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Abstract

We give tight bounds on the relation between the primal and dual of various combinatorial dimensions,
such as the pseudo-dimension and fat-shattering dimension, for multi-valued function classes. These
dimensional notions play an important role in the area of learning theory. We first review some (folklore)
results that bound the dual dimension of a function class in terms of its primal, and after that give
(almost) matching lower bounds. In particular, we give an appropriate generalization to multi-valued
function classes of a well-known bound due to Assouad (1983), that relates the primal and dual VC-
dimension of a binary function class.

1 Introduction

The Vapnik-Chervonenkis (VC) dimension [11] is a fundamental combinatorial dimension in learning theory
used to characterize the complexity of learning a class X consisting of functions f : Y → {0, 1} where
X and Y are given (possibly infinite) sets. Informally, the VC-dimension captures how rich or complex
a class of functions is. Many extensions of the VC-dimension to multi-valued functions f : X → Z, for
some given Z ⊆ R, have been proposed in the literature, such as the Vapnik-dimension (also known as the
uniform pseudo-dimension) [10], the Pollard-dimension (also known as pseudo-dimension) [9, 5], and the
fat-shattering dimension [6]. All these combinatorial dimensions are formally defined in Section 2.

Every (primal) class of functions can be identified with a dual class whose functions are of the form
gy : X → Z for y ∈ Y defined by gy(f) = f(y) for f ∈ X . When interpreting a function class as a matrix
A whose rows and columns are indexed by X and Y , respectively, the dual class is simply given by the
transpose matrix A⊤. The (VC, pseudo-, etc..) dimension of the dual class is defined as the dimension of
the matrix AT .

Assouad [2] showed the following relation between the primal VC-dimension VC(A) and the dual VC-
dimension VC∗(A):

VC∗(A) ≤ 2VC(A)+1 − 1. (1.1)

This has turned out to be a very useful inequality, e.g., in the context of so-called sample compression
schemes [8]. In case VC∗(A) is a power of two, this immediately yields VC∗(A) ≤ 2VC(A). It is known that
this bound is tight for all values of VC∗(A), see, e.g., [7].

The purpose of this work is to understand the relation between the primal and dual of combinatorial dimen-
sions for multi-valued function classes, in particular, for multi-valued functions where Z = {0, 1, . . . , k} for
k ∈ N. For the pseudo-dimension, as explained in Section 3, it can be shown that

Pdim∗(A) ≤ k ·
(

2Pdim(A)+1 − 1
)

, (1.2)
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which naturally generalizes Assouad’s bound in (1.1).1 Again, when Pdim∗(A) is a power of two, this yields

Pdim∗(A) ≤ k · 2Pdim(A). (1.3)

Our first contribution is that the bound in (1.3) is in fact tight for every value of k and Pdim(A) (Theorem
4.2). In case Pdim(A) = 1, we give an improved bound of k + 2 (Theorem 4.1), and also show that this is
tight (Theorem 4.2). We obtain similar bounds for the fat-shattering dimension (Theorem 4.5).

Remark 1.1. It is sometimes believed that Assouad’s bound also holds for combinatorial dimensions beyond
the VC-dimension, see, e.g., [4]. Our results show that this is, unfortunately, not correct.

Outline. We continue in Section 2 with all the necessary definitions and notations, in particular the formal
definitions of all combinatorial dimensions considered in this work. Then, in Section 3, we outline known
results regarding the relations between various combinatorial dimensions and their duals. After that, in
Section 4, we summarize our results, followed by their proofs in Section 5.

2 Preliminaries

For k ≥ 1, we set [k] := {1, . . . , k} and [k]0 := [k] ∪ {0}. Let X and Y be disjoint sets and let Z ⊆ R

be a subset of the reals. Consider a function A : X × Y → Z. For x ∈ X , we define Ax : Y → Z by
Ax(y) = A(x, y) and refer to Ax as a row of A. For y ∈ Y , we define Ay : X → Z by Ay(x) = A(x, y) and
refer to Ay as a column of A. The transpose of A is defined as the function A⊤ : Y × X → Z given by
A⊤(y, x) = A(x, y). As suggested by this terminolgy, we view A as a (possibly infinite) matrix with rows
indexed by X , columns indexed by Y and with A⊤ as its transpose.

A matrix A : X × Y → Z with Z = {0, 1} is said to be Boolean. Let d ≥ 1 be a positive integer. We
denote by Bd : X × Y → {0, 1} the Boolean matrix which is defined as follows:

1. X = [2d] and Y = [d].

2. For every function b : [d] → {0, 1}, there exists an x ∈ [2d] such that, for every y ∈ [d], we have
Bd(x, y) = b(y).

Note that Bd is unique modulo renaming rows and columns.

Definition 2.1 (Shattered sets). Let A : X × Y → Z, with Z ⊆ R, be a matrix and let J ⊆ Y be a subset
of its columns.

