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Recent works have suggested that the no-boundary proposal should be defined as a sum over regular, not
necessarily compact, metrics. We show that such a prescription can be implemented in the presence of a
scalar field. For concreteness, we consider the model of Garay et al., in which the potential is a sum of
exponentials, and which lends itself to an analytical treatment. Compared to the earlier implementation, we
find that saddle points with unstable fluctuations can be eliminated by imposition of an appropriate
regularity condition. This leads to the appearance of additional saddle points, corresponding to unclosed
geometries. We argue that such saddles will occur generically, though we also find in our example that they
are subdominant to the closed, Hartle-Hawking, saddle points. When the potential is positive, classical
spacetime is only predicted for inflationary histories. When the potential is negative, we recover the anti–de
Sitter gravitational path integral, with a stable scalar field included. One puzzle that we find is that in
general the path integral must be restricted to sum only over specific, discrete and late time dependent initial
values of the scalar field. Only when the scalar is required to take real values is this puzzle eliminated, a
situation that moreover leads to advantageous phenomenological characteristics.

DOI: 10.1103/PhysRevD.105.043529

I. INTRODUCTION

The no-boundary proposal is an attempt to describe the
quantum wave function of the Universe. It was first
introduced in the 1980s by Hartle and Hawking [1,2],
and has recently been the focus of renewed interest, see e.g.
[3–7]. This is because, on the one hand, it has proven
remarkably difficult to construct competing theories of
initial conditions and, on the other hand, there is a certain
naturalness to the no-boundary proposal that makes it
compelling. Recent works have reinforced this last point:
for instance, if one studies gravitational path integrals in the
presence of a negative cosmological constant, one is led to
the equivalent of no-boundary conditions, but in spacetimes
that are asymptotically anti–de Sitter (AdS) [8]. What is
remarkable about this setting is that via AdS=CFT it is
known what result to expect for the wave function [9] and
thus we can be rather confident that, in this setting, the no-
boundary prescription is correct. Then, via analytic con-
tinuation in the cosmological constant, one recovers the

standard cosmological no-boundary proposal [10]. It has
further been shown that the no-boundary proposal is robust
to the inclusion of higher order terms in the Riemann
curvature, which are expected to arise via quantum gravi-
tational corrections [11,12]. Finally, the case has been made
that, possibly together with loitering/emergent scenarios,
the no-boundary proposal constitutes the only currently
known way of rendering cosmological amplitudes finite
and well defined [13]. Despite these appealing features we
should point out that a crucial issue, namely whether or not
the no-boundary proposal is in agreement with observa-
tions, is still open, for a recent discussion see [7]. This is
partly due to the fact that the predictions of the no-
boundary proposal depend on the dynamical theory under
consideration, and partly because the no-boundary proposal
explains aspects of early Universe theories that are other-
wise already assumed, such as the classicality of spacetime
and the ground state of fluctuations [14,15], so that it may
be difficult to crystallize out truly new predictions. Still, we
will have a little more to say about observational predic-
tions in the discussion section.
Traditionally, the no-boundary proposal was defined as a

path integral summing over geometries that are both compact
and regular [2]. However, this definition is in tension with
the uncertainty principle, as compactness is a condition on
the scale factor and regularity a condition on its conjugate
momentum (i.e. the expansion rate of the Universe). If one
imposes compactness alone, then in general one finds that
the path integral contains two types of saddle points: those
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with stable fluctuations, and their complex conjugates with
unstable fluctuations. This hinders a clear-cut definition of
the no-boundary proposal, at least in certain simple minis-
uperspace models [16,17]. By contrast, if one imposes
regularity alone, then one may eliminate unstable saddle
points [6,18] (early suggestions to use a momentum con-
dition, though with somewhat different motivations, include
[19,20], and momentum conditions were also used in [5]).
The price to pay is that it is not guaranteed that the saddle
points will also be compact, which is certainly a condition
for interpreting the no-boundary wave function as describing
the creation of the Universe. For pure gravity and isotropic
metrics, this has been shown to work, and the saddle points
indeed end up being both regular and compact [6,18].
However, the link to observations is done using a scalar

field, either with an inflationary [21] or an ekpyrotic [22]
potential. In both cases, it has been shown that the no-
boundary proposal can explain the nucleation of a classical
spacetime from nothing, as both mechanisms drive the
wave function to a semiclassical Wentzel-Kramers-
Brillouin (WKB) form [15,23]. For ekpyrosis, one faces
the challenge of understanding the bounce to the expanding
phase. In phenomenological models, such a bounce can be
included [24]. But on a fundamental level bounces remain
ill understood, as it remains unclear whether quantum
gravity can allow for effective null energy violations on
large scales [25]. Hence we will not consider ekpyrotic
models further in this work.
We will rather focus on inflationary potentials here,

revisiting a minisuperspace model considered previously
by Garay et al. [26] and that has the property that it can be
treated analytically to a large extent. Garay et al. defined the
no-boundary wave function by a sum over compact metrics.
Since they did not discuss cosmological fluctuations in their
work, they were not concerned by the fact that, with this
definition, stable and unstable saddle points are typically
linked by steepest descent contours, making it impossible to
avoid the unstable saddles [17]. Our goal is to see whether
the proposal to define the no-boundary wave function by a
sum over regular metrics is viable in this case.
We find that, just as for the pure gravity case, imposing

regularity is equivalent to requiring the absence of momen-
tum flow at the creation of the Universe [10]. However, in
contrast to the pure gravity case where this condition was
unique, here it leads to a family of possible initial conditions,
with a parameter γ that may loosely speaking be thought of
as the initial value of the scalar field (this interpretation is not
always valid, as we will discuss). By construction, the saddle
points are always regular, but only for certain values of γ can
the saddle points also be compact. Even then, we find that
closed saddle point geometries appear alongside unclosed
geometries, which we argue to be generically present. Still,
an important result is that the unclosed geometries are
always subdominant to the closed ones, so that the no-
boundary wave function ends up being dominated by closed,

regular geometries, as desired. As previously noted by Garay
et al. [26], the dominant saddle points do not lead to a WKB
wave function in all regions of phase space, and in fact a
classical spacetime is only predicted in inflationary regions
of the potential. We also extend our analysis to include a
negative potential, in which case we recover geometries that
are asymptotically AdS, but with a dynamical scalar field.
An important question highlighted by our work is how to

define the no-boundary wave function in general. As we will
see, the regularity condition (which may also be seen as the
absence of momentum flow) does not in and of itself
uniquely fix the initial conditions. Further input is required,
such as the condition that compact saddle points exist. This
issue, and the resulting puzzles that it implies, are discussed
in more detail in the discussion section. However, let us point
out already that recent works proposing to define quantum
field theories on complex spacetimes using specific con-
vergence conditions offer a clue as to how the puzzle may
ultimately be resolved.

II. MODEL AND PATH INTEGRAL

We are interested in the no-boundary wave function of the
Universe Ψðhij;ΦfÞ, a functional of a three-dimensional
hypersurface hij on which a scalar field configuration Φf

resides. The arguments may be thought of as a possible
current state of the Universe, with the wave function provid-
ing probabilities for inequivalent histories of the Universe
[15]. The wave function is formally defined as a path integral

Ψðhij;ΦfÞ ¼
Z

DgμνDΦe
i
ℏS; ð1Þ

where the integration runs over a restricted class of
4-manifolds with metrics gμν and scalar field configurations.
A precise definition of the above path integral remains an
important goal of quantum cosmology. In the present paper,
we will investigate how to define this integral in a minisuper-
space setting,wherewe restrict themetric to be of Friedmann-
Lemaitre-Robertson-Walker (FLRW) form and the scalar to
be homogeneous.
The action is taken to be that for general relativity

minimally coupled to a scalar field. A Gibbons-Hawking-
York term is added on the final boundary, but not on the
initial boundary, since we would like to impose a regularity
(Neumann) condition there, rather than fixing the metric
(which would have required a Dirichlet condition),

S ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p ½R − 8πGðgμν∂μΦ∂νΦþ ṼðΦÞÞ�

−
1

8πG

Z
∂Mf

d3x
ffiffiffi
h

p
K: ð2Þ

The scalar potential ṼðΦÞ will be specified shortly. We work
in minisuperspace with an FLRWansatz for the metric. More
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specifically, we consider the Universe to be homogeneous
and isotropic, with scale factor a:

ds2 ¼ 2G
3π

�
−
N2ðτÞ
a2ðτÞ dτ

2 þ a2ðτÞdΩ2
3

�
: ð3Þ

The time coordinate has been defined in a somewhat unusual
way for later convenience [26]. The scalar field is also
assumed to be homogeneous, Φ ¼ ΦðτÞ. One can rescale
the scalar field and the potential to remove numerical factors
from the action, to find

ΦðτÞ ¼
ffiffiffiffiffiffiffiffiffi
3

4πG

r
ϕðτÞ; ṼðΦÞ ¼

�
9

8G2

�
VðϕÞ; ð4Þ

⇒ S¼ 1

2

Z
dτ

�
N −

a2 _a2

N
þ a4 _ϕ2

N
− a2NVðϕÞ

�
−
1

2

�
a3 _a
N

�
0

:

ð5Þ

The last term is a surface term at τ ¼ 0. The surface term at
τ ¼ 1 has disappeared after integration by parts.
As in [26], we use the following scalar potential

VðϕÞ ¼ α coshð2ϕÞ þ β sinhð2ϕÞ; ð6Þ

which renders the system analytically solvable for arbitrary
real parameters α and β. This becomes obvious by applying
the following change of variables:

x ¼ a2 coshð2ϕÞ; y ¼ a2 sinhð2ϕÞ; ð7Þ

which transforms the action into

2S½x; y� ¼
Z

dτN

�
_y2 − _x2

4N2
þ 1 − αx − βy

�
−
�
x_x − y_y
2N

�
0

:

