
Sparse Fourier Transform by traversing Cooley-Tukey FFT

computation graphs

Karl Bringmann
Saarland Uni. & MPI

Michael Kapralov
EPFL

Mikhail Makarov
EPFL

Vasileios Nakos
Saarland Uni. & MPI

Amir Yagudin∗

MIPT
Amir Zandieh

MPI-Informatics

December 5, 2021

Abstract

Computing the dominant Fourier coefficients of a function/vector is a common task in many
fields, such as signal processing, learning theory and computational complexity. In the Sparse
Fast Fourier Transform (Sparse FFT) problem, one is given oracle access to a d-dimensional
vector x of size N , and is asked to compute the best k-term approximation of x̂, the Discrete
Fourier Transform of x, quickly and using few samples of the input vector x. Sparse FFT
has received a significant amount of attention over the past years. However, while the sample
complexity of the problem is quite well understood, all previous approaches either suffer from an
exponential dependence of runtime on the dimension d or can only tolerate a trivial amount of
noise. This is in sharp contrast with the classical FFT algorithm of Cooley and Tukey, which is
stable and completely insensitive to the dimension of the input vector: its runtime is O(N logN)
in any dimension d.

In this work, we make progress in high-dimensional FFTs by introducing a new Sparse FT
toolkit and using it to obtain new algorithms, both on the exact, as well as in the case of bounded
`2 noise. This toolkit includes i) a new strategy for exploring a pruned FFT computation tree
that reduces the cost of filtering, ii) new structural properties of adaptive aliasing filters recently
introduced by Kapralov, Velingker and Zandieh’SODA’19, and iii) a novel lazy estimation ar-
gument, suited to reducing the cost of estimation in FFT tree-traversal approaches. Our robust
algorithm can be viewed as a highly optimized sparse, stable extension of the Cooley-Tukey
FFT algorithm.

Finally, we explain the barriers we have faced by proving a conditional quadratic lower bound
on the running time of the well-studied non-equispaced Fourier transform problem. Among other
consequences, this resolves a natural and frequently asked question in computational Fourier
transforms, see for example Problem 21 from IITK Workshop on Algorithms for Data Streams,
Kanpur 2006. Lastly, we provide a preliminary experimental evaluation comparing the runtime
of our algorithm to FFTW and SFFT 2.0.

∗The work was done while this author was a summer intern at EPFL

ar
X

iv
:2

10
7.

07
34

7v
1

 [
cs

.D
S]

 1
5

Ju
l 2

02
1

Contents

1 Introduction 1

2 Computational Tasks and Formal Results Statement 4

3 Preliminaries and notation 6
3.1 Fourier Transform basics . 6
3.2 Notation for manipulating FFT computation trees 6

4 Techniques and Comparison with the Previous Technology 7
4.1 Previous Techniques . 7
4.2 Our Techniques . 9
4.3 Explanation of the barriers faced . 13

5 Roadmap 15

6 Machinery from Previous work: Adaptive Aliasing Filters 15
6.1 One-dimensional Fourier transform . 16
6.2 d-dimensional Fourier transform . 17

7 Kraft-McMillan inequality and averaging claims 17

8 Exactly k-sparse Case 18
8.1 Warm Up . 18
8.2 The Almost Quadratic-Time Algorithm . 25

9 Lower Bound on Non-Equispaced Fourier Transform 31

10 Robust analysis of adaptive aliasing filters 35
10.1 One-dimensional case . 35
10.2 Extension to d dimensions . 39

11 Robust Sparse Fourier Transform I 41
11.1 Computational Primitives for the Robust Setting . 42
11.2 Main Algorithm . 43
11.3 Proving the Correctness of our Computational Primitives 62

12 Robust Sparse Fourier Transform II 67

13 Experiments 82
13.1 FFT Backtracking vs Vanilla FFT Tree Pruning . 83
13.2 Sparse FFT Backtracking vs FFTW . 84
13.3 Comparison to SFFT 2.0 in Dimension One . 85

14 Acknowledgements 86

1 Introduction

Computing the largest in magnitude Fourier coefficients of a function without computing all of
its Fourier transform, or reconstructing a sparse vector/signal x from partial Fourier measure-
ments are common and well-studied tasks across science and engineering, as they appear in a
variety of disciplines. Possibly the earliest work on the topic was by Gaspard de Prony in 1795,
who showed that any k-sparse vector can be efficiently reconstructed from its first 2k Discrete
Fourier transform (DFT) coefficients. These ideas have been re-discovered/used both in the con-
text of decoding BCH codes [Wol67], as well as in the context of computer algebra by Ben-Or
and Tiwari [BOT88]. In the context of learning theory, and in particular learning decision trees,
Kushilevitz and Mansour [KM93] devised an algorithm that detects the largest Fourier coefficients
of a function defined over the Boolean hypercube, building upon [GL89]. The work of [AGS03]
uses sparse Fourier transform techniques in cryptography, namely for proving hard-core predicates
for one-way functions. In 2002, a sublinear-time efficient algorithm for learning the k largest
DFT coefficients was proposed in [GGI+02]; this line of work has resulted in (near-)optimal al-
gorithms [GMS05, HIKP12a, Kap16, Kap17] for the DFT case. In terms of its applications to
signal processing and reconstruction, arguably the most prominent is the work of Candes, Donoho,
Romberg and Tao [Don06, CT06, CRT06], which has far-reaching applications in fields such as
medical imaging and spectroscopy [LDSP08, KY11], and created the area of compressed sensing ;
the reader may consult the text [FR13] for a thorough view on the topic.

Formally, the Sparse Fourier Transform problem is the following. Given oracle access to a size
N d-dimensional vector x, find a vector χ̂ such that

‖x̂− χ̂‖p ≤ C ·mink-sparse vectors ẑ‖x̂− ẑ‖q,

where C is the approximation factor, and ‖ · ‖p, ‖ · ‖q are norms. The number of oracle accesses
to x shall be referred to as sample complexity. The most well studied case in the literature is the
case where C = 1 + ε (or constant) and p = q = 2, referred to as the `2/`2 guarantee. Other well-
studied cases are the so-called `∞/`2 guarantee, where C = 1√

k
, p =∞, q = 2, as well as the `2/`1

guarantee, see [CT06, IK14, NSW19]. Our focus in this paper is the `2/`2 guarantee. Frequently,
the k largest in magnitude coordinates of x̂ are referred to as the head of the signal, while all the
other coordinates are referred to as the tail of the signal, or as noise. With this vocabulary, the
`2/`2 guarantee asks to recover the head of x̂ up to ε times the noise level.

The research on the topic, especially over the last fifteen years, has been extensive [KM93,
LMN93, BFJ+94, Man94, Man95, GGI+02, GMS05, CT06, IGS07, Iwe10, Aka10, CGV13, HIKP12a,
HIKP12b, BCG+12, PR13, IKP14, PR14, Bou14, IK14, OPR15, PS15, JENR15, CKPS16, HR16,
Kap16, CKSZ17, Kap17, CI17, MZIC17, KVZ19, AZKK19, NSW19, OHR19, JLS20]. Our under-
standing on the sample complexity of the problem is quite good: we know that O(k poly(logN))
samples are sufficient for finding in time near linear in N a vector χ̂ satisfying any of the afore-
mentioned guarantees [CT06, HR16, NSW19]. Regarding the particularly interesting case of d = 1,
the research effort of the community has produced time efficient algorithms as well. The fastest
algorithm, due to the celebrated work of Hassanieh, Indyk, Katabi, and Price [HIKP12a], runs in
time O(k log(N/k) logN) and achieves the same sample complexity as well. We know also how to
achieve O(k logN) sample complexity and O(k poly(logN)) running time [Kap17]. On the other
extreme, when d = logN , i.e. in the case of the Walsh-Hadamard transform, almost optimal
running time is known to be achievable, even deterministically [CI17].

Along with the running time, the sample complexity, and the error guarantee, of particular
interest is also the sensitivity of the algorithm to the underlying field. When we are concerned

1

with Fourier transforms over Zdn1, this corresponds to the sensitivity to the dimension d. Indeed,
virtually all Sparse Fourier transform algorithms have a running time which suffers from an expo-
nential dependence on d (in particular logΩ(d)N), and the techniques either in dimension d = 1 or
d = logN heavily rely on the structure of the corresponding group. At the same time, given that
the Cooley-Tukey FFT algorithm itself is completely dimension-independent, a natural question is
whether this independence transfers also to the Sparse Fourier transform setting. Concretely, is
the curse of dimensionality an inherent problem, or an artifact of previous techniques? A major
practical motivation is that a quest for removing the curse of dimensionality can ultimately lead to
new insights for designing empirical, efficient algorithms in dimensions d = 3, 4, which are mostly
relevant in applications in NMR-spectroscopy and MRI imaging. It is known in theory that fast
algorithms exist in low dimensions [Kap16], but they incur a multiplicative 2Ω(d log d) factor in the
running time, which is prohibitive even for d = 3; a algorithm with better dependence on the d and
k could thus be of practical importance as well.

Which sampling patterns enable sublinear-time Sparse Fourier recovery? The ques-
tion on efficient dimension-independent Sparse Fourier transform can also be viewed as a question
on the sampling patterns, i.e. collections of samples in time domain, which permit sublinear-time,
robust recovery. The classical Prony’s argument, see for example [Sau18], postulates that any 2k
points from x in an arithmetic progression suffice to recover x̂ if it is k-sparse. However, due to
the fact that the argument proceeds by solving a polynomial equation, the overall algorithm is
highly unstable, and, additionally suffers from the curse of dimensionality. In d = 1, a small ran-
dom collection of O(k logN)-length arithmetic progressions suffices to design rather time-efficient
Sparse Fourier transform algorithms [GMS05, HIKP12b, HIKP12a, IKP14, Kap17]; in the case
of general d, however, this approach, even if one counts only the sample complexity, meets a
barrier of 2Ω(d log d)k logN [IK14]. On the other hand, a random, unstructured collection of sam-
ples [CT06, NSW19] can lead to sample-efficient algorithms for the problem, but getting sublinear
time in the absence of any (additive) structure in the sampling pattern seems out of reach, if not
impossible. In this paper we investigate the power of the only known sampling patterns, i.e. those
introduced in [KVZ19], that allow sublinear-time and dimension-independent Fourier sparse recov-
ery and show how to obtain a robust algorithm along with a component of unstructured samples.
For fully unstructured patterns, i.e. random points, even estimating the values of the coefficients
given the location of the indices is likely to require quadratic time as we show later in this work.