1. Suppose that Z = {0, 1}. We say that J is VC-shattered by A if, for every function b : J → {0, 1},
there exists an x ∈ X such that, for every y ∈ J , we have B(x, y) = b(y).

2. We say that J is P-shattered by A if there exists a function t : J → R such that the following holds: for
every function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have A(x, y) ≥ t(y)
iff b(y) = 1.

3. Let γ > 0. We say that J is Pγ-shattered by A if there exists a function t : J → R such that the
following holds: for every function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we
have

A(x, y)

{

≥ t(y) + γ if b(y) = 1
< t(y)− γ if b(y) = 0

.

4. We say that J is V-shattered by A if there exists a number t ∈ R such that the following holds: for
every function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have A(x, y) ≥ t iff
b(y) = 1.

5. Let γ > 0. We say that J is Vγ-shattered by A if there exists a number t ∈ R such that the following
holds: for every function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have

A(x, y)

{

≥ t+ γ if b(y) = 1
< t− γ if b(y) = 0

.

1We refer to this as a folklore result, rather than a contribution of this work.
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We will refer to t : J → R occuring in the definition of P - and the Pγ-shattered sets as the thresholds used
for shattering J . Similarly, we will refer to t ∈ R occuring in the definition of V - and the Vγ-shattered sets
as the uniform threshold used for shattering J .

Definition 2.2 (Combinatorial dimensions). Let A : X × Y → Z be a matrix. Let τ ∈ {VC, P, Pγ , V, Vγ}
be one of the shattering types mentioned in Definition 2.1. The (primal) τ -dimension of A is the size of a
largest set J ⊆ Y that is τ-shattered by A (resp. ∞ if there exist τ-shatterable sets of unbounded size). The
dual τ -dimension of A is defined as the τ-dimension of A⊤.

We use the notations VC(A), Pdim(A), Pγ(A), Vdim(A) and Vγ(A) for the (primal) dimensions of type
τ = VC, P, Pγ , V, Vγ , respectively. Here, VC(A) is the VC-dimension [11], Pdim(A) the pseudo-dimension
[9, 5], Pγ(A) the fat-shattering dimension [6], Vdim(A) the Vapnik-dimension [10] and Vγ(A) the fat-
shattered version of the Vapnik-dimension, see, e.g., [1]. The corresponding dual dimensions are denoted by
VC∗(A), Pdim∗(A), P ∗

γ (A), Vdim
∗(A) and V ∗

γ (A), respectively.
The matrix obtained by thresholding the columns of A : X×Y → Z at t : Y → R is defined as the Boolean

matrix B : X × Y → {0, 1} such that, for all x ∈ X and y ∈ Y , we have B(x, y) = 1 iff A(x, y) ≥ t(y). For
I ⊆ X and J ⊆ Y , we denote the restriction of A to I×J by AI,J . In other words: AI,J is the submatrix of A
whose rows are indexed by I and whose columns are indexed by J . A witness for the inequality Pdim(A) ≥ d
is defined as a tripel (I, J, t) such that the following holds:

1. I is a subset of X of size 2d, J is a subset of Y of size d and t : J → R.

2. Every pattern b : J → {0, 1} occurs in exactly one row of the Boolean matrix obtained by thresholding
the columns of AI,J at t, i.e., AI,J equals Bd up to permutation of its rows.

Remark 2.3. Let k ≥ 1 be a positive integer. Consider a matrix A : X × Y → [k]0. It is easy to see that, if
a set J ⊆ Y can be P -shattered by A with thresholds t : J → R, then it can also be P -shattered with (suitably
chosen) thresholds t : J → [k]. An analogous remark applies to V -shattering with a uniform threshold t.

When analyzing the P - or the V -dimension of a matrix with entries in [k]0, we will assume that thresholds
are taken from [k] whenever we find that convenient.

3 Known relations

In this section we review some known relations between the combinatorial dimensions defined in Section 2.

3.1 Bounding P- in terms of V-dimension

It follows directly from the definitions that

Vdim(A) ≤ Pdim(A) and Vγ(A) ≤ Pγ(A). (3.1)

This raises the question whether we can bound the P - in terms of the V -dimension (resp. the Pγ in terms of
the Vγ-dimension). The gap between Pdim(A) and Vdim(A) cannot be bounded in general, as the following
well-known example shows.

Example 3.1. Let X be the set of all monotone2 functions from [0, 1] to [0, 1], Y = [0, 1] and A(x, y) = x(y)
for x ∈ X. Then Vdim(A) = 1 and Pdim(A) = ∞.

