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Abstract

The fractional knapsack problem is one of the classical problems in combinatorial op-
timization, which is well understood in the offline setting. However, the corresponding
online setting has been handled only briefly in the theoretical computer science literature
so far, although it appears in several applications. Even the previously best known guar-
antee for the competitive ratio was worse than the best known for the integral problem
in the popular random order model. We show that there is an algorithm for the online
fractional knapsack problem that admits a competitive ratio of 4.39. Our result signifi-
cantly improves over the previously best known competitive ratio of 9.37 and surpasses
the current best 6.65-competitive algorithm for the integral case. Moreover, our algorithm
is deterministic in contrast to the randomized algorithms achieving the results mentioned
above.

1 Introduction

The knapsack problem is well-studied and has a long history in the literature, both the offline
and the online versions, where in the latter the items are revealed one after the other and
an irrevocable decision whether to pick the current item has to be made immediately. In the
online setting, one typically considers the random order model, in which the adversary controls
the instance, i.e., the items with their weights and profits, but a permutation, chosen uniformly
at random, determines the arrival order of the items. In this model, the performance measure
of an algorithm A is its competitive ratio. We say that A is r-competitive with respect to the
profit OPT(I) of an optimal offline algorithm for input I, if E[A(I)] ≥ (1/r− o(1)) ·OPT(I)
holds for all inputs I. Here, the expectation is taken over the random permutation as well as
over random choices of the algorithm. The o(1)-term vanishes asymptotically with respect to
the number of items in the input instance. In a series of papers [1, 5, 24], the competitive ratio
for online knapsack has been improved to 6.65, achieved by a randomized algorithm in [1].
The online version of the fractional knapsack problem has not received much attention in
literature as of yet. An application of the online fractional knapsack problem was introduced
in [21], where the items are articles that are presented in a newsfeed to busy readers. The
scarce resource is time and the profit is the information gain. Upon arrival of an article,
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readers see its length and a cue about the content. They can discard the article right away
based on this information, or start reading it. They can read it completely or discard it at
any time. The information gain is assumed to be proportional to the reading time and the
cue about its content. Discarded articles are not considered again. Moreover, [21] contains
a framework that turns any α-competitive algorithm for the online knapsack problem into
an (α + e)-competitive algorithm for the online fractional knapsack problem. The approach
is based on flipping a biased coin (w.r.t. α) and either executing the given algorithm or the
famous secretary algorithm, where the first n/e items are discarded and then the first item
that is better than the best item seen so far is chosen. Together with the result of [1], this
led to the previously best known competitive ratio of 9.37 for the online fractional knapsack
problem. In this paper, we cut the competitive ratio by more than half, namely to 4.39. To
this end, we observed that the algorithm in [1] already contains a secretary algorithm on its
own and that small and large items are treated separately due to the nature of the integral
knapsack solution. Instead of treating it as a black box, relaxing the integrality constraints
allows us to unify the small-item and large-item cases and output fractional values instead
of binary ones, thereby achieving a better competitive ratio. Moreover, this also removes
the randomization from the algorithm making it deterministic, and the expected value that
determines the competitive ratio solely depends on the randomness of the input permutation.

1.1 Related Work

The study of the online (integral) knapsack problem was initiated by Marchetti-Spaccamela
and Vercellis [28], who showed that there is no constant-competitive deterministic online
algorithm. Moreover, Chakrabarty et al. [34] extended the same hardness result to randomized
algorithms. Motivated by the difficulty of the adversarial model for this problem, a number
of beyond worst-case scenarios have been investigated. The most popular of these is the
random order model that has received increasing attention in the field of online algorithms.
In this model, the online knapsack problem was first studied by [5], showing a 10e-competitive
algorithm. Kesselheim et al. [24] developed an 8.06-competitive randomized algorithm for the
generalized assignment problem, which generalizes to a setting with multiple knapsacks of
different capacities. Albers et al. [1] achieved the currently best known upper bound of 6.65.
The online fractional variant under adversarial arrivals was first considered in [30]. There,
the knapsack capacity is augmented by a factor 1 ≤ R ≤ 2, and the algorithm can remove
previously packed items. The plain version of the fractional knapsack problem in the random
order model was studied in [21], presenting a 9.37-competitive randomized algorithm, which
we improve upon. Recently, [31] considered a general version of the fractional online knapsack
problem with multiple knapsacks and rate constraints. A further branch of research considers
the infinitesimal assumption (or that the packing is allowed to be fractional), i.e., the profit
of a single item is small compared to the profit of the optimal integral solution, under which
Vaze [33] gave a 2e-competitive algorithm. In addition, a common approach combined with
the infinitesimal assumption is to assume that the density (profit-size ratio) of each item is
in a known range [8, 9, 34]. Another problem closely related to the random order model is
the secretary problem [14, 26], that is, a special case of the online knapsack problem in which
the weights are uniform and equal to the weight constraint. One natural generalization of the
latter is the k-secretary problem [2, 11, 25], where k elements need to be selected, as well as
the matroid secretary problem [6, 15], where elements of a weighted matroid arrive in random
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order, and in both of these, the goal is to maximize the combined value of the selected
elements. Other variants of online knapsack presented in the literature include removable
models, where removals can incur no cost or a cancellation cost [3, 4, 17, 18, 20], reservation
costs [7], an expected capacity constraint [32], and resource buffering [19]. Furthermore, there
have been alternative approaches to the random order model, such as stochastic versions of the
online knapsack problem [12, 13, 16, 27, 29], a random order model with bursts of adversarial
time steps [22], and the the advice complexity model [10].

