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Abstract: The detections of gravitational-wave (GW) signals from compact binary coalescence by
ground-based detectors have opened up the era of GW astronomy. These observations provide
opportunities to test Einstein’s general theory of relativity at the strong-field regime. Here we give a
brief overview of the various GW-based tests of General Relativity (GR) performed by the LIGO-Virgo
collaboration on the detected GW events to date. After providing details for the tests performed in
four categories, we discuss the prospects for each test in the context of future GW detectors. The
four categories of tests include the consistency tests, parametrized tests for GW generation and
propagation, tests for the merger remnant properties, and GW polarization tests.

Keywords: gravitational waves; compact binary systems; tests of General Relativity

1. Introduction

The binary evolution in General Relativity (GR) is described differently than in New-
tonian gravity (NG). In GR, the binary orbit shrinks due to the emission of energy: angular
and linear momenta through gravitational waves (GWs) [1–4]. Whereas in NG, there is
no concept of radiation reaction and the orbital period is constant over time. Even though
Albert Einstein predicted the existence of GWs more than a century ago, their detection
remained a puzzle due to their weak interaction with matter. The indirect evidence of GWs
came from the decades-long observations of orbital decay of a binary pulsar by Russell
Alan Hulse and Joseph Taylor [5–8]. They found that the observed orbital decay of the
binary system, known as PSR B1913+16(PSR J1915+1606, or PSR 1913+16), due to the
emission of GWs, is consistent with the predictions of GR. That is, the rate of decay of the
orbital period (Porb) from observations Ṗorb ∼ 10−14–10−12 agreed to the GR predicted rate
obtained from analytical calculations based on GR, leading the team to win the Physics
Nobel Prize in 1993.

The direct detection of GWs had to wait until the LIGO detectors at Hanford, Washing-
ton, and Livingston, Louisiana, made their first detection of a binary merger on 14 Septem-
ber 2015 [9–17]. This discovery opened the era of GW astronomy, noting the first highly
relativistic strong-field observation of GWs. Within the subsequent years of observation
runs, the LIGO-Virgo collaborations announced the detection of more than fifty binary
merger events [12,18–29].

Among the many significant contributions to fundamental physics and astrophysics, GW
observations test GR at the relativistic, strong-field regime. A set of testing GR analyses con-
ducted by the LIGO-Virgo Scientific Collaboration (LVC) on the GW150914 event established
that GW150914 is consistent with a binary black hole (BBH) signal described in GR [9].

This set of tests include consistency tests, parameterized tests, tests to confirm the non-
dispersive nature of the radiation, and tests on the remnant properties. Consistency tests
check for the agreement of observed data with the signal predicted from GR. Parameterized
tests introduce model-agnostic parametric GR deviations in the waveform and constrain
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those from the data to put statistical bounds on these parameters. The list of the GW events
was extended further with more binary merger detections by LIGO and Virgo detectors’
first, second, and third observation runs. All the tests applied on GW150914 were also
performed on these events with appropriate modifications to the above-mentioned tests,
including additional tests. Here we will go through them in detail.

The GW-based tests of GR on the BBH coalescence events detected by LIGO and Virgo
until 1 October 2019 are available in Reference [30]. A generic binary system evolves from its
early inspiral weak-field regime to a highly relativistic merger and then the final ringdown
stage. In the case of BBHs in GR, the object formed after they merge (i.e., the merger
remnant) is another black hole (BH). On the other hand, for non-BH binaries [31,32],1 the
merger remnant is not necessarily a BH but could be another compact star depending upon
the properties of the binary.

In a model agnostic way, there were four broad classes of tests conducted in Refer-
ence [30]. These tests aim to look at different regimes of binary evolution or to the full
inspiral-merger-ringdown signals. The first set consists of the residual analysis and the
inspiral-merger-ringdown consistency test. Both of these tests check the consistency of GR
predictions with the observed data (as in the case of Reference [9]). The second category of
tests is the parametrized tests for GW generation and propagation. Here one sets statistical
bounds on the parametrized deviations from GR, assuming GR is the correct theory of
gravity, employing GR waveform models with parametric deviations present. On the
third category of tests, one looks for any violation of GR by analyzing the merger remnant
properties. The GW polarization tests look for extra polarization modes present in the
data and comprise the fourth set of tests. This analysis provides statistical evidence for
alternative theories of gravity that predict vector and scalar polarization modes along with
the tensor modes. An overview of these tests is provided in Figure 1.
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Figure 1. Outline of various tests of GR we discuss in this article. The x-axis denotes the increasing
order of GR model assumptions that go into each analysis. The light-blue region on the left side
contains the set of tests that require the least assumptions about the signal model. The gradient on
the right part of the plot classifies the tests into inspiral, merger-ringdown regimes of the signal
from bottom to top. Different shapes indicate different classes of tests: rectangle, rounded rectangle,
ellipse, and diamond shapes correspond to consistency tests, parametrized tests, polarization tests,
and tests for the merger remnant, respectively.

The probability of there being astrophysical origin of a candidate event plays an
important role in determining whether that event is considered for the testing GR analyses
or not. Usually, a higher threshold is assumed so that the events analyzed have higher
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chances of being of astrophysical origin. For instance, in Reference [30], events satisfying
a false alarm rate (FAR) less than 10−3 per year are chosen to analyze. Once the set of
events is chosen based on the detection significance, additional criteria are applied de-
pending upon the strategies followed by each test. Bayesian formalism-based techniques
are employed to get meaningful bounds from each test. The pipelines widely used for
this purpose are, LALInference [48] available in the LIGO Scientific Collaboration’s al-
gorithm library suite (LALSuite) [49], Bayeswave [50,51], parallel bilby (pBilby) [52–54],
PYRING [55,56] and Bantam [57]. Reference [30] demonstrated the possibility of performing
tests of GR on binary black hole (BBH) events, employing mainly two different wave-
form models, IMRPhenomPv2 (phenomenological waveform model for a precessing BBH
system) [58–60] and SEOBNRv4_ROM (reduced-order effective one body (EOB, waveform
model for a non-precessing binary system) [61].