In order to bound the P - in terms of the V -dimension, the focus will therefore be on matrices of the form
A : X×Y → [k]0. According to the following results of Ben-David et al. [3] (here expressed in our notation),
the P - can exceed the V -dimension by factor k, but not by a larger factor3:

Theorem 3.2 ([3]). For every matrix A : X × Y → [k]0, we have

Pdim(A) ≤ k · Vdim(A). (3.2)

2A function f : [0, 1] → [0, 1] is monotone if f(x) ≤ f(y) for all x ≤ y.
3See [3, Theorem 7-8] and the proof of [3, Theorem 7].
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Theorem 3.3 ([3]). For every d ≥ 1 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that

Vdim(A) = d and Pdim(A) = k · d.

Alon et al. [1] have bounded Pγ- in terms of the Vγ/2-dimension.

Theorem 3.4 ([1]). For every matrix A : X × Y → [0, 1] and every 0 < γ ≤ 1/2, we have4

Pγ(A) ≤

(⌈

1

γ

⌉

− 1

)

· Vγ/2(A) ≤

(⌈

1

γ

⌉

− 1

)

· Pdim(A) . (3.3)

Proof. The thresholds t1, . . . , td used for Pγ-shattering d := Pγ(A) many columns of A must belong to the
interval [γ, 1 − γ]. Any threshold ti can be rounded to the closest multiple of γ. Denote the latter by t̂i.
The inequality (3.3) becomes now evident from the following observations. First, by using the thresholds t̂i
instead of ti, the width of shattering may drop from γ to γ/2 (but not beyond). Second, t̂1, . . . , t̂d can take
on at most

r :=

⌈

1− 2γ

γ

⌉

+ 1 =

⌈

1

γ

⌉

− 1

different values. By the pidgeon-hole principle, there is some t ∈ {t̂1, . . . , t̂d} that can be used for Vγ/2-
shattering d/r many points.

3.2 Bounding dual dimension in terms of its primal

A well-known result due to Assouad [2] already mentioned in Section 1, which we will refer to as Assouad’s
bound, states that one can upper bound the dual VC-dimension in terms of the (primal) VC-dimension.

Theorem 3.5 ([2]). For every matrix A : X × Y → {0, 1}, we have

VC∗(A) ≤ 2VC(A)+1 − 1. (3.4)

Note that, under the assumption that VC∗(A) is a power of two, this means

VC∗(A) ≤ 2VC(A). (3.5)

The bound in (3.5) is known to be tight for every value of VC(A), see, e.g., [7].
In Appendix A we show that the Assouad’s bound also holds for Vdim(A) and Vγ(A), based on the

notion of uniform Ψ-dimension as defined in [1]. These observations are summarized in the following result.

Corollary 3.6 (Folklore). For every matrix A : X × Y → [0, 1], we have

Vdim∗(A) ≤ 2Vdim(A)+1 − 1 and V ∗
γ (A) ≤ 2Vγ(A)+1 − 1. (3.6)

If Vdim∗(A), respectively V ∗
γ (A), is a power of two, this means

Vdim∗(A) ≤ 2Vdim(A) and V ∗
γ (A) ≤ 2Vγ(A). (3.7)

Combining Theorem 3.2 (applied to A⊤) with Corollary 3.6, we directly obtain the following result:

Theorem 3.7 (Folklore). For every matrix A : X × Y → [k]0, the following holds:

1. Pdim∗(A) ≤ k ·
(

2Vdim(A)+1 − 1
)

≤ k ·
(

2Pdim(A)+1 − 1
)

.

2. If Vdim∗(A) is a power of two, then Pdim∗(A) ≤ k · 2Vdim(A) ≤ k · 2Pdim(A).

Similarly, combining Theorem 3.4 with Corollary 3.6, we directly obtain the following result.

4In [3], one finds a factor 2⌈1/(2γ)⌉ at the place of factor ⌈1/γ⌉. We find the latter (and slightly smaller) factor preferable
because of its simpler form.
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Corollary 3.8 (Folklore). For every matrix A : X × Y → [0, 1], the following holds:

P ∗
γ (A) ≤

(⌈

1

γ

⌉

− 1

)

·
(

2Vγ/2(A)+1 − 1
)

≤

(⌈

1

γ

⌉

− 1

)

·
(

2Pdim(A)+1 − 1
)

.

4 Our results

In this section we describe our new contributions, that complement those mentioned in Section 3. We first
discuss results related to the pseudo-dimension. We start with a result showing that the upper bound on
Pdim∗(A) in Theorem 3.7 can be improved by a factor 2 (roughly) for matrices A with Vdim(A) = 1.

Theorem 4.1. Let A : X × Y → [k]0 with k ≥ 1 be a matrix with Vdim(A) = 1. Then Pdim∗(A) ≤ k + 2.

The next result implies that the upper bound on Pdim∗(A) in the second statement of Theorem 3.7 is
tight for matrices with Vdim(A) ≥ 2, as well as the upper bound on Pdim∗(A) in Theorem 4.1 whenever
Vdim(A) ≥ 1.