1.2 Our Contribution

Theorem 1. There exists a 4.39-competitive deterministic algorithm for the online fractional
knapsack problem in the random order model.

We achieve this result by analyzing a natural variation of the algorithm from [1]. As in the
original version for the online knapsack problem, the algorithm works in three phases – the
sampling phase, the secretary phase, and the knapsack phase. The transition between the
phases happens at iterations ⌊cn⌋ and ⌊dn⌋, respectively, where 0 < c ≤ d ≤ 1 are optimized
to achieve the best possible competitive ratio when combining our analyses of the second and
third phase contributions. The algorithm can be considered as a blending of two algorithms
that share the first phase, which is possible because no items are picked in the sampling
phase; thus, there is no interference between both algorithms. After the first phase, i.e., after
roughly 47.5% of all items, the secretary algorithm takes over and exclusively decides the
items of the second phase. It does so by selecting all items that have a larger profit than
the most profitable item seen in the sampling phase. Should picking the current item exceed
the knapsack capacity, the item is picked to the largest extent possible to fill the knapsack.
If there is still capacity left after the second phase, i.e., after roughly 60.1% of all items, we
switch from the secretary to the knapsack algorithm, which then exclusively fills in a fraction
of each arriving item according to the optimal (fractional) solution of all items revealed so
far and the remaining capacity. It is interesting to note that we do not distinguish between
large and small items in our analysis, in comparison to [1]. Furthermore, in the analysis
of the secretary algorithm, we only account for the probability of picking the item that has
the largest contribution to the objective value of the optimal (fractional) solution. This is
sufficient to cover the case where the optimal solution consists of a single item, a situation
that the knapsack algorithm (or our analysis of it) cannot handle well. In fact, if we forced
c = d in the parameter optimization, we could not get a better competitive ratio than 6.63,
which is still better than the competitive ratio from [21], but significantly worse than the
best ratio from this paper. On the other hand, if we did not use the knapsack algorithm at
all (d = 1), we obtained the well-known secretary algorithm, where the sampling phase ends
after skipping a c = 1/e fraction of all items (justifying the naming).

2 Preliminaries

Definition 2 (OFKP). We are given a set I of n items, each item i ∈ I has size si ∈ Q>0

and a profit (value) vi ∈ Q≥0. The goal is to find a maximum profit fractional packing into
a knapsack of size W ∈ Q>0, i.e., a solution x ∈ Qn

≥0 s.t.
∑

i∈I sixi ≤ W and
∑

i∈I vixi is
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maximized. The items are revealed one by one in a round-wise fashion. In round ℓ ∈ [n], the
algorithm sees item ℓ with its size and profit. It has to decide immediately and irrevocably the
fraction xℓ of the current item in the final packing.

We make the following two assumptions without loss of generality: (i) No item has size larger
than the knapsack capacity1, (ii) Items have distinct values2. Using assumption (ii), we
obtain that there is a unique (optimum) solution x∗ for the given set of items I. In fact,
profit-to-weight ratio ties can be broken by taking the most valuable element which is unique
by assumption (ii).

Next, we formalize the optimal (fractional) solution for a given subset Q ⊆ I. Let the density
of an item be the ratio of its profit to its size. The optimal (fractional) solution has a clear
structure: There exists a density threshold ρQ such that any item i ∈ Q with vi/si > ρQ has
xi = 1 and any item i ∈ Q with vi/si < ρQ has xi = 0. Meaning that the k − 1 densest
items are packed integrally and the remaining space is filled by the maximum feasible fraction
of the k-th densest item. Let I(ℓ) denote the subset of items I revealed up to round ℓ and
define x(ℓ) to be the optimal (fractional) solution for the item set I(ℓ). Let OPT be the total
profit of the optimal (fractional) solution x∗ for the item set I, i.e., OPT =

∑

i∈I vix
∗
i . For

convenience of notation, let OPT also denote the set of items that are part of the optimal
(fractional) solution, i.e., each item i whose x∗i > 0, and let K be its cardinality. Additionally,
we label items in descending order of contribution to OPT such that vix

∗
i ≥ vi+1x

∗
i+1 for all

i ∈ [n− 1].