There is a significant increase in the detection rate as the detectors improve their
sensitivities through first, second, and third observing runs of LIGO-Virgo detectors.
Interestingly, it is possible to infer information from multiple events by combining the
data from each event. The combined bounds help to improve our understanding of binary
population properties in general. As we combine results, the statistical uncertainty that
arises due to instrumental noise lessens. Notice that this instrumental noise does not
include the uncertainty contributions from the systematic errors of gravitational waveform
modeling [62–68], calibration of the detectors, and power spectral density (PSD) estimation
uncertainties [69–73]. Sometimes, systematic errors can dominate the statistical errors and
lead to false identification of GR violations, which we do not discuss here. Previous studies
in References [9,68,74] discuss two different statistical approaches to estimate combined
information on GR test parameters from multiple events. The first one (also called restricted
or simple combining) assumes equal GR deviations across all the events independent of
the physical parameters characterizing the binary, and this technique is well described and
demonstrated for GWTC-1 events [74]. This assumption is generally incorrect as there
are cases when the waveform model can arbitrarily deviate from GR depending upon
the binary source properties. The second method, the hierarchical combining strategy,
tries to overcome the issue of universality assumption by relaxing it. In this case, instead
of assuming uniform GR deviation for all events, a Gaussian distribution models the
non-GR parameter. The statistical properties (mean (µ) and standard deviation (σ)) of this
distribution are obtained from the data itself, and the estimates are different for different
models of gravity. We call the parameters µ and σ hyperparameters. If GR is the correct
theory, the Gaussian distribution should center around zero. The astrophysical population
properties of sources play a crucial role in estimating these statistical quantities [30].

The organization of this article is as follows. Section 2 is dedicated to various tests of
GR performed already on the GW events observed by the LIGO-Virgo detectors, including
tests of consistency with GR (Section 2.1), parametrized tests (Section 2.2), tests based on
the merger remnant properties (Section 2.3), and tests for GW polarizations (Section 2.4).
We conclude with a summary section, Section 3.

2. Model-Agnostic Tests of General Relativity from Gravitational-Wave Observations
2.1. Tests of Consistency with General Relativity

Consistency tests do not need to assume any particular alternative theory to GR, nor
do they test specific deviations. They address the simple question: can the observed data
be fully explained by assuming GR? Or put differently, is there any statistically significant
“trace” in the data that is unlikely to be explained as either part of an astrophysical signal
(assuming GR) or the terrestrial instruments’ noise? So far two different kinds of consistency
tests have been performed on the detected GW events [30]: the residual analysis and the
Inspiral-merger-ringdown (IMR) consistency test.
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2.1.1. Residual Test

The residual test checks for signatures left in the data after subtracting the best-fit
GR template. If GR is the correct theory and we have subtracted the astrophysical signal
completely, the residuals in each detector should be consistent with instrumental noises.

The best fit model of the astrophysical signal is obtained by a detailed parameter
estimation analysis using a stochastic sampling of the signal’s parameter space. Typically,
the best-fit parameters are taken to be those that maximize the likelihood of observing
the recorded data assuming this signal is present in the data. This set of parameters is
not necessarily the one that describes the most probable source configuration a posteriori,
as the likelihood alone does not take prior assumptions into account. Nevertheless, the
maximum-likelihood parameters are those that minimize the difference between the data
di and template hi by definition of the likelihood Λ,

log Λ = −1
2 ∑

i
‖di − hi‖2. (1)

Here, the index i enumerates the different detectors; hi is the signal projected onto each
detector, respectively, and the norm ‖ · ‖2 = 〈·, ·〉 is induced by the following inner product

〈a, b〉 = 4<
∫ ã( f ) b̃( f )∗

Sn( f )
d f . (2)

The detector noise spectral density Sn( f ) acts as a weight in an integral over the
Fourier transformed functions ã and b̃; ∗ denotes complex conjugation.

By this construction, the residuals di− hi are small in the sense of Equation (1), but they
could still contain a coherent signal that cannot be captured by the GR model. To look for
such a potential signal, the method employed in References [9,30,68] is Bayeswave [50]: a
transient search algorithm looking for coherent excess power in the (residual) detector data.
This part of the analysis is model-independent. Bayeswave uses Morlet–Gabor wavelets to
look for coherent, elliptically polarized signatures that rely on no further model assumption.
In addition to generic signals, it employs models for stationary and non-stationary noise
simultaneously.

To quantitatively explain the results, we require various definitions. First, the optimal
network signal-to-noise-ratio (SNR) of a signal h is derived from its norm,

SNR(h) =
√

∑
i
〈hi, hi〉 =

√
∑

i
‖hi‖2, (3)

using the inner product Equation (2). If we take h as the best-fit GR template, we obtain
SNRGR. The residual modelled by Bayeswave is not a single signal. The uncertainty in what
constitutes a coherent residual signal and what is instrument noise leads Bayeswave to
provide a discretized probability distribution in the parameter space of wavelets. However,
each point in this distribution corresponds to a residual signal that has a well-defined SNR.
Consequently, we can map the probability distribution of residual signals to a probability
of their optimal network SNRs.