ð8Þ

We define the momenta conjugate to x, y by

ΠxðτÞ ¼ −
_x
2N

; ΠyðτÞ ¼
_y
2N

: ð9Þ

The equations of motion and constraint deriving from the
action are very simple,

ẍ ¼ 2N2α; ÿ ¼ −2N2β; ð10Þ

1

4N2
ð_x2 − _y2Þ þ 1 − αx − βy ¼ 0: ð11Þ

Before proceeding, we must first discuss the boundary
conditions that should be imposed on the fields. There are
two complementary ways of doing this, and fortunately
both agree. The first is to continue with the action integral,

and look at the variational problem that it implies. Varying
with respect to the fields x and y we obtain the surface
terms

δð2SÞ⊃
�
−xδ

�
_x
2N

�
þ yδ

�
_y
2N

��
0

þ
�
1

2N
ð−_xδxþ _yδyÞ

�
1

:

ð12Þ

Thus at τ ¼ 0 we may impose a condition on the momenta
Πx ≡ −Πxðτ ¼ 0Þ;Πy ≡ Πyðτ ¼ 0Þ. (Note that, for later
calculational convenience, we define Πx with an additional
minus sign.) The appropriate regularity condition is
obtained by looking at the constraint (11) when
x; y → 0, implying that we should impose

Π2
x − Π2

y ¼ −1 ðregularity conditionÞ: ð13Þ

At τ ¼ 1 we can simply fix the field values xð1Þ≡ xf;
yð1Þ≡ yf.
A second approach is to look at the Wheeler-DeWitt

(WDW) equation, which is the quantum version of the
classical constraint (11). As discussed in [10], the no-
boundary proposal can be seen as the requirement that the
Universe is entirely self-contained, and that consequently
no momentum flows into it from “outside” at the nucle-
ation of the Universe. In momentum space, the WDW
equation is obtained as the operator version of the
constraint (11), replacing x → −i d

dΠx
; y → i d

dΠy
,�

Π2
x − Π2

y þ 1þ iα
d

dΠx
− iβ

d
dΠy

�
Ψ ¼ 0: ð14Þ

The absence of momentum flow, dΨ
dΠx;y

¼ 0, thus yields the

exact same condition, Π2
x − Π2

y ¼ −1.
It will be useful to parametrize the initial momenta as

Πx ¼ i coshð2γÞ; Πy ¼ i sinhð2γÞ: ð15Þ

This means that we still have a free parameter γ specifying
the initial conditions. Determining and interpreting γ will
be one of the main tasks of the present work. Before
continuing, let us remark that one condition on γ is familiar
from earlier works [6,8,18], namely that the sign of the
imaginary part of Πx must be chosen such that perturba-
tions of the geometry and matter are stable, rather than
unstable.1 The appropriate choice is

Im½Πx� ¼ −Im½Πxð0Þ� > 0 ðstability conditionÞ: ð16Þ

1This condition may also be seen as choosing the Hartle-
Hawking wave function [2], rather than Vilenkin’s tunneling
wave function [27].
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With the boundary conditions specified so far (fixing the
momenta at τ ¼ 0 and the field values at τ ¼ 1), it is
straightforward to find solutions to the equations of motion
for x and y,

x̄ðτÞ ¼ αN2τ2 þ 2NΠxτ þ xf − 2NΠx − αN2; ð17Þ

ȳðτÞ ¼ −βN2τ2 þ 2NΠyτ þ yf − 2NΠy þ βN2: ð18Þ

We may use these solutions to perform the path integrals
over x, y by writing a generic field evolution as a sum of
such a solution plus a variation X; Y∶

xðτÞ ¼ x̄ðτÞ þ XðτÞ; yðτÞ ¼ ȳðτÞ þ YðτÞ: ð19Þ

It is important that the variations are completely arbitrary,
except that the total fields must obey the boundary
conditions, implying that we must fix

_Xð0Þ¼0; Xð1Þ¼0; _Yð0Þ¼0; Yð1Þ¼0: ð20Þ

The action can then be rewritten as

S ¼ Son-shell þ
1

2

Z
dτN

�
_Y2 − _X2

4N2

�
þ
�
_̄yY − _̄xX
4N

�
1

−
�
x _X − y _Y

4N

�0
: ð21Þ

Due to (20) the surface terms vanish, and because the
original action was quadratic we now obtain Gaussian
integrals over X and Y,

Ψ ¼
Z

dNeiSon-shell=ℏ ·
Z

Xð1Þ¼0

_Xð0Þ¼0

DX
Z

Yð1Þ¼0

_Yð0Þ¼0

×DY exp

�
i
2ℏ

Z
dτ

_Y2 − _X2

4N

�
: ð22Þ

The calculation of the fluctuation integrals with the
required mixed Neumann-Dirichlet boundary conditions
can be done explicitly, see the appendix of [8] for details,
and the result is simply a numerical prefactor

Ψ½xf; yf; γ� ¼
8ℏ
π

Z
dN exp

�
i
ℏ
Son-shell½N;xf; yf; γ�

�
: ð23Þ

In Appendix A we provide a quick, indirect way of
verifying this result. Since this factor is just an overall
constant, not affecting relative probabilities, we will drop it
in the following. We are thus left with an ordinary integral
over the lapse N, with the integrand arising from the
explicit integration over the solutions (17), (18),

Son-shell ¼
N3ðα2 − β2Þ

6
þ N2ðαΠx þ βΠyÞ

2

−
Nðαxf þ βyfÞ

2
þ yfΠy − xfΠx

2
: ð24Þ

The saddle points of the integral are located at

8<
:Nα≠β

saddle� ¼ −ðαΠxþβΠyÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαΠxþβΠyÞ2þðα2−β2ÞðαxfþβyfÞ

p
α2−β2 ;

Nα¼β
saddle ¼ 1

2

xfþyf
ΠxþΠy

:
ð25Þ

Thus, for fixed boundary conditions, in particular fixed γ,
we obtain two saddle points in a general potential, and a
single saddle point for the exponential potential (α ¼ β).
In terms of the original variables, the saddle points may be
rewritten as

8<
:

Nα≠β
saddle� ¼ 1

α2−β2

�
−iVðγÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2 − β2Þa2f coshð2ϕfÞ − VðγÞ2

q �
;

Nα¼β
saddle ¼ − i

2
a2f exp ð2ϕf − 2γÞ:

ð26Þ

As is evident, the saddle points (and thus also the
semiclassical wave function) depend on the initial con-
ditions via the parameter γ. Since γ fixes the initial
momenta, and not the field values, it is not guaranteed
that the saddle point geometries will be compact; i.e. it is
not guaranteed that they close at τ ¼ 0. In fact, this will
only occur for specific values of γ. We will adopt the
prescription that we will simply sum over all values of γ
that lead to at least one closed saddle points; i.e. we will
take the total wave function to be given by

Ψ½xf; yf� ¼
X

γs:t: ∃ āð0Þ¼0

Ψ½xf; yf; γ�: ð27Þ

We should point out that this corresponds to a generali-
zation of the path integral, where we now also sum over
specific boundary conditions. In keeping with the spirit of
the path integral, each possible history is weighted by
eiS=ℏ only, and not by further factors, which is why it
makes sense to weight the different boundary conditions
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equally. We note that a closely related prescription has
been implicitly used in earlier implementations of the no-
boundary proposal, see e.g. [15]. There, Dirichlet boun-
dary conditions were used, which specified both the initial
values of the scale factor and the scalar field. In order to
obtain closed saddle points, one then had to adapt the
boundary condition on the scalar field depending on the
final values of the fields. This may also be thought of as
summing over appropriate initial conditions—we will
return to discuss this important point in Sec. IV. But
first, it is illuminating to study a few concrete examples to
better see what consequences our definition entails. This
will be the subject of the next section.

III. EXAMPLES

Despite its simplicity, the form of the potential VðϕÞ ¼
α coshð2ϕÞ þ β sinhð2ϕÞ that we are considering allows
for a rich variety of qualitatively different behaviors, see
Fig. 1. We will look at the case where the potential is
positive, inflationary and has a minimum (β ¼ 0, α > 0).
A second case is the opposite potential, with an AdS
maximum at negative values of the potential (β ¼ 0,
α < 0). Further, we can consider an exponential without

minimum (α ¼ β) and a potential that is unbounded both
above and below (α ¼ 0). We will examine these cases
in turn.