Theorem 4.2. The following two lower bounds hold:

1. For every d ≥ 2 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that

Pdim(A) = d , Vdim∗(A) = 2d and Pdim∗(A) = k · 2d.

2. For every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that Vdim(A) = Pdim(A) = 1 and
Pdim∗(A) = k + 2.

In combination with the a technical tool defined in Section 5.2, we also obtain the following corollary. It
stands in stark contrast to Assouad’s bound for the VC-dimension.

Corollary 4.3. There exist a matrix A : X × Y → [0, 1], such that Pdim(A) = 1 and Pdim∗(A) = ∞.

We next move to our results for the fat-shattering dimensions. The first result here implies that upper
bound on Pγ(A) from Theorem 3.4 is tight up to a small constant factor:

Theorem 4.4. For every d ≥ 1, there exists a matrix A : X × Y → [0, 1] such that Pdim(A) = d and, for
all k ≥ 1,

P1/(2k)(A) ≥ k · d .

Finally, our last results state that the bound on P ∗
γ (A) from Corollary 3.8 is tight up to a small constant

factor.

Theorem 4.5. The following two lower bounds hold:

1. For every d ≥ 2, there exists a matrix A : X × Y → [0, 1] such that Pdim(A) = d and, for all k ≥ 1,

P ∗
1/(2k)(A) = k · 2d .

2. There exists a matrix A : X × Y → [0, 1] such that Pdim(A) = 1 and, for all k ≥ 2,

P ∗
1/(2k)(A) = k + 2 .

5 Proofs

Section 5.1 is devoted to the proof of Theorem 4.1. In Section 5.2, we make some considerations which will
allow for an easier presentation of our lower bound constructions, that are given in Sections 5.3 and 5.4.
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5.1 Proof of Theorem 4.1

For k = 1, the assertion of the theorem collapses to the claim that VC∗(A) ≤ 3 for every Boolean matrix A
with Vdim(A) = 1. This is an immediate consequence of (3.4). Suppose now that k ≥ 2. It suffices to show
that Pdim∗(A) ≥ k + 3 implies that Vdim(A) ≥ 2 (i.e., we give a proof by contradiction). Pick a witness
(I, J, t) for Pdim∗(A) ≥ k + 3. More concretely:

• I = {x1, . . . , xk+3}, J ⊆ Y with |J | = 2k+3 and t : I → [k], say t(xi) = ti.

• The matrix obtained by thresholding the rows of AI,J at t equals B⊤
k+3.

We may assume that, after renumbering the rows appropriately, one has t1 ≤ . . . ≤ tk+3. We decompose
the rows of AI,J into maximal blocks such that the same threshold is assigned to every row from the same
block. Since any threshold ti is taken from [k], the total number k′ of blocks is bounded by k. A block that
is different from the first and from the last block is said to be an inner block. We proceed by case analysis:

Case 1: One of the blocks contains 4 rows.
Then Vdim∗(A) ≥ 4 is immediate. Thus Vdim(A) ≥ ⌊logVdim∗(A)⌋ ≥ 2.

Case 2: The first or the last block contains 3 rows.
For reasons of symmetry, we may assume that the first block contains 3 rows. Consider the following
(4× 2)-submatrix of B⊤

k+3:

0 0
0 1
1 0
1 1

The first three rows are taken from the first block and the last row is taken from the last block. The
separation line between the third and the last row is only intended to illustrate the transition from
one block to another. Remember that the rows of the first block of AI,J are thresholded at t1 while
the rows of the last block are thresholded at tk′ > t1. Hence, if we threshold all rows (or all columns)
of AI,J at t1, then the above submatrix of B⊤

k+3 will remain unchanged. We may conclude from this
discussion that Vdim(A) ≥ 2.

Case 3: One of the inner blocks contains 2 rows, say block b.
The argument is similar to that given in Case 2. The relevant submatrix of B⊤

k+3 (with one row of
the first block, two rows of block b, one row of the last block and two separation lines inbetween) now
looks as follows:

0 0
0 1
1 0
1 1

Since t1 < tb < tk′ , thresholding all rows (or all columns) of AI,J at tb will leave the above submatrix
of B⊤

k+3 unchanged. We may conclude that Vdim(A) ≥ 2.

Since AI,J has k + 3 rows (with k ≥ 2), it is easy to argue that one of the three above cases must occur.
Suppose first that k = 2. Then there at most 2 blocks and 5 rows. It follows that the first or the last block
contains at least 3 rows. Suppose now that k ≥ 3. If the first and the last block contain at most two rows,
respectively, then at least k−1 rows are left for the k′−2 ≤ k−2 inner blocks. By the pidgeon-hole principle,
there must be an inner block with two rows. This completes the proof of Theorem 4.1.

