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Abstract

The approximate uniform sampling of graphs with a given degree sequence is a well-known, extensively

studied problem in theoretical computer science and has significant applications, e.g., in the analysis of

social networks. In this work we study an extension of the problem, where degree intervals are specified

rather than a single degree sequence. We are interested in sampling and counting graphs whose degree

sequences satisfy the degree interval constraints. A natural scenario where this problem arises is in

hypothesis testing on social networks that are only partially observed.

In this work, we provide the first fully polynomial almost uniform sampler (FPAUS) as well as the first

fully polynomial randomized approximation scheme (FPRAS) for sampling and counting, respectively,

graphs with near-regular degree intervals, in which every node 8 has a degree from an interval not too

far away from a given 3 ∈ N. In order to design our FPAUS, we rely on various state-of-the-art tools

from Markov chain theory and combinatorics. In particular, we provide the first non-trivial algorithmic

application of a breakthrough result of Liebenau and Wormald (2017) regarding an asymptotic formula

for the number of graphs with a given near-regular degree sequence. Furthermore, we also make use of the

recent breakthrough of Anari et al. (2019) on sampling a base of a matroid under a strongly log-concave

probability distribution.

As a more direct approach, we also study a natural Markov chain recently introduced by Rechner,

Strowick and Müller-Hannemann (2018), based on three simple local operations—switches, hinge flips,

and additions/deletions of a single edge. We obtain the first theoretical results for this Markov chain by

showing it is rapidly mixing for the case of near-regular degree intervals of size at most one.

∗ Part of this work has been carried out while the author was a postdoctoral fellow at the Max Planck Institute for Informatics in

Saarbrücken, Germany
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1 Introduction

The (approximate) uniform sampling and counting of graphs with given degrees has received a lot of attention

during the last few decades, see, e.g., [1, 3, 4, 6, 8, 12–16, 18, 19, 21–25, 27, 33, 38, 39, 41, 44–46, 52]. Given

a degree sequence d = (31, . . . , 3=), the goal of approximate uniform sampling is to design a randomized

algorithm that outputs a labelled simple undirected graph� with degree sequence d, according to a distribution

that is close to the uniform distribution over the set of all graphs with this degree sequence. Such an algorithm

is called an approximate (uniform) sampler. Approximate samplers find applications in fields such as complex

network analysis, where they serve as null models for hypothesis testing. Consider, e.g., a social network with

edges representing friendships or relationships. One might see a very high number of edges between a certain

group of nodes and, based on this, conjecture that these nodes form a community of friends or colleagues. In

order to test this hypothesis, one would like to be able to generate graphs with similar characteristics as the

observed network and, based on these generated samples, decide how likely it is that there is a high number

of edges between that particular group of nodes based on chance alone. Here the characteristic of interest is

the degree sequence of the observed network [49]. For determining how many samples are sufficient in order

to test the hypothesis, we also need to be able to count the number of graphs with the given degree sequence.

In the example above, it is assumed that we precisely know all the degrees. In practice, however, the

collected data about a network might be incomplete and, thus, we do not exactly know the degree sequence.

Nevertheless, based on the observed (non-)edges, we can prescribe intervals in which the degrees of the nodes

should lie. This motivates the study of sampling and counting graphs with given degree intervals [50] rather

than a given degree sequence; this is the problem of interest in this work. In particular, we are interested

in designing approximate uniform samplers for this problem, which can then be turned into approximate

counting schemes (Appendix C). The bipartite version of this problem was introduced by Rechner, Strowick

and Müller-Hannemann [50] (see also Section 1.2).

To make the problem more concrete, suppose we have a partially observed network. For a given node

8, we let ℓ8 be the number of observed edges adjacent to 8, X8 the number of missing observations and, thus,

D8 = ℓ8 + X8 the maximum number of edges that node 8 could have been adjacent to in the observed network.

There are now two extreme cases: either all missing observations are non-edges, meaning that node 8 has

degree ℓ8, or all missing observations are indeed edges, meaning that node 8 has degree D8. Hence, we are

interested in sampling (and counting) graphs for which node 8 has a degree in the interval [ℓ8, D8], for every

8 = 1, . . . , =. In this case we say that a graph � has degrees in the interval [ℓ, u] with ℓ = (ℓ1, . . . , ℓ=) and

u = (D1, . . . , D=). In this context, these problems seem to be natural and elegant generalizations of the classic

graph sampling and counting counterparts.

Towards sampling graphs with given degree intervals, Rechner et al. [50] introduced a Markov chain

based on three simple operations: switches, hinge flips and additions/deletions. The chain in each step selects

one of these operations uniformly at random and performs it, if possible. We call this chain the degree

interval Markov chain. The operations are shown in Figure 1 and a formal definition is given in Section 2

and Appendix B.1. These three operations are the ones described by Coolen et al. [13] as the most commonly

used operations in Markov Chain Monte Carlo algorithms for the generation of simple undirected graphs

in practice. This serves as additional motivation for rigorously studying Markov chains based on these

operations. We will also be interested in the switch-hinge flip Markov chain that only uses the switch and

hinge flip operations. The hinge flip and switch operations are of particular interest both in theory and in

practice as they preserve the number of edges and the degree sequence of a graph, respectively.

1.1 Our contributions

In this work, we give the first efficient approximate sampler and approximate counter for graphs with so-called

near-regular degree intervals. Roughly speaking, we show that there is an FPAUS and an FPRAS in case

the degree intervals are close to a common value A = A (=) ∈ N, i.e., if [ℓ8 , D8] ⊆ [A − AU, A + AU] for some

1
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Figure 1: Left to right: switch on E, F, G, H; hinge flip on E, F, G; edge addition/deletion on E, F.

0 < U < 1
2
. The parameter U > 0 models the maximum length of the degree intervals that we allow, which

should be relatively small compared to A.1 The main result of this work is Theorem 1.1 below, where we

write G(ℓ, u) for the set of all graphs � whose degree sequence d(�) satisfies ℓ ≤ d(�) ≤ u.2 The minor

assumption on A allows us to avoid some (arguably not very interesting) boundary cases.

Theorem 1.1. Let 0 < U < 1/2 and 0 < d < 1 be fixed. Let A = A (=) with 2 ≤ A ≤ (1 − d)=. If for every

node 8 ∈ [=] it holds that [ℓ8, D8] ⊆ [A − AU, A + AU], then there is an FPAUS for the approximate uniform

sampling of graphs from G(ℓ, u) and an FPRAS for computing |G(ℓ, u) |.

For given degree intervals [ℓ, u] and < ∈ N, we write G< (ℓ, u) for the set of graphs � whose degree

sequence d(�) satisfies ℓ ≤ d(�) ≤ u and
∑
8 38 = 2<. By using reductions between approximate sampling

and approximate counting (see Appendix C) we get that to prove Theorem 1.1 it suffices to show the existence

of an FPAUS for sampling from G< (ℓ, u). To this end, we show that the switch-hinge flip Markov chain is

rapidly mixing under the conditions of Theorem 1.1.

Theorem 1.2. Let U, d, and A be as in Theorem 1.1. If [ℓ8, D8] ⊆ [A − AU, A + AU], for all 8 ∈ [=], and

2< ∈
[ ∑

8 ℓ8,
∑
8 D8

]
, then the switch-hinge flip Markov chain is rapidly mixing on G< (ℓ, u).

A more direct approach for sampling from G(ℓ, u), than the one behind Theorem 1.1, would be to use

the degree interval Markov chain. An interesting open question is if this chain is rapidly mixing under the

assumptions in Theorem 1.1 (or even under slightly weaker assumptions). As a first step into this direction,

we show that when all the degree intervals have size at most one, i.e., when D8 − 1 ≤ ℓ8 ≤ D8 , the degree

interval Markov chain is rapidly mixing.

Theorem 1.3. Let U, d, and A be as in Theorem 1.1. If [ℓ8, D8] ⊆ [A − AU, A + AU] and D8 − 1 ≤ ℓ8 ≤ D8 , for

all 8 ∈ [=], then the degree interval Markov chain is rapidly mixing on G(ℓ, u).

Remark 1.4. Our theorems—and the building blocks used in their proofs—are proven for = ≥ =0, where =0

is a constant depending on the other constants involved. It is straightforward that for = < =0 our results are

true.

The technical novelty of our work lies in the combination of various tools from Markov chain theory

and combinatorics. We rely on Markov chain decomposition tools of Martin and Randall [43], rapid mixing

results for the switch Markov chain by Amanatidis and Kleer [1], the breakthrough work of Anari et al. [2]

and an asymptotic enumeration formula of Liebenau and Wormald [41] for near-regular degree sequences.

The latter two works solved long-standing open problems.

1.2 Related work

Rechner et al. [50] introduce the degree interval Markov chain for the bipartite version of the problem of

sampling graphs with given degree intervals. They show the chain is irreducible for arbitrary degree intervals.

1 One should note that an assumption of this kind is to be expected. Otherwise, we would be also solving the problem of

(approximately) uniformly sampling a graph with any given degree sequence, which is a long-standing major open problem. To see

this, note that, e.g., if A = =/2 and U = 1, then the interval [A − AU, A + AU] contains all degree sequences. Setting ℓ8 = D8 = 38 for a

given sequence d = (31, . . . , 3=) then corresponds to sampling a graph with degree sequence d.

2 For vectors a = (01, . . . , 0=), b = (11, . . . , 1=) ∈ R= we write a ≤ b if 08 ≤ 18 for all 8 ∈ [=].
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For the problem of sampling graphs with a given degree sequence, there is an extensive literature,

particularly on Markov Chain Monte Carlo (MCMC) methods. Jerrum and Sinclair [33] provide an approx-

imate uniform sampler and an approximate counter for %-stable degree sequences, for which the number of

graphical realizations of a given degree sequence does not vary too much under small perturbations of the

degree sequence. A first step beyond %-stability was recently made by Erdős et al. [20]. Jerrum, Sinclair and

Vigoda [35] provide an approximate sampler (and counter) for arbitrary bipartite degree sequences. Both [33]

and [36] reduce the problem to sampling a perfect matching in an appropriate graph representation of the

given instance. The work of Bézakova, Bhatnagar and Vigoda [5] provides a more direct approach. There

are also various non-MCMC methods available in the literature, see, e.g., [3,24,25,39,45,52]. One MCMC

approach that has received considerable attention for sampling graphs with given degrees is the switch Markov

chain, based on the switch operation in Figure 1. This is a simpler, more direct approach than reducing the

problem to sampling a perfect matching from a large auxiliary graph. The chain was first analyzed by Kannan,

Tetali and Vempala [38], and has been extensively studied, see, e.g., [1,14,19,46]. The state of the art on its

mixing time is the work of Erdős et al. [19], who show that the chain is rapidly mixing for all %-stable degree

sequences (matching the guarantee of the sampler in [33]).