Adaptive aliasing filters. A step towards dimension-independence was made in [KVZ19]. The
authors give a O(k3 · poly(logN))-time algorithm which recovers exactly k-sparse signals, and thus
does not scale exponentially with the dimension. Their approach is based on pruning an FFT
computation graph, using a new tool called adaptive aliasing filters. However, the aforementioned
algorithm had two disadvantages: i) the time was cubic and there was no evidence whether this
was optimal under some reasonable assumption, and ii) was not able to go beyond the barrier
of exactly k-sparse signals (or, noise level poly(N) times smaller than the energy of the head).
Somehow relevant is an algorithm due to Mansour [Man95], which performs breadth-first search
in the Cooley-Tukey FFT computation tree with random sampling, and can get poly(k) running
time for exactly k-sparse signals, but pays an additional multiplicative SNR factor for general
signals [Man95]. We also mention a beautiful O(k · poly(logN))-time algorithm for exactly k-
sparse signals from [GHI+13], which requires a distributional assumption on the support of the

1This is the case with the groups of interest in the Sparse FT literature. Furthermore, these are the groups on
which the FFT algorithm of Cooley and Tukey operates. For general finite groups G, the fastest FT algorithm runs
in time almost |G|ω/2 [Uma19], where ω is the matrix multiplication exponent.

2

input signal in Fourier domain and unfortunately suffers from the restriction k = O(N
1
d); already

in dimension d = O(logN/ log logN), this guarantees correctness only for k ≤ poly(logN). We
bring the readers’ attention to a very recent paper [JLS20] which studies multidimensional Sparse
Fourier transforms in the continuous setting, but the algorithm presented still has an exponential
dependence on the dimension d, in both running time and sample complexity.

Our techniques: new methods for traversing pruned Cooley-Tukey FFT computa-
tion graphs. We introduce a variety of new techniques for the high dimensional Sparse Fourier
Transform problem that enable us to go beyond some of the barriers faced in previous works. In
particular, we augment the Sparse FT toolkit with the following set of techniques.

1. FFT backtracking: a novel technique for traversing Cooley-Tukey FFT computation graphs
of k-sparse vectors. This allows us to spend fewer resources on “cheap” subproblems, and
return to previously processed ones in order to correct potential errors.

2. New structural properties of adaptive aliasing filters. Roughly speaking, these new properties
indicate that the collection of aforementioned filters acts in a specific sense as a near-isometry
on an arbitrary vector.

3. A novel lazy estimation argument, which allows us to postpone estimation of identificated
frequencies in our explorative algorithm, estimating them only when it is cheap on average
to do so.

4. A connection of the closely related non-equispaced Fourier transform task with the Orthogonal
Vectors problems, a central problem in fine-grained complexity.

Our results. The new algorithmic techniques that we introduce lead to fast, sample efficient and
robust algorithms for the high dimensional Sparse FFT problem:

• An almost quadratic-time (in the sparsity k) algorithm for exactly k-sparse signals. This
shaves off almost a factor of k from the previous best sublinear-time, dimension-independent
algorithm of [KVZ19]. As we argue below (see our lower bound results), overcoming this
quadratic time barrier will likely require a major paradigm shift in Sparse FFT technology.

• A quadratic sample complexity, sublinear-time, dimension-independent Sparse Fourier trans-
forms that recovers the head of the signal under bounded `2 noise, i.e. when every frequency
in the head is larger than the energy of the tail. Even under this seemingly restricted noise
model, designing an efficient algorithm turns out to be non-trivial, requiring a constellation
of new techniques. Previous algorithms were either i) robust and dimension-independent but
not sublinear-time [CT06, IK14, NSW19], ii) sublinear-time and robust but not dimension-
independent [GMS05, HIKP12a, Kap16], or iii) sublinear-time and dimension-independent
but not robust to any form of noise [KVZ19]. We also discuss all the barriers we have faced,
including the barrier on handling noise of larger magnitude, in Section 4.3.

It seems likely that our quadratic time Sparse FFT algorithm for exact signals will be hard to
improve upon barring a major paradigm shift in Sparse FFT technology. Indeed, most such algo-
rithms implement an iterative refinement scheme that at every point subtracts the signal recovered
so far from the input. Fast schemes for such subtraction (semi-equispaced Fourier transform al-
gorithms) are only known for a very restricted class of sampling patterns. In this work we show
that structural assumptions on the sampling patterns are indeed needed, assuming the Orthogonal
Vectors hypothesis. Specifically, on the lower bound side we give

3

• A new hardness result on computational Fourier transforms, postulating that the well-studied
non-equispaced FT problem cannot be solved in strongly subquadratic time even in dimension
1, unless the Orthogonal Vectors hypothesis fails. This lower bound i) separates it from the
analogous (and well-studied as well) problem of semi-equispaced Fourier transform, which
features a near-linear time algorithm in constant dimension, and ii) as we stress in Section 2,
provides evidence that the quadratic time barrier for the k-sparse case that our algorithm
meets is most likely impenetrable by any explorative approach which successively peels off
elements.
Additionally, our lower bound applies to sparse multipoint evaluation: it shows that a k-sparse
polynomial of maximum degree n cannot be evaluated on a set of k complex numbers faster
in strongly subquadratic time in k whenever k is smaller than a fractional power of n, unless
SETH fails.

2 Computational Tasks and Formal Results Statement

This section contains the computational tasks studied in this paper, our results, and a preparations
section for the lower bound, namely Theorem 2. We will be concerned with N -length d-dimensional
vectors x : [n]d → C, where N = nd and n is a power of 2. Thus, N,n, d will remain unaltered
throughout the paper. We will use the notation [n] to denote the set of integer numbers {0, 1, . . . , n−
1}. We will use a non-standard notation Õ(f) = O(f poly(logN)), where f is some parameter
and N will be the size of our underlying vector x, which will be the largest parameter of interest.
For a vector x, we denote ‖x̂‖0 =

∣∣{f ∈ [n]d : x̂f 6= 0
}∣∣, and x̂T , for a set T ⊆ [n]d, to be the

vector that results from zeroing out every coordinate of x outside of T . We let x̂−k be the vector
that occurs after zeroing out the top k coordinates in magnitude, breaking ties arbitrarily. All
logarithms are base 2. For the algorithm we present, we shall assume exact arithmetic operations
over C in unit time throughout the paper, although the analysis goes through with 1

poly(N) precision
as well.

Theorem 1 (Near-Quadratic Time Fourier Transform for Sparse Signals). Given oracle access to
x : [n]d → C with ‖x̂‖0 ≤ k, we can find x̂ in deterministic time

Õ
(
k2 · 2Θ(

√
log k·log logN)

)
.

Conjecture 1. (Orthogonal Vectors Hypothesis(OVH) [Wil05, AWW14]) For every ε > 0, there
exists a constant c ≥ 1 such that OVk,d requires Ω(k2−ε) time whenever d ≥ c log k.

It is known that a collapse of the Orthogonal Vectors Hypothesis would have groundbreaking
implications in algorithm design, see [GIKW19] and [ABDN18].

Theorem 2 (Lower Bound for Non-Equispaced Fourier Transform). Assume that for all k <
n and ε there exists an algorithm that solves the Non-Equispaced Fourier Transform in time
O(k2−δ poly(log(n/ε))) for some constant δ > 0. Then the Orthogonal Vectors hypothesis fails.

A lower bound for sparse polynomial multipoint evaluation also follows immediately.

Theorem 3 (Lower bound for Sparse Polynomial Multipoint Evaluation over C). Assume that for
all k < n and ε there exists an algorithm for sparse polynomial multipoint evaluation which runs in
time k2−δ poly(log(n/ε)). Then the Orthogonal Vector Hypothesis fails.

4

? Sparse Fourier Transform in the exact case

Input: Integers n, d, k and N = nd, and oracle access to a vector x ∈ Cnd satisfying ‖x̂‖0 ≤ k.
Question: Compute x̂.

? `2/`2 Sparse Fourier Transform

Input: Integers n, d, k and N = nd, parameter ε < 1, and oracle access to a vector x ∈ Cnd .
Question: Compute a vector χ̂ ∈ Cnd such that ‖x̂− χ̂‖2 ≤ (1 + ε)‖x̂−k‖2.

? Non-Equispaced Fourier Transform
Input: Integers n, d, parameter ε < 1, two sets F, T ⊆ [n]d with |F | = |T | = k, and a vector

x ∈ Cnd supported on T .
Question: Compute additive ±ε‖x̂‖2 approximations to each of x̂f , for f ∈ F .

? Sparse Polynomial Multipoint Evaluation
Input: Integers n, k, parameter ε < 1, a polynomial p of degree n and sparsity k, each coefficient

of which is of magnitude 1, as well as points a1, a2, . . . , ak ∈ Cn of magnitude 1.
Question: Compute additive ±ε approximations to each of p(ai), for all i = 1, 2, . . . , k.

? Orthogonal vectors, OVk,d

Input: A,B ⊆ {0, 1}d, with |A| = |B| = k
Question: Determine whether there exists a ∈ A, b ∈ B such that 〈a, b〉 = 0.

Figure 1: Computational tasks considered in this paper.

Significance of our lower bound for computational Fourier Transforms. Non-equispaced
Fourier transform falls into a class of Fourier transforms referred to as non-uniform. These trans-
forms are an extensively studied topic in signal processing and numerical analysis [GR87, FS03,
GL04], with numerous applications in imaging, signal interpolation and solutions of differential
equations; the reader may consult the texts [BM96, PST01, BM12]. An implementation of non-
uniform Fourier transforms is also available in Matlab [Mat]; alternative implementations are also
available [KKP09]. Usually, researchers recognize three different types of non-uniform Fourier trans-
forms, see lecture notes [Can] for a categorization. While the first two types admit near-linear time
solutions in k [DR93], the type-III transform, which is also the transform relevant to this paper,
more likely does not have a strongly subquadratic algorithm. This shows a separation between the
semi-equispaced case (type-I and type-II) and the non-equispaced case.

In what follows, we quantify the notion of “bounded `2 noise” used in our robust SparseFFT
results.

High SNR model. A vector x : [n]d → C satisfies the k-high SNR assumption, if there exist
vectors w, η : [n]d → C such that i) x̂ = ŵ + η̂, ii) supp(ŵ) ∩ supp(η̂) = ∅, iii) |supp(ŵ)| ≤ k and
iv) |ŵf | ≥ 3 · ‖η̂‖22, for every f ∈ supp(ŵ).

Theorem 4 (Robust Sparse Fourier Transform with Near-quadratic Sample Complexity). Given
oracle access to x : [n]d → C in the k-high SNR model and parameter ε > 0, we can solve the `2/`2
Sparse Fourier Transform problem with high probability in N using

m = Õ

(
k2

ε
+ k2 · 2Θ(

√
log k·log logN)

)
2The constant 3 is arbitrary, and can be driven down to (1 + ζ), for any ζ > 0.