A. α= 1, β= 0: VðϕÞ= coshð2ϕÞ
The cosh potential is the most relevant example to study:

it is inflationary, with a slow-roll region for very small
values of jϕj. Also, when the scalar field vanishes, the
model reduces to gravity with a cosmological constant
(plus scalar fluctuations), and hence we expect to recover
the known no-boundary wave function in this limit. As we
will see, this potential is the only one where a classical
spacetime is predicted, which is a nontrivial result (a related
discussion appeared in [26]). The model was also previ-
ously used to study large homogeneous quantum fluctua-
tions in inflation [28].
Let us start by recalling the locations of the saddle points

(25):

N�
saddle ¼ −i coshð2γÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2f coshð2ϕfÞ− cosh2ð2γÞ

q
: ð28Þ

The constraint equation (11), which is satisfied at the saddle
points, directly implies that at the initial time τ ¼ 0 we have
xj0 ¼ 0. Therefore, given that a4 ¼ x2 − y2, the initial
geometry closes if and only if yj0 ¼ 0. From (18) we see
that this is satisfied for

Nclosed ¼
yf
2Πy

¼ a2f sinhð2ϕfÞ
2i sinhð2γÞ : ð29Þ

Equating the saddle point value (28) with (29), we find that
closed saddle point geometries must obey the equation

a2fsinh
2ð2ϕfÞ þ 4 sinhð2γÞ sinhð2γ − 2ϕfÞ ¼ 0: ð30Þ

We solve this equation for γ ∈ C, and find three types of
solutions valid in three different regions of the ðaf;ϕfÞ
phase space:

8>>>>>>><
>>>>>>>:

γI∓¼ ϕf

2
∓ i

2
arcsinðjsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ−1
q

Þ;

γII∓¼ 1
2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ð2ϕfÞ

4
ð2−a2f coshð2ϕfÞ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2−a2f coshð2ϕfÞÞ2−a4f

q
Þ

r �
;

γIII∓ðnÞ ¼∓ 1
2
cosh½−1�

�
1
2
sinhð2ϕfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2f coshð2ϕfÞ−2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2f coshð2ϕfÞ−2Þ2−a4f

qr �
þi

�
π
4
þ n·π

2

�
; n∈ f0;1g:

ð31Þ

FIG. 1. Different scalar field potentials: ðα; βÞ ¼ ð1; 0Þ hyper-
bolic cosine in blue, ðα; βÞ ¼ ð0; 1Þ hyperbolic sine in orange,
ðα; βÞ ¼ ð1=2; 1=2Þ exponential in green and ðα; βÞ ¼ ð−1; 0Þ
negative hyperbolic cosine in red.
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The above expressions are derived in Appendix B, and their
regions of validity, represented in Fig. 2, are found to be

8>><
>>:
regionI∶ a2fcosh

2ðϕfÞ> 1 and a2fsinh
2ðϕfÞ< 1;

regionII∶ a2fcosh
2ðϕfÞ< 1;

regionIII∶ a2fsinh
2ðϕfÞ> 1:

ð32Þ

We are now ready to compute the lapse integral. This is
done by applying Picard-Lefschetz theory, as in [3]. For
this, we must study the steepest descent contours (of the
lapse integrand) emanating from the saddle points. On

these “thimbles” the lapse integral may then be defined as a
sum of absolutely convergent integrals, which we can
approximate to leading order in ℏ by their saddle point
values.

1. Region I: Complex saddle points

For both γI∓ values, we find two saddle point values for
the lapse N given by (28). All four saddle points are
complex, but two of them are closed and the other two
unclosed. This is because, for a given γI∓ only one choice of
sign in (28) may be made to match with the required value
(29) for a closed geometry. But for each value of γ there are
two saddle points, hence the second one must be unclosed.
That the regularity condition may nevertheless be satisfied
is due to the fact that the potential itself may vanish at
τ ¼ 0. We explain this in somewhat more detail in
Appendix C. Basically, this result follows from the fact
that we have extended the fields to the complex plane, so
that the potential is now a holomorphic (in fact entire)
function of the fields. Picard’s little theorem implies that
such a function will generically vanish for some field value
(s). Thus, the appearance of unclosed saddle points was in
fact to be expected.
We illustrate the field evolutions at the saddle points with

the numerical examples provided in Fig. 3. The saddle
points appear in pairs, with opposite real parts of the lapse.
This corresponds to geometries and scalar field evolutions
that are complex conjugates of each other. As one can see
very clearly in the figure, two of the saddle point geom-
etries start out at zero size, while two others have an initial
hypersurface with a nonzero, complex scale factor. In all

(a) (b)

(c) (d)

FIG. 3. Case α ¼ 1, β ¼ 0, with N complex: af ¼ 1, ϕf ¼ 0.5. In this case γ∓ ¼ 0.25 ∓ 0.137i and the saddle points are
Nþ½γ−� ¼ 0.521–0.853i, N−½γþ� ¼ −0.521 − 0.853i, N−½γ−� ¼ −0.804 − 1.317i, Nþ½γþ� ¼ 0.804–1.317i. Nþ½γ−� and N−½γþ� are the
closed saddle points. The graphs show the evolution of the scale factor and scalar field at the different saddle points. Real part in green
for closed and in red for unclosed saddle points. Imaginary part in purple for closed and in blue for unclosed saddles. (a) Complex fields
at Nþ½γ−�, (b) complex fields at N−½γþ�, (c) complex fields at N−½γ−�, and (d) complex fields at Nþ½γþ�.

FIG. 2. Phase space regions (32). Region I is in blue,
region II is in green and region III is in red. The purple curve
is the condition a2fcosh

2ðϕfÞ ¼ 1, and the blue curve is the
condition a2fsinh

2ðϕfÞ ¼ 1.
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cases, the scalar starts from a complex field value at τ ¼ 0,
for the unclosed saddles this is ϕ ¼ �iπ=4, where the
potential vanishes. For the closed saddle points, we have
that

ϕðτ ¼ 0Þ ¼ lim
τ→0

1

2
arctanh

�
ȳðτÞ
x̄ðτÞ

�
¼ 1

2
arctanh

�
Πy

Πx

�
¼ γ:

ð33Þ
Thus, for closed saddles, γ can simply be interpreted as the
initial scalar field value. At τ ¼ 1, all field values are real,
as required.
Figure 4 shows the steepest descent/ascent lines asso-

ciated with the saddle points. We obtain one such figure for
each value of γ. In each graph there is thus one closed and
one unclosed saddle point. Their thimbles can be summed
to a contour that runs parallel to the real N line—this is the
most natural contour of integration, and most closely
related to a Lorentzian contour. (It does not correspond
to an integration over exactly Lorentzian metrics, because
the initial momentum conditions imply that near τ ¼ 0 all
metrics in the sum are necessarily complex.) Given that we
are summing over the two relevant values of the initial
conditions parameter γ, the resulting no-boundary wave
function, to leading order in ℏ, is then given by

Ψ½xf;yf� ¼ e
i
ℏSðNþ½γ−�Þ þ e

i
ℏSðN−½γþ�Þ þ e

i
ℏSðNþ½γþ�Þ þ e

i
ℏSðN−½γ−�Þ:

ð34Þ

The wave function is real, as the saddle points are pairwise
complex conjugates of each other.
It remains to determine which saddle point(s) actually

dominate, i.e. which saddles have the highest weighting.
Recall that the saddle points are located at

N� ¼ −Πx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ Π2

x

q
: ð35Þ

We can thus write the (on-shell) saddle point action as

Son-shell ¼
N3

�
6

þ N2
�Πx

2
−
N�xf
2

þ yfΠy − xfΠx

2
; ð36Þ

¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf þ Π2

x

q
3

3
þ Π3

x

3
þ yfΠy

2
: ð37Þ

Let us now compute the values of Πx and Πy for the
different saddle points. The two possible solutions for γ are
given from Eq. (31) by

γ∓ ¼ ϕf

2
∓ i

2
arcsin

�
jsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ− 1
q �

: ð38Þ

γ− is closing the geometry of the saddle point Nþ, while γþ
is closing the geometry of the saddle point N−. We then
obtain

Πx∓ ¼ i coshð2γ∓Þ
¼ �sinh2ðϕfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

þ icosh2ðϕfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2fsinh

2ðϕfÞ
q

; ð39Þ

Πy∓ ¼ i sinhð2γ∓Þ

¼ � sinhð2ϕfÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

þ i sinhð2ϕfÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2fsinh

2ðϕfÞ
q

: ð40Þ

(a) (b)

FIG. 4. Case α ¼ 1, β ¼ 0, with N complex: af ¼ 1, ϕf ¼ 0.5. Density plot of the weighting Re½iSon-shellsaddle � and flow lines in the
complex N plane. Steepest descent (ascent) contours are those lines emanating from the saddle points and reaching blue (red) regions.
The path integral is defined on sums of steepest descent contours. (a) Nþ½γ−� (green dot) and N−½γ−� (red dot) and (b) N−½γþ� (green dot)
and Nþ½γþ� (red dot).
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Here we assume without loss of generality that ϕf > 0,
and we recall that we are looking for solutions in the
region of the phase space where a2fcosh

2ðϕfÞ > 1 and
a2fsinh

2ðϕfÞ < 1. Thus note that the imaginary parts of Π�
do not depend on the choice of saddle point, only the real
parts differ by a sign. The weighting of the saddle point is
determined by the imaginary part of the action, e−Im½S�.
Hence from (37) we see that only the first term will be
important in comparing weightings. If we define

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xfþΠ2

x∓
q

3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A� iB

p
3≡ ðρe�iθÞ3=2 ¼ ρ3=2e�3iθ=2; ð41Þ

then we find

Im ½Sclosedon-shell½N−½γþ��� − Im ½Sunclosedon-shell ½Nþ½γþ��� ð42Þ

¼ Im ½Sclosedon-shell½Nþ½γ−��� − Im ½Sunclosedon-shell ½N−½γ−���; ð43Þ

¼ −
2

3
ρ3=2 sin

�
3θ

2

�
: ð44Þ

The saddle point that will contribute the most is the one
with the smallest Im½S� value. This depends on the sign of
the sine, and hence on the value of the angle θ. With the
definition (41) we have

B ¼ 2sinh2ðϕfÞ cosh2ðϕfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − a2fsinh
2ðϕfÞ

q
> 0 ⇒ θ ∈ ð0; πÞ; ð45Þ

A ¼ a2f coshð2ϕfÞ þ sinh4ðϕfÞða2fcosh2ðϕfÞ − 1Þ − cosh4ðϕfÞð1 − a2fsinh
2ðϕfÞÞ: ð46Þ