As in [1], we will use the following well-known fact to obtain lower or upper bounds on sums
in closed form.

Fact 3. Let f be a non-negative real-valued function and let a, b ∈ Z.

(A) If f is non-increasing, then
∫ b+1
a

f(t) dt ≤
∑b

t=a f(t) ≤
∫ b

a−1 f(t) dt.

(B) If f is non-decreasing, then
∫ b

a−1 f(t) dt ≤
∑b

t=a f(t) ≤
∫ b+1
a

f(t) dt.

2.1 Review of the Blended Approach

A standard approach used by packing algorithms in the online setting is the following. Al-
gorithms have a sampling phase, during which all items are rejected, and a decision phase,
where items may be accepted according to some decision rule developed according to the
information gathered in the sampling phase. The novel idea presented in [1] is to combine
two algorithms, A1 and A2, in a blended manner. The strategy is to make a better use of
the entire instance by letting the two algorithms have a common sampling phase, and, sub-
sequently, using the sampling phase of one algorithm as the decision phase of the other. Let
0 < c ≤ d ≤ 1 denote some constant parameters to be specified later. Rounds 1, . . . , ⌊cn⌋
define the common sampling phase. For rounds ⌊cn⌋ + 1, . . . , ⌊dn⌋, there is the A1 decision
phase, while, A2 continues its sampling phase. From round ⌊dn⌋ + 1 the algorithm A1 stops

1Items whose size exceeds the capacity of the knapsack can be cut at the knapsack capacity.
2It can be accomplished in polynomial time by fixing a random (but consistent) tie-breaking between

elements of the same value, based for instance on the identifier of the element [5].
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and the A2 decision phase starts until the end of the stream. As in [1], we make the assump-
tion cn, dn ∈ N for the analysis, which does not affect the competitive ratio substantially
for n large enough. Clearly, combining the two algorithms without an initial random choice
on whether to run A1 or A2 ([5, 21, 24]) comes at the cost of possibly having a non-empty
knapsack when A2 starts its decision phase, thus, deteriorating A2 performance. However,
we will see that with some sufficiently high probability the algorithm A1 does not pack any
item.

In the online integral knapsack algorithm developed in [1], the algorithm AL deals with all
items that consume more than 1/3 of the knapsack capacity. Items whose size is at most
1/3 of the knapsack capacity are packed by algorithm AS . The algorithm AL exploits
the connection with the 2-secretary problem because at most two large items can fit in the
knapsack. The algorithm AS packs the current small item integrally with probability equal to
its value in the optimal fractional solution formed by the items occurred so far. One possible
reason for which AL and AS operate on different instances, i.e., the instances that consist
of large and small items respectively, is that the optimal integral solution is not monotone.
Namely, in the optimal integral solutions for the items seen until rounds ℓ,m for ℓ < m

denoted by x(ℓ) and x(m) respectively, there might be an item i such that x
(m)
i = 1 > x

(ℓ)
i = 0.

Notably, this comes at the cost of not packing large items using AS , as the large items in the
optimal integral solution that algorithm AL considers may be arbitrarily different from the
large items in the optimal fractional solution that AS considers.

2.2 Application of the Blended Approach in the Fractional Case

In the fractional variant of the problem, we can overcome the limitation described above.
The fractional relaxation allows us to make both algorithms sharing the same instance of
the problem. The secretary algorithm AS packs the most profitable items, whereas, the
knapsack algorithm AK packs both small and large items (fractionally when needed) that are
part of the optimal fractional solution OPT. In the analysis of AS , the connection between
the fractional knapsack problem and the k-secretary problem can be extended beyond the
2-secretary problem, unlike the integral case, losing only the symmetry property of packing
an item before another when there is an item taken fractionally in the optimal (fractional)
solution. However, we will see that the connection with the 1-secretary problem is enough
for our purpose. Next, we give give a high-level description of the proof of Theorem 1 using
Algorithm 1.

Proof. Let A be the algorithm obtained by combining AS and AK . Moreover, define pi, qi to
be some probabilities that we introduce later. By setting parameters c, d to 0.47521, 0.60138,
we will show

E[A] ≥ E[AS ] +
c

d
· E[AK ] ≥

∑

i∈OPT

pi · vix
∗
i +

c

d

∑

i∈OPT

qi · vix
∗
i

≥

(
1

4.39
− o(1)

)

·OPT .
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Algorithm 1: Online Fractional Knapsack A

Input : permutation π of item set I, knapsack capacity W , parameters c, d ∈ (0, 1]
with c ≤ d.
Item i appears in round π(i) and reveals vi and si.