The decomposition theorem of Martin and Randall [43], based on the decomposition method of Madras

and Randall [42], also appeared in an unpublished manuscript by Caracciolo, Pelissetto and Sokal [11]. Erdős

et al. [22] use a related decomposition approach for sampling balanced joint degree matrix realizations.

The result of Liebenau and Wormald [41] builds on a long line of work on asymptotic expressions for

the number of graphs with given degrees. Indicatively, Bender and Canfield [4] gave a formula for bounded

degree sequences and Bollobás [8] for A-regular sequences with A = $ (
√

log(=)). McKay and Wormald gave

expressions both for sparse sequences with maximum degree >(=1/2) [45] and for a certain dense regime [44].

Anari et al. [2], in a breakthrough recent work, gave the first polynomial time algorithm for the approximate

sampling of a base of a matroid under a so-called strongly log-concave probability distribution. The theory of

strongly log-concave polynomials was largely developed by Brändén and Huh [10]. In another recent work,

Kleer [40] makes a similar connection between asymptotic enumeration formulas and strongly log-concave

polynomials. In our setting, that would correspond to the case of sparse bipartite graphs where only the

degree intervals on one side of the bipartition are allowed to vary.

1.3 Outline

In Section 2 we provide all the necessary preliminaries. We then continue with a proof overview for Theorems

1.2 and 1.3 in Section 3. As one of the main building blocks of the proof of Theorem 1.1, we show in Section

4 that the asymptotic formula of Liebenau and Wormald [41] (in the degree interval regime of Theorem

1.1) approximately gives rise to a so-called strongly log-concave polynomial, which might be of independent

interest. Then, Section 5 contains all of the remaining arguments about the Markov chains used in our proofs.

2 Preliminaries

We need a variety of preliminaries for this work, that are mostly collected in this section.

2.1 S-convexity

We start with the notion of "-convexity for functions [47, 48]. Let a : Z=≥0
→ R ∪ {∞} be a function. The

effective domain of a is given by dom(a) = {" ∈ N= : E(") < ∞}. The function a is called "♯-convex if it

satisfies the (symmetric) exchange property: For any ", # ∈ dom(a) and any 8 ∈ [=] satisfying U8 > V8, there

exists a 9 ∈ [=] such that U 9 < V 9 and a(") + a(#) ≥ a(" − e8 + e 9 ) + a(# + e8 − e 9 ), where e: is defined

as e: (ℓ) = 1 if : = ℓ and e: (ℓ) = 0 otherwise. The function a is called "-convex if it is "♯-convex and

there is an 3 ∈ N such that dom(a) ⊆ {" :
∑
8 U8 = 3}. A subset � ⊆ Z=≥0

is called "-convex if the indicator

function a� : Z=≥0
→ R ∪ {∞}, given by a� (") = 1 if " ∈ � and a� (") = 0 otherwise, is "-convex.

3



2.2 Strongly log-concave polynomials

We write R[G1, . . . , G=] to denote the set of all polynomials in G1, . . . , G= with real coefficients. We consider

polynomials ? ∈ R[G1, . . . , G=] with non-negative coefficients. For a vector # = (V1, . . . , V=) ∈ Z=≥0
, we

write m# =
∏=
8=1 m

V8
G8 to denote the partial differential operator that differentiates a function V8 times with

respect to G8 for 8 = 1, . . . , =. For " ∈ Z=≥0
, we write G" to denote

∏=
8=1 G

U8
8 . Furthermore, we write

"! =
∏
8 U8!, and for ", + ∈ Z=≥0

with U8 ≤ ^8 for all 8, we write
(+
"

)
=
∏=
8=1

( ^8
U8

)
. For a constant C ∈ N with

C ≥ max8 U8, we write
( C
"

)
=
∏=
8=1

( C
U8

)
. Let + ∈ Z=≥0

and  = ×8{0, . . . , ^8}. Let F :  → R≥0 be a weight

function. The generating polynomial of F is given by 6+ (G) =
∑

"∈ F (")G".

The support of 6+ is the set supp(6+) = {" ∈  : F (") > 0}. The generating polynomial 6+ is called

3-homogeneous if |" | = ∑
8 U8 = 3 for all " ∈ supp(6+). It is called multi-affine if every variable G8 appears

with at most multiplicity one in every monomial of 6+ . For example, @(G1, G2) = G1G2 is multi-affine, but

A (G1, G2) = G2
1
+ G1G2 is not, as the multiplicity of G1 in the first monomial is two.

Definition 2.1 (Strong log-concavity [29]). A polynomial ? ∈ R[G1, . . . , G=] with non-negative coefficients is

called log-concave on a subset ( ⊆ R=≥0
if its Hessian ∇2 log(?) is negative semidefinite on (. A polynomial

? is called strongly log-concave (SLC) on ( if for any # ∈ N=, we have that m# ? is log-concave.

The zero polynomial is defined to be SLC always. If a 3-homogeneous polynomial is SLC, its support forms

an "-convex set [10]. Finally, if the generating polynomial 6+ is SLC, then the probability distribution

c(") ∝ F (") is called SLC as well. We next state some properties of SLC polynomials that will be used.

Proposition 2.2 ([10]). If ? ∈ R[G1, . . . , G=] is SLC and W ∈ R≥0, then W? is SLC.

Proposition 2.3 (Following from [10]).3 Let a : N= → R ∪ {∞} with dom(a) ⊆ {0, 1, . . . , = − 1}= and let

5+ (G) =
∑

"∈dom(a)

1

"!
4−a (")G" and 6+ (G) =

∑

"∈dom(a)

(
W

"

)
4−a (")G", (2.1)

be 2<-homogeneous polynomials, where W = (= − 1, . . . , = − 1). If a is "-convex, then 5+ and 6+ are SLC.

2.3 Markov chains and mixing times

Let M = (Ω, %) be an ergodic, time-reversible Markov chain with state space Ω, transition matrix %, and

stationary distribution c. We write %C (G, ·) for the distribution over Ω at time step C with initial state G ∈ Ω.

The total variation distance of this distribution from stationarity at time C with initial state G is ΔG (C) =
1
2

∑
H∈Ω

��%C (G, H) − c(H)
��, and the mixing time of M is g(n) = maxG∈Ω gG (n) where gG (n) = min{C : ΔG (C ′) ≤

n for all C ′ ≥ C}. It is well-known that the matrix % only has real eigenvalues 1 = _0 > _1 ≥ · · · ≥ _ |Ω |−1 > −1.

We may replace % by (% + �)/2 to make the chain lazy, and hence guarantee that all its eigenvalues are non-

negative. In that case, by Gap(%) = 1 − _1 we denote the spectral gap of %. In this work all Markov chains

involved are lazy. It is well known that one can use the spectral gap to give an upper bound on the mixing

time of Markov chain. That is, it holds that gG (n) ≤ 0.5(1 − _1(%))−1(log c(G)−1 + 2 log(0.5n−1)) [51].

Furthermore, if one has two Markov chains M = (Ω, %) and M ′ = (Ω, %′) both with stationary distribution

c and there are constants 21, 22 such that 21%(G, H) ≤ %′(G, H) ≤ 22%(G, H) for all G, H ∈ Ω with G ≠ H. Then

(see, e.g., [43]) it follows that 21 Gap(%) ≤ Gap(%′) ≤ 22 Gap(%).
The state space graph of the chain M is the directed graph G = G(M) with node set Ω that contains the

edges (G, H) ∈ Ω × Ω for which %(G, H) > 0 and G ≠ H. that contains an arc (G, H) ∈ Ω × Ω if and only if

3 Our function 6+ is a slight variant the corresponding function of Theorem 3.14 of [10] with @ = 1/4. The statement for this 6+
follows (as communicated to us by the first author of [10]) from a simple transformation of 5+ that preserves strong log-concavity,

namely the operator that maps G" to "!
(W
"

)
G" [9].
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%(G, H) > 0 and G ≠ H (denoted by G ∼ H). Let P =
⋃
G≠H PGH , where PGH is the set of simple paths between G

and H in the state space graphG. A flow 5 inΩ is a function P → [0,∞) satisfying
∑
?∈PGH

5 (?) = c(G)c(H)
for all G, H ∈ Ω, G ≠ H. The flow 5 can be extended to the oriented edges 4 = (I, I′) of G by setting 5 (4) =∑
?∈P:4∈? 5 (?), so that 5 (4) is the total flow routed through 4 ∈ � (G). Let ℓ( 5 ) = max?∈P: 5 (?)>0 |? |

be the length of a longest flow-carrying path, and let f (4) = 5 (4)/& (4) be the load of the edge 4, where

& (4) = c(G)%(G, H) for 4 = (G, H). If f ( 5 ) = max4∈� (G) f (4) is the maximum load of the flow, it holds that

Gap(%)−1 ≤ f ( 5 )ℓ( 5 ) (see, e.g, [51]).

We will sometimes also work (implicitly) with the so-called modified log-Sobolev constant d = d(%).
Details on this constant are given in Appendix A. This constant can also be used to upper bound the mixing

time of a Markov chain. In particular, it holds that gG (n) ≤ d(%)−1(log log c(G)−1 + log(0.5n−2)), see,

e.g., [7].

2.3.1 Markov chain decomposition

We describe a Markov chain decomposition of Martin and Randall [43] that follows the decomposition

framework of Madras and Randall [42]. Let M = (Ω, %) be a Markov chain and
⋃@
8=1

Ω8 be a disjoint

partition of Ω for some @ ∈ N. We define the restriction Markov chains M8 = (Ω8, %Ω8
) as follows. For

G ∈ Ω8 we let %Ω8
(G, H) = %(G, H) if G, H ∈ Ω8 with G ≠ H, and %Ω8

(G, G) = 1 − ∑
H∈Ω8 ,H≠G %Ω8

(G, H).
Furthermore, let m8 (Ω 9) =

{
H ∈ Ω 9 : ∃G ∈ Ω8 with %(G, H) > 0

}
be the set of elements in Ω 9 that can be

reached with positive probability in one transition of the chain M from some element in Ω8.