As is standard, we characterize the probability distribution by credible intervals that
enclose a certain amount of probability (we use this quantity more frequently in this
article). Specifically, we report the SNR of the residual at which the cumulative probability
distribution is 90%. Put differently, we infer a 90% probability that the residual signal after
subtracting the best-fit GR template has an optimal network SNR ≤ SNR90.

The left panel of Figure 2 shows SNR90 as a function of the best-fit SNRGR for the
observed binary mergers from O1, O2, and O3a. The SNR of the GR signals ranges between
9.24 (GW151012) and 25.71 (GW190521). The 90% upper credible bound of the residual SNR
ranges between 4.88 (GW190727_060333) and 9.24 (GW170818). No clear correlation is visible
between the two quantities. If our GR models would consistently be unable to capture
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an ubiquitous deviation from GR, we might expect that stronger signals correlate with
stronger residuals. The current data shows no indications of such correlations.
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Figure 2. The residual SNR (left) and the fitting factor (right) as functions of the SNR of the best-fit GR model for BBH
observations reported in [30]. The colorbar indicates the p-value associated with each event, with diamond markers
noting the maximum and minimum values (see text). O3a events are distinguished from the O1/O2 events by circle and
triangle-shaped markers, respectively.

To systematically assess if the residual SNRs are consistent with the detector noise, we
can define a p-value under the hypothesis that the residual is consistent with detector noise
(this is the null hypothesis). This p-value is estimated by running identical Bayeswave
analyses on a large number of noise-only data segments around, but not including, each
event. The p-value then provides the probability of pure noise producing an SNRn

90 greater
than or equal to the residual SNR found after subtracting the best-fit GR template, SNR90.
That implies, p-value:= P(SNRn

90 ≥ SNR90). A large p-value indicates that there is a high
chance that the residual power originates from the instrumental noise. Small p-values, on
the other hand, indicate that it is less likely for noise alone to yield such high values of
residual SNR.

The p-values for all events considered here are included in Figure 2 as a color scale.
They also span a large range between 0.07 (GW90421_213856) and 0.97 (GW190727_060333).
This is to be expected in repeated uncorrelated experiments. In fact, assuming the residuals
are pure noise, the p-values of the population should be uniformly distributed between
[0, 1]. As further discussed and quantified in [30], the p-values found for O1, O2, and O3a
events are consistent with this expectation.

As a final interpretation of the residuals, one can ask: how well does the GR model fit
the signal in the data? Obviously, if the model would be perfect, and we could unambigu-
ously identify the coherent signal in the data, then the agreement between the model and
data should be perfect, too, assuming GR is the correct theory. In reality, our GR models
are very accurate, but not perfect, and we only have a probabilistic measure of the signal
in the data. Therefore, we can only expect to obtain a lower bound on the fitting factor FF
between the model h and the signal s by calculating

FF =
〈h, s〉
‖h‖‖s‖ =

〈h, h + sr〉
‖h‖‖h + sr‖

=
‖h‖√

‖h‖2 + ‖sr‖2
(4)

⇒ FF90 =
SNRGR√

SNR2
GR + SNR2

90

. (5)

Here we used that the coherent signal s is the sum of the GR model h and any residual
sr that is perpendicular to h. The latter assumption is justified because h was chosen by
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maximizing the agreement between the data and the model. FF90 = 1 would indicate
perfect agreement.

We plot 1− FF90 on the right panel of Figure 2 for the observations we considered so
far. They show more clearly a correlation with SNRGR. Strong signals with large values
of SNRGR tend to yield higher fitting factors. This is not because the models describe the
actual signal better for louder events. It is because our confidence in how well the model
agrees with the actual signal increases with increasing SNRGR.

Another notable fact about the fitting factors is that they are larger than related
quantities one often finds in the GW literature. For example, discrete template banks for
GW searches are often constructed such that fitting factors of at least 0.97 are guaranteed
between any signal and the closest template in the bank [75]. Waveform models for BBHs
are commonly tuned to FF . 10−3 between the most accurate predictions and the full
model [76,77]. Parameter estimation poses strict demands on waveform accuracy of the
order of SNR−2

GR [78,79] (i.e., waveform differences of < 10−2). Is that level of accuracy
necessary, given that for most observations, we cannot put stronger constraints on the
fitting factor than FF90 ∼ O(10−1)? The answer is, of course, yes! While we cannot be sure
about the true signal for individual events, it is worth emphasizing that the Bayeswave
analysis has great freedom and a large parameter space to identify virtually any residual
signature as a potential coherent signal. Much more restricted measurements that only
look for specific, lower-dimensional deviations are sensitive to significantly smaller signal
differences, because only those signal differences that are consistent with both the assumed
variation and the data are considered. Therefore, the residuals test is a very generic baseline
test for anything that cannot be modeled with GR. It is, however, much less sensitive to
specific deviations that can be tested more accurately in a dedicated test (see the rest of
this paper). A more detailed discussion of the relation between various tests of GR can be
found in [80].

2.1.2. Inspiral-Merger-Ringdown Consistency Test

In GR, the time evolution of BBH mergers is uniquely determined. Hence the final
mass and spin of the remnant BH are uniquely determined from the initial mass and spin
parameters of Kerr BHs. The inspiral-merger-ringdown consistency test (IMRCT) tests
the consistency of inspiral and merger-ringdown parts of the signal by comparing two
independent estimates of binary parameters. More specifically, the binary’s final mass and
spin parameters are measured separately from both low- and high-frequency parts of the
signals and then compared to the two measurements to check their agreement.