Here B is always positive, while the sign of A depends on
the boundary conditions. The sine in Eq. (44) will be
positive as long as θ ¼ arccotðABÞ < 2π

3
, which implies

cotðθÞ ¼ A
B > − 1ffiffi

3
p , since the cotangent function is mono-

tonically decreasing between 0 and π. Therefore, when
A=B > −1=

ffiffiffi
3

p
, the sine of 3θ=2 is positive and the two

closed saddle points have the biggest amplitude, while
when A=B < −1=

ffiffiffi
3

p
, the sine is negative and the two

unclosed saddle points have the largest amplitude. In
Fig. 5 we plot the region in phase space ðaf;ϕfÞ where
A=B > −1=

ffiffiffi
3

p
, and we find that it englobes the region

where complex saddle point geometries are defined. Near
the boundaries of this region, a2fcosh

2ðϕfÞ ¼ 1 or
a2fsinh

2ðϕfÞ ¼ 1, the weightings approach each other,
but in the interior the unclosed saddle points are expo-
nentially suppressed compared to the closed saddle points.
Thus we conclude that also in the case where a scalar field
is included, the no-boundary wave function is dominated
by compact, regular geometries.
Still, the interpretation of the wave function requires

more refinements. As it stands, the wave function is a sum
of four saddles, which are pairwise complex conjugates of
each other. Thus the sum is dominated not by one, but by
two saddles of equal weight. Taken at face value, this would
mean that there would be a strong interference between two
universes. However, it was shown in [29,30] that once
perturbations are added, they lead to efficient decoherence
of the two saddles as the Universe grows. Thus, once af ≫
1 we may focus on a single (dominant) saddle point, say
Nþ½γ−�. For this saddle point, the action may be expanded
in the scalar field (which is required to be small for these
saddle points to exist), with the result that

SðNþ½γ−�Þ ¼ −
1

3
ða2f − 1Þ3=2 − 1

2
ða2f − 1Þ1=2a2fϕ2

f

−
i
3

�
1 −

3

2
a2fϕ

2
f

�
þOðϕ4

fÞ: ð47Þ

To quadratic order in the final value of the scalar field, the
weighting is thus given by

jei
ℏSðNþ½γ−�Þj ¼ e

1
3

�
1−3

2
a2fϕ

2
f

�
; afϕf ≪ 1; ð48Þ

FIG. 5. The region where the closed saddle points dominate
over the unclosed one is englobing the region where complex
saddle points are defined. Note that our analysis assumed that we
were outside the green and red regions, so from this picture
nothing can be inferred about these regions.
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recovering the well-known result that the no-boundary
wave function gives the highest probability to histories
that evolve low on the scalar potential. The on-shell action
(47) further implies that at large scale factor we have to
leading order

				∂ImðSÞ
∂af =

∂ReðSÞ
∂af

				∼ϕ2
f

af
≪1;

				∂ImðSÞ
∂ϕf

=
∂ReðSÞ
∂ϕf

				∼ 1

af
≪1:

ð49Þ

Thus, at large scale factor, the amplitude of the wave
function varies very slowly compared to the phase. This
demonstrates that this branch of the wave function becomes
of WKB form, which implies that in this region of phase
space a classical spacetime, with a classical background
evolution, is predicted [15,23]. Finally, we should note that
the highest probability occurs for the limit where the scalar
sits at the minimum of the coshð2ϕÞ potential. In this limit,
γ tends to zero and the unclosed saddles disappear. This
limit in fact simply corresponds to the pure gravity case
with a cosmological constant, except that now fluctuations
of the scalar field are also included. These, however,
provide a subdominant contribution to the wave function.

2. Region II: Imaginary saddle points

In region II, where roughly speaking the Universe is very
small [a2f coshð2ϕfÞ < 1], the solutions for γ are purely
real. Therefore the saddle point lapse values (28) will be

purely imaginary, as well as the initial momenta Πx and Πy.
Then the classical solutions x̄ and ȳ are purely real, see
(17), (18). If ā ¼ ðx̄2 − ȳ2Þ1=4 is also real, then we obtain a
purely Euclidean geometry. Moreover the on-shell action
evaluated on the saddle points is imaginary from (24). This
means that the wave function of each saddle point geometry
is a pure amplitude:

ψ ∝ ereal number; ð50Þ

hence this does not lead to a WKB evolution. In this region
of phase space, the Universe is still in the nucleation phase,
roughly the equivalent to the tunneling phase of a particle
under a barrier potential.
We will now look at the saddle point solutions in a little

more detail, see Fig. 6 for a numerical example. For the
closed saddle point solutions, x̄ and ȳ both start from 0
when τ ¼ 0. x̄ describes a downward-facing parabola
(because N2 is negative), while ȳ is a straight line. The
gradient of x̄ in τ ¼ 0 is always bigger than that of ȳ:

				 _̄y_̄x
				
0

¼ jtanhð2γÞj < 1; ð51Þ

and finally at the end point of the trajectory τ ¼ 1, the
value of x̄ is always above the value of ȳ [since
coshð2ϕfÞ > sinhð2ϕfÞ]. Hence x̄ is always larger than
ȳ, and ā will be real for the whole trajectory. So, the
geometry of the closed saddle points is purely Euclidean.

(a) (b)

(c) (d)

FIG. 6. A numerical example of the field evolutions in region II. Here we have chosen α ¼ 1; β ¼ 0; af ¼ 0.2, ϕf ¼ 1. For this
example γ− ¼ 0.0189, γþ ¼ 0.981, N−½γ−� ¼ −1.92i, Nþ½γ−� ¼ −0.0782i, Nþ½γþ� ¼ −0.0208i, and N−½γþ� ¼ −7.24i. We find two
closed saddle point geometries—Nþ½γþ� andN−½γ−�—and two unclosed geometries—Nþ½γ−� andN−½γþ�. Real parts in green for closed
saddle points, red for unclosed ones. Imaginary parts in purple for closed saddle points and blue for unclosed ones. Note that the
imaginary part of the scalar typically jumps when the scale factor passes through zero, as the imaginary part of the scalar itself also
changes there, given that it is obtained by taking a fourth root a ¼ ðx2 − y2Þ1=4. (a) Closed euclidean geometry N−½γ−�, (b) closed
euclidean geometry Nþ½γþ�, (c) unclosed euclidean geometry Nþ½γ−�, and (d) unclosed euclidean geometry N−½γþ�.
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For the unclosed saddle points, only x̄ starts at 0, so
x̄2 − ȳ2 will start with a negative value at τ ¼ 0. Because
the end point value of x̄ is always bigger than the end
point of ȳ, this means that x̄2 − ȳ2 will be positive at
τ ¼ 1. Therefore by the mean value principle, there must
be a τ0 ∈ ð0; 1Þ such that āðτ0Þ ¼ 0: these unclosed
geometries exhibit a singular bounce in the course of
their evolution. These solutions are thus unphysical,
because fluctuations will blow up at this singularity,
rendering the action infinite.
To examine which saddle points contribute to the path

integral we must study the thimbles in the complexified N
plane. A representative numerical example is shown in
Fig. 7, with final values af ¼ 0.2 and ϕf ¼ 1. In the
figure the closed saddle points are marked with green
dots. The interesting feature is that their locations relative
to the unclosed saddles are reversed for the two values of
γ. Hence, with the same contour of integration, we will
necessarily get a contribution both from a closed and an
unclosed saddle. If we stick to the same contour of
integration as in region I, i.e. a line parallel to the real N
axis, then for γ− the unclosed saddle will contribute,
while for γþ the relevant saddle will be the closed one,

Ψ½xf; yf� ≈ e
i
ℏSon-shell½Nþ½γ−�� þ e

i
ℏSon-shell½Nþ½γþ��: ð52Þ

As explained above, the unclosed saddles contain a
singular bounce and thus, once perturbations are added,
their action will in fact diverge. Thus such saddle points
essentially remove themselves from the wave function.
We should note that, in [26], the point of view was taken
that saddle points containing a singular bounce should be
allowed, as one can deform the “path” taken in the
complexified time plane as long as the end points remain
unchanged, i.e. as long as the evolution starts at τ ¼ 0 and
ends at

R
1
0 Ndτ ¼ N. Such a deformed evolution could

then circumvent the singularity and render the field
evolution regular. In view of Cauchy’s theorem, nothing
speaks against performing such deformations as long as
the deformed path does not cross any singularities. Here,
however, the original path actually does contain a
singularity, at which all perturbations and matter con-
figurations blow up—cf. for instance the scalar field
evolution shown in Fig. 6(c). Thus Cauchy’s theorem
cannot be applied and we are led to disregard saddle point
geometries that contain spacetime singularities. Note that
we take the constant lapse version of the saddle point
geometry, rather than one of the deformed ones, as
fundamental, given that the path integral is evaluated
precisely in the gauge where N is constant [31]. We
acknowledge that this point of view is debatable, and that
this is an issue that deserves a deeper study in the future.
For now, let us add one further remark: the saddle point
evolutions appear to be completely regular in terms of the
x, y variables. One only sees the singularity after trans-
forming back to the original a;ϕ variables. One could
then argue that the x, y variables are better behaved and
that these saddle points should therefore be retained.
However, one should note that the transformation
from the a;ϕ to the x, y variables then becomes ill
defined. The fact that the a;ϕ fields have physical
meaning—describing, respectively, the evolution of the
volume of the Universe, and of the scalar field matter—
provides in our view a strong argument for considering
them as fundamental, and for discarding saddle points
that are singular in these variables.
In light of the preceding discussion, with a single

relevant saddle point remaining, the wave function may
be approximated as

Ψ ≈ e
i
ℏSðNþ½γþ�Þ; ð53Þ

(a) (b)

FIG. 7. Case α ¼ 1, β ¼ 0, af ¼ 0.2, ϕf ¼ 1, with N imaginary. Density plot of the weighting Re½iSon-shellsaddle � and flow lines in the
complex N plane. (a) N−½γ−� (green dot) and Nþ½γ−� (red dot) and (b) Nþ½γþ� (green dot) and N−½γþ� (red dot).
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SðNþ½γþ�Þ ¼ −
i
3
½1 − ð1 − a2fÞ3=2�

þ i
2
½1 − ð1 − a2fÞ1=2�a2fϕ2

f þOðϕ4
fÞ: ð54Þ

The action is pure amplitude: it grows from zero at af ¼ 0

until the boundary of the domain a2f coshð2ϕfÞ < 1 is
reached. As the Universe grows further, a phase will
develop, as described previously for region I.
It is noteworthy that of the two closed saddle points, it is

the one whose geometry approximately corresponds to
less than a hemisphere that is relevant to the path integral,
rather than the one whose geometry is larger than half of
an hemisphere, cf. also Fig. 6. This is in agreement with
previous findings in the pure gravity case [10] and implies
that when the scale factor af approaches zero, the
dominant geometry is the vanishing geometry, rather than
that of a full sphere, which would have signaled a
dominant contribution from a nontrivial topology.