5

samples from x and Õ
(
k3

ε

)
running time.

We re-iterate that even though the noise model we consider might seem restrictive, it turns out
to be quite challenging requiring whole new constellation of ideas. Additionally, in subsection 4.3 we
explain how we are led to consider this particular notion, and why handling lower SNR seems like a
hard barrier for algorithms which explore a pruned Cooley-Tukey FFT computation tree (which is
also the only known class of algorithms that enables sublinear and dimension-independent recovery).
Finally, we explain the discrepancy between running time and sample complexity via Theorem 2.

Experimental Evaluation. Lastly, we present the results of our preliminary experimental eval-
uation in Section 13.

3 Preliminaries and notation

3.1 Fourier Transform basics

We will often identify [n]d → C with Cnd for convenience (and use the two interchangeably depend-
ing on the context).

Definition 1 (Fourier transform). For any positive integers d and n, the Fourier transform of a

signal x ∈ Cnd is denoted by x̂, where x̂f =
∑
t∈[n]d xte

−2πi f
>t
n for any f ∈ [n]d. Here f>t =∑d−1

q=0 f(q)t(q).

Recall that by Parseval’s theorem we have ‖x̂‖22 = nd · ‖x‖22. Furthermore, recall convolution-

multiplication duality (̂x ? y) = x̂ · ŷ, where x ? y ∈ Cnd is the convolution of x and y and defined
by the formula (x ? y)t =

∑
τ∈[n]d xτ · y(t−τ mod n) for all t ∈ [n]d, where the modulus is taken

coordinate-wise. We will also need the following well-known theorem on Fourier subsampled ma-
trices.

Theorem 5. (Restricted Isometry Property of subsampled Fourier matrices, [HR17, Theorem 3.7])
Let q = Θ(s log3N). Then with high probability in N , the time domain points {xt}t∈Q for a random

multiset Q ⊆ [n]d with q uniform samples are sufficient to (1 ± ε)-approximate the energy of any
s-sparse vector x̂, where ε is some sufficiently small absolute constant. Formally, simultaneously
for all s-sparse vectors: N2

q

∑
t∈Q |xt|2 ∈

[
(1− ε)‖x̂‖22, (1 + ε)‖x̂‖22

]
.

3.2 Notation for manipulating FFT computation trees

Recall that given a signal x : [n]d → C, the execution of the FFT algorithm produces a binary tree,
henceforth referred to as T full

N . The root of T full
N corresponds to the universe [n]d, while the children

of the root correspond to [n/2]× [n]d−1; note that FFT recurses by peeling off the least significant
bit. Every node v has a label fv ∈ Zdn associated to it, with the following rules.

1. The root has label froot = (0, 0, . . . , 0︸ ︷︷ ︸
d entries

), and corresponds to the universe [n]d.

2. The children of a node v corresponding to the universe [n/2`] × [n]d
′
, with 0 ≤ d′ ≤ d −

1, 0 ≤ ` ≤ log n − 1, let them be vleft, vright have the following properties. Both correspond
to universe [n/2`+1] × [n]d

′
, and vright has label fvright

= fv, while vleft has label fvleft
=

fv + (0, 0, . . . , 0︸ ︷︷ ︸
d′

, 2`, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′−1

).

6

3. The children of a node v corresponding to universe [1] × [n]d
′

with d′ > 0, are vleft, vright,
corresponding to universe [n/2] × [n]d

′−1 and have labels fvright
= fv and fvleft

= fv +
(0, 0, . . . , 0︸ ︷︷ ︸

d′−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
d−d′

) respectively.

4. A node v corresponding to universe [1] is called a leaf in T full
N .

The above rules create a binary tree of depth logN , which corresponds to the FFT computation
tree. We demonstrate T full

N that corresponds to the 2-dimensional FFT computation on universe
[4] × [4] in Figure 2. Subtrees T of T full

N can be defined as usual. For every node v ∈ T , the level
of v, denoted by lT (v), is the distance from the root to v. We denote by leaves(T) the set of all
leaves of tree T , and for every v ∈ leaves(T), we define its weight wT (v) with respect to T to be
the number of ancestors of v in tree T with two children. The levels (distances from the root) on
which the aforementioned ancestors lie will be called Anc(v, T). Furthermore, the sub-path of v
with respect to T will be the children of the aforementioned ancestors which are not ancestors of
v. Additionally, for a node v ∈ T we denote the subtree of T rooted at v by Tv.

The following definition will be particularly important for our algorithms.

Definition 2 (Frequency cone of a leaf of T). For every subtree T of T full
N and every node v ∈ T ,

we define the frequency cone of v with respect to T as,

FreqConeT (v) :=
{
fu : for every leaf u in subtree of T full

N rooted at v
}
.

Furthermore, we define supp(T) :=
⋃
u∈leaves(T) FreqConeT (u).

The splitting tree of a set S ⊆ [n]d is the subtree of T full
N that contains all nodes v ∈ T full

N such
that S ∩ FreqConeT full

N
(v) 6= ∅.

4 Techniques and Comparison with the Previous Technology

This section is devoted to highlighting the differences between previous work and our technical
contributions.

4.1 Previous Techniques

Most previous sublinear-time Sparse Fourier transform algorithms [GMS05, HIKP12a, Kap16,
Kap17] rely on emulating the hashing of signal x̂ by picking a structured set of samples (in low
dimensions, the samples correspond to arithmetic progressions) and processing them with the help
of bandpass filters, i.e. functions which approximate the `∞ box in frequency domain and are
simultaneously sparse in time domain. However, while those filters are particularly efficient in
low dimensions, their performance deteriorates when the number of dimensions increases: in-
deed, a d-dimensional `∞ box has 2d faces, and hence this approach suffers inevitably from the
curse of dimensionality. On the other hand, an unstructured collection of O(k · poly(logN)) sam-
ples [CT06, NSW19] suffice, showing that the sample complexity is dimension-independent; the
cost that one needs to pay, however, is Ω(N) running time.

To (partially) remedy the aforementioned state of affairs, the approach of [KVZ19] departs from
both the aforementioned approaches, and performs pruning in the Cooley-Tukey FFT computation
graph, in a way that suffices for recovery of exactly k-sparse vectors. The main technical innovation
of that work is the introduction of adaptive aliasing filters, a new class of filters that allow isolating

7

a given frequency from a given set of k other frequencies using O(k) samples in time domain and
in O(k logN) time. Those filters are revised in Section 6.

Definition 3 ((v, T)-isolating filter, see Definition 6). Consider a subtree T of T full
N , and a leaf v

of T . A filter G : [n]d → C is called (v, T)-isolating if the following conditions hold:

• For all f ∈ FreqConeT (v), we have Ĝ(f) = 1.

• For every f ′ ∈
⋃
u∈leaves(T)

u6=v
FreqConeT (u), we have Ĝv(f

′) = 0.

As shown in [KVZ19], for a given tree T and a node v one can construct isolating filters G such
that ‖G‖0 = O(2wT (v)), and Ĝ(f) is computable in Õ(1) time (see also Lemma 5). The sparsity
of G in time domain, i.e. ‖G‖0, corresponds to the number of accesses to x needed in order to get
our hands on (Ĝ · x̂)f for a fixed f .

Given the above, the algorithm maintains at all times a tree T ⊆ T full
N and a vector χ̂ such

that supp(x̂ − χ̂) ⊆ ∪u∈T FreqCone(u), and supp(χ̂) ⊆ supp(x̂). The aim is to gradually discover
supp(x̂), by peeling off one element f ∈ supp(x̂) at a time whenever it reaches at a leaf of T full

N .
Upon termination, it will be the case that χ̂ = x̂. While T is not empty, the algorithm picks the
lowest weight node v∗ ∈ T , and construct a (v∗, T)-isolating filter. Subsequently, it needs to check
whether (x̂ − χ̂)FreqCone(v∗), i.e. the residual vector projected on FreqCone(v∗), is the all zeros
vector or not. This can be phrased as performing a zero test on (x̂ − χ̂)FreqCone(v∗). This check

can be performed efficiently using a (deterministic) collection of O(k log3N) samples which satisfy
the Restricted Isometry Property (RIP) of order k; its pseudocode, named ZeroTest, is depicted
in Algorithm 1. If (x̂ − χ̂)FreqCone(v∗) is indeed the all zeros vector, then v∗ is removed from T .
Otherwise, exploration proceeds by adding the two children of v∗ to T . The sample complexity of
ZeroTest is then

O(2wT (v∗) · k · poly(logN)),

namely, one needs to multiply the time domain support size of the isolating filter G with the number
of samples needed to satisfy RIP of order k. If v∗ is a leaf in T full, i.e. a node at depth logN ,
instead of performing a call to ZeroTest, the algorithm instead estimates x̂fv∗ immediately using
the (v∗, T)-isolating filter, see Algorithm 2 for a pseudocode. This requires only O(2wT (v∗)) samples.

So far, we have a primitive for estimation, and a primitive for testing whether a frequency cone
contains a part of the support of x̂. But how does exploration proceed? Using Kraft’s equality on T
(Theorem 6), and in particular Kraft averaging (Lemma 6) it is straightforward to see that always
2wT (v∗) = O(k), and hence the sample complexity of ZeroTest (which is the most expensive out
of the two primitives) is bounded by O(k2 · poly(logN)). Since x̂ is k-sparse, this process will
eventually terminate after exploring O(k logN) nodes, resulting in O(k3 poly(logN)) sample com-
plexity. To obtain a similar bound for the running time requires some more care, since one needs
to subtract χ̂ from the measurements; owing to the fact that adaptive aliasing filters are “sharp”
filters and efficiently computable, with some additional work one can still obtain O(k3 poly(logN))
running time, see paragraph “Accessing the residual signal” and Subsection 2.1 from [KVZ19].

Unfortunately, as we have already pointed out, the algorithm in [KVZ19] works only for exactly
k-sparse signals, and also demands cubic time and sample complexity. Our new toolkit shows that
all three can be remedied (though not completely simultaneously).

We also mention that a modified version of [Man95] can be employed to recover exactly k-
sparse signals in Õ(k3) time. The algorithm presented in [Man95] performs breadth-first search in
the Cooley-Tukey FFT computation graph, rather than exploring by picking the lowest weight leaf.

8

Opposed to [KVZ19], the algorithm in [Man95] uses Dirac comb filters to learn all the non-empty
frequency cones in the same level at once. However, the techniques in that paper cannot go beyond
cubic time for k-sparse signals, and as can be seen in [Man95, Section 6], extending the result to
robust signals pays a multiplicative signal-to-noise ratio factor on top of k3.