Given the final mass (M f ) and spin (χ f ), one can estimate the spin-dependent inner-
most stable circular frequency2 for a Kerr BH ( fcut) [81–83]. The full BBH signal can be
divided into two parts using this frequency, the low-frequency part and the high-frequency
part3. By restricting the noise-weighted integral in the likelihood calculation to frequencies
below ( f < fcut) and above this frequency cutoff ( f > fcut), the binary parameters are
estimated using stochastic sampling algorithms based on Bayesian inference. The merger
remnant properties are calculated by averaging NR-calibrated final state fits given the
posterior median values [81–83] from the two independent mass-spin estimates above.
This calculation assumes an aligned-spin binary system. If the data is consistent with GR,
both estimates should agree [12,20,84,85].

The frequency, fcut, roughly divides the signal into inspiral and merger-ringdown
(post-inspiral) regimes. To calculate fcut, the binary parameters inferred from the full signal
are used. As the test relies on independent parameter inference from the low and high
frequency parts of the full signal, one requires enough SNR in both these regimes of the
signal. For the selected events, a detailed parameter estimation analysis is performed in
Reference [30] focusing on the mass-spin parameters. If Minsp

f and Mpost−insp
f denote the

final mass estimates obtained from low and high frequency parts of the signal, we can
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define a dimension-less quantity that measures the fractional deviation from the final-mass
estimate as,

δM f =
∆M f

M̄ f
= 2

Minsp
f −Mpost−insp

f

Minsp
f + Mpost−insp

f

, (6)

where subscript, ‘f’ denotes merger remnant parameters, and ‘insp’ and ‘post-insp’ cor-
respond to the estimates coming from the low and high-frequency regimes, respectively.
M̄ f and χ̄ f are the symmetric combinations of M f and χ f estimates from inspiral and post-
inspiral regimes. A similar expression can be written for dimension-less spin parameter,

δχ f =
∆χ f

χ̄ f
= 2

χ
insp
f − χ

post−insp
f

χ
insp
f + χ

post−insp
f

. (7)

In principle, these fractional deviations vanish if the data is consistent with GR4.
However, one must perform a detailed parameter estimation analysis and estimate the
statistical confidence that the GR deviation vanishes. This is illustrated in Figure 3 and see
Reference [86] for more details of the method and demonstration on simulated binary sig-
nals. See References [87–89] for studies projecting the possibilities of IMR consistency tests
from combining information from current and future detectors. Especially, Reference [88]
found that the multi-band observations can improve the constraints by a factor of 1.7.

Full BBH signal

Component mass-spin estimates from 
the low-frequency part, f < fcut

Component mass-spin estimates from 
the high-frequency part, f > fcut

Final mass and spin estimates: 
 and Minsp

f χinsp
f

Final mass and spin estimates: 
 and Mpost−insp

f χpost−insp
f

Check the consistency of estimates from 
the dimensionless fractional deviations

Figure 3. The figure shows the graphical demonstration of the inspiral-merger-ringdown consistency
test. We start with the full BBH signal. Analyze the signal by restricting the noise-weighted integral
in the likelihood calculation to frequencies below and above the cut-off frequency, fcut. From the two
independent mass-spin estimates obtained above, the merger remnant properties are calculated by
averaging NR-calibrated final state fits. If the data is consistent with GR, the deviation parameters
defined in Equations (6) and (7) will be zero, assuming that the waveform model employed accurately
models a BBH evolution in GR. See Reference [86] for more details and examples.

In Reference [30], from the list of events satisfying the detection criteria, based on the
false alarm probability of each event and the requirement of enough SNR in both inspiral
and post-inspiral regimes, posteriors distributions on δM f and δχ f are obtained assuming



Universe 2021, 7, 497 8 of 21

uniform priors on these parameters. In terms of the two-dimensional GR quantile, QGR–is
the fraction of the posteriors enclosed by the iso-probability contours that contain the
GR value. Reference [30] reports GW190814 as the most consistent event with the quantile
QGR = 99.9%.

From the hierarchical combining method, the hyperparameters describing the Gaus-
sian distribution are estimated to be (µ, σ) = (0.02+0.11

−0.09,< 0.17) for δM f and
(µ, σ) = (−0.06+0.15

−0.16,< 0.34) for δχ f within the 90% confidence interval in Reference [30].
The details can be found in Figure 4. Assuming that the fractional deviations take
the same value for all events, a less-conservative combined 90% confidence interval of
∆M f
M̄ f

= 0.04+0.08
−0.06 and

∆χ f
χ̄ f

= −0.09+0.11
−0.08 obtained in Reference [30]. This analysis employed

IMRPhenomPv2 or IMRPhenomPv3HM waveform models depending upon the information
about the higher-mode content present in the binary signal [90] and so far the analysis
finds all events to be consistent with GR.
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Figure 4. Posterior distributions on the mass-spin deviation parameters (black and purple curves)
were obtained by hierarchically combining the events [30]. Solid lines represent GWTC-2 events,
while dotted lines represent GWTC-1 events. The vertical bars represent 90% confidence intervals.

2.2. Parametrized Tests of GR Based on Generation and Propagation of GWs

The parametrized tests are designed to capture any deviations from GR in the gen-
eration and propagation of GWs. This is achieved by introducing model-independent
parametric variations in the gravitational waveform models and constrain those from the
observed data. If GR is the correct theory, parametric deviations vanish, and the statistical
bounds can be used to put constraints on the alternative theory models.