3. Region III: Real saddle points

In this region, a2f sinh
2ð2ϕÞ > 1, the imaginary part of γ

implies that coshð2γÞ and sinhð2γÞ are purely imaginary.
This means that the values of Πx and Πy as well as the
classical solutions x̄ and ȳ are always purely real. Hence
the saddle point values of the lapse (28) are also purely
real, and the on-shell action (24) evaluated on these saddle
points as well. Therefore whatever the relevant saddle
points are, the wave function that we will get from the
lapse integral will be of the following form:

Ψ½xf; yf� ¼
X

ei·real number; ð55Þ

which means that all the different saddle points have the
same weighting, so this does not describe a true quantum
state, but rather a collection of classical evolutions.
However, we will now show that the classical solutions
found in this region are not physical, because they exhibit
a singular bounce in the course of their evolution. The x̄
solution describes an upward facing parabola, while ȳ is

still a straight line. For the closed saddle points, we start
with x̄ð0Þ ¼ ȳð0Þ ¼ 0, and the initial gradients are

				 _̄y_̄x
				
0

¼ jcothðRe½γ�Þj > 1; ð56Þ

therefore, since at the end point we still have x̄ð1Þ > ȳð1Þ,
there will be a τ0 such that the x and y curve cross, and we
find aðτ0Þ ¼ 0. Closed geometries therefore contain a
singular bounce, at which perturbations will blow up, and
are therefore excluded as potential saddle points. For
unclosed saddle points, we start from xð0Þ2 − yð0Þ2 < 0

and we go to xð1Þ2 − yð1Þ2 > 0, so again their must be a
point τ0 ∈ ð0; 1Þ where the geometry vanishes, aðτ0Þ ¼ 0,
and we find another singular bounce.
In this region, we therefore do not find any physically

acceptable solutions, but this is not a contradiction because
this region is by definition not continuously connected to
the pure gravity case ϕf → 0, so it just means that there
exists a bound on the values of ϕf that lead to classical
spacetime, and this bound is a2fsinh

2ðϕfÞ < 1.

B. α= − 1, β= 0: VðϕÞ= − coshð2ϕÞ
The negative coshð2ϕÞ potential is interesting to study,

as potentials of this kind appear rather naturally in string
compactifications (though the potential would then be
expected to be bounded below; i.e. it would turn upwards
at large jϕj). At the maximum of the potential, where the
scalar field vanishes, we expect to recover the pure anti–de
Sitter case, studied in [8,10]. In these works it was found
that the AdS path integral is formally completely analogous
to a no-boundary path integral, including the requirement
for a regularity condition in the interior of the geometry.
Here, with a scalar included, we now have saddle

points at

Nsaddle
� ¼ icoshð2γÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cosh2ð2γÞ−a2f coshð2ϕfÞ

q
: ð57Þ

The γ values that lead to closed geometries are given by
(see Appendix B)

8>>><
>>>:

γI∓ ¼ ∓ 1
2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ð2ϕfÞ

4
ð2þ a2f coshð2ϕfÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ a2f coshð2ϕfÞÞ2 − a4f

q
Þ

r �
;

γII∓ ¼ ∓ 1
2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ð2ϕfÞ

4
ð2þ a2f coshð2ϕfÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ a2f coshð2ϕfÞÞ2 − a4f

q
Þ

r �
:

ð58Þ

The solutions γI− and γIIþ are defined for ϕf > 0, while γIþ
and γII− are defined for ϕf < 0. The solutions I close the
saddle point Nþ, and the solutions II close the saddle point
N−. At each phase space point, i.e. for each choice of final

boundary conditions ðaf;ϕfÞ, we get a total of four saddle
point solutions, two closed (Nþ½γI� and N−½γII�) and two
unclosed (Nþ½γII� and N−½γI�). It is straightforward to see
that all γ values are real, and thus the saddle points (57) are
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pure imaginary. Hence we may deduce from (24) that the
on-shell action will also be purely imaginary: eiS is only an
amplitude and does not contain any phase. Thus no
classical spacetime will be implied. Examples of specific
solutions are shown in Fig. 8. The two saddle points
associated with γI, as well as the unclosed saddle associated
to γII have a singular bounce within their evolution, they are
therefore suppressed by the blowing-up fluctuations. Using
similar techniques as for the α ¼ 1 case, one can show this
is always the case. Therefore the only relevant solution is
the closed saddle point geometry N−½γIIþ�. Note that for this
saddle point, the scalar field is purely real valued, and in
fact runs up the potential as the scale factor grows. This is

characteristic of approximately anti–de Sitter space, where
even potential maxima with negative second derivatives are
stable, as long as they satisfy the Breitenlohner-Freedman
bound [32], as our potential does (if one undoes the

rescaling (4), then V ¼ − cosh
� ffiffi

2
3

q
Φ
�
so that the effective

mass is m2 ¼ − 2
3
> m2

BF ¼ − 9
4
).

The structure of the flow lines is again most easily
grasped with the help of a numerical example, see Fig. 9.
The closed saddle point is selected by Picard-Lefschetz
theory only if the defining contour of integration contains
the lower part of the imaginary lapse axis. In fact, given that
we expect the wave function to be real valued [especially in

(a) (b)

FIG. 9. Case α ¼ −1; β ¼ 0, af ¼ 2, ϕf ¼ 1. Density plot of the weighting Re½iSon-shellsaddle � and flow lines in the complex N plane. Same
conventions as in Fig. 4. (a) Nþ½γI−� (green dot) and N−½γI−� (red dot) and (b) N−½γIIþ� (green dot) and Nþ½γIIþ� (red dot).

(a) (b)

(c) (d)

FIG. 8. Case α ¼ −1; β ¼ 0, af ¼ 2, ϕf ¼ 0.1, with N imaginary. The relevant numerical values are γI− ¼ −0.0615; Nþ½γI−� ¼
3.26i; N−½γI−� ¼ −1.25i; γIIþ ¼ 0.162; N−½γIIþ� ¼ −1.23i; Nþ½γIIþ� ¼ 3.33i. Geometry associated to the different saddle points. Same
conventions as in Fig. 3. (a) Closed euclidean geometry Nþ½γI−�, (b) closed euclidean geometry N−½γIIþ�, (c) unclosed euclidean geometry
N−½γI−�, and (d) unclosed euclidean geometry Nþ½γIIþ�.
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view of a potential conformal field theory (CFT) dual
[33] ], one should define the path integral as a sum of two
contours: the first from negative imaginary infinity up to the
saddle point in the upper half plane and then on to either the
left or right, following the steepest descent contour; plus a
contribution from a contour that is reflected across the
imaginary lapse axis. These two contours will add up two
complex conjugate contributions, just as was described for
the pure gravity case in [8,10]. The wave function may then
be estimated as

Ψ ≈ e
i
ℏSðN−½γIIþ�Þ; ð59Þ

SðN−½γIIþ�Þ ¼ −
i
3
½ða2f þ 1Þ3=2 − 1�

−
i
2
½ða2f þ 1Þ1=2 − 1�a2fϕ2

f þOðϕ4
fÞ: ð60Þ

For completeness, let us mention that in applications to
AdS=CFT one would let the scale factor run to infinity,
af → ∞, then add the appropriate counter terms to remove
the volume divergence in the wave function.
We may conclude that the prescription to define the path

integral with a momentum condition in the interior, rather
than a Dirichlet condition, also works once a scalar field is
included.