Output: feasible fractional knapsack packing, i.e., 0 ≤ xi ≤ 1 for item i ∈ [n].

Let ℓ be the current round and i be the online item of round ℓ;

Let v∗ be the maximum profit seen up to round ⌊cn⌋;

for round ℓ ∈ {⌊cn⌋+ 1, . . . , ⌊dn⌋} do ⊲ Algorithm AS

if vi > v∗ then

Set xi =
1

si
·min






si, W −

∑

j:π(j)<ℓ

sjxj






;

else

Set xi = 0;

for round ℓ ∈ {⌊dn⌋+ 1, . . . , n} do ⊲ Algorithm AK

x(ℓ) := optimal fractional knapsack packing on I(ℓ);

Set xi =
1

si
·min






six

(ℓ)
i , W −

∑

j:π(j)<ℓ

sjxj






;

In the remainder of this paper, we analyze the performance of AS and AK . The algorithm AS

and its analysis are similar to the algorithm AL and its analysis in [1] based on the single-

ref algorithm [2] for the k-secretary problem. The algorithm AK and its analysis extend the
approach of [1] to consider the possibility of packing items fractionally. Namely, we make AK

taking the largest possible fraction of an item that is part of the optimal fractional solution
seen at round ℓ according to the available knapsack capacity. The resulting competitive ratio
obtained by combining lower bounds on the expected profit of algorithms AS and AK is
analyzed in Section 5.

3 Secretary Algorithm AS

The following is an adaptation of single-ref developed for the k-secretary problem in [2]
and applied to the knapsack setting in [1]. There is a useful connection between the online
knapsack problem under random arrival order and the k-secretary problem. The latter is de-
fined as an unweighted version of online knapsack in the random order model, or equivalently,
items can be seen as W/k large. In contrast, in our problem items may be larger than W/k.

Algorithm. The algorithm AS works as follows. During the initial sampling phase of ⌊cn⌋
rounds, the algorithm rejects all items and identifies as best sample the encountered element
with the highest value. In rounds ℓ ∈ {⌊cn⌋ + 1, . . . , ⌊dn⌋}, the algorithm takes the the
largest possible fraction (according to the remaining knapsack capacity) of the items whose
individual profit beats the profit of the best sample. Consequently, the first item beating
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the best sample will be taken integrally. Then, the algorithm maximizes the fraction of each
subsequently accepted item.

Analysis. Let pi for i ∈ [n] be the probability that AS packs the i-th most profitable
item as the first element. When considering the probability pi, we do not specify what the
algorithm will further do, i.e., after the first accepted item, any or no second item may be
included and so on for subsequent items. In the following, we report the lower bounds for the
probabilities pi showed in [1]. Note that these lower bounds do not depend on the integral or
fractional variant considered as the first item can be always packed integrally. Let us define
a permutation σ : [n] → [n] such that vσ(1) > vσ(2) > . . . > vσ(n).

Lemma 4 ([1]). We have the following lower bounds for the probability pi that item σ(i), i ∈
[n], is accepted by AS as the first item

pi ≥ p(i)− o(1), with p(i) = c ln
d

c
+ c

i−1∑

k=1

(
i− 1

k

)

(−1)k
dk − ck

k
.

By the lemma above, we have p(1) = c ln d
c
for i = 1. Furthermore, the value of OPT is upper

bounded by the sum of the profits of the K most profitable items because items are sorted in
decreasing order of contribution to OPT, thus, vσ(i) ≥ vix

∗
i . This yields

E[AS ] ≥

K∑

i=1

pivσ(i) ≥

K∑

i=1

pivix
∗
i ,

concluding the analysis of algorithm AS .

4 Knapsack Algorithm AK

In this section, we present the algorithm AK that leverages the structure of optimal fractional
solutions restricted to the items seen so far. In contrast to the small-item algorithm developed
in [1], which uses the optimal fractional solutions to obtain an integral packing via randomized
rounding, our deterministic algorithm uses the value of the current item in the fractional
solution to the extent of the remaining knapsack capacity.