2.2.1. Constraining the Parametrized Deviations from General Relativistic
Inspiral-Merger-Ringdown Coefficients

Any generic deviation from GR may modify the binary dynamics and its time evolu-
tion. This leads to measurable modifications to the equation of motion through the energy
and angular momentum of the source and the flux. However, the inspiral-merger-ringdown
dynamics are uniquely determined and well studied in GR through various techniques
such as post-Newtonian theory, numerical relativity, and BH perturbation theory once we
fix the intrinsic parameters of the binary system [58,91–100].

The inspiral coefficients are modeled analytically using post-Newtonian (PN) theory,
which finds perturbative solutions to the binary evolution in terms of a velocity parameter,
v/c, in the slow-motion limit (v << c, v is the PN parameter and c is the velocity of light).
Parametrized tests based on inspiral coefficients are investigated in detail [98,100–116] and
also demonstrated the applicability of the test using Bayesian framework [9,20,117–119] in
the past. Moreover, the possibility of constraining these parameters employing multiband
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observations has been studied in References [87–89,120]. For an inspiralling compact binary
system, the GW waveform can be schematically represented in the frequency domain as,

h̃( f ) = A( f ) eiφ( f ), (8)

where A( f ) denotes the amplitude and φ( f ) is the phase of the signal. Now, we introduce
parametric deviations of the form, φi( f ) → (1 + ϕi)φi. If GR is the correct theory, φ̂i
vanishes for the Nth PN order, where i = N/2 denotes the Nth PN order. The parametrized
tests for post-Newtonian coefficients (pPN analysis) measure these deviation parameters
and are one of the main tests of GR analyses performed for the detected binary signals
so far.

For a generic binary system, one needs to put bounds on the inspiral-merger-ringdown
parametrized deviation coefficients separately. In this case, a relative deviation is intro-
duced to each coefficient appearing through the inspiral-merger-ringdown regimes as,

pi → (1 + δpi)pi. (9)

The set of free parameters, δpi include the inspiral coefficients {ϕi} and post-inspiral
coefficients {αi, βi} [62,106,121]. It is not plausible to represent the post-inspiral coefficients
analytically and they are obtained by numerical fits.

The IMRPhenomPv2 waveform model [58,59,122] describes a precessing binary system
in frequency domain with inspiral coeffiecients determined by PN theory and intermediate,
and merger–ringdown regions by finding appropriate numerical fits. The transition fre-
quency between the inspiral to merger-ringdown is defined as GM(1 + z) f PAR

c /c3 = 0.018
(M is the total mass of the binary system and z is the redshift to the binary). The results
for parametrized tests for post-Newtonian coefficients reported in Reference [30] relied
on the IMRPhenomPv2 waveform model which allows for parametrized deviations of the
phenomenological coefficients describing the inspiral, intermediate βi = {β1, β2}, and
merger-ringdown αi = {α2, α3, α4} regions.

There is also another equally accepted method to perform the same analysis, which is
not based on any particular waveform model but rather on theory-agnostic modifications
applied to the inspiral coefficients of any waveform model. These low-frequency modifi-
cations (inspiral-only modifications {ϕi}) are tapered to zero at high frequencies. That is,
as the frequency reaches post-inspiral regions these modifications vanish and the signal
agrees to a BBH signal described in GR. This test is carried out employing SEOBNRv4_ROM
waveform model in References [61,118,123]. One of the main differences between the two
approaches is that the deviations are applied to only the non-spinning coefficients for
the first method. Still, for the second method, the aligned-spin waveform coefficients are
modified. Both approaches provide consistent results when we compare them.

Denoting {ϕi} as the deviation from N = i/2 PN order, the list of inspiral coefficients
we can put bounds from the data are,

{ϕ−2, ϕ0, ϕ1, ϕ2, ϕ3, ϕ4, δϕ5, ϕ6, ϕ7}. (10)

This means the coefficients up to 3.5PN order (i = 7) are available, including the
logarithmic terms at 2.5 and 3PN orders. Due to its degeneracy with the coalescence phase,
one cannot constrain the coefficient at 2.5 PN (term having no logarithmic dependence).
Notice also that ϕ−2 is zero in GR and, so as ϕ1, it is introduced to account for specific
alternative theories of gravity, especially those that predict dipolar radiation. For the
two coefficients, ϕ1 and ϕ−2, we have the absolute deviations while all other parameters
provide relative deviations from the respective GR coefficients. The absolute deviations
are the differences between the true/actual value and the measured value, whereas the
relative deviations are the ratio of absolute deviations to the true/actual value.

Among all the coefficients listed above, the best combined bound is obtained for
the Newtonian coefficient in Reference [30], |ϕ0| ≤ 4.4 × 10−2 (neglecting the −1PN
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coefficient, ϕ−2). Notice that this bound is weaker than the bounds from the double
pulsar measurement by a factor of ∼3. Reference [30] reports that the posterior on
δ p̂i is consistent with the GR prediction within the 90% confidence interval for all the
events considered. From the hierarchical analysis, the tightest (loosest) bound obtained is
ϕ−2 = 0.97+4.62

−4.07 × 10−3 (ϕ6` = 0.42+1.67
−1.50). For both the circumstances, the GR hypothesis

is preferred with quantiles QGR = 68% (QGR = 69%, which is close to the median values
for both the cases. Figure 5 shows the combined posterior distributions obtained from the
GWTC-2 events considering both the hierarchical method and a restricted method, where
the deviation parameters do not allow for variance between events. Results from both the
studies described above are found to be consistent with GR.
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Figure 5. Posterior distributions on the inspiral {ϕi} and the post-inspiral coefficients {αi, βi} considering the detected
BBH population through first, second and (first half of) third observing runs [30]. The filled posteriors are obtained from
hierarchical analysis and the unfilled black distributions assuming that all events share a common value for the deviation
parameter instead of independently varying it for each event. The results in orange are obtained from the phenomenological
waveform model IMRPhenomPv2, while in red are from SEOBNRv4_ROM waveform model. Error bars represent 90% confidence
intervals for the hierarchical results, and the white dashed line denotes the median. The expected GR value, δpi = 0 is
shown by dashed horizontal line.