4.2 Our Techniques

Our first technique shows how to traverse the Cooley-Tukey FFT computation graph in a way that
achieves almost quadratic time complexity.

FFT backtracking. The first crucial observation is that the vanilla FFT traversal algorithm in
orded to decide whether a subtree contains a non-zero frequency performs a zero test with RIP of
order k, and this might be unnecessary. Indeed, if we are at a node v for which ‖x̂FreqCone(v)‖0 =
O(1), i.e. there are at most O(1) elements in FreqCone(v), we only need to perform RIP of
order O(1) (since at all times we maintain the invariant that we can isolate u from all the other
frequency cones on which the signal is non-zero). Thus, maybe there is a way to approximately
learn ‖x̂FreqCone(v)‖0, for nodes v explored during the execution of the algorithm, and perform a
low-budget zero test accordingly, for example whenever ‖x̂FreqCone(v)‖0 is smaller than a threshold?

Indeed, we demonstrate that this intuition is correct, and give a preliminary, warm up algo-
rithm with Õ(k2.5) runtime, see Subsection 8.1. The idea is the following. The algorithm maintains
at all times a subtree T , as well as a vector χ̂, such that supp(x̂ − χ̂) ⊆ ∪u∈T FreqCone(u), and
supp(χ̂) ⊆ supp(x̂). The crucial difference is that, in order to explore T , after the minimum-weight
node v ∈ leaves(T) is picked, the algorithm now runs a vanilla FFT traversal (as described in
the previous subsection) in the subtree Tv, under the assumption that ‖x̂FreqCone(v)‖0 ≤ b. The
latter assumption can be right or wrong. Once the execution on Tv is finished and the algorithm
backtracks to v, it performs a zero test with budget k to test whether (x̂ − χ̂)FreqCone(v) = ∅, i.e.
we correctly recovered everything on the subtree Tv. If this k-budget zero test returns True, we
remove v from T , otherwise its two children are added to T (since such a turn of events would mean
that we have underestimated ‖x̂FreqCone(v)‖0, i.e. our assumption on its sparsity being smaller than
b was incorrect). The benefit of this approach is that if our assumption was correct, all calls to
ZeroTest in exploring Tv will be correct and cheap, since we make use of RIP of order b, instead
of order k, which results in shaving off a multiplicative factor of k/b. Putting everything carefully
in place, this type of argumentation leads to running time Õ(k2.5), as already mentioned.

Performing multi-layer backtracking. The aforementioned approach essentially uses one layer of
backtracking, or, if one prefers, just one threshold. We optimize this approach, so that the algorithm
backtracks more aggresively, by considering multiple values b1, b2 . . ., corresponding to the possible
assumptions on the sparsity of x̂FreqCone(v), for some node v picked during the execution of the
algorithm. For a parameter α < 1 we will use thresholds b0 := k, b1 := αk, b2 := α2k, . . . , b log k

log(1/α)
=

O(1). Our new algorithm will be recursive, and at all times a call to the algorithm corresponds to
exploring a subtree Tv with some budget b := bj , i.e. under the assumption ‖x̂FreqCone(v)‖0 ≤ b. The
algorithm maintains a subtree Tv, initialized at {v}. At all times, it picks the minimum weight node
z ∈ Tv and considers the two children of z, let them be zleft, zright. Then, it runs itself recursively
on Tzleft

, Tzright
with budget bj+1 = αb. When the recursive calls return, yielding candidate vectors

χ̂left, χ̂right, it performs a zero test on each of zleft, zright with RIP of order b, in order to check
whether x̂FreqCone(zleft)− χ̂left is the all zeros vector (similarly for the right child). If the zero test on
zleft is False, we add zleft to Tv; similarly for zright. If both zero tests are True, then we remove z.
This continues either until Tv = ∅ or until the number of nodes that have ever been inserted in Tv

9

becomes too large (in particular if there is Ω(b/α) leaves). In the first case, the algorithm returns
the found vector, otherwise it returns the all zeros vector, since insertion of too many nodes into
Tv means that we have underestimated the sparsity of x̂FreqCone(v), as we argue in Subsection 8.2.
The check on the number of nodes that have been ever inserted in Tv is crucial for detecting early
whether we have understimated ‖x̂FreqCone(v)‖0, and thus crucial for keeping the running time low.

Upon performing a call with arguments a node v and a budget b, it could be the case that
‖x̂FreqCone(v)‖0 ≤ b does not hold; however, this misassumption is not detected by that call, and
a vector which is not equal to x̂FreqCone(v) is returned to the above recursion level. Nevertheless,
although undetectable at the time, this discrepancy will be detected in some recursion level above,
where we make use of higher budget; definitely at the very first level where we perform RIP of
order k. Proving correctness of the above process can be done by using induction on ‖x̂FreqCone(v)‖0
and the level of v inside T full

N , along with the fact that the very first call is invoked on root of T full
N

with budget k, and always ‖x̂‖0 ≤ k. This means that even if the algorithm makes a lot of mistakes
in a lower recursion level, this will be detected when backtracking at the topmost recursion level
(on which zero tests with RIP of order k are performed), and the budgets of descedants of v will
be increased; this constitutes “progress”. Roughly speaking, the algorithm tries to gradually learn
up to a multiplicative α factor all ‖x̂FreqCone(v)‖0 by backtracking. Analyzing the dynamics of this

process and optimizing over α, we obtain Õ(k2 · 2O(
√

log k·log logN)) running time. This proves our
first result, namely Theorem 1. The algorithm and its analysis appear in Subsection 8.2.

Let us now proceed with the techniques needed for the robust algorithm. First of all, in the
robust case we should substitute ZeroTest with an analogous HeavyTest routine. The role of
this routine is to determine whether ‖(x̂− χ̂)FreqCone(v)‖2 ≥ ‖η̂‖2, where v is any node that appears
during the execution of the algorithm. If the latter inequality holds, this means that there are
elements of the head of x̂ inside FreqCone(v) that are yet to be recovered. Pseudocode for this
routine is presented in Algorithm 6, and the guarantees of this routine are spelled out in Lemma 18.
The algorithm is very similar to ZeroTest, with the difference that we now need to take a collection
of random samples, since a deterministic collection of samples sastisfying RIP does not suffice to
control the non-sparse component, i.e. the contribution of the tail under filtering. Furthermore,
what is demanded is a control on how a (v, T)-isolating filter Ĝ acts on x̂∪u∈T\{v} FreqCone(u), i.e.
on parts of the signal living inside frequency cones which u is not isolated from. In words, one

would like to appropriately control the energy of
(
Ĝ · x̂∪u/∈T FreqCone(u)

)
, where · corresponds to

element-wise vector multiplication.

Collectively, adaptive aliasing filters act as near-isometries. Adaptive aliasing filters are
particularly effective for non-obliviously isolating elements of the head with respect to each other.
However, in standard sparse recovery tasks, one desires control of the tail energy that participates
in the measurement. This is a relatively easy (or at least well-understood) task in Sparse Fourier
schemes which operate via `∞-box filters [HIKP12a, HIKP12b, IKP14, IK14, Kap17], but a non-
trivial task using adaptive aliasing filters. The reason is that the tail via the latter filtering is
hashed in a non-uniform way. The hashing depends on the arithmetic structure of the elements
used to construct the filters, as well as their arithmetic relationship with the elements in the tail.
This non-uniformity is essentially the main driving reason for the “exactly k-sparse” assumption
in [KVZ19]. Our starting point is the observation that for every tree T ⊆ T full

N , the (v, T)-isolating
filters for v ∈ leaves(T), satisfy the following orthonormality condition in dimension one, see
subsection 10.1.

10

Lemma 1. (Gram Matrix of adaptive alliasing filters in d = 1) Let T ⊆ T full
n , let Gv be the

(v, T)-isolating filter of leaf v ∈ leaves(T), as per (1). Let v and v′ be two distinct leaves of T .
Then,

1.
‖Ĝv‖22 :=

∑
ξ∈[n]

|Ĝv(ξ)|2 =
n

2wT (v)
.

2. (cross terms) the adaptive aliasing filters corresponding to v and v′ are orthogonal, i.e.

〈Ĝv, Ĝv′〉 :=
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ) = 0.

This already postulates that adaptive aliasing filters are relatively well-behaved: for a tree T all
leaves of which have roughly the same weight, it must be the case that x 7→ {〈Ĝv, x̂〉}v∈leaves(T)

is a near-orthonormal transformation. Of course, this is too much to ask in general. The crucial
property that we will make use of is captured in the following Lemma, see Subsection 10.2.

Lemma 2. (see Lemma 17) Consider a tree T ⊆ T fullN . For every leaf v of T we let Ĝv be a Fourier
domain (v, T)-isolating filter. Then for every ξ ∈ [n]d,∑

v∈leaves(T)

|Ĝv(ξ)|2 = 1.

Using standard arguments, the above gives the following Lemma.

Lemma 3. For z : [n]d → C, let z→a be the cyclic shift of z by a, i.e. z→a(f) := z(f − a), where
the subtraction happens modulo n in every coordinate. For a tree T ⊆ T full

N ,

Ea∼U
[n]d

 ∑
v∈leaves(T)

|〈Ĝv, ẑ→a〉|2
 = ‖z‖22,

i.e. on expectation over a random shift the total collection of filters is an isometry.

Thus, although the tail is hashed in a way that is dependent on the head of the signal, what
we can prove is that on expectation over a random shift the total amount of noise is controllable.
Using the last property we can ensure that HeavyTest in the high-SNR regime we consider i)
does not introduce false positives, i.e. does not engage in exploration in subtrees that contain no
sufficient amount of energy, and ii) prevents false negatives. Guarantee i) translates to a bound on
the running time of the algorithm, while ii) ensures correct execution of the algorithm. Note that
due to the explorative nature of algorithm and the fact that missing a heavy element increases the
total noise in the system (since we stop isolating with respect to it afterwards, it contributes as noise
in subsequent measurements), accumulation of false negatives can totally destroy the guarantees
of our approach. We note that this phenomenon of the tail not hashed independently of the signal
occurs also in one-dimensional continuous Sparse Fourier Transform [PS15], although for a very
different reason; in their setting handling such an irregularity is significantly easier, mostly due to
the fact that errors do not accumulate as in our explorative algorithm.

11

Identification and estimation are interleaved. In contrast to more standard sparse recovery
tasks where usually identification and estimation can be decoupled, our algorithm needs to have a
precise way to perform estimation upon identification of a coordinate. That happens due to the
explorative nature of our algorithm, which does not allow us to perform estimation at the very end.
This is relatively easy in the exactly k-sparse case, but in the robust case, due to the presence of
noise it is much more challenging. Whenever we identify a frequency and isolate it from the other
head elements, we can pick Õ(k) random samples and estimate it up to 1/

√
k fraction of the tail

energy. Although this precision is sufficient for our algorithm to go through, it would lead us to an
undesirable cubic sample complexity in total. The next two techniques are introduced in order to
handle this situation.

