
unit. Then u2i − 4 ≡ 5 mod 8 and since ±2d2 ≡ ±2 mod 8 we have

α2(u) = (5,±2)2 = −1.

By (5.5) this concludes the proof of Proposition 5.12. �

Remark 5.13. The Hasse principle need not fail if there is a prime divisor of
d which does not satisfy the assumptions imposed in the statement of Proposi-
tion 5.12. For m = 4 − 2 · 52 = −46, one easily checks that the equation (1.1)
has the integer solution (3, 7, 8). Moreover, for m = 4 − 2 · 72 = −94 we have
(5, 5, 9) ∈ Um(Z). Alternatively, for m = 4 + 2d2 we have (−1, 1, 4) ∈ U4+2·32(Z)
and (−3, 3, 3) ∈ U4+2·52(Z).

Proposition 5.14. Let m = 4 + 12d2 where d is an odd integer whose prime
divisors are congruent to ±1 mod 12 and such that d2 ≡ 25 mod 32. Then there
is a Brauer–Manin obstruction to the integral Hasse principle for Um.

Proof. We will show that for each point u ∈ Um(Zp) we have

invp α(u) =

{

1/2 if p = 3,

0 otherwise,

so that α again gives an obstruction to the Hasse principle.
Once more, the assumption m = 4 + 12d2 implies that Um(AZ) 6= ∅ [GS17,

Prop. 6.1]. For each p ≤ ∞ and each u ∈ Um(Zp) with u2i 6= 4, by (4.2) we have

αp(u) = (u2i − 4, 12d2)p, i ∈ {1, 2, 3}. (5.11)

If p ∤ 6d2 our claim follows from case (1) of Lemma 5.4. If p | d, then p ≡
±1 mod 12 and hence 3 ∈ Q∗

p
2. Thus 12d2 ∈ Q∗

p
2 and case (2) of Lemma 5.4

implies our claim. Finally, m − 4 > 0 and case (3) of Lemma 5.4 is applicable
for p = ∞. It remains to examine p = 2, 3.

For p = 3, the relation (4.7) and Proposition 5.7 shows the claim inv3(α(u)) =
1/2 for all u ∈ Um(Zp).
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Assume now that p = 2. Let ni = v2(u
2
i − 4) and let ω(u2i − 4) be (u2i −

4)/2ni mod 8. Since d is odd we have d2 ≡ 1 mod 8 and thus by (5.11) we have

α2(u) = (−1)
ω(u2i −4)−1

2
+ni .

Let u ∈ Um(Z2) be a point having one of its coordinates a 2-adic unit, ui say.
Then u2i ≡ 1 mod 8, hence ni = 0 and ω(u2i − 4) = 5. Therefore α2(u) = 1.

Arguing in the same way as in the proof of [GS17, Prop. 8.2.] one easily verifies
that there are no other points in Um(Z2). Indeed, let u ∈ Um(Z2) have all of
its coordinates divisible by two. Then we can write u = 2y, in which case the
equation defining Um takes the shape

y21 + y22 + y23 − 2y1y2y3 = 1 + 3d2, (5.12)

or alternatively

(y3 − y1y2)
2 − 3d2 = (y22 − 1)(y23 − 1),

If one of y1, y2, y3 was a unit in Z2, then the last equation above would imply
that 3 is a quadratic residue modulo 8, a contradiction. On the other hand the
reduction of (5.12) modulo 8 implies that 4 cannot divide all of the yi’s simulta-
neously. Thus there are only three possibilities, 4 divides two of the coordinates
of u, one of them or none of them. The reduction of (5.12) modulo 16 rules out
the first two cases since the right hand side is 12 mod 16 by the assumption on
d. At the same time the left hand side is 4 and 8 mod 16, respectively. In the
remaining possibility we have y1 ≡ y2 ≡ y3 ≡ 2 mod 4. Then (5.12) becomes

z21 + z22 + z23 − 4z1z2z3 =
1 + 3d2

4
,

with 2 ∤ z1z2z3. It is clear that the left hand side is congruent to 7 mod 8 while
the right hand side is 3 mod 8 since d2 ≡ 25 mod 32: a contradiction. This
concludes the proof of Proposition 5.14. �

The following is a generalisation of [GS17, Prop. 8.3] (loc. cit. restricts to
those d whose prime divisors are congruent to ±1 mod 20).