Algorithm. The algorithm AK works as follows. During the initial sampling phase of ⌊dn⌋
rounds, the algorithm rejects all items. In each round ℓ ≥ ⌊dn⌋+1, the algorithm computes an

optimal fractional solution x(ℓ) for I(ℓ). We pack an x
(ℓ)
i fraction of the current item if there

is enough space, otherwise we pick the largest possible fraction according to the remaining
space. Thus, the algorithm determines the fraction of item i, denoted by xi, as follows

xi =
1

si
·min






six

(ℓ)
i , W −

∑

i∈I(ℓ−1)

sjxj






.
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Analysis. We study the performance of algorithm AK assuming it has the entire knapsack
at its disposal, i.e., a capacity of W , and afterwards show how this occurs with constant
probability. In our proofs, we consider an arbitrary fixed element i ∈ OPT and define δ ∈ (0, 1]
to be a parameter representing the fraction of the knapsack capacity W that element i occupies
in our online solution. For a fixed δ, the proofs of Lemma 5 and Lemma 6 almost immediately
follow from the small-item case analysis in [1]; we reproduce their proofs for completeness
and include few changes in Lemma 5 that have to be made in order to adapt them to our
fractional setting. In the second part of the analysis, in Lemma 7, we make use of δ to exploit
the possibility of packing items fractionally.

Lemma 5 ([1]). Let i ∈ OPT and xi(ℓ) be the fraction of item i that is packed by AK in
round ℓ. For ℓ ≥ dn+ 1, it holds that

Pr

[

xi(ℓ) ≥ min

{
δW

si
, x∗i

}]

≥
1

n

(

1−
1

1− δ
ln

ℓ

dn

)

.

Proof. In a random permutation item i arrives in round ℓ with probability 1/n. In round

ℓ ≥ dn + 1, the algorithm packs i for an x
(ℓ)
i fraction provided that there is enough space.

Note that the rank w.r.t. profit-to-weight ratio of item i in I(ℓ) is less than or equal to its
rank in I. According to the structure of the optimal fractional solutions, this implies that

x
(ℓ)
i ≥ x∗i . Moreover, if the current resource consumption X is at most (1 − δ)W , then the

current item i can be packed up to a fraction δW/si. By treating x∗i as a parameter, it
is not required to analyze the resource consumption in each round in expectation over all
items. The latter approach appears in [23], which relies on the fact that in any step k of
the algorithm the choice of the random permutation up to this point can be modeled as a
sequence of independent random experiments. Let Xk be the resource consumption in round
k < ℓ. By assumption, the knapsack is empty after round dn, thus X =

∑ℓ−1
k=dn+1Xk. Let Q

be the set of k visible items in round k. The set Q can be seen as uniformly drawn from all
k-item subsets and any item j ∈ Q is the current item of round k with probability 1/k. The

algorithm packs any item j for at most an x
(k)
j fraction, thus

E[Xk] ≤
∑

j∈Q

Pr[j occurs in round k]sjx
(k)
j =

1

k

∑

j∈Q

sjx
(k)
j ≤

W

k
,

where the last inequality holds because x(k) is a feasible solution for the knapsack of size W .
By linearity of expectation and the previous inequality, the expected resource consumption
up to round ℓ is

E[X] =
ℓ−1∑

k=dn+1

E[Xk] ≤
ℓ−1∑

k=dn+1

W

k
≤ W ln

ℓ

dn
.

Applying Markov’s inequality yields

Pr[X < (1− δ)W ] = 1− Pr[X ≥ (1− δ)W ]

≥ 1−
E[X]

(1− δ)W
≥ 1−

1

1− δ
ln

ℓ

dn
.

In the next Lemma, we use Lemma 5 to lower bound the total probability that a fixed fraction
of a specific item will be packed.
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Lemma 6 ([1]). Let i ∈ OPT and xi be the fraction of item i that is packed by AK . It holds
that

Pr

[

xi ≥ min

{
δW

si
, x∗i

}]

≥ 1− d+
1

1− δ

[

1− d−

(

1 +
1

n

)

· ln
1

d

]

.

Proof. Summing up the probabilities from Lemma 5 over all rounds ℓ ≥ dn+ 1 gives

Pr

[

xi ≥ min

{
δW

si
, 1

}]

=
n∑

ℓ=dn+1

Pr

[

xi(ℓ) ≥ min

{
δW

si
, x∗i

}]

≥
n∑

ℓ=dn+1

1

n

(

1−
1

1− δ
ln

ℓ

dn

)

=
1

n

(

n− dn−
1

1− δ

n∑

ℓ=dn+1

ln
ℓ

dn

)

= 1− d−
1

(1− δ)n

n∑

ℓ=dn+1

ln
ℓ

dn

≥ 1− d−
1

(1− δ)n

(

n · ln
1

d
− n+ dn+ ln

1

d

)

.

The last inequality follows from
∑n

ℓ=dn+1 ln
ℓ
dn

=
(
∑n−1

ℓ=dn ln
ℓ
dn

)

+ ln 1
d

and, by Fact 3,
∑n−1

ℓ=dn ln
ℓ
dn

≤
∫ n

dn
ln ℓ

dn
dℓ, which evaluates to n ·

(
d− 1 + ln 1

d

)
. The claim follows by re-

arranging terms.