Lazy Estimation. One additional crucial difference between the exactly k-sparse case and the
robust case is estimation. In the former, when we had a tree T and the minimim-weight leaf v ∈ T
was also a leaf in T full

N , we needed Õ(2wT (v)) samples in order to perfectly estimate x̂fv . However,
in the robust case, perfect estimation is impossible, and as is usual in sparse recovery tasks, we

should estimate it up to additive error O
(

1√
k
‖η̂‖2

)
(recall that we write x̂ = ŵ + η̂, where η is

the tail of the signal). In order to achieve this type of guarantee, one way is to take Õ(k) random
samples from Gv ? x, where Gv is the (v, T)-isolating filter. This would yield Õ(k · 2wT (v)) samples
for estimation, a k factor worse than what is needed in the exactly k-sparse case. In total, the
sample complexity (and running time) would be k times more expensive, getting us back to Õ(k3).

Let’s see how it is possible to shave the aforementioned multiplicative k factor in the sample
complexity. Imagine that upon finding such a leaf v, our algorithm does not estimate it immediately,
but rather decides to postpone estimation for later. Instead, it marks it as a fully identified
frequency, without removing it from T and proceeds in exploring T further. From now on, instead
of picking the lowest weight leaf in T at any time, it picks the lowest weight unmarked leaf in T .
Of course, it could be the case that this rule causes the leaf picked to have weight much more
than log k, significantly increasing the cost of filtering. Consider however the following strategy.
While the minimum weight unmarked leaf in T has weight at most log k + 2, we pick and it and
continue exploring. Whenever the aforementioned condition does not hold, the total Kraft mass3

occupied by the marked leaves in T is at least 1 − k · 1
2k = 1

2 . When this happens, we show that
we can extract a large subset of the marked nodes, see Lemma 7, which can be well-estimated on
average using only a polylogarithmic number of samples. This suffices for the `2/`2 guarantee, and
furthermore reduces the number of marked nodes (and hence the Kraft mass occupied by marked
nodes) causing our algorithm to proceed without increasing the cost of filtering. A more involved
demonstration of this idea appears in section 11.

Multi-scale Estimation. The lazy estimation technique presented above can estimate k heavy

frequencies of x̂ up to average additive error of O
(
‖η̂‖2√
k

)
using quadratic samples only if we use the

vanilla tree exploration strategy which always picks the lowest weight unmarked leaf of tree T and
explores its children. This exploration strategy ensures that leaves get identified and consequentky
marked in ascending weight order. Thus, there will be a point where the Kraft mass occupied by
marked leaves is sufficiently large (recall that marked leaves have weight bounded by log k + 2).
However, as we already mentioned, the tree exploration employed in [KVZ19] results in cubic
sample complexity even in the exactly k-sparse case. On the other hand, our new exploration

3For a tree T and a set S ⊆ leaves(T) we shall refer to the quantity
∑
v∈S 2−wT (v) as the Kraft mass occupied

by S in T , or just the Kraft mass of S if it is clear from context.

12

strategy (FFT backtracking) does not necessarily guarantee that the identified leaves will have
large Kraft mass and bounded weight at the same time.

To make both lazy estimation and backtracking tree exploration techniques work together and
achieve near quadratic total sample complexity, we devise a multi-scale estimation scheme. Our
estimation strategy is to estimate every heavy frequency not once, but multiple times, each time
to a different accuracy. More precisely, let’s assume we are exploring a node v ∈ T under the
assumption that ‖x̂FreqCone(v)‖0 ≤ b, and this assumption is correct. For every found frequency

f , we estimate x̂(f), to precision ‖η̂‖2√
b

instead of ‖η̂‖2√
k

, which would be the standard thing to do.

However, sticking to this error precision will not give the desired `2/`2 guarantee: for small b, it

blows up the error by a factor of
√

k
b , and it could be that all f ∈ supp(x̂) are estimated in a

low-budget subproblem, due to recursion. Nevertheless, we can use these coarse-grained estimates
to only locate the support of x̂ inside a subtree, and return it to the parent subproblem, i.e. to the
above recursion level. The parent subproblem will mark those recovered frequencies, ignore their
values, and continue its execution normally (pick the lowest leaf, perform lazy estimation etc).
At some point, when the Kraft mass occupied by the parent subproblem is large enough, those
frequencies will be estimated up to higher precision, i.e. ‖η̂‖2√

b/α
. When it finishes execution, it will

return those elements to the above recursion level, so on so forth. This type of argumentation can
be used to glue together lazy estimation and FFT backtracking. An illustration of this idea takes
place in Section 12.

Lower Bound: Encoding OV via non-equispaced Fourier Transform. Given sets of vec-
tors

A = {a0, a1, . . . , ak−1}, B = {b0, b1, . . . , bk−1} ⊆ {0, 1}d,

we build |A| points in time domain and |B| points in frequency domain as follows. We pick
sufficiently large M, q,N (for details see Section 9) and define for j ∈ [k]:

tj :=
∑
r∈[d]

aj(r) ·M rq, fj :=
∑
r∈[d]

bj(r) ·
N

M rq+1
,

Subsequently, we look at the indicator vector of the set {t0, t1, . . . , tk−1}, let it be x. Asking for
the values x̂f0 , x̂f1 , . . . , x̂fk−1

corresponds exactly to the non-equispaced Fourier transform problem.
Using the aforementioned evaluations we show that it is possible to extract the values

Vj,h :=
∑
`∈[k]

〈a`, bj〉h, for j ∈ [n], h ∈ [d].

For a fixed j, the values of Vj,h can be expresed in terms of Zr := |{` ∈ [k] | 〈a`, bj〉 = r}|, via
multiplication by a d × d Vandermonde matrix. Since the entries involved in this matrix and Vj,h
have poly(d, log k) bits, we can then solve for Z0 in poly(d, log k) time, where Z0 corresponds to the
number of vectors a ∈ A which are orthogonal to B. Repeating this over all j ∈ [k] yields whether
there exists a pair of orthogonal vectors.

4.3 Explanation of the barriers faced

Discussion on the limits of the explorative approach, or why the quadratic barrier is
impenetrable. On a high level, the explorative approach we take maintains a vector χ̂ such that

13

(0, 0) → universe [4]× [4]

(0, 1)

(0, 3)

(1, 3)

(3, 3) (1, 3)

(0, 3)

(2, 3) (0, 3)

(0, 1)

(1, 1)

(3, 1) (1, 1)

(0, 1)

(2, 1) (0, 1)

(0, 0) → universe [2]× [4]

(0, 2)

(1, 2)

(3, 2) (1, 2)

(0, 2)

(2, 2) (0, 2)

(0, 0)→ universe [1]× [4]

(1, 0)

(3, 0) (1, 0)

(0, 0) → universe [2]

(2, 0) (0, 0)
→ universe [1]

T full
16

Figure 2: An example of the FFT binary tree T full
N with n = 4 and dimension d = 2, (thus N = 16).

The universe corresponding to the nodes at each level of the tree is shown on the right side and
the labeles of each node appears next to it.

supp(χ̂) ⊆ supp(x̂) at all times4. Whenever the algorithm reaches a leaf v ∈ T full
N (see definitions

in the Preliminaries Section), it estimates it and adds it to χ̂. Subsequently, it proceeds by trying
to recover the residual vector x̂− χ̂. Now, imagine that we have recovered a constant fraction, say
1/10, of x̂, and want to proceed further in order to recover the remaining part of x, i.e. x̂ − χ̂,
which is an Ω(k)-sparse vector. In order even to test whether x̂ − χ̂ is the zero vector, we need
to pick a set of Ω(k) random samples, satisfying for example the Restricted Isometry Property of
order k, from x − χ. In turn, this means that we need to compute the values χt for all t in the
aforementioned collection of random samples, and subtract them from the corresponding values of x.
Since both supp(χ̂) and the samples needed for RIP are in principle unstructured sets of size Ω(k),
the computation of the relevant χt is exactly the classical non-equispaced Fourier transform, for
which no strongly subquadratic algorithm in available. We explain this unavailability by providing
a quadratic lower bound on this task based on the well-established Orthogonal Vectors hypothesis,
see Theorem 2. This also provides evidence that the quadratic time barrier is the limit of our
explorative approach. Indeed, at all times we need to decide whether to explore a subtree or not by
testing whether x̂− χ̂ is the zero vector projected on that subtree. Since subtracting the effect of
χ̂ from the measurements, i.e. evaluating χ on an unstructured set of samples, cannot be done in
strictly subquadratic time unless OVH fails, a subquadratic algorithm for exactly k-sparse FFT by
traversing a pruned Cooley-Tukey FFT computation tree would most likely yield a subquadratic
algorithm for the Orthogonal Vectors problem.

Discussion on the high-SNR regime. We shall illustrate a potential scenario where we might
miss most frequencies in the head of the signal if we run our algorithm on an input signal that is not
in the high-SNR regime. Note that throughout the exploration algorithm, we always maintain a set
of nodes, such that the union of the frequency cones of those nodes covers the head of the signal. The
frequencies which are not covered are essentially treated as noise, and we do not isolate with respect
to them. Due to the fact that the adaptive aliasing filters hash the noise in a non-uniform way, it
could be that our HeavyTest primitive misclassifies a subtree as “frequency-inactive”, i.e. no head

4In fact, this is an oversimplification of our approach (as well as slightly inaccurate), but for the sake of discussion
let us assume that this is the case.

14

element inside it, although it contains one. In such a scenario, it is natural to abandon exploration
inside the subtree. This would cause the noise in the system to increate by the magnitude of the
missed head element (since we shall not isolate with respect to it anymore). Subsequently, this can
potentially lead to a chain reaction, leading to successively missing head elements, and successively
increasing the noise in the system, ending up to not recovering anything. However, our HeavyTest
primitive is strong and ensures that we never miss a heavy frequency of signals that are not in the
high-SNR regime as long as we perform oversampling by a factor k.

On the other hand, note that in order to achieve the `2/`2 guarantee on signals that are not in
high-SNR regime, we need to set the threshold of HeavyTest to 1/k fraction of the tail norm as
opposed to the tail norm. Hence, another conceivable bad scenario is that, with such low threshold,
the tail of the signal can make some frequency-inactive cones to appear heavy, introducing false
positives. This can blow up the running time of the algorithm to super-polynomial in k.