Proposition 5.15. Let m = 4 + 20d2 where d ≡ ±4 mod 9 is an odd integer
whose prime divisors are congruent to ±1 mod 5. Then there is a Brauer–Manin
obstruction to the integral Hasse principle on Um.

Proof. We have Um(AZ) 6= ∅ [GS17, Prop. 6.1]. Our strategy this time requires
a more detailed analysis on the local invariant maps for the αi,−. We first show
that for each point u ∈ Um(Zp) we have

invp αi,−(u) = 0 if p 6= 5. (5.13)

We explain at the end how to get a Brauer–Manin obstruction to the integral
Hasse principle.

We once more restrict attention u ∈ Um(Zp) with u2i 6= 4. As in Proposi-
tion 5.14, we deal with primes p 6= 2, 5 with the help of cases (1), (2) and (3) of
Lemma 5.4. On the other hand, for each i = 1, 2, 3 we have

(ui − 2, 20d2)2 = (ui − 2, 5)2 = (−1)v2(ui−2). (5.14)
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Assume there is u ∈ Um(Z2) with 2 | u. Following the proof of [GS17, Prop. 8.3]
we make the change of variables yi = ui/2 for all i = 1, 2, 3. Thus

y21 + y22 + y23 − 2y1y2y3 = 1 + 5d2.

If 2 divided all yi then the left hand side of the last equation above would have
been congruent to 0 mod 4 while the right hand side would have been congruent
to 2 mod 4. A contradiction! Assume that 2 ∤ y1 which implies that y21 ≡
1 mod 8. We can rewrite the equation defining Um in the new variables in the
following way

(y3 − y1y2)
2 − 5d2 = (y21 − 1)(y22 − 1).

The right hand side is congruent to 0 mod 8. This implies that either 5 is a
square modulo 8 or 2 | d. Both are false.

Thus for all u ∈ Um(Z2) least one of the coordinates of u a 2-adic unit.
However, m is even and then the reduction of (1.1) modulo 2 implies that at
least two of the coordinates of u must be 2-adic units, u1 and u2 say. By (5.14)
the Hilbert symbols for α1,−(u) and α2,−(u) are equal to 1. Moreover, u21 − 4 ≡
5 mod 8 and thus by (4.2) we have

α2(u) = (5, 5)2 = 1.

We conclude that the local invariant map for α(u) is zero. Since all local invariant
maps except possibly the one for α3,−(u) vanish, then the relation (4.7) implies
that invp α3,−(u) must be zero as well. This proves (5.13).

We now consider p = 5. Let u ∈ Um(Z5). Then by Proposition 5.7, there
exists i (depending on u) such that inv5 αi,−(u) = 1/2. It follows from this and
(5.13) that for every adelic point, there is some αi,− for which the sum of all local
invariants is equal to 1/2. Hence Um(AZ)

Br = ∅ as required. �

Remark 5.16. In Propositions 5.12 amd 5.14, we obtained a Brauer–Manin
obstruction by considering the single element α, i.e. we showed Um(AZ)

α = ∅.
In Proposition 5.15 however, the obstruction is more complicated. Namely, a

simple application of Proposition 5.7 shows that Um(AZ)
β 6= ∅ for all β ∈ BrUm,

so to obtain an obstruction one really needs to consider the whole Brauer group,
as we have done.

We finish with an explicit example of a surface which fails weak approximation,
but also has a failure of strong approximation which is not explained by the
failure of weak approximation (many similar examples can be easily constructed
using Corollary 5.10).

Proposition 5.17. Let m = 4 + 41. Then Um(Z) is Zariski dense. But:

(1) For all u ∈ Um(Q) we have u mod 41 6≡ (1, 1, 2) ∈ Um(F41).
(2) There exists u ∈ Um(Q) with u mod 41 ≡ (0, 5, 15) ∈ Um(F41), but for

every integer point u ∈ Um(Z) we have u mod 41 6≡ (0, 5, 15).

Proof. One verifies that Um(Z) 6= ∅, e.g. (0, 3, 6) ∈ Um(Z). Zariski density now
follows from [GS17, (1.5)].