Let MMH = ([@], %MH) be (the Metropolis-Hastings variation of) the projection Markov chain on [@] =
{1, . . . , @}. That is, %MH(8, 9) > 0 if and only if m8 (Ω 9) ≠ ∅ and, in that case, for 8 ≠ 9 ,

%MH(8, 9) =
1

2Δ
min

{
1,
c(Ω 9)
c(Ω8)

}
, (2.2)

whereΔ is the maximum out-degree in the state space graph ofMMH , while%MH(8, 8) = 1−∑ 9∈[@ ] {8} %MH(8, 9).
Note that M"� has stationary distribution cMH(8) = c(Ω8) for 8 ∈ {1, . . . , @} and a holding probability of

at least 1/2. We will use the following decomposition theorem from [43].

Theorem 2.4 ( [43], Corollary 3.3). Suppose there exist V > 0 and W > 0 such that %(G, H) ≥ V for all

G, H that are adjacent in G(M), and c(m8 (Ω 9)) ≥ Wc(Ω 9) for all 8, 9 that are adjacent in G(MMH). Then

Gap(%) ≥ VW · Gap(%MH) · min8=1,... ,@ Gap(%Ω8
).

2.3.2 Load-exchange Markov chain

In this work, we will need a weighted version of the base-exchange Markov chain studied by Anari et al. [2].

Let c be a strongly log-concave probability distribution with c(") ∝ F (") whose support forms an "-convex

set �. We define the (unit) load-exchange Markov chain on � ⊆ /=≥0
as follows.

Assuming " ∈ � is the current state of the (unit) load-exchange Markov chain:

• Select an element 8 ∈ {1, . . . , =} uniformly at random.

• Pick an "′ ∈ � with "′ ≥ " − ei with probability ∝ F ("′) among all such "′.

Similarly as for the base-exchange Markov chain [2], the above procedure defines an ergodic, time-

reversible Markov chain with stationary distribution c over � given by c(") ∝ F ("). Using the notion of

polarization for SLC polynomials [10], in combination with a simple Markov chain comparison argument (as

in Appendix A.1), Corollary 2.5 can be shown. The proof (which is implicitly given in [40]) uses a reduction

to the case of matroids, after which the result of Anari et al. [2] gives the desired result.
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Corollary 2.5. Let + = (=, . . . , =) and suppose that the 3-homogeneous polynomial 6+ (G) =
∑

"∈ F (")G" ∈
R[G1, . . . , G=] is SLC. Then the transition matrix % of the load-exchange Markov chain on supp(6+) satisfies

d(%) ≥ =23, where d(%) is the modified log-Sobolev constant of %.

2.3.3 Degree intervals and the switch-hinge flip Markov chain.

A sequence of non-negative integers d = (31, . . . , 3=) is called a graphical degree sequence if there exists

a simple, undirected, labeled graph � = (+, �) on nodes + = [=], where node 8 has degree 38 , for 8 ∈ + .

Such a graph is called a (graphical) realization of d. By G(d) we denote the set of all graphical realizations

of d, while by d(�) we denote the degree sequence of a graph �. For given vectors ℓ = (ℓ1, . . . , ℓ=) and

u = (D1, . . . , D=) of non-negative integers, we define G(ℓ, u) =
⋃

ℓ≤d≤u G(d) as the set of all graphical

realizations � satisfying ℓ ≤ d(�) ≤ u, meaning ℓ8 ≤ 38 (�) ≤ D8 for all 8 ∈ + . For < ∈ N, we define

G< (ℓ, u) as the set of all graphical realizations � ∈ G(ℓ, u) with precisely < edges, i.e., with
∑
8 38 (�) = 2<.

Finally, we define the set of all degree sequences satisfying the degree interval constraints, and whose total

sum of the degrees equals 2<, as D< (ℓ, u) = {d : ℓ ≤ d ≤ D and
∑
8 38 = 2<} . A fully polynomial almost

uniform sampler (FPAUS) for sampling graphs with given degree intervals [ℓ, u] is an algorithm that, for

any X, n > 0, outputs with probability 1 − X a graph � ∈ G(ℓ, u) according to a distribution c̃ such that

3TV(c, c̃) ≤ n , where c is the uniform distribution over G(ℓ, u), and runs in time polynomial in =, log(1/X)
and log(1/n). A fully polynomial randomized approximation scheme (FPRAS) for the problem is an algorithm

that, for every n, X > 0, outputs |G(ℓ, u) | up to a multiplicative factor (1 + n) with probability at least 1 − X,
in time polynomial in =, 1/n and log(1/X). Analogous definitions hold for G< (ℓ, u) for a given <.

Below we define the switch-hinge flip Markov chain to uniformly sample elements from G< (ℓ, u) based

on two of the local operations of Figure 1. The degree interval Markov chain of Theorem 1.3, that in addition

can also perform addition-deletion operations, is given in Appendix B.1.

Assuming � ∈ G< (ℓ, u) is the current state of the switch-hinge flip Markov chain:

• With probability 2/3, do nothing.

• With probability 1/6, try to perform a switch operation: choose an ordered tuple of nodes

(E, F, G, H) uniformly at random. If {F, E}, {G, H} ∈ � (�), and {H, E}, {G, F} ∉ � (�), then

delete {F, E}, {G, H} from � (�), and add {H, E}, {G, F} to � (�).
• With probability 1/6, try to perform a hinge flip operation: choose an ordered tuple of nodes

(E, F, G) uniformly at random. If {F, E} ∈ � (�) and {F, G} ∉ � (�), then delete {F, E} from and

add {F, G} to � (�) if the resulting graph is in G< (ℓ, u).

Due to the symmetry of the transition probabilities, it is not hard to see that the chain is time-reversible with

respect to the uniform distribution. Also because of the holding probability of 1/2, the chain is aperiodic.

Finally, by a simple counting argument, there exists a polynomial C (=) such that %G< (ℓ,u) (a, b) ≥ 1/C (=) for

all a, b ∈ G< (ℓ, u) with %G< (ℓ,u) (a, b) > 0. The irreducibility of the chain (i.e., the fact that its state space

is strongly connected) for the intervals of interest will follow implicitly from our analysis (Lemma 5.1).

2.4 Near-regular degree sequences

Let A ≥ 1 be a given integer. A degree sequence d is said to be A-regular if 38 = A for 8 = 1, . . . , =. For a

fixed 0 ≤ U < 1 we say that a degree sequence d is (U, A)-near-regular if max8 |38 − A | ≤ AU. When we do

not refer to a specific (U, A) pair, we just write about near-regular degree sequences.

We state some properties of near-regular degree sequences that we will use later. The most important

result is Theorem 2.6 below. We use a slightly different formulation than that of [41].4 For any degree

4 Our formulation is in line with the note after Conjecture 1.2 in [41].
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sequence d = (31, . . . , 3=), define b =
∑
8 38/=, ` = b/(= − 1) and j =

∑
8 (38 − b)2/(= − 1)2. Roughly

speaking, the theorem states that if the distance between the degree sequence d and the b-regular sequence of

the same size is not too large, then the expression in (2.3) is a good approximation for |G(d) |. The absolute

constant U in Theorem 1.1 is mostly restricted by the n in Theorem 2.6.

Theorem 2.6 (Liebenau and Wormald [41]). There exists an absolute constant n > 0 such that for every

sequence of degree sequences
(
d (=) )

=∈N with b= even, max8∈[=] |3 (=)8 − b | = >
(
=n min{b, = − b − 1}1/2) , and

=2 min{`, 1 − `} → ∞, it holds that

|G(d) | ∼ F̄d :=
√

2 exp

(
1

4
− j2

4`2 (1 − `)2

) (
`` (1 − `) (1−`)

)=(=−1)/2 ∏

8

(
= − 1

3
(=)
8

)
. (2.3)

To be precise, there exists a non-negative function X(=) with X(=) → 0 as = → ∞, so that the relative error

in “∼” is bounded above in absolute value by X(=) for every such
(
d (=) )

=∈N.

Furthermore, we also rely on the notion of strong stability introduced in [1] (and implicitly already used

in [31]). A combinatorial definition of this notion is given below. It essentially states that any graph with a

slightly perturbed degree sequence can easily be transformed into a graph with the desired degree sequence

by flipping the edges on a short alternating path. An alternating (D, E)-path in a graph � is an edge-disjoint

(D, E)-path (in the corresponding complete graph) alternating between edges and non-edges of �, starting

with an edge adjacent to D, and ending with a non-edge adjacent to E.5 If D = E we obtain an alternating

cycle.

To facilitate the definition of strong stability, let G ′(d) = ⋃
d′ G(d′) with d′ ranging over all sequences

d′ satisfying
∑
8 3

′
8 =

∑
8 38 and

∑
8 |3 ′8 − 38 | = 2, i.e., there exist ^, _ such that 3 ′^ = 3^ + 1, 3 ′_ = 3_ − 1, and

3 ′8 = 38 otherwise.

Definition 2.7 (Strong stability). A class D of degree sequences is strongly stable if there exists a constant

: ∈ N, such that for all d ∈ D and all � ∈ G ′(d), there is an alternating (D, E)-path in � of length at most :,

where D and E are the unique nodes with deg� (D) = 3D + 1 and deg� (E) = 3E − 1.

Proposition 2.8. Let 0 < U < 1/2 be a constant and assume that 2 ≤ A (=) ≤ (1 − d)= for some constant

0 < d < 1 and = ∈ N. Then there exists some =1 ∈ N so that the class F(U,A ) of (U, A)-near-regular degree

sequences of length at least =1 is strongly stable.

The following two results hold for the class F(U,A ) in Proposition 2.8. Lemma 2.9 essentially states that if

an edge is present in some graphical realization, then there exists a short alternating cycle to obtain a graphical

realization with the same degree sequence not containing that edge. As a result, the subset of realizations in

G(d) containing a given edge and the set of realizations not containing it are polynomially related in size.