Discrepancy between the runtime of our robust algorithm and its sample complexity.
The only way we know how to perform dimension-independent estimation is via random sampling,
as implemented in the HeavyTest routine. If we perform standard (non-lazy estimation) this
would yield an additional multiplicative k factor, as claimed in the first paragraph of Techniques III.
Remedying this via lazy estimation shaves the multiplicative k factor from the sample complexity,
but does not do so in the running time. In particular, we run again into the same issue of subtracting
χ̂ from the buckets (which corresponds to an unstructured set of samples), i.e. the solution of a
non-equispaced Fourier transform instance. As we’ve proven a quadratic time lower bound for the
latter problem, this indicates that this discrepancy is most likely unavoidable with this approach.

5 Roadmap

The roadmap of this paper is the following. We follow an incremental approach, trying to introduce
the techniques one by one, to the extent that is possible. In Section 6 we revise adaptive aliasing
filters from [KVZ19]. In Section 7 we give the facts related to Kraft’s inequality which we are
going to use throughout our algorithms. Section 8 is devoted to the exact case, and in particular,
illustrating our FFT backtracking technique. For convenience of the reader, as also discussed in
the Techniques Section, we first design a warm-up algorithm, and then utilize the full power of our
technique. In Section 9 we give the conditional lower bound on non-equispaced Fourier transform.
In Section 10, the new structural properties of adaptive aliasing filters are inferred. In section 11
we introduce our first robust Sparse Fourier transform algorithm, illustrating techniques II-III and
partly technique I. Lastly, in Section 12 we obtain our final robust Sparse FT algorithm, which
uses techniques I-IV. For that reason, the algorithm is presented last.

6 Machinery from Previous work: Adaptive Aliasing Filters

In this section, we recall the class of adaptive aliasing filters that were introduced in [KVZ19]. These
filters form the basis of our sparse recovery algorithm. For simplicity, we begin by introducing the
filters in one-dimensional setting and then show how they naturally extend to the multidimensional
setting (via tensoring).

15

6.1 One-dimensional Fourier transform

Our algorithm extensively relies on binary partitioning the frequency domain. In d = 1, the
following definitions are the one-dimensional analogues (special cases) of the ones in subsection 3.2.
We re-iterate them here, for completeness. The following is a re-interpretation of the splitting tree
of a set in dimension 1.

Definition 4 (Splitting tree). For every S ⊆ [n], the splitting tree T = Tree(S, n) of a set S is a
binary tree that is the subtree of T full

n that contains, for every j ∈ [log n], all nodes v ∈ T full
n at

level j such that
{
f ∈ S : f ≡ fv (mod 2j)

}
6= ∅.

Our Sparse FFT algorithm requires a filter G that satisfies a refined isolating property due to
the fact that throughout the execution of the algorithm, the identity of supp(x̂) is only partially
known. The following is a re-interpretation of the frequency cone of a node in dimension 1.

Definition 5 (Frequency cone of a leaf of T). Consider a subtree T of T full
n , and vertex v ∈ T

which is at level lT (v) from the root, the frequency cone of v with respect to T is defined as,

FreqConeT (v) :=
{
fu : for every leaf u in subtree of T full

n rooted at v
}
.

Note that under this definition, the frequency cone of a vertex v of T corresponds to the subtree
rooted at v when T is embedded inside T full

n . Next we present the definition of an isolating filter,
introduced in [KVZ19].

Definition 6 ((v, T)-isolating filter). Consider a subtree T of T full
n , and leaf v of T , a filter G :

[n]→ Cn is called (v, T)-isolating if the following conditions hold:

• For all f ∈ FreqConeT (v), we have Ĝ(f) = 1.

• For every f ′ ∈
⋃
u∈leaves(T)

u6=v
FreqConeT (u), we have Ĝv′(f

′) = 0.

Note that in particular, for all signals x ∈ Cn with supp(x̂) ⊆
⋃
u∈leaves(T) FreqConeT (u) and

t ∈ [n], ∑
j∈[n]

x(j)Gv(t− j) =
1

n

∑
f∈FreqConeT (v)

x̂fe
2πi ft

n .

The main technical construction of [KVZ19] is captured by the following Lemma.

Lemma 4 (Filter properties, [KVZ19]). Let n be an integer power of two, T a subtree of T full
n , v a

leaf in T . Let f := fv be the label of node v. Then the filter Gv : [n]→ C with Fourier Transform

Ĝv(ξ) =
1

2wT (v)

∏
`∈Anc(v,T)

(
1 + e

2πi
(ξ−f)

2`+1

)
, (1)

is a (v, T)-isolating filter. Furthermore,

• |supp(Gv)| = 2wT (v), and the filter G can be constructed in O(2wT (v) +log n) time (in the time
domain).

• Computing Ĝv(ξ) for ξ ∈ [n] can be done in O(log n) time.

16

6.2 d-dimensional Fourier transform

In this subsection, we present the extension of adaptive aliasing filters to higher dimensions (by
tensoring). It was shown in [KVZ19] that multidimensional construction of these filters is extremely
efficient and incurs no loss in the dimensionality.

Definition 7 (Multidimensional (v, T)-isolating filter). For every subtree T of T full
N and vertex

v ∈ T , a filter Gv ∈ Cnd is called (v, T)-isolating if Ĝv(f) = 1 for every f ∈ FreqConeT (v) and
Ĝv(f

′) = 0 for every f ′ ∈ supp(T) \ FreqConeT (v).

In particular, for every signal x ∈ Cnd with supp(x̂) ⊆ supp(T) and for all t ∈ [n]d,∑
j∈[n]d

x(j)Gv(t− j) =
1

N

∑
f∈FreqConeT (v)

x̂fe
2πi f

T t
n .

We need the following lemma which is the main result of this section and shows that isolating
filters can be constructed efficiently.

Lemma 5 (Construction of a multidimensional isolating filter – Lemma 4.2 of [KVZ19]). Let T of
T full
N , and consider v ∈ leaves(T). There exists a deterministic construction of a (v, T)-isolating

filter Gv such that

1. |supp(Gv)| = 2wT (v).

2. Gv can be constructed in time O
(
2wT (v) + logN

)
.

3. For any frequency ξ ∈ [n]d, Ĝv(ξ), i.e. the Fourier transform of Gv at frequency ξ, can be
computed in time O(logN).

7 Kraft-McMillan inequality and averaging claims

For our needs, we are going to make use of the following standard claim from coding theory, referred
to as Kraft’s or Kraft-McMillan inequality. The most general version is an inequality, but in the
case of binary trees (complete codes in coding theory vocabulary), it becomes an equality.

Theorem 6 (Kraft’s equality). Let T ⊆ T full
N , it holds that∑

u∈leaves(T)

2−wT (u) = 1.

For a tree T ⊆ T full
N and a set S ⊆ leaves(T), we shall refer to the Kraft mass of S with respect

to T as the quantity
∑

u∈S 2−wT (u).
We shall frequently use the following straightforward Lemma, which we shall refer to as Kraft

averaging. This ideas has appeared in [KVZ19].

Lemma 6 (Kraft averaging). Let T ⊆ T full
N , with L leaves. Then there exists a u∗ ∈ leaves(T)

such that wT (u∗) ≤ log2 L.

The following fine-grained version of Kraft averaging is an indispensable building block of our
lazy estimation technique, and constitutes one of the important departures from the approach
in [KVZ19]. The reader may postpone reading it at the moment, since its first usage will be in
section 11. Neverthless, we decided to keep all the claims regarding Kraft’s inequality in a separate
section, for compactness reasons.

17

Lemma 7 (Fine-grained Kraft Averaging). Consider a subtree T of T full
N and a positive integer

b such that |leaves(T)| ≤ b. Let S :=
{
v ∈ leaves(T) : 2wT (v) ≤ 2b

}
, i.e. the leaves of T with

weight at most log2(2b). Then there exists a subset L ⊆ S such that

maxv∈L 2wT (v)

|L|
≤ 1

θ
,

where θ ≤ 1
4+2 log2 b

.

Informally (but somewhat imprecisely), the claim postulates that for any subtree T of T full
N with

|leaves(T)| = k, there exist either 1 node of weight 1, or 2 nodes of weight of 2, or . . . at least
2j/ log k nodes of weight j, or . . . k/ log k nodes of weight log k. We now proceed with its proof.

Proof. First note that one can show the preconditions of claim imply that
∑

u∈S 2−wT (u) ≥ 1
2 . For

every j = 0, 1, . . . dlog2(2b)e, let Lj denote the subset of S defined as Lj := {u : u ∈ S,wT (u) = j}.
We can write, ∑

u∈S
2−wT (u) =

dlog2(2b)e∑
j=0

|Lj |
2j

Therefore by the assumption of the claim, we have that there must exist a j ∈ {0, 1, . . . dlog2(2b)e}
such that

|Lj |
2j
≥ 1

2dlog2(2b)e . Because θ ≤ 1
4+2 log2 |S|

, there must exist a set L ⊆ S such that

|L| ≥ θ ·maxv∈L 2wT (v).

8 Exactly k-sparse Case

This section is devoted to proving Theorem 1. In subsection 8.1 we describe a preliminary algorithm
which uses the idea of trying to learn the sparsities of x̂ when projected on the different subtrees
in T full

N , and perform recovery/exploration with respect to those. In essence, it performs only mild
backtracking. In subsection 8.2 we give our result on exactly k-sparse signals, which utilizes the
full power of FFT backtracking.

8.1 Warm Up

The goal of this subsection is to prove the following result.

Theorem 7. The sparse Fourier transform problem with an exactly k-(Fourier sparse) signal x :
[n]d → C, i.e., ‖x̂‖0 ≤ k can be solved in m = O

(
k2.5 poly(logN)

)
time, deterministically.

We are going to analyze algorithm SparseFT-WarmUp(x, k), see pseudocode 4.
We let x̂v be the vector x̂FreqCone(v), i.e. the vector supported on frequencies in the frequency

cone corresponding to v. The algorithm keeps a vector χ̂, which at the end of the execution will
equal x̂. For this overview, we can imagine that for every v ∈ T full

N the vector χ̂v, i.e. χ̂FreqCone(v)

serves as our estimate for x̂v. Initially, all these vectors are set to {0, 1}nd . The execution of our
algorithm ensures that we can always keep sparse representations of them. A node v is called
frequency-active if χ̂v 6= x̂v, i.e there is is still frequency content to recover inside FreqCone(v).
Note also that supp(x̂v) = FreqCone(v) ∩ supp(x̂). We will say that v is “heavy” if ‖x̂v‖0 > b.

Parameters/ variables n, d, χ are treated as global.

18

The algorithm SparseFT-WarmUp(x, k) maintains at all times a subtree of T full
N which is

referred to as Frontier, with the invariant that at all times

supp(x̂− χ̂) ⊆
⋃

u∈Frontier
FreqCone(u).