(1) A minor variant of Lemma 5.4 shows that for all u ∈ U(Qp) we have

invp α(u) = 0 if p 6= 41 (5.15)
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(for p = 2 we note that 41 ≡ 1 mod 8 is a square in Q∗
2). At 41 one can

use Corollary 5.10 to see that Um(Q) is not dense in Um(Q41). To make this
explicit, following the proof of Proposition 5.5, it suffices find a point u ∈ U(F41)
such that u21 − 4 is a non-zero quadratic non-residue. One easily verifies that
(1, 1, 2) ∈ U(F41) is such a point. Therefore the local invariant of α at 41 of the
lift of such a point is 1/2, so by (5.15) the corresponding adelic point cannot be
approximated by a rational point.

(2) The rational point u = (−41/9,−26/3, 4/3) satisfies u mod 41 ≡ (0, 5, 15) ∈
Um(F41) (viewed as an element of Um(Z41)).

To prove that there is no integral point with this property, we show that there
is a Brauer-Manin obstruction coming from α2,− = (u2 − 2, m− 4). Lemma 5.4
again implies that for all u ∈ Um(Zp) we have

invp α2,−(u) = 0 if p 6= 41. (5.16)

At 41, one has 5 − 2 = 3 /∈ F∗2
41, hence inv41 α2,−(u) = 1/2 for any u ∈ Um(Z41)

with u ≡ (0, 5, 15) mod 41. Thus such a point cannot be approximated by an
integer point, as claimed. �

In fact, as explained in the proof of Corollary 5.10, it follows from [SS91] that
the Brauer-Manin obstruction is the only one to weak approximation on Sm. So
in Proposition 5.17, one knows the stronger claim that any 41-adic lift of (0, 5, 15)
can be approximated arbitrarily well by a rational point.

Remark 5.18. A family of failures of strong approximation was presented in

[GS17, §8], under the assumption that n 7→
(

4(m−4)
n

)

is a primitive Dirichlet

character modulo n. The example in Proposition 5.17 is not covered by this
family, as the character

(

4·41
n

)

is induced from a primitive character modulo 41,
since 41 ≡ 1 mod 4

Moreover, the examples given in [GS17, §8] involve congruences on the u2i − 4.
One easily verifies that these come from a Brauer-Manin obstruction associated
to α, in particular, they are in fact explained by a failure of weak approximation.

5.5. Proof of Theorem 1.1. We may assume that m satisfies the hypotheses
of Corollary 4.6, as the number of m which fail this are O(

√
B). If m − 4 is

divisible by a prime p > 3 to odd valuation, then Um fails weak approximation
by Corollary 5.10. It is simple to see that the cardinality of m to which this
result does not apply is O(B1/2). �

5.6. Proof of Theorem 1.2. Minor variant of the proof of Theorem 1.1. �

5.7. Proof of Theorem 1.3. If m satisfies the conditions of Corollary 4.6, then
it follows from Corollary 5.11 that any prime p | m − 4 with p > 5 must divide
m− 4 to even multiplicity, thus the result holds in this case. Assume then that
the conditions in Corollary 4.6 fail. Then one of the following holds

m− 4,−(m− 4), m,m(m− 4) ∈ Q∗2.

The first two cases are included in the statement of the theorem. Moreover, as
explained in §5.1.1, in the other cases either there is an integral point or the
surface is singular. This completes the proof. �
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5.8. Proof of Theorem 1.4. We require the following well-known lemma.

Lemma 5.19. Let n ∈ N and R ⊂ (Z/nZ)∗ be a non-empty set of units. Then

#{d ∈ N : d ≤ x, p | d =⇒ p mod n ∈ R} ∼ cRx(log x)
|R|/ϕ(n)−1,

as x→ ∞, for some cR > 0.

Proof. The associated Dirichlet series has the Euler product expansion

F (s) =
∏

p
p mod n∈R

(

1− 1

ps

)−1

.

However for a ∈ (Z/nZ)∗ we have

1

ϕ(n)

∑

χ mod n

χ(a) =

{

1, a ≡ 1 mod n,

0, otherwise.