Lemma 2.9. Let d ∈ F(U,A ) . Suppose that � ∈ G(d) and let {D, E} ∈ � (�) (resp. {D, E} ∉ � (�)). Then

there exists a graph � ′ ∈ G(d) with {D, E} ∉ � (� ′) (resp. {D, E} ∈ � (�)) and |� (�)△� (� ′) | ≤ 12.

Similarly, suppose that {D, F}, {D, E} ∈ � (�). Then there exists a graph � ′ ∈ G(d) with {D, F} ∈ � (� ′)
and {D, E} ∉ � (� ′), and |� (�)△� (� ′) | ≤ 12.

Furthermore, the switch Markov chain is rapidly mixing for the class F(U,A ) . This follows directly from [1]

where it is shown that the switch Markov chain is rapidly mixing for all strongly stable classes of degree

sequences. In particular, we will use the following result.

Corollary 2.10 (Follows from [1]). Let @(=) ≥ 2 be a given polynomial and consider the lazy switch Markov

chain M = (G(d), %G(d)) for some d ∈ F(U,A ) that proceeds as follows: For a given � ∈ G(d)

5 Recall that a non-edge is an edge contained in the complement of � (�).
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• With probability 1 − 1/@(=) do nothing, and

• With probability 1/@(=), try to perform a switch operation.

Then there exists a polynomial ?(=), such that for any d ∈ F(U,A ) we have Gap(%G(d)) ≥ 1/?(=).

3 Proof approach overview

In this section we give a high-level overview of the proofs of Theorems 1.2 and 1.3. We decompose the degree

interval Markov chain twice using Theorem 2.4, where each part of the decomposition corresponds to one of

the graph operations in Figure 1. The second step of this decomposition also gives the decomposition of the

switch-hinge flip Markov chain.6 Let T = {<1, . . . , <2}, where <1 and <2 are the minimum and maximum

number of edges, respectively, that any � ∈ G(ℓ, u) could have; e.g., <1 = 1
2

∑
8 ℓ8 and <2 = 1

2

∑
8 D8 in case

the two summands are even.

First we partition G(ℓ, u) into disjoint sets G< (ℓ, u) for < ∈ T . Recall that G< (ℓ, u) =
{
� ∈ G(ℓ, u) :∑

8 38 (�) = 2<
}
. The restriction Markov chains MG< (ℓ,u) are essentially given by restricting the original

chain to only perform switch and hinge flip operations that respect the degree intervals on graphs with

precisely < edges. Applying Theorem 2.4—with V and W to be determined later—we get

Gap(%) ≥ VW · Gap(%T) · min
<∈T

Gap(%G< (ℓ,u) ) , (3.1)

where %T is the transition matrix of the Metropolis-Hastings projection chain on T .

Next we partition the sets G< (ℓ, u) further into sets G(d) for sequences d in D< (ℓ, u) =
{
d :

∑
8 38 = 2<

and ℓ ≤ d ≤ u
}
. For this part of the decomposition we get a Metropolis-Hastings projection chain on the

set D<. The restriction chains on MG(d) are the chains in which we essentially only apply switch operations

on all graphs with degree sequence d. This is precisely the switch Markov chain with some polynomially

bounded holding probability (as defined in Corollary 2.10). Using one more time Theorem 2.4 for each

<—again, with V< and W< to be determined later—we have

Gap(%G< (ℓ,u) ) ≥ V<W< · Gap(%D<
) · min

d∈D<

Gap(%G(d)) , (3.2)

where %D<
is the transition matrix of the Metropolis-Hastings chain on D<. Combining (3.1) and (3.2) we

get

Gap(%) ≥ VW · Gap(%T) · min
<∈T

{
V<W< · Gap(%D<

) · min
d∈D<

Gap(%G(d))
}
. (3.3)

In order to show that the degree interval Markov chain is rapidly mixing, it suffices to show that V, W, all V<
and W<, and all spectral gaps can be lower bounded by 1/@(=) for some polynomial @(=).

Note that in order to show that the switch-hinge flip Markov chain is rapidly mixing, it suffices to show

that V< and W< and the spectral gaps involved in (3.2) are polynomially bounded, where < is given. That is,

we only need to consider the second decomposition step.

A polynomial lower bound on V and each one of the V< follows by the very definition of the degree interval

Markov chain (see also the discussion after its definition).

In order to bound W and W<, for all <, we use Lemma 2.9. Roughly speaking, we need to show that we

can move rather easily between realizations of two degree sequences d and d′, with
∑
8 |38 − 3 ′8 | = 2. The

high-level idea is to show that it is either directly possible to perform a hinge flip in order to transition from

a graph � with degree sequence d to some � ′ with degree sequence d′, or that � is not too far away from

6 The transition probabilities of the switch-hinge flip Markov chain are chosen exactly to have it mimic the induced restriction

chains from the first decomposition step.
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some other graph � with the same degree sequence d from which it is possible to directly move to some � ′

with degree sequence d′ via a hinge flip. We take an analogous approach for bounding W but in terms of

addition/deletion operations rather than hinge flips.

The gaps of the chains MG(d) are globally bounded because of known rapid mixing results for the switch

Markov chain [1] (Corollary 2.10). In order to show Theorem 1.1, it therefore remains to bound Gap(%D<
),

which we do in Section 5.1; an outline is given in Section 3.1. For Theorem 1.3, we additionally also need

to bound Gap(%T), which we do in Section 5.2; a brief outline is given in Section 3.2.

3.1 Proving Theorem 1.2

The main technical challenge of Theorem 1.2 lies in proving that the resulting Metropolis-Hastings projection

chain on D< (ℓ, u) is rapidly mixing, i.e., that Gap(%D<
) can be polynomially bounded. We sometimes refer

to this chain as the hinge flip projection chain. Note that for d, d′ ∈ D< (ℓ, u), with | |d − d′ | |1 = 2, it follows

from (2.2) that

%MH(d, d′) =
1

2=2
min

{
1,

|G(d′) |
|G(d) |

}
,

by taking Δ = =2 in (2.2). Intuitively, whether or not the hinge flip projection chain is rapidly mixing depends

on the quantities |G(d) | for d ∈ D< (ℓ, u). In order to show that it is rapidly mixing, we first argue, based a

comparison argument, that if suffices to show that the load-exchange Markov chain on D< (ℓ, u) is rapidly

mixing for the weights F (3) = |G(d) |. (It is not hard to see that D< is in fact an "-convex set.) This

will, roughly speaking, follow from the fact that both chains have the same stationary distribution c with

c(d) ∝ F (d), and the fact that their transition probabilities are polynomially related for the degree sequences

that we are interested in (using the remark at the end of Appendix A.1).

In order to show that the load-exchange Markov chain on D< (ℓ, u) is rapidly mixing, we would like to

use Corollary 2.5. This is allowed if, for given ℓ, u and <, the polynomial

ℎ(G) =
∑

d∈D< (ℓ,u)
F (d) · Gd =

∑

d∈D< (ℓ,u)
|G(d) | · Gd

is SLC. This seems hard to prove (and might not be true in general). However, it turns out that when replacing

the weights F (d) by by the approximations F̄ (d) as given in the asymptotic formula (2.3) of Liebenau and

Wormald [41], the resulting polynomial

ℎ̄(G) =
∑

d∈D< (ℓ,u)
F̄ (d) · Gd (3.4)

is in fact SLC, when considering the degree interval instances of Theorem 1.1.7 We show this fact in Theorem

4.2 by observing that the polynomial in (3.4) is of the form (2.1).

It implies that if we run the load-exchange Markov chain with the approximations F̄ (d), it is in fact

rapidly mixing with stationary distribution c̄ given by c̄(d) ∝ F̄ (d). Now, the approximations have the

property that for some =0 sufficiently large, it holds that for all = ≥ =0 and d ∈ D< (ℓ, u)

1

2
|G(d) | ≤ F̄ (d) ≤ 3

2
|G(d) | .

This also implies that
1

3
c(d) ≤ c̄(d) ≤ 3c(d) .

7 We remark at this point, that, although this is true for the regime considered in Theorem 1.1, this does not seem to be true for

the general range in Theorem 2.6.
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One can then again use a Markov chain comparison argument to argue that the load-exchange Markov chain

based on the original weights F (d) is also rapidly mixing (based on the final remark in Appendix A.1). This

in turn then implies that the hinge flip projection chain is also rapidly mixing, which is what we wanted to

show.

General framework. The approach described above for showing rapid mixing of the switch-hinge flip

Markov chain might be applicable to other classes of degree interval instances. Informally speaking, the

essential things that are needed are the following two things:

1. The degree sequences satisfying the interval constraints are strongly stable (Definition 2.7).

2. The weights |G(d) | give “approximately” rise to an SLC polynomial.

The requirement of strong stability in the first point is needed for various reasons. First of all, it is a

sufficient condition for the switch Markov chain (the restrictions chains in our decomposition) to be rapidly

mixing [1]. Secondly, we rely on it when bounding the parameter W in the Martin-Randall decomposition

theorem (Theorem 2.4). Thirdly, strong stability is sufficient to argue that the transition probabilities of the

load-exchange Markov chain, and the Metropolis-Hastings projection chain, are polynomially related (so that

we can use a Markov chain comparison argument to compare their mixing times).

Furthermore, for the second point, it suffices to find values I(d) and polynomials @1 and @2 such that

1

@1 (=)
|G(d) | ≤ I(d) ≤ @2(=) |G(d) | ,

and for which

ℎ̄(G) =
∑

d∈D< (ℓ,u)
I(d) · Gd

is SLC.

3.2 Proving Theorem 1.3

In order to prove Theorem 1.3, we additionally need to show that the projection chain on T is also rapidly

mixing, i.e., that Gap(T ) is polynomially bounded. In other words, we consider the Metropolis-Hastings

projection Markov chain with state space {0, . . . , 1}, where 0 =
1
2

∑
8 ℓ8 and 1 =

1
2

∑
8 D8,8 and c(<) ∝

|G<(ℓ, u) | for < ∈ {0, . . . , 1}. This chain will sometimes be referred to as the addition-deletion projection

chain. A sufficient condition for this Markov chain to be rapidly mixing is that the sequence (F<)<=0,...,1

given by F< = |G< (ℓ, u) | is log-concave, meaning that for every < it holds that F<+1F<−1 ≤ F2
<. We show

log-concavity of this sequence to be true when the intervals have size at most one (corresponding to the

statement of Theorem 1.3) by using a variation on an argument of Jerrum and Sinclair [32].