2.2.2. Tests of BBH Nature from Spin-Induced Quadrupole Moment Measurements

Spin-induced multipole moments arise due to the spinning motion of the compact
object and take unique values for BHs given mass and spin. For the BBH signals, these
effects are included in the post-Newtonian modeling, and they appear along with the
spin-spin terms and can be schematically represented as,

Q = −κ χ2 m3, (11)

here κ is the spin-induced quadrupole moment coefficient, m is the mass, and χ is the
dimensionless spin parameter. For BHs, κBH = 1 from the no-hair conjecture [124–126] and
for any other compact objects, the value may vary depending upon the properties of the
star. Through numerical relativity simulations of slowly spinning neutron stars, it is found
that the value of κ varies between κNS = 2 and 14 [127–129]. On the other hand, for more
exotic stars like boson stars, the value of κ can be even larger and found to vary between
∼10 and 100 [40,130].

It has been shown that one can introduce parametrized deviations of the form,
κ = (1 + δκ) and put bound on δκ [131–135]. An inspiralling binary system is parametrized
by two such parameters, corresponding to both the binary components, δκ1 and δκ2. Si-
multaneous measurement of both these parameters will end up giving weak constraints
on either parameter, hence it is proposed to measure δκs = 0.5(δκ1 + δκ2) keeping
δκa = 0.5(δκ1 − δκ2) = 0. This is a safe assumption if we are testing the BBH nature
of the detected signal [136,137]. The analysis performed on the first, second, and third
observing runs of LIGO-Virgo detectors provided good constraints on events with non-
zero spins which include GW151226, GW190412, GW190720_000836, and GW190728_064510.
Employing IMRPhenomPv2 waveform model [58,59,122] and assuming prior distribution
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on δκs ranging uniform between [−500, 500] [30]. These events, where the posteriors are
very different from the prior knowledge, are highlighted in Figure 6.
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Figure 6. Left: Posterior distributions on the inspiral δκs for selected events detected through the first, second, and third
observing runs of LIGO-Virgo detectors [30]. The events highlighted give better constraints on the δκs parameter and all
the other events considered are shown in grey. The vertical line at δκs = 0 indicates the BBH value. Right: The bounds
obtained on the δκs parameter from combining information from multiple events. The restricted method assumed universal
values of δκs for all the events. The generic way allows the possibility of varying δκs among different events according to a
Gaussian distribution whose characteristics are obtained from the data.

With the restricted assumption that δκs take the same value for all events, Ref-
erence [30] reported a combined bound on δκs within the 90% confidence interval as
δκs = −15.2+16.9

−19.0. Using the hierarchical analysis, the hyperparameters are constrained to
µ = −24.6+30.7

−35.3 and σ < 52.7 with δκs = −23.2+52.2
−62.4 and which is again consistent with the

null (µ = σ = 0) hypothesis at 90% confidence interval. The hypothesis stating that the
population contains all BBHs is favored by the population containing all the non-BBH hy-
pothesis by a combined Bayes factor of 11.7. The analysis found that the data are consistent
with the BBH hypothesis.

2.2.3. Tests of Gravity from GW Propagation

GW propagation in GR is non-dispersive and described by the dispersion relation,

E2 = p2c2. (12)

Equivalently, the velocity of propagation of GWs in GR is independent of the fre-
quency of the radiation. As a consequence, the graviton is massless with a corresponding
infinite Compton wavelength. There are alternative theories of gravity predicting GWs
with dispersion where the local Lorentz invariance is not respected [138].

For a generic theory of gravity, the GR dispersion relation may require modifications
and the following equation can account for such propagation effects [139–142],

E2 = p2 c2 +A pα cα. (13)

We can re-parametrize the gravitational waveforms so that they also account for the
propagation effects given in Equation (13). In Equation (13), A is the dispersion amplitude
and has dimension of [Energy]2−α, and α is a dimensionless constant. These paramtetrized
modifications can be constrained from the data and these bounds can be translated into
constraints on different alternative gravity models. For example, α = 0 and A > 0
correspond to massive graviton theories [141], α = 2.5 corresponds to multifractional
spacetime [142], and α = 3 corresponds to double special relativity [140], etc.

As shown in References [67,139], one can use GW observations to get constraints
on the modified dispersion parameters. The first bound on the Compton wavelength
(which has a finite value for any massive graviton theory) from GW observations of a
BBH signal is λg > 1013 km [9] and this has been extended to more generic cases in the
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subsequent analyses [20,22,74]. This bound on the Compton wavelength translates to
a graviton mass, mg ≤ 5× 10−23 eV/c2, and this is a stronger bound compared to the
solar system constraints [74]. From the GWTC-2 data [30], a factor of 2.7 improvements
is observed on this bound, and the graviton mass bound correspondingly changes to
mg ≤ 1.76× 10−23 eV/c2 with 90% credibility.