It follows that

F (s) =
∏

p
gcd(p,n)=1

(

1−
∑

r∈R
∑

χ mod n χ(pr
−1)

ϕ(n)ps

)−1

= G(s)ζ(s)|R|/ϕ(n)
∏

χ

L(s, χ)(
∑

r∈R χ(r))/ϕ(n)

where G is holomorphic and non-zero on Re > 1/2 and the product is over the
non-principal Dirichlet characters modulo n. The Dirichlet L-functions L(s, χ)
are holomorphic and non-zero on Re s ≥ 1, hence F (s) has a holomorphic con-
tinuation to the line Re s = 1 away from s = 1, where there is a branch point
singularity of the shape c′R/(s−1)|R|/ϕ(n) for some c′R 6= 0. The result now follows
from a Tauberian theorem (e.g. [Ten15, Thm. II.7.28]). �

For the lower bound, consider m with m − 4 < 0 in Proposition 5.12. We
have R = {1, 3} and (Z/8Z)∗ = {1, 3, 5, 7} in Lemma 5.19. This gives N(B) ≫
B1/2/(logB)1/2 (not B1/2/(logB)1/4 as claimed in [GS17, Thm. 1.2.(i)]).

Now for the upper bound. We first take care of those surfaces which do not
satisfy the hypotheses of Corollary 4.6. For such surfaces, at least one of the
following holds

m− 4, m,m(m− 4),−(m− 4) ∈ Q∗2.

In the first case BrUm = BrQ, hence there is no Brauer–Manin obstruction. As
explained in §5.1.1, in the second and third cases either there is an integral point
or the surface is singular. In the last case where −(m−4) ∈ Q∗2, Corollary 4.6 is

applicable unless
√
m+

√
m−4

2
is a square in Q(

√
m,

√
m− 4). By Proposition 5.2

this happens precisely when m = 4 − (2(n2 ± 1))2, for some n ∈ Z>0. The
collection of such m with |m| ≤ B is O(B1/4), which is clearly negligible in
Theorem 1.4.

Let m now satisfy the hypotheses of Corollary 4.6. By Corollary 5.11, if there
is a Brauer–Manin obstruction to the integral Hasse principle, then m − 4 =
ε2a23a35a5d2 is not a square in Z. Here ε ∈ {±1}, the ai are non-negative integers,
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d is a positive integer coprime to 30 and satisfying p | d =⇒ m− 4 ∈ Q∗2
p . The

cardinality of such |m| ≤ B is

≪ #

{

ε, ai, d :
|4 + ε2a23a35a5d2| ≤ B,
ε2a23a35a5 /∈ Q∗2, (d, 30) = 1, p | d =⇒ ε2a23a35a5 ∈ Q∗2

p

}

.

For p ∤ 30 the condition ε2a23a35a5 ∈ Q∗2
p is equivalent to a collection of con-

gruence conditions on p in (Z/120Z)∗, of which there are only finitely many
possibilities depending on ε and on the parities of the ai. Moreover, as m− 4 is
not a square, exactly half of the elements of (Z/120Z)∗ arise.

We consider the case where all the ai are odd and ε = 1, the other cases being
similar. We let R ⊂ (Z/120Z)∗ be the corresponding residues. Here the above is

≪ #{ai odd, d : 2a23a35a5d2 ≤ B, p | d =⇒ p mod 120 ∈ R}.
The contribution from where one of the i satisfies iai > B1/4 is easily seen to
be O(B3/8), which is negligible in Theorem 1.4. Hence we may assume that
iai ≤ B1/4 for each i, so that B/2a23a35a5 → ∞ as B → ∞. Thus we may apply
Lemma 5.19 for the sum over d and see that the above cardinality is

≪
∑

ai

(B/2a23a35a5)1/2

(log(B/2a23a35a5))1/2
≪ B1/2

(logB)1/2

as the sum over the ai is convergent. This is sufficient for the upper bound in
Theorem 1.4, and completes the proof. �

5.9. Proof of Theorem 1.5. To prove the theorem, we consider the counter-
examples to the Hasse principle given in [GS17, Prop. 8.1(ii)].

Proposition 5.20. Let ℓ ≥ 13 be a prime with ℓ ≡ ±4 mod 9 and ℓ 6≡ ±1 mod 8.
Let m = 4 + 2ℓ2. Then Um(AZ)

Br 6= ∅ but Um(Z) = ∅, i.e. Um is a counter-
example to the integral Hasse principle which is not explained by the Brauer–
Manin obstruction.

Proof. That Um is a counter-example to the integral Hasse principle is shown
in [GS17, Prop. 8.1(ii)]. So it suffices to show that there is no Brauer–Manin
obstruction in this case. This follows from Corollary 5.11 since the assumptions
on ℓ imply ℓ > 5 and m− 4 /∈ Q∗2

ℓ . �

This is clearly sufficient for Theorem 1.5. �
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