At all times, it picks the lowest weight leaf in Frontier, let it be v, and executes the PromiseSparseFT
routine, which is a variant of the algorithm in [KVZ19], on its children, under the assumption that
‖(x̂− χ̂)v‖0 ≤ b. The latter assumption can be either true or false. When it returns, it performs a
ZeroTest on v: if the result of the ZeroTest is true, then it removes v from Frontier, other-
wise adds the children of v to Frontier. Intuitively, the algorithm tries to learn the heavy nodes
in the tree, i.e. those v which satisfy ‖x̂v‖0 > b; the set Frontier corresponds to those nodes, or
in particular a small superset of those.

Algorithm 1 ZeroTest(x, χ̂, v, T, s)

1: f := fv
2: G← G1 ×G2 × . . .×Gd the (v, T) isolating filter in Lemma 5
3: RIPs := a set of O(s log3N) samples, which suffice for s-RIP, see Theorem 5

4: h∆
f ←

∑
ξ∈[n]d

(
e2π ξ

T∆
n χ̂(ξ) ·

∏d
q=1 Ĝq(ξ(q))

)
, for all ∆ ∈ RIPs

5: H∆
f ←

∑
j∈[n]d x(j)G(∆− j)− h∆(j), for all ∆ ∈ RIPs

6: if
∑

∆∈RIPs
|H∆
f |2 = 0 then

7: Return True
8: else
9: Return False

Algorithm 2 EstimateFreq(x, χ̂, v, S)

1: f := fv
2: G← G1 ×G2 × . . .×Gd the (v, S) isolating filter in Lemma 5

3: hf ←
∑

ξ∈[n]d

(
χ̂(ξ) ·

∏d
q=1 Ĝq(ξ(q))

)
4: Return N ·

∑
j∈[n]d x(j)G(−j)− h(j)

The following simple observation is the building block for estimation in [KVZ19], and follows
by the filter isolation properties presented in Lemma 5.

Lemma 8. (Estimation) Let a signal x, χ̂, a tree S ⊆ T full
N such that supp(x̂− χ̂) ⊆ supp(S), and

a leaf v ∈ S which is also a leaf of T full
N . Then the procedure EstimateFreq(x, χ̂, v, S) returns

(x̂− χ̂)(fv). Furthermore, the routine requires

• O
(
2wS(v)

)
sample complexity, and

• Õ(‖χ̂‖0 + 2wS(v)) running time.

The following Lemma is also one of the primitives in [KVZ19].

Lemma 9. (Testing recovery on a subtree, see also [KVZ19, Lemma 7]) Let signals x, χ̂, a tree
T ⊆ T full

N such that supp(x̂ − χ̂) ⊆ supp(T), and a leaf v ∈ T . Then, if ‖ (x̂− χ̂)v ‖0 ≤ s, the
call ZeroTest(x, χ̂, v, T, s) determines correctly whether x̂v = χ̂ or not. If x̂v = χ̂v, then the call
ZeroTest(x, χ̂, v, T, s) always returns True.

Furthermore, the routine requires

19

v

v1

v2

v3

Figure 3: Illustration of an instance of PromiseSparseFT(x, χ̂, v,SideTree, b). The goal is to
recover the residual vector x̂ − χ̂ on the subtree rooted at v. Here, SideTree = {v1, v2, v3}, and
the isolating filters constructed in PromiseSparseFT(x, χ̂, v,SideTree, b) will isolate the corre-
sponding nodes also from the nodes in SideTree. Furthermore, we are exploring the tree rooted
at v under the assumption that ‖(x̂−χ)v‖0 ≤ b, which means that inside this PromiseSparseFT
call we shall invoke ZeroTest with budget b. If our assumption is correct and, furthermore,
supp(x̂ − χ̂) ⊆ FreqCone(v) ∪u∈SideTree FreqCone(u), then our algorithm will correctly find the
residual signal on the corresponding subtree, i.e. will recover (x̂− χ̂)v.

Figure 4: An illustration of ∂C, appearing in proof of Lemma 13). The collection of ancestors of
blue nodes (including the blue nodes) constitute the heavy nodes in T full

N , i.e. C := {v ∈ T full
N :

‖x̂v‖0 > b}. The blue nodes correspond to ∂C := {v ∈ T full
N : @v′ ∈ C, v is an ancestor of v′}. The

nodes that could be inserted in Frontier are only nodes in C and the children of nodes in ∂C, see
Lemma 13. The size of ∂C is always O(k/b), and thus |C| = O((k/b) logN), which in turn says that
at all times |Frontier| = O((k/b) logN).

20

Algorithm 3 PromiseSparseFT(x, χ̂, v,SideTree, b)

1: //SideTree is a subset of the set of nodes which are siblings of some ancestor of v
2: //b is the estimate (budget) of (x̂− χ̂)v
3: //Oracle Access to x.
4: S ← {v}
5: NodesExplored← 1
6: χ̂out ← {0}n

d

7: repeat
8: if NodesExplored > 6 · b logN then
9: //Have explored more than the estimated sparsity

10: return {0}nd

11: z := leaf in S with the smallest weight.
12: NodesExplored← NodesExplored + 1
13: if z is a leaf in T full

N then
14: χ̂out(fz)← EstimateFreq(x, χ̂+ χ̂out, z, S ∪ {SideTree})
15: S ← S \ {z}
16: else if ZeroTest(x, χ̂+ χ̂out, z, S ∪ {SideTree}, b) = True then
17: S ← S \ {z}
18: else
19: zleft := left child of z
20: zright := right of z
21: S ← S ∪ {zleft, zright}
22: until S = ∅
23: Return χ̂out
24: return

• O(2wT (v) · |RIPs|) sample complexity, and

• Õ
(
‖χ̂‖0 · |RIPs|+ 2wT (v) · |RIPs|

)
running time 5.

Recall that RIPs is a set of samples satisfying s-RIP, see Theorem 5

We proceed by analyzing algorithm PromiseSparseFT.

Lemma 10. (Correctness of the Promise problem) Consider an invocation of the algorithm
PromiseSparseFT(x, χ̂, v,SideTree, b). If i) ‖(x̂− χ̂)v‖0 ≤ b,and ii) SideTree isolates v from
every other frequency-active node in T full

N , i.e. supp(x̂−χ̂) ⊆ FreqCone(v) ⊆ ∪u∈SideTree FreqCone(u),
then at the end of the call it holds that χ̂v = x̂v, i.e. we have recovered x̂ perfectly on the subtree
rooted at v.

Proof. First of all, note that all calls to ZeroTest will be executed correctly since ‖(x̂ − χ̂)v‖0 ≤ b
and u is isolated from every other frequency-active node in T full

N . This means that for any non-leaf

z we have that i) if (x̂ − χ̂)z = {0}nd , this will be detected and the algorithm will remove z from

Sv, and ii) if (x̂− χ̂)z 6= {0}n
d
, this will be detected and the algorithm will proceed by adding the

5The 2wT (v) · |RIPs| correspond to the number of accesses on x, and ‖χ̂‖0 · |RIPs| corresponds to the time needed
to subtract χ̂ from the measurements. Lemma 7 in [KVZ19] has an additional third component, which corresponds

to the time needed to prepare the isolating filter Ĝ. It is not hard to see that this third component can always be
bounded by O(logN), and hence can be safely ignored.

21

Algorithm 4 SparseFT-WarmUp(x, k)

1: Frontier := {root}
2: b :=

⌈√
k
⌉

3: //Frontier is at all times a tree containing the set of nodes v with budget k and χ̂v 6= x̂v.

4: χ̂← {0}nd

5: repeat
6: Pick v ∈ Frontier with the smallest weight.
7: SideTreev := the sub-path of node v with respect to Frontier
8: if ZeroTest(x, χ̂, v,SideTreev, k) then
9: //Have recovered x̂v perfectly

10: Frontier← Frontier \ {v}.
11: continue
12: vleft := left child of v
13: vright := right child of v
14: Pleft := SideTreev ∪ {vright}
15: Pright := SideTreev ∪ {vleft}
16: // Pleft (resp. Pright) is guaranteed to isolate vleft (resp. vright) from every other frequency-

active node in T full
N .

17: χ̂left ← PromiseSparseFT(x, χ̂, vleft, Pleft, b)
18: χ̂right ← PromiseSparseFT(x, χ̂, vright, Pright, b)
19: if ZeroTest(x, χ̂+ χ̂left + χ̂right, v,SideTreev, k) then
20: //Have recovered x̂v perfectly
21: Frontier← Frontier \ {v}
22: χ̂← χ̂+ χ̂left + χ̂right

23: else
24: Frontier = Frontier ∪ {vleft, vright}
25: until Frontier = ∅
26: Return χ̂v.

children of u in Sv. Furthermore, if z is also a leaf in T full
N , EstimateFreq in Line 14, will set

χ̂(fz) = x̂(fz); subsequently z will be removed from the tree. The above properties ensure that
estimation and identification is always correct, and thus, when Sv = ∅, we have perfectly recovered
the signal in FreqCone(v), i.e. χ̂v = x̂v. Furthermore, the test in Line 8 will never force exit, since
we are going to put only 3‖x̂v‖0 · logN ≤ 3b logN nodes in the Sv (there are ‖x̂v‖0 logN nodes
with a non-trivial frequency cone, and we multiply by 3 to account for all their children, which
could be inserted in Sv), and each such node can cause increment of the counter NodesExplored at
most two times.

Lemma 11. (Running Time of the Promise Problem)
Consider an invocation of the algorithm PromiseSparseFT(x, χ̂, v,SideTree, b). The sample
complexity is upper bounded by

Õ
(

2|SideTree| · b3
)
,

and the running time is upper bounded by

Õ
(
‖χ̂‖0 · b2 + 2|SideTree| · b3

)
.

22

Proof. Note that due to the test in Line 8, the number of executions of the while loop is O(b logN).
Furthermore, since NodesExplored is at most 6b logN , we have that |S| ≤ 6b logN . By invoking
Kraft averaging (Lemma 6) on the tree S, we obtain that the node z picked in Line 11, satisfies
wS(z) ≤ log(6b logN). This in turn gives

2wS∪SideTree(z) ≤ 6 · 2|SideTree| · b logN.

Thus, every call to ZeroTest uses

Õ(2wS∪SideTree(z) · |RIPb|) = Õ(2|SideTree| · b logN) · Õ(b) = Õ(2|SideTree| · b2)

samples, and every call to EstimateFreq uses O(2|SideTree|b logN) samples. Thus, over all
O(b logN) nodes we get the desired bound on the sample complexity.