5.2 Preliminaries for lower bound constructions

Consider again the Boolean matrix Bd with d columns and 2d rows that had been defined in Section 2. It is
evident that Bd satisfies the following conditions:

i) Distinctness Condition: The rows of Bd are pairwise distinct.
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ii) General Balance Condition: For any k ∈ [d], any choice of k distinct columns of Bd and any pattern
b ∈ {0, 1}k, there are exactly 2d−k rows of Bd which realize the pattern b within the chosen columns.

The general balance condition implies the following:

iii) 1st Balance Condition: Each column of Bd has as many zeros as ones.

iv) 2nd Balance Condition: For any two distinct columns of Bd, any pattern from {0, 1}2 is realized
within these columns by the same number of rows.

Remark 5.1 (Proof templates). Consider a matrix A : X × Y → [k]0. The following template for proving
assertions like Pdim(A) ≤ d will prove itself quite useful.

• Assume for contradiction that Pdim(A) ≥ d+ 1.

• Pick a witness (I, J, t) for this inequality.

• Exploit the fact that the matrix B obtained by thresholding the columns of AI,J at t must be equal to
Bd+1.

• Prove that B violates one of the conditions that Bd+1 must satisfy.

Sometimes the following (slightly simpler) template can be used instead:

• Take a fixed but arbitrary function t : Y → [k].

• Let B be the matrix obtained by thresholding the columns of A at t.

• Show that no more than d columns of B have at least 2d zeros and at least 2d ones.

This also shows that Pdim(A) ≤ d because no submatrix of B with d+1 columns and 2d+1 rows has a chance
to satisfy the first balance condition.

We next introduce matrices that, though not being Boolean, are close relatives of the matrix Bd.

Definition 5.2. Let k and d1, . . . , dk be positive integers and let D = d1 + . . .+ dk denote their sum. The
BD-based matrix with k column blocks of sizes d1, . . . , dk is the matrix A : X × Y → [k]0, where X = [2D]
and Y = [D], that results from the following procedure:

1. Decompose the D columns of BD into k blocks of sizes d1, . . . , dk. The blocks are consecutively numbered
from 1 to k.

2. Obtain A from BD by replacing any 1-entry (resp. 0-entry) in a column belonging to block b ∈ [k] by b
(resp. by b− 1).

The B⊤
D-based matrix with k row blocks of sizes d1, . . . , dk is defined analogously.

Note that the matrix A resulting from the above procedure has the property that, for any two columns
y1 in block b1 and y2 in block b2 > b1 and any row x, we have A(x, y1) ≤ A(x, y2). We will refer to this
property as block monotonicity.

At this point we also bring into play the matrix Ȧ, which is defined as the matrix A augmented with a
row of zeros. Formally, we assume that 0 /∈ X and define Ȧ : (X ∪{0})×Y → Z as the extension of A which
satisfies Ȧ(0, y) = 0 for all y ∈ Y . The (technical) use of Ȧ will become clear in Section 5.4 (in particular,
this is explained after Definition 5.7), but it is already included in the statements that follow.

Lemma 5.3. Let D = d1+ . . .+dk and let A be the BD-based matrix with k column blocks of sizes d1, . . . , dk.
Then Vdim(A) = Vdim(Ȧ) = maxj∈[k] dj and Pdim(A) =

∑k
j=1 dj.
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Proof. We first show that the pseudo-dimension of A equals D. Let t : [D] → [k] be the mapping that assigns
to every column in block j ∈ [k] the threshold j. Then the matrix obtained by thresholding the columns of
A at t equals BD. It follows that Pdim(A) ≥ VC(BD) = D. Of course Pdim(A) cannot exceed D so that
Pdim(A) = D.

Next, set dmax = maxj∈[k] dj . Pick some index jmax ∈ [k] such that djmax = dmax. We still have to

show that Vdim(A) = Vdim(Ȧ) = dmax. Thresholding the columns of A at the uniform threshold jmax, we
obtain a matrix B that equals BD within block jmax. This shows that Vdim(A) ≥ dmax. The inequality
Vdim(Ȧ) ≤ dmax can be seen as follows. Pick a fixed but arbitrary J ⊆ [D] of size 1 + dmax and a fixed but
arbitrary uniform threshold t ∈ [k]. Let B be the matrix obtained by thresholding the columns of Ȧ at t.
The set J must contain two columns belonging to two different blocks, say column y1 in block b1 and column
y2 in block b2 > b1. By the block-monotonicity of A (which implies block-monotonicity for Ȧ as well), no
row of B can assign label 1 to y1 and label 0 to y2. Since J and t were arbitrary choices, it follows that no
set of size 1 + dmax can be V -shattered by Ȧ.

Setting d1 = . . . = dk = d in Lemma 5.3, we obtain the following result (which is almost the same as
Theorem 3.2):

Corollary 5.4. For every d ≥ 1 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that
Vdim(A) = Vdim(Ȧ) = d and Pdim(A) = k · d.