4 SLC property in restricted range of Liebenau-Wormald result

Throughout this section, we consider < and = as given. Recall that for a given degree sequence d =

(31, . . . , 3=) we defined b = b (=, <) = ∑
8 38/= = 2</=, ` = `(=, <) = b/(= − 1) = 2</(=(= − 1)) and

j(d) = ∑
8 (38 − b)2/(= − 1)2. Furthermore, in (2.3) we defined

F̄ (d) =
√

2 exp

(
1

4
− B(d)2

) (
`` (1 − `) (1−`)

)=(=−1)/2 ∏

8

(
= − 1

38

)
, (4.1)

8 We assume 0 and 1 to be integral here for sake of simplicity.
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where

B(d) = j(d)
2`(1 − `) .

In order to show that the weights F̄ (d) give rise to an SLC polynomial ℎ̄(G) = ∑
d∈D< (ℓ,u) F̄d · Gd, it would

be sufficient by Proposition 2.3, to argue that the function B(d)2 is "-convex. Unfortunately, it turns out that

this is not the case.

Instead, we simply show that in the regime of Theorem 1.1, it holds that B(d)2 → 0, and so we can forget

about the contribution exp(−B(d)2) in (4.1). The resulting approximation formula is easily seen to be SLC

(which intuitively follows from a discrete form of log-concavity of the binomial coefficients).

Lemma 4.1. Under the conditions on [ℓ, u] as in Theorem 1.1, with 0 < d < 1 and 2 ≤ A = A (=) ≤ (1− d)=,
it holds for any ℓ ≤ d ≤ u that

0 ≤ B(d) ≤ 8

Ad(= − 1) . (4.2)

Proof. By the definition of j(d), B(d) ≥ 0 always holds. To see the upper bound, note that the quantity B(d)
can be rewritten as

B(d) = j(d)
2`(d) (1 − `(d)) =

=(= − 1)
(= − 1)2

∑
8 (38 − A)2

2< (=(= − 1) − 2<) , (4.3)

where 2< =
∑
8 38 . Note that

∑
8 (38 − A)2 ≤ =A2U ≤ =A ≤ =(= − 1). Moreover, we can bound < using the

simple facts that A − AU ≥ A/4 and =U ≤ d=/2 for = ≥ =1. The latter implies that

A + AU ≤ (1 − d)= + (1 − d)=U ≤ (1 − d)= + d=/2 = (1 − d/2)= .

So, we have

=
A

4
≤ 2< ≤ =

(
1 − d

2

)
= ,

and therefore,

2< (=(= − 1) − 2<) ≥ =A
4

(
1 −

(
1 − d

2

=

= − 1

))
=(= − 1) ≥ Ad=2 (= − 1)

8
. (4.4)

By combining (4.3) and (4.4), we then get

B(d) ≤ =

= − 1

8=(= − 1)
Ad=2 (= − 1) =

8

Ad(= − 1) .

This completes the proof. �

We next summarize the main result of this section, and give the remaining small technical steps of its

proof. In a nutshell, it states that the Liebenau-Wormald formula in (2.3) is approximately SLC in the regime

of Theorem 1.1.

Theorem 4.2. For given =, < ∈ N, ℓ, D ∈ N= with ℓ ≤ u, and degree sequence d with
∑
8 38 = 2< and

ℓ ≤ d ≤ u, let

Ī(d) =
√

24
1
4

(
`` (1 − `) (1−`)

)=(=−1)/2 ∏

8

(
= − 1

38

)
. (4.5)

The resulting 2<-homogeneous polynomial

5̄ (G) =
∑

d∈D< (ℓ,u)
Īd · Gd
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is SLC.

Furthermore, there exists an =0 ∈ N such that for all = ≥ =0 and < ≥ =, if the degree interval [ℓ, u]
satisfies the conditions of Theorem 1.1, then

1

2
|G(d) | ≤ Ī(d) ≤ 3

2
|G(d) |. (4.6)

for every ℓ ≤ d ≤ u.

Proof. We first note that the factors
√

2 and
(
`` (1 − `) (1−`)

)=(=−1)/2
can all be seen as non-negative scalars

as = and < are given. This means, by Proposition 2.2, that it suffices to show that the polynomial

4
1
4

∏

8

(
= − 1

38

)

is SLC.

Comparing this to the second polynomial in Proposition 2.3, it follows that we can simply choose a to be

the constant function a(d) = 1
4

on its effective domain D< (ℓ, u). (As mentioned earlier, intuitively it is SLC

because the binomial coefficients satisfy a discrete form of log-concavity.) The statement in (4.6) follows

directly from Lemma 4.1. �

5 Decomposition of degree interval Markov chain

In this section we give the missing details regarding the decomposition steps as outlined in Section 3.

5.1 Bounding #m , $m and Gap(VDm
)

Throughout this section we assume that some < ∈ {<1, . . . , <2} is fixed. Moreover, recall that we consider

degree intervals of the form [38 , 38 + 1], or [38 , 38], for 8 = 1, . . . , =. It is not hard to see that V< ≥ (6=4)−1.

This rough polynomial bound follows directly from the transition probabilities of the degree interval Markov

chain.

We first lower bound the W< in Lemma 5.1 below. By the definition of the hinge flip operation we have

that for any d, d′ ∈ D<, there is a strictly positive transition probability between d and d′ if and only if∑
8 |38 − 3 ′8 | = 2. The proof of Lemma 5.1 follows from Lemma 2.9, where it is shown that for a graph with

a given degree sequence, we can always find a graph with a slightly perturbed degree sequence that is close

to the former in terms of symmetric difference (when the original sequences satisfies strong stability).

Lemma 5.1. There exists a polynomial @1 (=) such that, for any feasible < and for all d, d′ ∈ D< with∑
8 |38 − 3 ′8 | = 2, we have cD<

(md (G (d′))) ≥ 1
@1 (=) cD<

(G (d′)) .

Proof. Again assume that = ≥ =1 =

⌈
(2/d) 1

1−2U

⌉
. Let 0 and 1 be the unique nodes such that 3 ′0 = 30 + 1 and

3 ′1 = 31 − 1; note that the uniqueness of 0, 1 follows from the condition
∑
8 |38 − 3 ′8 | = 2. Let

H = {� ∈ G(d) : ∃2 ∈ [=] such that {1, 2} ∈ � (�), {0, 2} ∉ � (�)} ,

and note that it has the property

|md (G(d′)) | ≥ 1

=
|H | . (5.1)

To see this, note that for a given � ∈ H , we can perform the hinge flip that removes the edge {1, 2} and adds

the edge {0, 2} to obtain an element in G(d′). Moreover, there can be at most = graphs � ∈ H that map onto

a given � ′ ∈ md (G(d′)), as there are at most = choices for 2.
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Moreover, using the second part of Lemma 2.9, we show that

|H | ≥ 1

=12
|G(d) | . (5.2)

To see this, note that for any � ∈ G(d), we have 31 = 3 ′1 − 1 ≥ 0 which implies that 1 has at least one

neighbor 2 in �. Now, if {0, 2} ∉ � (�) we obtain an element in H ; otherwise, we can find a graph � ′

close to � (using Lemma 2.9) for which {0, 2} ∉ � (�) while still {1, 2} ∈ � (�). As there are at most

=12 graphs � ∈ G(d) that map to the same � ′ ∈ H , the inequality (5.2) follows. Moreover, we also have

=10 |G(d) | ≥ |G(d′) | which follows directly from Definition 2.7 and (the proof of) Proposition 2.8.

Combining the last observation with (5.1) and (5.2) then yields

|md (G(d′)) | ≥ 1

@1(=)
|G(d′) | ,

for @1(=) = =23. Dividing both sides by
∑

d∈D<
|G(d) |, then gives the desired result. �

It remains to bound Gap(%D<
). As explained in Section 3.1, the first step is to carry out a comparison

argument with the load-exchange Markov chain with weights F (d) = |G(d) | (so that it will be sufficient

to study the mixing time of the latter). Remember that both the hinge flip projection chain, as well as the

load-exchange chain have stationary distribution c(d) ∝ F (d).
In what follows we write MD<

= (D<, %) for the (Metropolis-Hastings) hinge flip projection chain, and

M ′
D<

= (D<, %
′) for the load-exchange chain on D<.

Lemma 5.2. There exists a polynomial ?(=) such that

?(=) Gap(%D<
) ≥ Gap(%′

D<
) .

Proof (sketch). It suffices to show that there exists polynomials ?1 and ?2 such that, whenever d, f ∈ D<

satisfy | |d − f | | = 2, then
1

?1(=)
≤ %(d, f ), %′(d, f ) ≤ 1

?2(=)
. (5.3)

This then implies that the transition probabilities %(d, f ) and %′(d, f ) are themselves polynomially related.

In turn, this implies the existence of the desired polynomial ?(=) as both chains have the same stationary

distribution and therefore their spectral gaps are polynomially related (see Appendix A.1).

The existence of the polynomials in (5.3) follows from the fact that all near-regular degree sequences

are strongly stable. First of all, it holds that the term |G(d′) |/|G(d) | in the Metropolis-Hastings hinge

flip projection chain can always be upper and lower bounded by a polynomial because of strong stability.

Furthermore, in the load-exchange Markov chain we pick (in the second step) a new degree sequence d′

proportional to F (d′) over all possible choices of d′ with | |d − d′ | |1 = 2 that respect the degree interval

bounds. For a given d, let # (d) be the set of all such sequences d′. Then the probability of transitioning

to d′ is (up to an additional polynomial factor because of the first step of the load-exchange Markov chain)

equal to
|G(d′) |∑

f ∈# (d)
|G( f ) |

,

which can again be upper and lower bounded by a polynomial because of strong stability, and because

|# (d | ≤ =2. �
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Lemma 5.2 implies that we may focus on bounding Gap(%′
D<

). Now, by the arguments given in Section

3.1 in combination with another simple comparison argument using (A.2) and Theorem 4.2, it suffices to

bound Gap(%′′
D<

) where %′′ is the transition matrix of the hinge flip Markov chain in which we replace the

weights F (d) by the approximations Ī(d) as in (4.5).