Observe that the above lower bound on the probability becomes negative for any δ ≥ 2 +
ln(d)/(1 − d). Therefore, it is only safe to use it for those items i that have a utilization

µi :=
six

∗
i

W
< µ̄ := 2 +

ln d

1− d
,

where the utilization of an item measures its space consumption in the optimal fractional
solution w.r.t. the total capacity and µ̄ denotes the maximum utilization allowed by our lower
bound. In the following Lemma, we compute a lower bound on the expected profit obtained
packing item i ∈ OPT using AK , crucially relying on the ability of packing items fractionally.

Lemma 7. Let i ∈ OPT and Ei[AK ] = qi · vix
∗
i be the expected profit obtained by AK from

the fraction of item i that is packed in the optimal (offline) fractional solution. We have
qi ≥ q(µi)− o(1) where

q(µi) =
1

µi

(

(1− d) ·min{µi, µ̄} −

(

1− d− ln
1

d

)

ln (1−min{µi, µ̄})

)

.

Proof. Our goal is to compute the expected profit obtained from item i ∈ OPT by summing
up the lower bounds on the probability that item i is packed for a fraction xi ∈ (0, x∗i ]. To this
end, let N be an arbitrarily large parameter. We define δj = 1− j/N for all j ∈ {0, . . . , N}.
It follows that δj > δj−1. We may choose N appropriately such that there is an index
k ∈ {0, . . . , N − 1} with δk = µi. Note that µi is a rational number since the input data
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is rational. Let us define mj =
δjW

si
for j ∈ {k, . . . ,N}. Recall that we consider a discrete

probability space over the permutations of [n]. We consider the discrete random variable Xi

for the fraction of item i that is selected by AK . Let Ωi denote the finite set of values that
Xi can attain. We have

Ei[AK ] = vi ·
∑

xi∈Ωi

xi · Pr[Xi = xi]

≥ vi ·mk · Pr [Xi ≥ mk] + vi ·
N∑

j=k+1

mj · Pr [mj ≤ Xi < mj−1] .

Observe that six
∗
i ≤ δkW . Substituting mj =

δjW

six
∗

i
· x∗i =

δj
δk

· x∗i and using the fact that

Pr [mj ≤ Xi < mj−1] = Pr [Xi ≥ mj]− Pr [Xi ≥ mj−1] ,

yields

Ei[AK ] ≥ vix
∗
i · Pr[Xi ≥ mk] + vix

∗
i ·

N∑

j=k+1

δj
δk

(Pr[Xi ≥ mj]− Pr[Xi ≥ mj−1]) .

We rearrange the sum as follows

Ei[AK ] ≥ vix
∗
i ·





N−1∑

j=k

δj − δj+1

δk
· Pr[Xi ≥ mj] +

δN
δk

· Pr[Xi ≥ mN ]



 .

By definition, we have δj − δj+1 = 1/N , δN = 0, and δk = µi. This implies that

qi ≥
1

µiN

N−1∑

j=k

Pr[Xi ≥ mj] ≥
1

µiN

N−1∑

j=k′

Pr[Xi ≥ mj ].

for any integer k′ ≥ k, which we will choose as the smallest index such that the lower bounds

from Lemma 6 are positive, i.e., k′ := max
{

k,
⌈

N · d−1−ln d
1−d

⌉}

. That is,

qi ≥
1

µiN

N−1∑

j=k′

[

(1− d) +

(

1− d− ln
1

d
−

1

n
ln

1

d

)

·
1

1− δj

]

=
1

µi



(1− d)

(

1−
k′

N

)

+

(

1− d− ln
1

d
−

1

n
ln

1

d

)N−1∑

j=k′

1

j



 .

It is easy to check that
(
1− d− ln 1

d
− 1

n
ln 1

d

)
≤ 0 for d ∈ (0, 1]. Thus, using Fact 3, we

deduce

N−1∑

j=k′

1

j
≤

N∑

j=k′

1

j
≤

∫ N

k′−1

1

t
dt = ln

(
N

k′ − 1

)

= ln

(

1

1−
(
1− k′

N

)
− 1

N

)

.
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By plugging in the above upper bound and observing that δk′ = 1− k′/N , we obtain

qi ≥
1

µi

[

(1− d)δk′ +

(

1− d− ln
1

d
−

1

n
ln

1

d

)

ln

(

1

1− δk′ −
1
N

)]

.

Note that 1
n
ln 1

d
= o(1) and that we can achieve ln

(
1

1−δk′

)

≤ ln
(

1
1−δk′−

1

N

)

≤ ln
(

1
1−δk′

)

+ ε

for any ε > 0, which yields the desired lower bound for µi = δk < µ̄. Moreover, if k′ =⌈

N · d−1−lnd
1−d

⌉

, we can obtain µ̄− ε ≤ δk′ ≤ µ̄ for any ε > 0, which completes the proof.