C. α= β: VðϕÞ =α expð2ϕÞ
When α ¼ β, the potential becomes even simpler, and is

given by a single exponential VðϕÞ ∝ e2ϕ. Classically, this
potential allows for inflationary scaling solutions, with a
constant equation of state [26]. However, because the
potential is nowhere flat, it is not possible to achieve a
de Sitter limit. The classical scaling symmetry, which
consists of a rescaling of the metric accompanied by a
shift in the scalar field, explains why the analysis is
simplified for this potential. For instance, we are left with
a unique expression for the saddle point, cf. (25),

Nsaddle ¼ −i
a2f
2
expð2ϕf − 2γÞ: ð61Þ

We find that the values of γ closing the saddle point
geometry in this case are given by

8>><
>>:
γIðnÞ ¼ 1

4
ln

�
1−a2f

α
2
e2ϕf

e−4ϕf

�
þ in · π

2
for n∈ f0;1g;

γIIðnÞ ¼ 1
4
ln

�
a2f

α
2
e2ϕf−1

e−4ϕf

�
þ i

�
π
4
þn · π

2

�
for n∈ f0;1g;

ð62Þ

and their regions of validity, represented in Fig. 10 for
α ¼ 1=2, are

region I∶ a2f
α

2
e2ϕf < 1; region II∶ a2f

α

2
e2ϕf > 1: ð63Þ

Note that in this case there is only one saddle point for each
value of γ, and it is closed. This is a special case of Picard’s
little theorem, see Appendix C. Let us study the geometries
of these solutions.
In region I the solution for γ implies that coshð2γÞ and

sinhð2γÞ are both real, so that the momenta Πx and Πy are
purely imaginary. The saddle point values for the lapse (61)
are thus also purely imaginary, as are the on-shell actions
evaluated on these saddle point values. The wave function
associated to these geometries is a pure amplitude, without
phase. Thus no classical spacetime is predicted in this
region.
In region II, the solution for γ instead leads to coshð2γÞ

and sinhð2γÞ being pure imaginary, so that the momenta Πx
and Πy are real. The saddle point values, and the on-shell
actions, are consequently real. In principle, we would then
expect the wave function to represent a collection of
classical solutions, all with equal weighting. However, as
was also already noted in [26], the geometries all contain a
singular bounce. One may see this as follows: the back-
ground solutions x̄ and ȳ both start at zero and are real
valued, with x̄ being a parabola with a local minimum,
while ȳ is a parabola with a local maximum. Given that at
the final time x̄ð1Þ > ȳð1Þ, there necessarily exists an
intermediate time at which jx̄j ¼ jȳj, where the scale factor
vanishes. At this time all matter fields and perturbations
blow up and cause a divergence in the local curvature as
well as the action. As explained in Sec. III A, we exclude
such solutions and in fact find that for the pure exponential
potential, no regular no-boundary solutions exist which
would predict a classical evolution of the fields.

D. α= 0, β= 1: VðϕÞ= sinhð2ϕÞ
Finally, we will look at the case α ¼ 0, β ¼ 1, i.e. at the

pure sinhð2ϕÞ potential. At large ϕf ≫ 1, we expect to
recover the results of the coshð2ϕÞ potential, where we did
not find instantons that would predict a classical spacetime.
However, at small ϕ we expect significant differences, as,

FIG. 10. Phase space regions delimited by the condition
a2f

α
2
e2ϕf ¼ 1 (red curve), with α ¼ 1=2. In the red region, the

saddle point value for the lapse is purely real. In the green region,
the saddle point value for the lapse is purely imaginary.
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just as for the exponential potential, there is no minimum
where the scalar field can sit. Then at negative ϕ, the
potential is unbounded below and quite steep, but not steep
enough to allow for ekpyrotic solutions. Thus there is no
region in this potential which obviously allows for useful/
realistic instanton solutions. This expectation will be
confirmed by the detailed analysis that follows.

The saddle point values (25) of the lapse here read

Nsaddle
� ¼ i sinhð2γÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−sinh2ð2γÞ − a2f sinhð2ϕfÞ

q
: ð64Þ

Using once again similar techniques to those used in
Appendix B, we find the following values of γ that can
potentially close these saddle point geometries:

8>>><
>>>:

γIðnÞ ¼ − 1
2
cosh−1

�
coshð2ϕÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − a2f sinhð2ϕfÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4f þ ð2 − a2f sinhð2ϕfÞÞ2

qr �
þ i n·π

2
with n ∈ f0; 1g;

γIIðnÞ ¼ 1
2
cosh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cosh2ð2ϕfÞ

4
ð2 − a2f sinhð2ϕfÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4f þ ð2 − a2f sinhð2ϕfÞÞ2

q
Þ

r �
þ i

�
π
4
þ n·π

2

�
; n ∈ f0; 1g:

ð65Þ

These expressions are both defined on the whole of phase
space.
The solutions γI have Im½γI� ¼ n · π=2, therefore

coshð2γIÞ ¼ ð−1Þn coshð2Re½γI�Þ ∈ R and sinhð2γIÞ ¼
ð−1Þn sinhð2Re½γI�Þ ∈ R. Hence the momenta Πx and Πy

are purely imaginary and the saddle point values of the
lapse also. As before, we impose that ImðΠxÞ > 0 and this
eliminates the values γIð1Þ. The geometries are Euclidean,

and the remaining ones are shown in Fig. 11. We once again
obtain a closed and an unclosed geometry. The associated
flow lines are shown in Fig. 12. One needs to define the
integral on a contour that runs parallel to the realN line, but
this time one needs to shift it into the lower half plane for
convergence [this is because α ¼ 0, cf. Eq. (24)]. The
relevant saddle point is then the closed saddle at N−½γIð0Þ�,
and the wave function can be approximated as

Ψ ≈ e
i
ℏSðN−½γIð0Þ�Þ; ð66Þ

SðN−½γIð0Þ�Þ ¼ −
i
2
½3a2fð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a4f þ 4

q
þ 2Þ1=2

− ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a4f þ 4

q
− 2Þ3=2�

þ i
2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a4f þ 4

q
− 2Þ1=2a2fϕf þOðϕ2

fÞ: ð67Þ

The wave function is pure amplitude. This could describe
the nucleation of the Universe at small scale factor, but
there is no follow-up saddle point that could describe the

(a) (b)

FIG. 11. Case α ¼ 0, β ¼ 1, af ¼ 2, ϕf ¼ 1, with N imaginary. The relevant numerical values are
γIð0Þ ¼ −0.475; Nþ½γIð0Þ� ¼ 2.87i; N−½γIð0Þ� ¼ −5.06i. Geometry associated to the different saddle points. Same conventions as in Fig. 3.

(a) Unclosed euclidean geometry Nþ½γIð0Þ� and (b) closed euclidean geometry N−½γIð0Þ�.

FIG. 12. Case α ¼ 0, β ¼ 1, af ¼ 2, ϕf ¼ 1. Density plot of
the weighting Re½iSon-shellsaddle � and flow lines in the complex N plane.
Same conventions as in Fig. 4. N−½γIð0Þ� (green dot) and Nþ½γIð0Þ�
(red dot).
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subsequent evolution of the Universe. Hence we conclude
that these saddle points do not predict the emergence of
classical spacetime. In fact, the wave function in this case
resembles more the quasi-AdS case of Sec. III B. From this
point of view, it is understandable that the scalar field starts
at negative values (for the closed saddle), but then, to finally
reach positive values of the potential, the Universe recol-
lapses, which allows the scalar to run up to positive values,
see again Fig. 11. It would be interesting to see whether the
present solutions have an application in finite bulk exten-
sions of AdS=CFT [34].
For the solutions γII, we have Im½γII� ¼ π=4þ n · π=2, so

coshð2γIIÞ ¼ ið−1Þn sinhð2Re½γII�Þ ∈ iR and sinhð2γIIÞ ¼
ið−1Þn coshð2Re½γII�Þ ∈ iR. The momenta Πx and Πy, as
well as the saddle point values of the lapse are purely real.
However, using analogous arguments to those used in
previous paragraphs, one may straightforwardly show that
all these saddle point geometries contain a singular bounce.
For the same reasons as those mentioned previously, namely
that such geometries lead to divergences of the curvature and
the action once perturbations or additional matter fields are
included, we deem such solutions to be unphysical and
discard them. Thus we are unfortunately left without any
complex saddle points, so that for this potential we conclude
that the no-boundary wave function does not predict the
emergence of classical evolution. In some sense, this is a
very good example showing the predictive power of the no-
boundary proposal: only in suitably flat regions of the
potential does the no-boundary wave function exhibit
classical (inflationary) spacetime evolution (while in suffi-
ciently steep and negative regions of the potential the same
could be achieved via ekpyrotic no-boundary instantons
[35,36]). This is thus a good example showing that the
classicality of the early Universe should be seen as an
important clue as to its origin.

IV. DISCUSSION

In this paper we have been able to show, in the context of
a minisuperspace model, that the no-boundary proposal can
be defined as a sum over regular metrics and scalar field
configurations. The regularity condition has the advantage
that in the sum over metrics, one is considering metrics on
which perturbations are damped, rather than enhanced.
This is a great advantage compared to defining the no-
boundary path integral as a sum over compact geometries,
since in the latter case one is forced to include unstable
configurations too. The price to pay is that a sum over
regular metrics does not guarantee that the geometries are
also closed. Off-shell geometries are certainly not closed in
general, and in fact the best one can hope for is that the
saddle points are closed. As we have demonstrated, even
this does not occur in full generality: alongside saddle
points that are both regular and compact, we found saddle
points that are unclosed. Moreover, we argued that such
unclosed saddle points cannot be avoided. However, they

were always subdominant, so that the semiclassical no-
boundary wave function ended up being dominated by a
closed, regular geometry with a regular scalar field con-
figuration, as originally intended.
Let us add a fewwords on integration contours, because in

defining the wave function, it is not enough to specify the
boundary conditions, one also has to specify the contours of
integration. The two issues are however connected: our
boundary conditions contain a condition on the expansion
rate of the Universe and, as we discussed, this expansion rate
must be imaginary and with the correct sign in order to
enforce the appropriate Wick rotation. The fact that the
expansion rate starts out being imaginary implies that the
metrics we are summing over cannot be purely Lorentzian.
That being said, what we find is that in cases where the scalar
potential takes positive values, the integration contour must
be taken to be “as Lorentzian as possible.”More specifically,
we may take the integration contour to be the line of real
values of the lapse N, and this contour is deformable into the
two Lefschetz thimbles, cf. Fig. 4. By contrast, when the
potential is negative, such as the case discussed in Sec. III B,
then the contour of integration can be taken to be a sum of
two contours symmetric about the imaginary lapse line. Thus
we recover a phenomenon first discussed in [10], namely
that negative potentials tend to require sums over (near-)
Euclidean geometries, while positive potentials require sums
over (near-)Lorentzian geometries.
Our construction highlights a puzzle inherent in the no-