In Section 4, we showed that the polynomial in (4.6) is in fact SLC, so then Corollary 2.5 implies that the

modified log-Sobolev constant of this chain can be lower bounded by a polynomial, which implies the same

for the spectral gap by (A.1). This completes this section, and shows in particular that the switch-hinge flip

Markov chain is rapidly mixing, which in turn completes the proof of Theorem 1.1.

5.2 Bounding #, $ and Gap(VT)

Recall that MT is the Metropolis-Hastings chain on the index set T = {<1, . . . , <2}. For simplicity, we

use F< = |G< (ℓ, u) | to denote the number of feasible graphical realizations with < edges. Note that for any

< ∈ T we have cT (<) = F</
∑
<∈T F<, and that %T (<,< ′) > 0 if and only if |< − < ′| ≤ 1. From the

definition of the degree interval Markov chain, it immediately follows that V ≥ 1/@(=) for some polynomial

@(=). We lower bound W in the following lemma following the same approach as for Lemma 5.1.

Lemma 5.3. There exists a polynomial @2 (=) such that, for all <,< ′ ∈ T with |< − < ′| = 1, we have

cT (m< (G<′)) ≥ 1
@2 (=) cT (G<′).

Proof. Assume that < ′ = < + 1 (the case < ′ = < − 1 is analogous). Let � ∈ Gd for some d ∈ D<. Note

that < ′ ≥ <1 + 1 > <1, which implies that there are nodes 8 and 9 whose degrees in � are not equal to the

upper bound of their degree interval. Note that the set

H = {� ∈ G< : ∃8, 9 ∈ [=] with 38 (�) < D8 , 3 9 (�) < D 9 and {8, 9} ∉ � (�)}

has the property that

|m< (G<′) | ≥ 1

< + 1
|H | . (5.4)

In order to see this, note that for any � ∈ H we can add the arc {8, 9} (recall that these nodes depend on the

choice of �) to obtain an element in G<′ . On the other hand,there can be at most < + 1 graphs � that map

onto a given graph � ∈ G<′ using this procedure. This gives the inequality (5.4).

Moreover, using the first part of Lemma 2.9 and following the same argument as in the proof of Lemma

5.1 it can be shown that

|H | ≥ 1

=12
|G< | . (5.5)

To see this, note that for any graph � ∈ G<, nodes 8 and 9 with 38 (�) < D8 and 3 9 (�) < D 9 always exist,

as < < <2. Moreover, if {8, 9} ∈ � (�) we know from Lemma 2.9 that there is a graph � ′ with the same

degree sequence not containing edge {8, 9} close to �.

We next show that |G< | ≥ |G<′ |/?(=) for some polynomial ?(=). To see this, note that for any� ′ ∈ |G<′ |
there exist nodes G and H such that 3G (� ′) > ℓG and 3H (� ′) > ℓH as < ′ = < + 1 > <1. If {G, H} ∈ � (� ′) we

can remove it to obtain an element of |G< |. Otherwise, again using Lemma 2.9 we can first find an element

� ′′ ∈ G<′ close to � ′ that contains {G, H} and the remove it. Combining this with (5.5) yields the existence

of a polynomial @2 (=) such that

|H | ≥ 1

@2 (=)
|G<′ | .

Finally, combining the latter inequality with (5.4) and dividing both sides by
∑
<∈T F<, then gives the desired

result. �
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In order to show that MT is rapidly mixing or, in particular, that the gap Gap(T ) can be polynomially

bounded, it is sufficient to show that the sequence (F<)<∈T is log-concave. Log-concavity means that for

any < ∈ T {<1, <2}, F<−1F<+1 ≤ F2
<.

Theorem 5.4. The sequence (F<)<∈T is log-concave for all interval sequences [ℓ, u] for which D8 ∈
{ℓ8, ℓ8 + 1} for all 8 ∈ [=].

Proof. We follow the notation, terminology and general outline of the proof of Theorem 5.1 in [32]. Define

� = G<+1 × G<−1 and � = G< × G<. We will show that |�| ≤ |�|, from which the claim follows.

Note that the symmetric difference of any two subgraphs of  = can be decomposed into a collection of

alternating cycles and simple paths. We will do this in a canonical way.9 Fix some total order �4 on the edges

of  =. For two subgraphs � and � ′ we will call edges in � (�) � (� ′) blue, and edges in � (� ′) � (�) red.

Around every node, we will pair up blue edges with red edges as much as possible. We do this by repeatedly

selecting a node and pairing up the lowest ordered red and blue edge that have not yet been paired up. This

yields a decomposition of the symmetric difference into i) alternating red-blue cycles, ii) alternating simple

red-blue paths of even length (with same number of red and blue edges), iii) simple paths ending and starting

with a red edge, iv) simple paths ending and starting with a blue edge. We call this the canonical symmetric

difference decomposition of � (�)△� (� ′) with respect to �4, or simply the canonical decomposition of

� (�)△� (� ′). We call a simple path a �-path if it contains one more edge of � than of � ′ (i.e., red edges

are one more than blue edges), and a � ′-path if it contains one more edge of � ′. We emphasize that any path

of odd length in the symmetric difference is of one of these two types.

Now, for every pair (�,� ′) ∈ � it holds that the number of �-paths exceeds the number of � ′-paths

by precisely two (as � has two edges more than � ′). For this reason, we partition � into disjoint classes

{�A : A = 1, . . . , <} where

�A = {(�,� ′) ∈ � : the canonical decomposition of � (�)△� (� ′)
contains A + 1 �-paths and A − 1 � ′-paths} .

In order to prove |�| ≤ |�| it suffices to show |�A | ≤ |�A | for all A. We call a pair (!, ! ′) ∈ � reachable

from (�,� ′) ∈ � if and only if � (�)△� (�) = � (!)△� (! ′) and ! is obtained by from � by taking some

�-path in the canonical decomposition and flipping the parity of the edges with respect to � and � ′. It is

important to see that the canonical symmetric difference decomposition of the pairs (�,� ′) and (!, ! ′) is

the same because all degree intervals have length one. Note that the number of pairs in �A reachable from a

given (�,� ′) ∈ �A is precisely the number of �-paths in the canonical decomposition of � and � ′, which

is A + 1. Conversely, any given (!, ! ′) ∈ �A is reachable from precisely A pairs in �A . Therefore, if |�A | > 0,

we have
|�A |
|�A |

=
A + 1

A
> 1 .

This proves the claim. �

We are ready to bound the spectral gap of %T . Note that Ω in the statement of Theorem 5.5 is actually T .

Recall that |T | = <2 −<1 + 1 ≤ =/2 + 1 ≤ =. Moreover, the ratios F8/F 9 are also polynomially bounded for

any 8, 9 ∈ T with |8 − 9 | = 1. This can be shown exactly as in the proofs of the Lemmata 5.1 and 5.3; see

also Appendix C. As a result, it is sufficient to prove the statement in Theorem 5.5 below in order to bound

the gap of %T .

9 This decomposition is the main extra step we need compared to the proof of Theorem 5.1 in [32]. The symmetric difference of

two matchings is by construction already a disjoint union of cycles and paths. This is also where the analysis breaks down in case

the degree intervals have length at least two.
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Theorem 5.5. Let (F<)<∈Ω be a log-concave sequence of non-negative numbers and let M = (Ω, %) be a

Markov chain with transition probabilities

%(8, 9) =



1
4

min
{
1, F 9/F8

}
if |8 − 9 | = 1 ,

0 if |8 − 9 | > 1 ,

1 − %(8, 8 − 1) − %(8, 8 + 1) if 8 = 9 .

Then 1/Gap(%) ≤ 4 |Ω|3 max8, 9: |8− 9 |=1 F8/F 9 .10

Proof. First note that the stationary distribution c of M is proportional to the weights (F8)8∈Ω, i.e., c(8) =
F8/

∑
?∈Ω F?, as desired. We bound the congestion of the straightforward multi-commodity flow 5 in which

we route c(8) c( 9) units of flow over the path 8 → (8 + 1) → · · · → 9 if 8 < 9 , or 8 → (8 − 1) → · · · → 9 if

8 > 9 .

We consider a fixed transition 4 = (I, I + 1). Note that the proof for transitions of the form (I, I − 1) is

symmetric, since a sequence (F8)8∈Ω is log-concave if and only if the sequence (F |Ω |−8+1)8∈Ω is log-concave.

We have

f (4) =
∑

1≤8≤I

∑

I< 9≤ |Ω |

c(8) c( 9)
c(I)%(I, I + 1) ≤ 4 max

8, 9: |8− 9 |=1

F8

F 9

∑

1≤8≤I

∑

I< 9≤ |Ω |

c(8) c( 9)
c(I)

= 4 max
8, 9: |8− 9 |=1

F8

F 9

( ∑

?∈Ω
F?

)−1∑

1≤8≤I

∑

I< 9≤ |Ω |

F8F 9

FI
. (5.6)

Log-concavity of the sequence (F@)@∈Ω implies that for any fixed 8 < 9 , and any 0 ∈ N such that 8+0 ≤ 9 −0,

we have

F8F 9 ≤ F8+0F 9−0 . (5.7)

This follows from repeatedly applying the log-concavity condition. Indeed, log-concavity gives us
F8

F8+1
≤

F8+1

F8+2
≤ . . . ≤ F9−2

F9−1
≤ F9−1

F9
and thus F8F 9 ≤ F8+1F 9−1. By repeating this with 8+1 and 9 −1 (i.e., by removing

the outer terms) we get
F8+1

F8+2
≤ . . . ≤ F9−2

F9−1
and thus F8+1F 9−1 ≤ F8+2F 9−2. After 0 steps we get (5.7).

Now, for a fixed 8 and 9 in the double summation in (5.6), let 08 9 be such that F8+08 9 or F 9−08 9 (or both)

equals FI . Then (5.7) gives us that F8F 9 ≤ FI F? for some ? ∈ Ω. Note that for any choice of I, the double

summation in (5.6) has at most |Ω|2 terms (as there are at most |Ω| choices for 8 and 9). This implies that∑
1≤8≤I

∑
I< 9≤ |Ω | F8F 9/FI ≤ |Ω|2 ∑?∈Ω FIF?/FI = |Ω|2 ∑?∈Ω F? . Combining this inequality with (5.6),

we obtain f (4) ≤ 4|Ω|2 max8, 9: |8− 9 |=1 F8/F 9 . The proof is completed once we notice that, by the definition

of the flow 5 , ℓ( 5 ) ≤ |Ω|. �

This then completes the proof of Theorem 1.3.