5.3 Proof of Theorem 4.2

Theorem 4.2 is a direct consequence of the following two results:

Lemma 5.5. Let d ≥ 2 and k ≥ 1 be given. For D = k · 2d, let A be the B⊤
D-based matrix with k row blocks

of size 2d, respectively. Then

Pdim(A) = Pdim(Ȧ) = d , Vdim∗(A) = 2d and Pdim∗(A) = k · 2d .

Proof. The identities Vdim∗(A) = 2d and Pdim∗(A) = k · 2d are immediate from Lemma 5.3. Hence it
suffices to verify the identity Pdim(A) = Pdim(Ȧ) = d. We can infer from Vdim∗(A) = 2d that Pdim(Ȧ) ≥
Pdim(A) ≥ Vdim(A) ≥ d. Hence the proof can be accomplished by showing that Pdim(Ȧ) ≤ d. For sake of
brevity, set

s = 2d and d̄ = 1 + d .

Assume for contradiction that Pdim(Ȧ) ≥ d̄ and fix some witness (I, J, t) for this inequality, i.e.,

1. I ⊆ [D]0, |I| = 2d̄, J ⊆ [2D], |J | = d̄ and t : J → [k] assigns a threshold to each column of AI,J .
5

2. The matrix B obtained by thresholding the columns of AI,J at t equals Bd̄.

Before we proceed with the proof, we fix some notation. For b = 1, . . . , k, let Ib denote the set of row indices
in I that belong to block b of A. Set I0 = I ∩ {0} and note that

k
∑

b=0

|Ib| = |I| = 2d = 2s (twice the block size)

while, for every b ∈ [k], we clearly have 0 ≤ |Ib| ≤ s. Let b0, b
′
0 (resp. b1, b

′
1) denote the smallest and

second-smallest (resp. largest and second-largest) b ∈ [k] such that |Ib| 6= 0.
An obvious question is whether 0 ∈ I, that is, whether the extra all-zeros row is among the rows of B. We
claim that this is not the case. Assume for contradiction that 0 ∈ I. We proceed by case analysis:

Case 1: 1 ≤ |Ib0 | ≤ s− 1.
Pick an arbitrary but fixed column j ∈ J of B. In order to satisfy the first balance condition, the
threshold tj must be large enough so that in block b0 of column j only 0-entries are found.6 It follows
that any row of B belonging to block b0 has 0-entries only and therefore coincides with the extra
all-zeros row. This is in contradiction with the distinctness condition.

5Recall from the definition of Ȧ that this matrix is obtained from A by adding an all-zeros row which is indexed by 0.
6A single 1-entry in this block would imply that we have only 1-entries in all subsequent blocks.
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Case 2: |Ib0 | = s.
Pick an arbitrary but fixed column j ∈ J of B. In order to satisfy the first balance condition, the
threshold tj must be large enough so that in block b0 of column j at least s − 1 0-entries are found.
Pick another column j′ 6= j in B (also with at least s− 1 0-entries in block b0). Then the pattern 00
occurs in columns j and j′ of B at least s − 1 times (one time in row 0 and at least s − 2 times in
block b0). But then B must have at least 4(s−1) rows in order to satisfy the second balance condition.
Hence 4(s− 1) ≤ 2s (because B has 2s rows). It follows that s ≤ 2, which is in contradiction with our
assumptions that d ≥ 2 and s = 2d ≥ 4.

In any case, we arrived at a contradiction, which proves the above claim that 0 /∈ I. In order to accomplish
the proof, we still have to derive a final contradiction. We proceed by case distinction again.

Case A: |Ib0 | ≥ 2.
In order to satisfy the first balance condition, the threshold tj of any column j ∈ J must be large
enough so that in block b0 of this column only 0-entries are found. Thus all rows of B belonging to
block b0 realize the all-zeros pattern, which is in contradiction with the distinctness condition.

Case B: |Ib0 | = 1 and |Ib′0 | ≤ s− 1.
The argument is similar. Now the single row of B belonging to block b0 and all rows of B belonging
to block b′0 realize the all-zeros pattern.

Case C: |Ib1 | ≥ 2 or (|Ib1 | = 1 and |Ib′1 | ≤ s− 1).
Then, for reasons of symmetry, the last two rows of B both realize the all-ones pattern.

Case D: |Ib0 | = |Ib1 | = 1 and |Ib′0 | = |Ib′1 | = s.
Since |I| = 2s, this case can occur only if b′0 = b′1. But then 2s = |I| = |Ib0 | + |Ib′0 | + |Ib1 | = s+ 2 so

that s = 2. This contradicts to our assumption d ≥ 2 and s = 2d ≥ 4.

In any case, we arrived at a contradiction.

Lemma 5.6. Let k ≥ 2 and letA be the B⊤
k+2-based matrix with k row blocks of sizes

dj =

{

2 for j = 1, k
1 for j = 2, . . . , k − 1

.