boundary proposal. This puzzle is not new, but it has come
into renewed focus here. This work showed that imposing
regularity alone is insufficient to fully fix the initial con-
ditions. It only fixes them up to a complex number γ which,
as we have discussed, can often be interpreted as the initial
value of the scalar field. (Thus, the same problem arises
when attempting to define the no-boundary integral over
compact metrics.) This number must be fixed such that the
path integral may contain saddle points that are closed (for
generic values of γ the saddle points will all be unclosed).
The puzzle is then that the required values of γ depend on the
final conditions; i.e. as the Universe grows and the scalar
field evolves, γ necessarily has to change. When the wave
function is of WKB form, γ changes less and less as the
Universe grows [15], but nevertheless it is not constant. This
is as nonlocal/noncausal as it gets: at every moment in the
history of the Universe, it suggests that the Universe must
“recalculate” its entire wave function from the very begin-
ning of space and time. The conclusion we can draw from
this observation is that either quantum gravity really is this
drastically nonlocal, or there is something wrong with the
prescription that we have outlined.
We can conceive of one possible way in which the

prescription above could be refined, such that the puzzle
disappears: this is to require the scalar field to always take
real values. A motivation for such a condition stems from the
recent discussions of allowable metrics, where the criterion
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of allowability is derived from demanding convergence of
path integrals over real scalars and p-form fields, see the
works of Kontsevich-Segal [37] and Witten [38], based on
earlier work by Louko-Sorkin [39] (consequences for
minisuperspace models started being explored in [40,41]).
For positive potentials, the only place where γ turned out to
be real and where the saddle point geometries are regular and
lead to a classical spacetime, was at the minimum of the
coshð2ϕÞ potential. More generally, the scalar field value is
both real and constant at extrema of the scalar potential.
Thus, at such locations of the potential, the initial conditions
for the no-boundary wave function remain unchanged over
time. For the negative potential studied in Sec. III B, we also
found real, yet evolving, values of the scalar field. However,
the corresponding geometries were Euclidean, and in
Euclidean space there is no notion of causality, so that
the puzzle disappears in any event.
What would a restriction to extrema of the scalar potential

imply for observations? First, we should note that the no-
boundary wave function scales roughly as e1=ðℏVðϕÞÞ, imply-
ing that low values of the potential come out as preferred.
Thus, in a theory with many scalar fields (as expected in
string theoretic models, for instance), the most likely
configuration would be for all scalars to reside in the lowest
minima of the potential. This is in fact a desirable feature, as
it can help explain why all coupling constants in our
Universe are found not to vary over time. However, with
such a configuration, the Universe is also left empty. If one
scalar instead starts out at a local maximum of the potential,
then there is the possibility for this scalar to drive an
inflationary phase during which density perturbations may
also be generated, and structure may form in the Universe.
Due to quantum fluctuations, the scalar field would then also
eventually roll off the potential maximum, allowing inflation
to end. Of course, to make this precise and see if this scenario

is truly viable, one would have to understand the precise
structure of the scalar potential, and in particular one would
have to find out if there exists a local maximum in which
sufficiently large density perturbations can be generated,
alongside potential minima that are sufficiently stable. This
is a substantial unsolved open problem. However, what this
discussion illustrates is that, given a suitable dynamical
theory, the no-boundary proposal remains an appealing,
consistent (currently the only?) candidate for a theory of
initial conditions.
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APPENDIX A: FLUCTUATION INTEGRALS

The Wheeler-DeWitt equation in “position” space is
obtained from the constraint (11)�

ℏ2ð∂2
x − ∂2

yÞ −
1

4
ð1 − αx − βyÞ

�
Ψ ¼ 0: ðA1Þ

Assuming that the integrations of x and y have already been
performed implies that the wave function can be written as
an ordinary integral over the lapse, but with a currently
unknown measure factor mðNÞ,

Ψ½xf; yf� ¼
Z

dNmðNÞeiSon-shell0
½xf;yf;N�=ℏ: ðA2Þ

We abbreviate the on-shell (in x and y) action (24) simply
by S, and xf, yf by x, y. Then

ℏ2ð∂2
x − ∂2

yÞΨ ¼
Z

dNmðNÞℏ2

�
iS;xx
ℏ

−
ðS;xÞ2
ℏ2

−
iS;yy
ℏ

þ ðS;yÞ2
ℏ2

�
eiS=ℏ: ðA3Þ

Starting from (24), the explicit expressions are given by

S;x ¼ −
αN
2

−
Πx

2
; S;xx ¼ 0; S;y ¼ −

βN
2

−
Πy

2
; S;yy ¼ 0; ðA4Þ

⇒ ðS;yÞ2 − ðS;xÞ2 ¼
1

4
ðN2ðα2 − β2Þ − 2NðαΠx þ βΠyÞ þ Π2

y − Π2
xÞ; ðA5Þ

S;N ¼ N2ðα2 − β2Þ
2

þ NðαΠx þ βΠyÞ −
ðαxþ βyÞ

2
; ðA6Þ

⇒ if Π2
y − Π2

x ¼ 1; ðS;yÞ2 − ðS;xÞ2 ¼ −
S;N
2

þ ð1 − αx − βyÞ
4

: ðA7Þ

Inserting into the WDW equation we obtain
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0 ¼
Z

dNmðNÞ ·
�
−
S;N
2

�
eiS=ℏ ⇔ 0 ¼

Z
dN

�
−
iℏ
2

�
m;NeiS=ℏ ⇔ m ¼ const:; ðA8Þ

which verifies that, with mixed Neumann-Dirichlet boun-
dary conditions, the fluctuation integrals lead to no addi-
tional N dependence in the integrand of the lapse integral.

APPENDIX B: SOLVING FOR γ

In this appendix, we will present the details on how to
solve for the initial conditions parameter γ, under the
condition that a closed saddle point geometry should exist.
We will restrict the analysis to the coshð2ϕÞ potential
(α ¼ �1; β ¼ 0). For the other potentials, the analysis is
analogous.
α ¼ þ1 and β ¼ 0
We need to solve the following equation for γ ∈ C:

a2fsinh
2ð2ϕfÞ þ 4 sinhð2γÞ sinhð2γ − 2ϕfÞ ¼ 0: ðB1Þ

The real and imaginary parts of this equation must both
hold separately. The imaginary part yields

sinð4Im½γ�Þ sinhð4Re½γ� − 2ϕfÞ ¼ 0; ðB2Þ

so we need either Im½γ� ¼ k · π=4 for k ∈ Z, or
Re½γ� ¼ ϕf=2. We now analyze the real part of Eq. (30)
for these different cases.
(1) Re½γ� ¼ ϕf=2: then the real part of (30) becomes

sin2ð2Im½γ�Þ ¼ ða2fcosh2ðϕfÞ − 1Þsinh2ðϕfÞ: ðB3Þ

Solutions to this equation only exist if the right-hand
side is between 0 and 1, which translates into

a2fcosh
2ðϕfÞ > 1 and a2fsinh

2ðϕfÞ < 1: ðB4Þ

When these conditions are satisfied, Eq. (B3) pos-
sesses four families of solutions

8><
>:

γ1;2ðkÞ ¼ ϕf

2
∓ i

2
ðarcsinðjsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

Þ þ 2π · kÞ;

γ3;4ðkÞ ¼ ϕf

2
∓ i

2
ðπ − arcsinðjsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

Þ þ 2π · kÞ:
∀ k ∈ Z: ðB5Þ

We still need to make sure that we obtain only saddle points that admit stable fluctuations, i.e. which imply the correct
orientation for the Wick rotation. This means that we must get rid of spurious solutions for which a _aj0 → −iN (rather than
a _aj0 → þiN) when ϕ → 0; i.e. we only keep solutions where

Πx ¼
_x
2N

				
0

¼ a _a coshð2ϕÞ þ a2 _ϕ sinhð2ϕÞ
N

				
0

!ϕ→0a _a
N

				
0

¼ þi: ðB6Þ

Writing Πx in terms of γ, we obtain

Πx ¼ i coshð2γÞ ¼ iðcoshðϕfÞ cosð2 Im½γ�Þ þ i sinhðϕfÞ sinð2 Im½γ�ÞÞ: ðB7Þ

Expanding this expression at zeroth order in ϕf, the second term vanishes and we find, by plugging in the solutions (B5)
for γ,

8><
>:

Π1;2ðkÞ
x ¼ i cos ð∓ arcsinðjsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

Þ þ 2π · kÞ !ϕf→0 þ i;

Π3;4ðkÞ
x ¼ i cos ð∓ π � arcsinðjsinhðϕfÞj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

Þ þ 2π · kÞ !ϕf→0
− i:

ðB8Þ

We therefore exclude the last two families of solutions, γ3;4ðkÞ, and keep only the first two, γ1;2ðkÞ. Since γ only enters
expressions through its hyperbolic sine or cosine, the value of k is unimportant and we can simply set it to 0. In the end we
only have two values for γ:

2γ∓ ¼ ϕf ∓ i arcsinðj sinhϕfj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2fcosh