6 Discussion and future directions

We did not attempt to optimize the upper bounds on the mixing times of the Markov chains involved. Already

for the switch Markov chain no good upper bounds are known on its mixing time. For instance, the best

known upper bound for A-regular graphs is A23=8 (A= log(A=) + log(1/n)) [14, 15]. This is a central issue for

many MCMC approaches for sampling graphs with given degrees (or degree intervals in our case). Various

non-MCMC approaches to the problem, see, e.g., [3, 24, 25, 39, 45, 52], often have better running times, but

only work for smaller classes of degree sequences or have weaker guarantees on the uniformity of the output

than we require in our setting. An interesting first direction for future work is determining whether the degree

interval chain is rapidly mixing for more general instances.

10 We suspect a similar result is true without the dependence on the F8 but this is not needed for our purpose.
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The most intriguing question from our point of view, however, is whether is there a black-box reduction

implying that if the switch Markov chain is rapidly mixing for all degree sequences d satisfying ℓ ≤ d ≤ u,

then the degree interval Markov chain is also rapidly mixing. More general, can the problem of sampling

graphs with given degree intervals always be reduced to the problem of sampling graphs with given degrees?

Further, one could explore other, non-MCMC, approaches for approximate sampling, especially when

the degree ranges are relatively large. Can one come up with an algorithm in which resampling certain “bad

events” (e.g., resampling edges adjacent to a node not satisfying its degree interval constraints) yields an

exact uniform sample, following the “partial rejection sampling” framework of Guo, Jerrum and Liu [28]?

While this seems unlikely when sampling graphs with given degrees, we suspect it is possible for the problem

of sampling graphs with (sufficiently large) given degree intervals.
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A Modified log-Sobolev constant

Let M = (Ω, %) be a time-reversible Markov chain with stationary distribution c, and 5 , 6 : Ω → R≥0. Let

Ec ( 5 ) =
∑
G∈Ω c(G) 5 (G). Furthermore, define the entropy-like quantity

Entc ( 5 ) = Ec [ 5 log( 5 ) − 5 log(Ec ( 5 ))] ,

and the Dirichlet form

E% ( 5 , 6) =
1

2

∑

G∈Ω

∑

H∈Ω
c(G)%(G, H) [ 5 (G) − 5 (H)] [6(G) − 6(H)] .

The modified log-Sobolev constant of the Markov chain M is defined by

d(%) = inf

{
E% ( 5 , log( 5 ))

Entc ( 5 )

��� 5 : Ω → R≥0, Entc ( 5 ) ≠ 0

}
.

As stated in Section 2, it holds that (see, e.g., [7])

gG (n) ≤
1

d(%)

(
log log c(G)−1 + log

(
1

2n2

))
.

Furthermore, for any Markov chain it holds that

2(1 − _1(%)) ≥ d(%) . (A.1)

where _1(%) is the second-largest eigenvalue of % (assuming the Markov chain is lazy).

A.1 Markov chain comparison

A useful property of proving mixing time bounds through the modified log-Sobolev constant, is that it is

easy to see that small perturbations in the transition probabilities and the stationary distribution only result

in mild variations in the modified log-Sovolev constant of the resulting Markov chain (by means of a Markov

chain comparison argument). Goel [26] states the following for the modified log-Sobolev constant, based on

similar results for the other constants by Diaconis and Saloff-Coste [17].

Theorem A.1 (Lemma 4.1 [26]). Let M = (Ω, %) and M ′ = (Ω′, %′) be two finite, reversible Markov chains

with stationary distributions c and c′, respectively, and modified log-Sobolev constant d and d′, respectively.

Assume there is a mapping q : , (Ω, c) → , ′(Ω′, c′) mapping 5 → 5 ′ for 5 : Ω → R≥0, and constants

�, 2 > 0 and � ≥ 0 such that for all 5 ∈ , (Ω, c), we have

E%′ ( 5 ′, log 5 ′) ≤ � · E% ( 5 , log 5 ) and 2 · Entc ( 5 ) ≤ Entc′ ( 5 ′) + � · E% ( 5 , log 5 ) .

Then
2d′

� + �d′ ≤ d .

In particular, if Ω = Ω′ and there exists a 0 < X < 1 such that (1− X)%(G, H) ≤ %′(G, H) ≤ (1 + X)%(G, H)
for all G, H ∈ Ω, and (1 − X)c(G) ≤ c′(G) ≤ (1 + X)c(G) for G ∈ Ω, it directly follows that

1

d
≤ 1 + X

1 − X · 1

d′
. (A.2)
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B Missing details from Section 2

We give the full definition of the degree interval Markov chain and the two missing proofs from Section 2.

B.1 Degree interval Markov chain

The degree interval Markov chain to uniformly sample elements from G(ℓ, u), based on the local operations

of Figure 1, is defined as follows.

Assuming � ∈ G(ℓ, u) is the current state of the degree interval Markov chain:

• With probability 1/2, do nothing.

• Otherwise:

– With probability 1/6, try to perform a switch operation: choose an ordered tuple of nodes

(E, F, G, H) uniformly at random. If {F, E}, {G, H} ∈ � (�), and {H, E}, {G, F} ∉ � (�), then

delete {F, E}, {G, H} from � (�), and add {H, E}, {G, F} to � (�).
– With probability 1/6, try to perform a hinge flip operation: choose an ordered tuple of nodes

(E, F, G) uniformly at random. If {F, E} ∈ � (�) and {F, G} ∉ � (�), then delete {F, E} from

and add {F, G} to � (�) if the resulting graph is in G(ℓ, u).
– With probability 1/6, try to perform an addition/deletion operation: select an ordered tuple of

nodes (E, F). If {E, F} ∈ � (�), then delete it from � (�) if the resulting graph is in G(ℓ, u).
Similarly, if {E, F} ∉ � (�), then add it to � (�) if the resulting graph is in G(ℓ, u).

Due to the symmetry of the transition probabilities, it is not hard to see that the chain is time-reversible with

respect to the uniform distribution. Also because of the holding probability of 1/2, the chain is aperiodic.

Finally, by a simple counting argument, there exists a polynomial C (=) such that %G(ℓ,u) (a, b) ≥ 1/C (=) for

all a, b ∈ G(ℓ, u) with %G(ℓ,u) (a, b) > 0. The irreducibility of the chain (i.e., the fact that its state space is

strongly connected) for the intervals of interest will follow implicitly from our analysis, in particular Lemmata

5.1 and 5.3.

In order to obtain the switch-hinge flip Markov chain for the uniform sampling from G< (ℓ, u), one may

simply ignore addition/deletion operations, resulting in the description in Section 2.3.3, which is given here

as well as a quick reference. This explains the holding probability of 2/3.

Assuming � ∈ G< (ℓ, u) is the current state of switch-hinge flip Markov chain on G< (ℓ, u):
• With probability 2/3, do nothing.

• With probability 1/6, perform a switch operation.

• With probability 1/6, perform a hinge flip operation.

B.2 Missing proofs from Subsection 2.4

For convenience, before giving the proofs here, we first repeat the corresponding statements.

Proposition 2.8. Let 0 < U < 1/2 be a constant and assume that 2 ≤ A (=) ≤ (1 − d)= for some constant

0 < d < 1 and = ∈ N. Then there exists some =1 ∈ N so that the class F(U,A ) of (U, A)-near-regular degree

sequences of length at least =1 is strongly stable.
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Proof. Let = ≥ =1 =

⌈
(2/d) 1

1−2U

⌉
. It is then a matter of simple calculations to verify that the condition

(3max − 3min + 1)2 ≤ 43min (= − 3max − 1) is satisfied for all d ∈ F(U,A ) , where 3min and 3max are the

minimum and maximum value of d, respectively. Sequences satisfying this condition are strongly stable for

: = 10 [1, 31]. �

Lemma 2.9. Let d ∈ F(U,A ) . Suppose that � ∈ G(d) and let {D, E} ∈ � (�) (resp. {D, E} ∉ � (�)). Then

there exists a graph � ′ ∈ G(d) with {D, E} ∉ � (� ′) (resp. {D, E} ∈ � (�)) and |� (�)△� (� ′) | ≤ 12.

Similarly, suppose that {D, F}, {D, E} ∈ � (�). Then there exists a graph � ′ ∈ G(d) with {D, F} ∈ � (� ′)
and {D, E} ∉ � (� ′), and |� (�)△� (� ′) | ≤ 12.

Proof. Assume = ≥ =1 =

⌈
(2/d) 1

1−2U

⌉
as in the proof of Proposition 2.8. Note that, in all cases below, the

degree sequence d itself plays the role of being a perturbed degree sequence in the argument. By inspecting

the proof of Proposition 2.8, this is allowed since = here is sufficiently large.

For the first case of the first part (i.e., when {D, E} ∈ � (�)), let H be such that {H, D} ∉ � (�). Such a

non-edge is guaranteed to exist, as = ≥ =1 > 2/d and the maximum degree of any node will then be bounded

away from = − 2. Also note that H has degree at least 2. By Proposition 2.8, we know that there exists some

alternating (H, E)-path of length at most 10. Combining this path with the non-edge {H, D} and the edge

{D, E}, results in an alternating cycle of length at most 12. Hence, if we flip all the edges on this alternating

cycle, we obtain a � ′ ∈ G(d) with the desired property.

For the second case of the first part (i.e., when {D, E} ∉ � (�)), we pick a H such that {H, D} ∈ � (�).
By Proposition 2.8, we consider some alternating (E, H)-path (of length at most 10). Combining this path

with the edge {H, D} and the non-edge {D, E}, we again obtain an alternating cycle of length at most 12. By

flipping this cycle, we get a � ′ ∈ G(d) with the desired property.

For the second part of the lemma, we make a similar, albeit more complicated, argument. We distinguish

two cases and then consider subcases depending on the relative position of the edge {D, F} with respect to

some alternating path.