Then Pdim(A) = Pdim(Ȧ) = 1 and Pdim∗(A) = k + 2.

Proof. The identity Pdim∗(A) = k + 2 is immediate from Lemma 5.3. Clearly Pdim(Ȧ) ≥ Pdim(A) ≥ 1.
Hence it suffices to show that Pdim(Ȧ) ≤ 1. The rows of Ȧ have indices 0, 1, . . . , k + 2 and index 0 is
reserved for the all-zeros row. Assume for contradiction that Pdim(Ȧ) ≥ 2 and pick a witness (I, J, t) for
this inequality so that the following holds:

• J = {j1, j2} ⊂ [2k+2], I ⊆ [k + 2]0 with |I| = 4 and t : J → [k], say t(j1) = t1 and t(j2) = t2.

• The matrix B obtained by thresholding the columns of ȦI,J at t equals B2 (with rows indexed by I
and columns indexed by J).

Consequently B satisfies the distinctness condition and the balance conditions. Consider the smallest index
i1 and the second-smallest index i2 in I. Note that, since |I| = 4 and the last block of B is of size 2, neither i1
nor i2 belongs to the last block, i.e., either i1, i2 ∈ {0, 1, 2} or i2 belongs to one of the inner blocks consisting
of a single row only. In order to establish the first balance condition for the matrix B, the thresholds t1
and t2 must be large enough so that only zeros are found in the first two components (indexed by i1 and
i2) of the columns j1 and j2. Thus the first two rows of B both realize the all-zeros pattern, which is in
contradiction with the distinctness condition.

Lemma 5.6 does not cover the case k = 1 in the second assertion of Theorem 4.2. But this case is easy
to handle: setting A = B⊤

3 , we obtain Pdim∗(A) = VC∗(A) = 3 and Pdim(A) = VC(A) = 1.
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5.4 Proofs of Theorems 4.4 and 4.5

Matrices A with the properties as prescribed by Theorems 4.4 and 4.5 are easy to construct by means of a
suitable operation that merges matrices of a given matrix family into a single matrix.

Definition 5.7 (Merge-operation). Let (Ak)k≥1 with Ak : Xk×Yk → [k]0 be a given family of matrices. Let
X (resp. Y ) denote the disjoint union of the sets Xk (resp. Yk) with k ≥ 1. Assume that X ∩ Y = ∅. For
every x ∈ X, let k(x) denote the unique k such that x ∈ Xk. The notation k(y) is understood analogously.
The matrix A : X × Y → [0, 1] given by

A(x, y) =

{

Ak(x)(x,y)

k(x) if k(y) = k(x)

0 otherwise
,

is called the merge of the family (Ak)k≥1.

The merge-operation reveals why we introduce the matrix Ȧ: The pseudo-dimension (or any other
combinatorial dimension for that matter) of the matrix A restricted to the columns Yk is nothing more than
the pseudo-dimension of the functions in Ak augmented with an infinite number of functions that are zero
everywhere. The pseudo-dimension of this function class clearly equals the pseudo-dimension of the matrix
Ȧk. The merge-operation has the following properties:

Lemma 5.8. Let A be the merge of the family (Ak)k≥1. Then the following holds:

1. P1/(2k)(A) ≥ Pdim(Ak).

2. Let d0 ∈ N. If supk Pdim(Ȧk) ≤ d0, then Pdim(A) ≤ d0.

3. V1/(2k)(A) ≥ Vdim(Ak).

4. Let d0 ∈ N. If supk Vdim(Ȧk) ≤ d0, then Vdim(A) ≤ d0.

Proof. We only prove the first two assertions of the lemma; the other two assertions are quite similar.
Note that, for k = k(x) = k(y), A coincides with Ak except for scaling down the values 0, 1, . . . , k by factor

k. Since Ak takes integer values, each set that can be P -shattered by Ak can actually be P1/2-shattered.
After down-scaling, the width of shattering becomes 1/(2k). From these observations, the first assertion of
the lemma easily follows.

We proceed with the proof of the second assertion. Set d := Pdim(A). Fix some witness (I, J, t) so that
the following holds:

1. I ⊂ X , |I| = 2d, J ⊂ Y , |J | = d and t : J → N assigns a threshold ty := t(y) to every y ∈ J .

2. The matrix B obtained by thresholding the columns of AI,J at t equals Bd (with rows indexed by I
and columns indexed by J).

It follows that B satisfies the distinctness condition and the balance conditions.

Claim 1: For every y ∈ J , we have ty > 0.

Proof. ty ≤ 0 would imply that column y of B has no 0-entry, which is in contradiction with the first balance
condition.

Claim 2: The mapping y 7→ k(y) assigns the same value to all y ∈ J .