Note that the past studies have investigated the possibility of dispersion of GWs
described by GR due to specific physical effects. For example, the nonlinear interaction
between charged particles and GWs may lead to dispersion of GWs when GWs pass
through astrophysical plasma in the presence of magnetic fields [143–152].

2.3. Tests Based on the Merger Remnant Properties

The merger remnant of a BBH system emits GWs to settle down to the stationary
state, and this distinct signal from stellar-mass BBHs can be measured using the current
GW detectors. Consequently, many tests for remnant nature have been proposed and
performed on the detected GW events. We briefly discuss GW tests based on merger
remnant properties here.

2.3.1. No-Hair Theorem Based Tests from the Quasi-Normal Mode Ringdown Radiation
(BH Spectroscopy)

According to GR, the remnant formed after a BBH coalescence is a perturbed Kerr
BH, and this BH attains the stationary state by emitting GWs. This damped sinusoidal
signal (BH ringdown radiation) is characterized by quasi-normal-modes (QNMs) with
frequency f and damping time τ. Both the damping time and frequency of this oscillation
are determined by the mass and spin of the Kerr BH formed after the merger (M f and
χ f ) [125,153–157]. In GR, the ringdown waveform is a superposition of damped sinusoids
and takes the form,

h+(t)− ih×(t) =
+∞

∑
`=2

`

∑
m=−`

+∞

∑
n=0
A`mn exp

[
− t− t0

(1 + z)τ`mn

]
exp

[
2πi f`mn(t− t0)

1 + z

]
−2S`mn(θ, φ, χf), (14)

where z is the cosmological redshift, and the (l, m, n) indices label the QNMs ((`, m) are
the angular multipoles, whereas n is the order of modes given (`, m). All the f`mn and
τ`mn are determined by the final mass and spin of the binary system (this is called the
final state conjecture). For a perturbed Kerr BH, the damping time and frequency of each
quasi-normal-mode can be calculated from BH perturbation theory as a function of its
final mass and spin [158–161]. Assuming that the mergers we observe are BBHs, from the
independent M f and χ f post-merger measurements we can test the final state conjecture
(commonly known as the BH spectroscopy) [55,56,83,162–169]. The complex amplitude
A`mn is a measure of the mode excitation and the phase of these modes at a reference
time [170–172].

PYRING is a toolkit to perform BH spectroscopy which is completely implemented in
the time domain [55,56]. As both templates and the likelihood are modeled in the time
domain, spectral leakage is reduced [173]. Mainly assumed template models for this study
are, Kerr220 (` = |m| = 2, n = 0 contributions of Equation (14)), Kerr221 (` = |m| = 2,
n = 0, 1 contributions of Equation (14)), and KerrHM (all fundamental prograde modes
with ` ≤ 4, n = 0 contributions of Equation (14) and also taking into account mode-
mixing [172]). The frequencies and damping times are predicted in terms of final mass
and spin for all these cases. The remnant quantities, M f and χ f , are estimated assuming
uniform priors on these parameters. We do not consider the higher overtones (n > 1) as
those are not expected to provide constraints with the current sensitivity of detectors.

Another equally established technique for the QNM analysis is the parametrized-
SEOBNRv4HM (pSEOB) analysis, which employs a parametrized version of the EOB waveform
model [174] accounting for aligned spins and higher modes [30,166,175]. The pSEOB
analysis differs from PYRING in that it measures the ringdown frequency within a complete
IMR waveform model framework using the full SNR of the signal. It is not dependent
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on a ringdown time definition. In this framework, one parameterizes the frequency and
damping time of the ` = m = 2 by introducing a fractional deviation from the nominal GR
prediction and constrains these fractional deviation parameters directly from the data. That
is, f220 = f GR

220 (1+ δ f̂220) and τ220 = τGR
220 (1+ δτ̂220) [174], where f GR

220 and τGR
220 are frequency

and damping time if GR is the correct theory of gravity. From both these approaches, by
performing detailed analyses on the GWTC-2 events, no indication of the presence of
non-BH behavior was reported [30].

2.3.2. Testing the Nature of Merger Remnant from the Measurement of Late
Ringdown Echoes

One can ask the question as to if the merger remnant is not a BH but instead an exotic
compact object (ECO) with a light-ring and reflective surface, instead of an event horizon
as in the case of BHs [176–179]. For these hypothetical cases, the GWs can be trapped
in between the effective potential at the centre and the reflective surface, leading to the
emission of GWs as a train of repeating pulses known as GW echoes. BHs produce no
echo signal as there is no possibility of an out-going boundary condition at the BH event
horizon. GW echoes are unique probes of any non-BH compact object formation (especially
exotic objects like gravastars, fuss balls) after the binary coalescence [47,176,180,181]. For
an illustration of GW echoes originating from a binary merger, we point out Figure 7 (also
see Figure 2 of Reference [176] for the original GW150914 signal on top of the best-fit echo
template from a template-based echo analysis).
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Figure 7. Figure demonstrating an echo template. Here ∆techo denotes the time-delay between two
consecutive echoes; also, the horizontal line shows the time delay between binary merger and the
first echo. (In Reference [176], the time domain template along with the best-fit echoes template for
GW150914 from a template-based echo analysis is plotted.)