This establishes the profit obtained by items in OPT using AK . However, algorithm A can
only benefit from AK if algorithm AS has not filled the knapsack completely. As we do not
have any control over the (expected) size of the items packed by AS , we now condition on
the event that it starts with an empty knapsack:

Lemma 8 ([1]). With a probability of at least c/d, no item is packed by AS .

Let ξ denote the event of an empty knapsack after round dn. The following Lemma bounds
the overall expected profit from AK ’s packing for algorithm A by applying Lemma 8.

Lemma 9. We have
EAK

[A] ≥
c

d

∑

i∈OPT

qi · vixi.

Proof. By Lemma 8, the probability of an empty knapsack after round dn is at least c/d.
Thus, we obtain

EAK
[A] ≥ Pr[ξ] · E[AK |ξ] ≥

c

d

∑

i∈OPT

Ei[AK ] =
c

d

∑

i∈OPT

qi · vixi,

by linearity of expectation and Lemma 7.

5 Competitive Ratio Analysis

We provide a unified analysis of the competitive ratio achieved by algorithm A which combines
AS and AK . We determine the best choice for the parameters c and d w.r.t. the bounds that
we have proven before. Note that our bounds only make sense for 0 < c ≤ d ≤ 1 and µ̄ > 0.
The latter yields an additional lower bound on d, which is the smaller of the two roots of
2−2d+ln d, say, dmin ≈ 0.20319. In the following, we only consider the expected contribution
by items that are contained in OPT. That is,

EOPT[A] ≥
∑

i∈OPT

pi · vix
∗
i +

c

d

∑

i∈OPT

qi · vix
∗
i =

∑

i∈OPT

(

pi +
c

d
qi

)

· vix
∗
i .

Our strategy is as follows. We first reason about adversarial instances. We use these to
determine the parameters c and d that yield the best competitive ratio that is permitted by
the analysis of AS and AK above. Afterwards, we formally prove that we indeed covered the
worst-case, i.e., we achieve the postulated competitive ratio with the particular values for c
and d on all instances. We have to take care of the following two situations:

11



(i) OPT only contains a single item.

(ii) OPT contains many items with a small utilization.

In the former case, we have that OPT must contain the most profitable item, which the
secretary algorithm packs with a probability of p1. Moreover, we start AK with an empty
knapsack with probability of at least c/d and pack the most profitable item there with a
probability of q1 ≥ q(1). Hence, we obtain

EOPT[A] ≥
(

p1 +
c

d
q1

)

v1x
∗
1 =

(

p1 +
c

d
q1

)

OPT ≥
(

p(1) +
c

d
q(1)

)

·OPT,

where we now and in the remainder of this section omit the o(1) for better readability. Let
1/z denote the competitive ratio that we want to show. By the consideration above, we have
that

z ≤ p(1) +
c

d
q(1). (1)

For the second case, algorithm AK gives a lower bound of c/d · q(µ) on the fraction that we
pack of each item, w.r.t. its utilization in the optimal fractional solution, regardless of the
cardinality of OPT. Since q(µ) is decreasing for µ ∈ (0, 1) and any choice of d ∈ (dmin, 1), we
have the following constraint for the competitive ratio

z ≤
c

d
· q(0). (2)

In fact, the optimum of the resulting optimization problem

max
c, d, z

z

s.t. z ≤ c · ln
d

c
+

c

d
·

(

2− 2d+ ln d−

(

1− d− ln
1

d

)

· ln

(

ln 1
d

1− d
− 1

))

z ≤
c

d
· (2− 2d+ ln d)

0 < c ≤ d ≤ 1

is attained when the two upper bounds on z are equal, which yields c in dependence on d.
Hence, z is determined by a univariate function in d. It has a local maximum in the interval
from dmin to 1, which is also a global maximum in that interval. A numerical computation
yields that the maximum is attained for some d ≈ 0.6013835675554252. This yields c ≈
0.4752190514489393 and a competitive ratio of 4.383238341343964.

In the following, we will show that the competitive ratio for all other cases is not worse for
the parameters above completing the proof of Theorem 1.

Lemma 10. For all K ∈ [n], the algorithm A is 1
z
-competitive for

z =
c

d
(2− 2d− log(1/d)) >

1

4.39
,

c = 0.47521, and d = 0.60138.
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Proof. By Lemmas 4 and 9, the profit obtained by items in OPT is at least
∑

i∈OPT

(
p(i) + c

d
q(µi)

)
·

vix
∗
i . Clearly, the case K = 1 follows from the above optimization problem. For the general

case K ≥ 2, the minimum coefficient over all terms in the summation, for the given c and d,
may be smaller than the desired competitive ratio. However, if their average is larger than z,
then we can exploit this as follows. The idea is that we transport excess from items with a
smaller index (i.e., larger contribution to OPT), to items with larger index that may have a
deficit. That is, we can redistribute the excess at item 1 to any larger indexed item. Note also
that for any µi, it holds that c/d ·q(µi) ≤ z and that we can assume without loss of generality
that µ1 ≥ . . . ≥ µK as any other assignment of the µi’s would give an higher expected value.
Therefore, we deduce the following sufficient condition for our lemma

p(1) +
c

d

K∑

i=1

q(µi) ≥ z · K.