Proof. Assume to the contrary that there exist y1, y2 ∈ J such that k(y1) 6= k(y2). Then, for every row x of
B, at least one of the entries B[x, y1] and B[x, y2] equals 0 (because k(x) cannot be equal to both, k(y1) and
k(y2)). By the first balance condition, any column in B has as many 0- as 1-entries. Since this is particularly
true for the columns y1 and y2, it follows that, for every row x of B, exactly one of the entries B[x, y1] and
B[x, y2] equals 0. Thus column y2 of B is the entry-wise logical negation of the column y1. This, however,
is in contradiction with the second balance condition.
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Claim 3: Let k1 denote the common k-value of y1, . . . , yd. Then any row x in B with k(x) 6= k1 has 0-entries
only.

Proof. This is straighforward.

We conclude from Claims 2 and 3 that Pdim(A) = d ≤ Pdim(Ȧk1 ) and, by assumption, the latter
quantity is at most d0, which concludes the proof.

Theorem 4.4 is now a direct consequence of Lemma 5.8 in combination with Corollary 5.4, while Theo-
rem 4.5 is a direct consequence of Lemma 5.8 in combination with Lemmas 5.5 and 5.6. In order to prove
Corollary 4.3, note that Lemma 5.6 tells us that for every k there exists a matrix Ak such that Pdim(Ȧk) = 1
and Pdim∗(Ȧk) ≥ Pdim∗(Ak) = k + 2. We may then apply Lemma 5.8.

Acknowledgements. The first author thanks Tim Roughgarden for discussions that (indirectly) lead to
the questions studied in this work.
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A On the derivation of Assouad’s bound for uniform dimensions

We say that J ⊆ Y is VC-shattered by A : X × Y → {0, 1, ∗} if, for every function b : J → {0, 1}, there
exists an x ∈ X such that, for every y ∈ J , we have B(x, y) = b(y). We first note that (3.4) is also valid
for every matrix of the form A : X × Y → {0, 1, ∗}: the central observation in the proof is that Bd contains
B⊤

⌊log d⌋ as a submatrix. This implies that VC(A) ≥ ⌊logVC∗(A)⌋, which is equivalent to (3.4).
Consider now a matrix of the general form A : X × Y → Z with Z ⊆ R. Making use of the concept

of uniform Ψ-dimensions from [3], the result of Assouad can be extended to several other combinatorial
dimensions. Let Ψ denote a family of substitutions of the form ψ : R → {0, 1, ∗}. Denote by ψ(A) the
matrix obtained from A by performing the substitution ψ entry-wise. The uniform Ψ-dimension of A is
then defined as

ΦU (A) = sup
ψ∈Ψ

VC(ψ(A)) .

Let ΨY denote the set of all collections ψ̄ = (ψy)y∈Y with ψy ∈ Ψ. Denote by ψ̄(A) the matrix obtained
from A by replacing each entry A(x, y) with ψy(A(x, y)). The (non-uniform) Ψ-dimension of A is defined
as

Φ(A) = sup
ψ̄∈ΨY

VC(ψ̄(A)) .

As usual, we get the corresponding dual dimensions by setting Φ∗(A) = Φ(A⊤) and Φ∗
U (A) = ΦU (A

⊤). Note
that ψ(A⊤) = ψ(A)⊤ while ψ̄(A⊤) is not generally equal to ψ̄(A)⊤.

As noted in [3], several popular combinatorial dimensions can be viewed as (uniform or non-uniform)
ψ-dimension. Here we are particularly interested in the P -, Pγ , V -and Vγ-dimension:

Remark A.1. We next explain how to interpret known dimensions as special cases of the Ψ-dimension.

1. If Ψ is the set of mappings ψt of the form ψt(a) = sgn(a− t) for some t ∈ R, then Φ(A) = Pdim(A)
and ΦU (A) = Vdim(A) (see [3]).

2. If Ψ is the set of mappings ψt of the form

ψt(a) =







1 if a ≥ t+ γ
0 if a < t− γ
∗ otherwise

for some t ∈ R and γ > 0, then Φ(A) = Pγ(A) and ΦU (A) = Vγ(A).

The following calculation, with ψ ranging over all functions in Ψ, shows that Theorem 3.5 can be extended
to any uniform Ψ-dimension at the place of the VC-dimension:

Φ∗
U (A) = ΦU (A

⊤) = sup
ψ

VC(ψ(A⊤)) = sup
ψ

VC(ψ(A)⊤)

= sup
ψ

VC∗(ψ(A)) ≤ sup
ψ

(

2VC(ψ(A))+1 − 1
)

= 2supψ VC(ψ(A))+1 − 1 = 2ΦU (A)+1 − 1 .

We remark that a similar argument for the non-uniform Ψ-dimension fails as it then no longer holds that
ψ̄(A⊤) = ψ̄(A)⊤ (which is the argument we use in the third equality above).
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