In the template-based framework, the echo signal is modeled with five extra param-
eters, characterizing the echo: the relative amplitude of the echoes, the damping factor
between each echo, the start time of ringdown, the time of the first echo concerning
the merger, and the time delay between each echo (∆techo in Figure 7). Reference [176]
studies this method and subsequent discussions on GW150914 in detail. For the GWTC-2
events [30], assuming uniform priors on each of these echo parameters and employing
the IMRPhenomPv2 waveform model (except for the case GW190521, where Sur7dq4, is a
surrogate model for precessing BBH system directly interpolates the numerical relativity
waveforms, is used), a Bayesian analysis is performed to investigate the evidence for
echoes. Bayes factor BIMRE

IMR (comparing the two hypotheses IMRE data best fits an echo
model, and data best fits a model without echoes (IMR)) are computed for each event. The
data did not show evidence for echoes [30], except for the event GW190915_235702, which
showed the highest value for BIMRE

IMR = 0.17 indicating a negligible evidence for echoes [30].
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Reference [30] reports that the posteriors on the echoes parameters returned their prior
distribution, pointing to a null detection of GW echoes.

2.4. Constraints on the Polarization States of GWs

Generic metric theories of gravity predict six independent degrees of freedom for the
metric tensor, which can be identified as polarization states of GWs. More than the two
tensor (spin 2) degrees of freedom allowed by GR, there is a possibility of two vectors
(spin 1) degrees of freedom and two scalars (spin 0) degrees of freedom [141] in such cases.
Out of these six modes, three of them are transverse, and three are longitudinal. The first
constraints on the polarization states of the GWs from observations are detailed in [9]. Still,
the results were uninformative as the data from the two LIGO instruments are not enough
to constrain the extra polarization mode. This is possible only if there are data available
from one another detector with another orientation. Hence the polarization test was first
demonstrated with the three-detector event GW170814, and the improved results compared
to Reference [9] are available in Reference [22]. In Reference [22] also the tensor modes
hypothesis was favored over scalar and vector modes as shown in Reference [9].

A detailed analysis was performed in Reference [30] considering all GW events ob-
served till the first half of the third observing run of LIGO/Virgo detectors. Reference [30]
reports the highest (lowest) Bayes factor for GW190720_000836 (GW190503_185404) with
log10 BT

V = 0.139, BT
S = 0.138) (log10 BT

V = 0.074 and BT
S = −0.072), here BT

V and BT
S

represent the Bayes factors for full tensor versus full-vector and full-scalar hypotheses re-
spectively. The BT

S is slightly larger than BT
V and this is explained by the intrinsic geometry

of the LIGO-Virgo antenna patterns [182]. One should also notice that any of these results
do not account for the possibility of mixed polarization. This topic has to be explored in
the future when more detectors become operational.

3. Summary

This review article provides a brief overview of the tests of GR performed during
the first three observing runs of the LIGO-Virgo detectors, including tests of consistency
with GR (Section 2.1), parameterized tests (Section 2.2), tests based on the merger remnant
properties (Section 2.3), and tests for GW polarizations (Section 2.4). Along with some
technical details about each test, we also provide a short discussion pointing to the prospects
of these various tests.

In this article, we only focused on signals which are consistent with BBHs. The
detection of the first binary neutron star merger event opened up different possibilities of
testing GR from combined electromagnetic and GW observations [23,118]. Many tests we
detailed here may have overlaps or redundant information which is not accounted for here.
Though the instrumental noise mainly dominates the current measurement uncertainties,
we cannot exclude the possibility of any systematic bias arising due to un-modeled effects
present in the waveform models. Another critical point is that the tests discussed here
are all model-independent tests (null tests). In other words, we are not assuming any
alternative gravity theory models here, and every test is capturing the deviation from GR
in a model-agnostic way.

Author Contributions: Conceptualization, investigation, visualization: N.V.K.; Writing: N.V.K. and
F.O.; Review & editing, supervision: F.O. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: This research has made use of data, software and/or web tools obtained
from the Gravitational Wave Open Science Center (https://www.gw-openscience.org/ accessed
on 8 December 2021), a service of the LIGO Laboratory, the LIGO Scientific Collaboration and the
Virgo Collaboration. LIGO is funded by the U.S. National Science Foundation. Virgo is funded,
through the European Gravitational Observatory (EGO), by the French Centre National de Recherche
Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN) and the Dutch

https://www.gw-openscience.org/


Universe 2021, 7, 497 15 of 21

Nikhef, with contributions by institutions from Belgium, Germany, Greece, Hungary, Ireland, Japan,
Monaco, Poland, Portugal, Spain. The data presented in this study are openly available at https:
//doi.org/10.7935/903s-gx73 accessed on 8 December 2021.

Acknowledgments: This work was supported by the Max Planck Society’s Independent Research
Group Grant. We thank Ajit Mehta for carefully reading this article and providing comments. We are
thankful to Angela Borchers Pascual and Anuradha Gupta for very useful comments and discussions.
This document has LIGO preprint number LIGO-P2100349.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GW Gravitational wave
BBH Binary black hole
GR General theory of relativity
NG Newtonian gravity
GWTC Gravitational-wave transient catalog
O1/O2/O3 First/Second/Third observing runs of LIGO/Virgo
LVK LIGO-Virgo-KAGRA scientific collaboration
LVC LIGO-Virgo scientific collaboration

Notes
1 Non-BH binaries include other compact objects like neutron stars and more exotic objects like boson stars [33–41], gravastars [42–47]

etc.
2 Inner-most stable circular orbit of a Kerr BH is the smallest stable circular orbit in which a test particle can stably orbit around

the BH.
3 Current analysis is taking into account for the dominant mode and neglecting any higher-mode contributions to the frequency

evaluation.
4 Neglecting the instrumental noise, statistical fluctuations, and waveform model uncertainties, etc. These effects can lead to an offset

from zero.
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