2ðϕfÞ − 1
q

Þ: ðB9Þ
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The saddle point for the lapse computed from these γ values will be complex.
(2) Im½γ� ¼ k · π=2, k ∈ Z: sinð2Im½γ�Þ ¼ 0 and cosð2Im½γ�Þ ¼ ð−1Þk. All expressions then only depend on whether k is

odd or even, so we can restrict to k ¼ 0, 1. The real part of the equation (30) yields

a2fsinh
2ð2ϕfÞ ¼ 4 sinhð2Re½γ�Þ sinhð2ϕf − 2Re½γ�Þ: ðB10Þ

This admits a solution only if

a2fsinh
2ð2ϕfÞ < 4jmax

Re½γ�
ðsinhð2Re½γ�Þ sinhð2ϕf − 2Re½γ�ÞÞj ¼ 4sinh2ðϕfÞ;

⇔ a2fcosh
2ðϕfÞ < 1: ðB11Þ

When this condition is satisfied, we find two solutions for each k value:

γðkÞ∓ ¼ 1

2
cosh−1

�
1

2
½4þ sinh2ð2ϕfÞð2 − a2f coshð2ϕfÞÞ

∓ sinh2ð2ϕfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − a2f coshð2ϕfÞÞ2 − a4f

q
�1=2
�
þ ik ·

π

2
; ðB12Þ

which implies that

Πx∓ ¼ i coshð2γ∓Þ ¼
ið−1Þk

2
½4þ sinh2ð2ϕfÞð2 − a2f coshð2ϕfÞÞ

∓ sinh2ð2ϕfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − a2f coshð2ϕfÞÞ2 − a4f

q
�1=2 ∈ iR; ðB13Þ

Πy∓ ¼ i sinhð2γ∓Þ ¼
ið−1Þk

2
jsinhð2ϕfÞj½ð2 − a2f coshð2ϕfÞÞ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − a2f coshð2ϕfÞÞ2 − a4f

q
�1=2 ∈ iR: ðB14Þ

We look at the limit of Πx when ϕf → 0 to exclude spurious solutions, and we find

Πx∓ → ið−1Þk; ðB15Þ

thus we only keep k ¼ 0 and we reject k ¼ 1. Finally the γ values are

γ∓ ¼ 1

2
cosh−1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinh2ð2ϕfÞ

4
ðð2 − a2f coshð2ϕfÞÞ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − a2f coshð2ϕfÞÞ2 − a4f

q
Þ

s !
:

Because these γ values are real, the saddle points for the lapse will be purely imaginary.
(3) Im½γ� ¼ π=4þ k · π=2: sinð2Im½γ�Þ ¼ ð−1Þk and cosð2Im½γ�Þ ¼ 0. All expressions will only depend on whether k is

odd or even, so we can restrict to k ¼ 0, 1. The real part of Eq. (30) becomes

a2fsinh
2ð2ϕfÞ − 4 coshð2Re½γ�Þ coshð2Re½γ� − 2ϕfÞ ¼ 0; ðB16Þ

which admits a solution only if

a2fsinh
2ð2ϕfÞ > 4min

Re½γ�
ðcoshð2Re½γ�Þ coshð2Re½γ� − 2ϕfÞÞ ¼ 4cosh2ðϕfÞ;

⇔ a2fsinh
2ðϕfÞ > 1: ðB17Þ

This condition being fulfilled, we find the four following solutions:
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γðkÞ∓ ¼∓ 1

2
cosh−1

�
1

2
sinhð2ϕfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2f coshð2ϕfÞ − 2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2fcosh2ð2ϕfÞ − 2Þ2 − a4f

qr �

þ i

�
π

4
þ k · π

2

�
; k ∈ f0; 1g: ðB18Þ

In this case it is not possible to take the limit ϕf → 0, as this would contradict the condition (B17). The saddle points
for the lapse will be purely real.

α ¼ −1 and β ¼ 0
The saddle point expressions are

Nsaddle
� ¼ i coshð2γÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−cosh2ð2γÞ − a2f coshð2ϕfÞ

q
: ðB19Þ

The constraint equation automatically yields xj0 ¼ 0. Requiring the initial geometry to close hence implies

yj0 ¼ yf − 2NΠy ¼ 0; ⇔ Nclosed ¼
a2f sinhð2ϕfÞ
2i sinhð2γÞ : ðB20Þ

We thus get the following equation for a closed saddle point geometry that we will solve for γ:

a2fsinh
2ð2ϕfÞ − 4 sinhð2γÞ sinhð2γ − 2ϕfÞ ¼ 0: ðB21Þ

Taking the imaginary part of this expression, we find

2a2f sinð4 Im½γ�Þ sinhð4Re½γ� − 2ϕfÞ ¼ 0: ðB22Þ

This is solved by Im½γ� ¼ k · π=4 for k ∈ Z, or Re½γ� ¼ ϕf=2. For each of these cases we examine the real part of Eq. (B21):
(1) Re½γ� ¼ ϕf=2: then we find

4 sin2ð2 Im½γ�Þ ¼ −a2f sinh2ð2ϕfÞ − 4 sinh2ðϕfÞ: ðB23Þ

This equation does not admit any solution for af > 0 and ϕf ∈ R.
(2) Im½γ� ¼ k · π=2, k ∈ Z: then cosð2Im½γ�Þ ¼ ð−1Þk and sinð2Im½γ�Þ ¼ 0. Again we only keep k ¼ f0; 1g. The real

part of the equation for γ is

a2f sinh
2ð2ϕfÞ ¼ 4 sinhð2Re½γ�Þ sinhð2Re½γ� − 2ϕfÞ; ðB24Þ

which yields the following constraint:

a2f sinh
2ð2ϕfÞ > 4min

Re½γ�
ðsinhð2Re½γ�Þ sinhð2Re½γ� − 2ϕfÞÞ: ðB25Þ

This minimum lies at Re½γ� ¼ ϕf=2 and hence implies a2fsinh
2ð2ϕfÞ > −4sinh2ðϕfÞ. This condition is always

satisfied, thus Eq. (B24) admits solutions for all values af > 0 and ϕf ∈ R, which are

8>><
>>:

Re½γI∓� ¼∓ cosh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinh2ð2ϕfÞ
4

ð2þ a2f coshð2ϕfÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ a2f coshð2ϕfÞÞ2 − a4f

q
Þ

r �
;

Re½γII∓� ¼∓ cosh−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinh2ð2ϕfÞ
4

ð2þ a2f coshð2ϕfÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ a2f coshð2ϕfÞÞ2 − a4f

q
Þ

r �
:

ðB26Þ

We can further constrain the value of k by looking at the limit ofΠx when ϕf → 0. In that case, (B24) directly implies
sinh2ð2Re½γ�Þ → 0, so γ → 0. Then
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Πx ¼ i coshð2γÞ ¼ ið−1Þk coshð2Re½γ�Þ!
γ→0

ið−1Þk; ðB27Þ

so we recover the right limit Πx → þi only for k ¼ 0, so Im½γ� ¼ 0.
(3) Im½γ� ¼ π=4þ k · π=2, k ∈ Z: here we have cosð2Im½γ�Þ ¼ 0 and sinð2Im½γ�Þ ¼ ð−1Þk, so

a4f sinh
2ð2ϕfÞ ¼ −4a2f coshð2Re½γ�Þ coshð2Re½γ� − 2ϕfÞ;

⇒ a2f sinh
2ð2ϕfÞ < 4max

Re½γ�
ð− coshð2Re½γ�Þ coshð2Re½γ� − 2ϕfÞÞ: ðB28Þ

This maximum lies at Re½γ� ¼ ϕf=2 and thus a2fsinh
2ð2ϕfÞ < −4cosh2ðϕfÞ. This can never be satisfied for real

values of af and ϕf.

APPENDIX C: PICARD’S LITTLE THEOREM

“If a function f∶C → C is entire and nonconstant, then the set of values that fðzÞ assumes is either the whole complex
plane or the plane minus a single point.” An entire function is a holomorphic function defined on the whole complex plane,
and a function f∶C → C is holomorphic if and only if the application C → C∶z → f0ðzÞ is continuous on C, and f is C
differentiable; i.e. the corresponding function F∶R2 → R2∶ðRe½z�; Im½z�Þ → ðRe½fðzÞ�; Im½fðzÞ�Þ is differentiable at all
points ðRe½z�; Im½z�Þ ¼ ðx; yÞ, and for fðxþ iyÞ ¼ uðx; yÞ þ ivðx; yÞ, the Cauchy-Riemann relations are satisfied:

( ∂u
∂x ðx; yÞ ¼ ∂v

∂y ðx; yÞ;
∂u
∂y ðx; yÞ ¼ − ∂v

∂x ðx; yÞ:
ðC1Þ

Based on this definition, one can show that the function

V∶ C → C∶z → α coshðzÞ þ β sinhðzÞ ðC2Þ

(i.e. our potential) is holomorphic. Generically, for a potential that is an entire function, this theorem means that the
constraint equation at τ ¼ 0, aj20Vðϕj0Þ ¼ 0, is not only satisfied for closed geometries where aj0 ¼ 0 but also for situations
where Vðϕj0Þ ¼ 0, which generically exist. There is one well-known exception given by the exponential potential,
VðϕÞ ¼ eϕ, which only vanishes at infinity when Re½ϕ� < 0. This is precisely the case we study when α ¼ β. That case put
aside, this explains why for every γ, we find two regular saddle points; one that closes and for which ϕj0 ¼ γ, and one that
remains unclosed, for which ϕj0 ≠ γ, but for which ϕj0 will be such that Vðϕj0Þ ¼ 0.
Moreover this is not specific to this potential, but is a generic feature of all entire functions. Therefore the only

assumption we are making is that this potential of the scalar field can be extended to the complex plane. This is however a
strong assumption, which can be questioned, see e.g. the discussion in Sec. IV.
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