Case 1: there exists H such that {H, D}, {H, E} ∉ � (�). Consider such a node H. By Proposition 2.8, there

exists an alternating (H, E)-path of length at most 10. A key observation here is that this alternating (H, E)-
path might contain the edge {D, F}. Of course, if this is not true, we proceed like in the first case of the first

part above. So assume that the alternating (H, E)-path does contain {D, F}. If {D, F} goes from F to D as

we traverse the path from H to E, then by taking the remaining (D, E)-subpath of the alternating path together

with the edge {D, E} we get an alternating cycle (of length at most 8), that contains the edge {D, E} but not the

edge {D, F}. If {D, F} goes from D to F as we traverse the path from H to E, then by taking the (H, D)-subpath

preceding {D, F} on the alternating path together with the edge {D, E} and the non-edge {H, E} we again get

an alternating cycle (of length at most 10), that contains {D, E} but not {D, F}.
In any case, by flipping the edges on the corresponding alternating cycle, we obtain a � ′ ∈ G(d) with

the desired property.

Case 2: for every H such that {H, D} ∉ � (�) we have {H, E} ∈ � (�). Consider a node G such that {G, E} ∉

� (�). Given the assumption of the current case, it must be that {G, D} ∈ � (�). By Proposition 2.8, there

exists an alternating (G, D)-path of length at most 10. If the edge {D, F} is not contained in this alternating

path, then the whole path together with the non-edge {G, E} and the edge {D, E} is an alternating cycle (of

length at most 12) that contains {D, E} but not {D, F}. Now, assume that the alternating (G, D)-path contains

{D, F}. If {D, F} goes from D to F as we traverse the path from G to D, then by taking the (G, D)-subpath

preceding {D, F} on the alternating path together with the edge {D, E} and the non-edge {G, E} we get an

alternating cycle (of length at most 8), that contains {D, E} but not {D, F}. Finally, if {D, F} goes from F

to D as we traverse the path from G to D, then by taking the remaining (D, D)-subpath of the alternating path
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together with the edges {D, E}, {G, D} and the non-edge {G, E}, we again get an alternating cycle (of length at

most 10), that contains the edge {D, E} but not the edge {D, F}.
In all subcases, by flipping the edges on the corresponding alternating cycle, we obtain a � ′ ∈ G(d) with

the desired property. �

C Reductions for approximate sampling and counting

We first explain how Theorem 1.1 follows from Theorem 1.2. The induced approximate sampler from

Theorem 1.2 can be turned into an approximate counter for |G<(ℓ, u) | by standard techniques (Section C.1).

Furthermore, this approximate counter can then be turned into an approximate counter for |G(ℓ, u) | by means

of a simple reduction (Section C.2). In turn, the approximate counter for |G(ℓ, u) | can be transformed into

an approximate sampler from G(ℓ, u), again by a standard technique (Section C.3).

A subtle point is that it is not known whether the problem of sampling and counting from G(ℓ, u), or

G< (ℓ, u), is self-reducible [37]. This follows rouhgly from the fact that it is not known whether the problem

of sampling/counting from G(d) is self-reducible in general. However, if one restricts to degree intervals

[ℓ, u] for which both an FPRAS and FPUAS for G(d) is known for every ℓ ≤ d ≤ u, like the set of P-stable

degree sequences [33], then standard reduction techniques for self-reducible problems can still be used.

To give a more concrete intuition, in the reduction of Section C.1 the problem is that one needs to be

able to compute the final factor in the telescoping product (C.1) efficiently, which we do not know how to do

for an arbitrary degree sequence D (although we do know it for %-stable degree sequences by the results of

Jerrum and Sinclair [33]).

C.1 From approximate sampling from Gm(ℓ, u) to approximating |Gm(ℓ, u) |

Using a standard reduction technique, see, e.g., Chapter 12 in [34], we can turn our FPAUS into an

FPRAS for counting the number of graphs with given degree intervals.

We first show how to express |G< (ℓ, u) | as a telescoping product. We write

|G< (ℓ, u) | =
|G< (ℓ, u) |
|G< (a1, u) |

|G< (a1, u) |
|G< (a2, u) |

· · · |G<(a
?−1, u) |

|G< (u) |
|G< (u) | (C.1)

for a sequence of vectors ℓ = a0, a1, a2, . . . , a? = u, that are recursively defined as follows. We define a8+1

by choosing the lowest indexed nodes11 E and F for which 08E < D
8
E and 08F < D

8
F , and then setting

08+1
9 =

{
089 + 1 if 9 ∈ {E, F} ,
089 otherwise .

It is clear that there is some ? ≤ 2
∑
8 D8 such that this procedure gives a? = u. Also, if 2 = max8 (D8 − ℓ8), all

intermediate degree intervals [a8 , u] also have length at most 2 component-wise, as D 9 − 089 ≤ D 9 − ℓ 9 ≤ 2.

Finally, note that, also component-wise, we have

a0 < a1 < · · · < a?−1 < a? . (C.2)

In order to approximate the size of G< (ℓ, u), it will be sufficient to approximate the ratios in the

telescoping product, as well as the last factor |G< (u) |. The latter can be approximated by employing, e.g., the

approximate counting scheme of Jerrum and Sinclair [33] for %-stable degree sequences. For approximating

the ratios, we need the following two (sufficient) components: (1) the existence of a FPAUS and (2) the fact

that the ratios can be polynomially bounded. This implies that polynomially many samples are enough in

order to estimate the ratio up to the desired accuracy.

11 A number 8 ∈ [=] is lower indexed than 9 ∈ [=] if 8 < 9 .
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We sketch how to formalize this argument. Using strong stability, i.e., Proposition 2.8, and very similar

reasoning as in the proofs of Lemmas 5.3 and 5.1, it is easy to show that all ratios in (C.1) are upper bounded

by some polynomial ?2(=) (independent of ℓ and u). By setting

a8 =
|G<(a8 , u) |
|G< (a8+1, u) | ,

this just means 1 ≤ a8 ≤ ?2(=). Moreover, using (C.2), it follows that, for 8 = 0, . . . , ? − 1, we have

G< (a8+1, u) ⊆ G< (a8, u). If we define -8 to be the indicator variable of the event that a random sample

from G< (a8, u) is indeed contained in G< (a8+1, u), then a8 = 1/E(-8). The high-level idea is now to show

that polynomially many samples from the sampler (the switch-hinge flip Markov chain) not only suffice for

an accurate estimate for a8 but, crucially, they suffice for an accurate estimate of the product

?−1∏

8=0

a8 =
|G< (ℓ, u) |
|G<(u) |

up to a factor (1 ± n/2). This can be done by standard arguments, e.g., see Chapter 12 of [34] or Chapter

3.2 of [30]. Finally, as mentioned above, we may use the approximate counter from [33] for approximating

|G<(u) | up to a factor (1 ± n/2). This then implies that we can also approximate |G< (ℓ, u) | up to a factor

(1 ± n).

C.2 From approximating |Gm(ℓ, u) | to approximating |G(ℓ, u) |

In order to provide an FPRAS for approximating |G(ℓ, u) |, it suffices to give an FPRAS for approximating

|G<(ℓ, u) | for every 1
2

∑
8 ℓ8 ≤ < ≤ 1

2

∑
8 D8. Recall that G< (ℓ, u) is the set of graphs with degree intervals

[ℓ, u] and for which the total number of edges is equal to <.

Lemma C.1. Suppose there is an FPRAS for approximating |G< (ℓ, u) | for every 1
2

∑
8 ℓ8 ≤ < ≤ 1

2

∑
8 D8 .

Then there is an FPRAS for approximating |G(ℓ, u) |.

Proof. We write 0 = 1
2

∑
8 ℓ and 1 = 1

2

∑
8 D8. Note that there are at most 1 − 0 ≤ =2 possible choices for <,

and that

|G(ℓ, u) | =
1∑

<=0

|G<(ℓ, u) | .

Now, for every < use the given FPRAS for approximating |G<(ℓ, u) | with X′ = X/=2. It outputs a number 2<
satisfying (1 − n) |G< (ℓ, u) | ≤ 2< ≤ (1 + n) |G< (ℓ, u) | with probability at least 1 − X/=2. Then 2 =

∑
< 2<

satisfies (1 − n) |G(ℓ, u) | ≤ 2 ≤ (1 + n) |G(ℓ, u) | with probability at least

(1 − X/=2)1−0 ≥ (1 − X/=2)=2 ≥ 1 − X .

This completes the proof. �

C.3 From approximating |G(ℓ, u) | to approximate sampling from G(ℓ, u)

Again, using a reduction inspired by a similar one for self-reducible problems, see, e.g., [37], we can turn

our FPRAS for computing |G(ℓ, u) | into an FPAUS for sampling from G(ℓ, u). Note that if ℓ = u, we can

simply use the approximate sampler from Jerrum and Sinclair [33] when ℓ is near-regular.

As long as ℓ ≠ u there is some 8 such that ℓ8 < D8. We can partition the set G(ℓ, u) based on whether or

not the degree of a graphical realization � with ℓ ≤ d(�) ≤ u satisfies 38 = ℓ8 or 38 ≥ ℓ8 + 1. For a given
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vector I = (I1, . . . , I=) ∈ R= and I′8 ∈ ' we write (I′8, I−8) = (I1, . . . , I8−1, I
′
8, I8+1, . . . , I=). We then have

G(ℓ, u) as the disjoint union

G(ℓ, u) = G(ℓ, (ℓ8, u−8)) ∪ G((ℓ8 + 1, ℓ−8), u) .

Using the approximation scheme, we can approximate the marginal probabilities

|G(ℓ, (ℓ8, u−8)) |
|G(ℓ, u) | and

|G((ℓ8 + 1, ℓ−8), u) |
|G(ℓ, u) |

up to a sufficient accuracy, and then sample one of the sets G(ℓ, (ℓ8, u−8)) or G((ℓ8 + 1, ℓ−8), u) according to

these—sufficiently accurate—marginals.

We then repeat this step until the lower and upper bound defining the intervals are equal. Note that this

step is only carried out a polynomial number of times. After this we have, roughly speaking, sampled a

degree sequence d with ℓ ≤ d ≤ u according to the (approximately) correct marginal probability. After this

we can use the approximate sampler from [33] to sample from G(d) (or, e.g.., simply the switch Markov

chain).
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