In particular, substituting q(µi) with its definition in
∑K

i=1 q(µi), we have

(1− d) ·min

{

1,
µ̄

µ1

}

+

(

1− d− ln
1

d

)

ln

(
1

1−min{µ1, µ̄}

)

+

K∑

i=2

(

1− d+
1

µi

(

1− d− ln
1

d

)

ln

(
1

1− µi

))

.

Assuming that µ1 ≤ µ̄ ≈ 0.72428, we can rewrite the above expression as follows

K · (1− d)−

(

1− d− ln
1

d

) K∑

i=1

1

µi
ln (1− µi) .

Recalling that
(
1− d− ln 1

d

)
< 0, for d ∈ (0, 1], and that

∑K
i=1 µi ≤ 1, we observe that

∑K
i=1

1
µi

ln (1− µi) is a separable concave function over the polyhedral domain {µ ∈ [0, µ̄]K :

1
Tµ ≤ 1}, which is minimized at the boundary, i.e., choosing µ1 = µ̄, µ2 = 1− µ̄ and µj → 0

for j ≥ 3. Note that for µj tending to zero, the term ln(1 − µj)/µj converges to −1 from

below. Meaning that
∑K

i=1
1
µ
ln (1− µ) ≥ 1

µ̄
ln (1− µ̄) + 1

1−µ̄
ln (µ̄)− (K − 2), resulting in the

following condition

p(1) +
c

d

(

K −Kd−

(

1− d− ln
1

d

)

·

(
1

µ̄
ln (1− µ̄) +

1

1− µ̄
ln (µ̄)−K + 2

))

= p(1)−
c

d

(

1− d− ln
1

d

)(

2 +
1

µ̄
ln (1− µ̄) +

1

1− µ̄
ln (µ̄)

)

︸ ︷︷ ︸

≈0.02949

+zK,

after plugging in the definition of z. Let us now consider the case in which µ1 > µ̄. Then,
the term

∑K
i=1 q(µi) can be rewritten as follows

(1− d) ·
µ̄

µ1
+

1

µ̄

(

1− d− ln
1

d

)

ln

(
1

1− µ̄

)

+ (K − 1)(1 − d)−

(

1− d− ln
1

d

) K∑

i=2

1

µi
ln (1− µi) ,
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where the sum is minimized for µ2 = 1− µ1 and µj → 0 for j > 2. The resulting function in
µ1 is decreasing over (µ̄, 1] for our choice of parameters. Thus, it is lower bounded by

p(1) +
c

d

(

(1− d)µ̄ +

(

1− d− ln
1

d

)

ln

(
1

1− µ̄

))

+
c

d
(K − 1)

(

2− 2d− ln
1

d

)

= p(1) +
c

d

(

(1− d)µ̄ +

(

1− d− ln
1

d

)

ln

(
1

1− µ̄

)

− 2 + 2d+ ln
1

d

)

︸ ︷︷ ︸

≈4·10−6

+zK.

Both conditions are met for our choice of c, d, concluding the proof.

6 Future Directions

Potential improvements and future directions are:

(i) Better bounds on the probability of picking the i-th most valuable item in the secretary
algorithm. We use the corresponding lower bounds from [1]; however, the first one
already suffices for the single-item case, and an improvement of the many-item case
would require that the amortized probability of picking the k-th most-valuable item
does not go to 0 as k gets large.

(ii) Close the probability gap in the analysis. With our choice of c and d, we account for a
probability of about 11% that the secretary algorithm packs the most profitable item,
and for a probability of about 79% that the third phase starts with an empty knapsack,
which we use to condition the expected profit of the knapsack algorithm – leaving a gap
of about 10% that is lost for our analysis.

(iii) Interleaving of secretary and knapsack algorithm. Instead of running two separate phases
for completing the secretary and the knapsack algorithm, they could run in parallel and
the decisions on the current item could be based on a combination of both opinions
(e.g., min, max, or coin flip).

(iv) Consequences for the online knapsack problem. Our focus was to improve the competi-
tive ratio for the online fractional knapsack problem. Additionally, it would be interest-
ing to investigate whether our result leads to new insights about the integer problem,
e.g., w.r.t. the analysis of randomized rounding or in other closely related settings.
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