Similarly, the running time is upper bounded by the time spent on calling ZeroTest and the
time spent on calling EstimateFreq. The first one can be controlled as

O(b logN)︸ ︷︷ ︸
number of nodes

· Õ
(
‖χ̂v‖0 · |RIPb|+ 2wS∪SideTree(z) · |RIPb|

)
︸ ︷︷ ︸

time spent on ZeroTest

=

O(b logN) ·O
(
‖χ̂v‖0 · b+ 2|SideTree| · b2

)
,

which is within the time bound. The second one can be controlled as

O(b logN)︸ ︷︷ ︸
number of nodes

· Õ
(
‖χ̂‖0 + 2|SideTree|b

)
︸ ︷︷ ︸
time spent on EstimateFreq

,

which is again within the time bound.

Lemma 12. (Invariant of the algorithm: signal containment) At all times, the frequency cones of
nodes in Frontier contain supp(x̂− χ̂). Formally, supp(x̂− χ̂) ⊆

⋃
v∈Frontier FreqCone(v).

Proof. We prove the claim by induction. The base case is at the first step when Frontier = {root},
in which case the claim is obvious. For the inductive step, consider node v chosen with minimum
weight from Frontier. If we follow the branch in Line 8 or the branch in Line 19, this means that
(x̂− χ̂)FreqCone(v) = {0}nd (equivalently, χ̂v = x̂v) in which case removal of v from Frontier does
not violate the invariant. If we follow the else branch in Line 23, v is removed from Frontier and
its two children are inserted, and the invariant clearly holds.

Lemma 13. (Frontier“heaviness” property) Any node v ever inserted in Frontier, apart from
root, has a heavy parent, i.e. a parent v′ such that |x̂v′ | > b. Furthermore, the total number of
distinct nodes inserted in Frontier during the execution of SparseFT-WarmUp(x, k) is at most
3(k/b) logN .

Proof. Consider any node v 6= root satisfying ‖x̂‖0 ≤ b which is inserted in the Frontier during
the execution of the algorithm, and let v′ be its parent. Then, consider the calls PromiseS-
parseFT(x, χ̂, vleft, Pleft, b) and PromiseSparseFT(x, χ̂, vright, Pright, b), where vleft, vright are the
children of v. By the fact that ‖x̂vleft

‖0, ‖x̂vright
‖0 ≤ ‖x̂v‖0 ≤ b and the invariant of Lemma 12,

the conditions that guarantee correct execution of PromiseSparseFT, i.e. Lemma 10, apply and
whence the above two calls will correctly return x̂vleft

and x̂vright
. Thus, the call to ZeroTest(x, χ̂+

χ̂left + χ̂right, v,SideTreev, k) in Line 19 will succeed, and hence v will be removed from the

23

Frontier. This immediately means that v cannot be a parent of any element ever inserted the
Frontier. In turn, since we picked any such v that any node ever inserted in the Frontier must
have a heavy parent.

Let us now prove the second part of the Lemma. Let C := {v ∈ T full
N : ‖x̂v‖0 > b} be the

collection of heavy nodes in T full
N , and define

∂C := {v ∈ T full
N : @v′ ∈ C, v is an ancestor of v′},

i.e. ∂C is the collection of heavy nodes which do not have any descendants in C (the boundary
of C). Note that |∂C| < (k/b), otherwise we would get more than k coordinates in the supp(x̂) by
the disjointedness of the corresponding frequency cones, i.e. |∂C| ·b <

∑
v∈∂C ‖x̂v‖0 ≤ ‖x̂‖0 ≤ k. By

the argument in the first paragraph, the number of nodes which could be inserted in Frontier are
the nodes on ∂C, their children, and their ancestors. This gives that the total number of nodes ever
inserted in the Frontier is upper bounded by 3(k/b) logN .

Lemma 14. (Bounding the size of the argument of PromiseSparseFT) At all times during the
execution of SparseFT-WarmUP, the routine PromisePromiseSparseFT will be called with

argument SideTree satisfying |SideTree| ≤ 1 +
(

3k logN
b

)
.

Proof. By Lemma 13 we have that |Frontier| ≤ 3k logN
b . Invoking Lemma 6, we obtain that

the node v in Line 6 must satisfy |SideTreev| = |wFrontier(v)| ≤ 3k logN
b . Thus, the calls to

PromiseSparseFT in Lines 17, 18 will be called with the fourth argument being of size at most
1 + 3k logN

b .

We are now in position to prove Theorem 7.

Proof. We first prove correctness. Observe that when a node v ∈ Frontier is picked in Line 6,
three things can happen.

1. ZeroTest(v, χ̂, v,SideTreev, k) returns False in Line 8: then χ̂v = x̂v, using invariant 12 and
the fact that SideTreev isolates v from the rest of Frontier. Thus, v will be removed from
Frontier (this case covers also the scenario when x̂v = 0).

2. ZeroTest(v, χ̂, v,SideTreev, k) returns False in Line 8 but the call in Line 19 returns True:
then χ̂v = x̂v, using invariant 12 and the fact that SideTreev isolates v from the rest of
Frontier. Thus, v will be removed from Frontier.

3. ZeroTest returns False in both Lines 8, 19, then v will be removed from Frontier, but its
children vleft, vright will be added to it.

Using Lemma 13, we observe that the scenario in Bullet (3) can happen at most 3(k/b) logN
times. After that, only Bullets (1) and (2) can happen, in which case we get that everything from
that point onwards is correct, reaching up to root. Upon termination, χ̂ will equal x̂.

The sample complexity is a sum of the contribution from ZeroTest (Lines 8, 19), and
PromiseSparseFT. Every node in v ∈ Frontier which is considered in Line 6 has weight
at most log(3k logN

b) by Lemma 8.1. Thus, ZeroTest calls use

O ((k/b) logN)︸ ︷︷ ︸
2wFrontier(v)

· Õ(k)︸ ︷︷ ︸
size of RIPk

24

samples per node in Frontier, for a total of Õ(k3/b2) samples. There are also O((k/b) logN) calls
to PromiseSparseFT, each one using Õ(k logN

b · b3) = Õ(kb2) samples, by Lemma 8.1. Summing
over all those O((k/b) logN) nodes, this yields sample complexity

Õ

(
k3

b2
+ bk2

)
.

To bound the running time, we shall the time spent on ZeroTest and on PromiseSparseFT.
Consider one of the O(k logN/b) nodes v in Frontier picked in Line 6. By Lemma 8.1 it

holds 2|SideTreev | = O(k logN
b). The total time spent on calling ZeroTest on v can be handled by

Lemma 9 as

O
(
‖χ̂‖0 · |RIPk|+ 2wFrontier(v) · |RIPk|

)
=

Õ

(
‖χ̂‖0 · k +

k

b
· k
)

=

Õ

(
‖χ̂‖0 · k +

k

b
· k
)

By summing over all O(k logN
b) nodes ever inserted in Frontier we obtain that the total time

spent on calling ZeroTest for the nodes in Frontier is at most

Õ

(
‖χ̂‖0 ·

k2

b
+
k3

b2

)
Using Lemma 11, we can upper bound the time spent on calling PromiseProblem on the

children of v by

Õ

(
‖χ̂‖0 · b2 +

k logN

b
· b3
)

= Õ
(
‖χ̂‖0 · b2 + k · b2

)
=

By summing over all O(k logN
b) nodes ever inserted in Frontier we obtain that the total time

spent on calls to PromiseProblem is at most

Õ
(
‖χ̂‖0 · kb+ k2b

)
.

Taking into account that ‖χ̂‖0 ≤ k, we obtain that the total running time is

Õ

(
‖χ̂‖0 ·

k2

b
+
k3

b2

)
+ Õ

(
‖χ̂‖0 · kb+ k2b

)
= Õ

(
k3

b
+ k2b

)
By plugging in our choice of b, we obtain the desired bound.

8.2 The Almost Quadratic-Time Algorithm

This subsection is devoted to (finally) proving our first main result, namely Theorem 1.

25

Theorem 8 (Theorem 1, restated). The sparse Fourier transform problem with an exactly k-
(Fourier sparse) signal x : [n]d → C, i.e., ‖x̂‖0 ≤ k can be solved in

m = Õ
(
k2 · 2O(

√
log k·log logN))

)
time, deterministically.

For a parameter α, and we shall call ExactSparseFT(x, {0}nd , {root},∅, 0), the pseudocode
of which is depicted in Algorithm 1. We also pick an absolute constant C sufficiently larger than
1, which governs the threshold in NodesExplored.

Proof of Correctness. We shall prove that ExactSparseFT(x, χ̂, v,SideTree, s) outputs x̂v,
if

1. ‖x̂v‖0 ≤ s (correct guess on the sparsity of x in FreqCone(v),

2. supp(χ̂) ∩ FreqCone(v) = ∅ (have not recovered anything in FreqCone(v)),

3. supp(x̂−χ̂) ⊆ FreqCone(v)∪u∈SideTreeFreqCone(u) (signal isolation from every other frequency-
active node).

The second condition is not necessary for the analysis, but provides a conceptual simplification,
since this will be the case for the recursive calls of our algorithm. The aforementioned conditions
clearly hold for our call of interest, which is ExactSparseFT(x, {0}nd , {root},∅, 0), so the claim
suffices for proving correctness. We shall perform induction on ‖x̂v‖0.

Initially, observe that by the check in Line 39, whether or not the preconditions (1)-(3) above
hold, the output ExactSparseFT(x, χ̂, v,SideTree, s) will be at most s. In turn, by the check on
NodesExplored in Line 39 we have that ‖χ̂out‖0 ≤ (C logN/α)·(αs) = Cs logN . In turn, this means
that at all times during the execution of the call ExactSparseFT(x, χ̂, v,SideTree, s) it holds
‖(x̂− χ̂− χ̂out)‖0 ≤ ‖x̂− χ̂‖0 +C · s logN ≤ 2C · s logN . Thus, the calls to ZeroTest in Lines 24
and 25 will always succeed. This means that for the children zleft, zright of z picked in Line 11, we
can always decide whether we have perfectly recovered x̂zleft

(respectively x̂zright
). If ‖x̂zleft

‖0 ≤ αs
then the preconditions for the call ExactSparseFT(x, χ̂+ χ̂out, zleft, Pz ∪ {zright}, a · s) in Line 22
are satisfied, and hence by induction the algorithm will perfectly recover x̂zleft

. Similarly for x̂zright
.

Furthermore, by the discussion on the correctness of the ZeroTest calls, zleft (resp. zright) will be
correctly removed from the tree in that case. By the call in Line 13 or the test in Line 27, z will
be removed from the set S when both of its two children zleft, zright are removed, in which case we
have perfectly recovered x̂zleft

, x̂zright
, and hence x̂z. Hence, a node v will be removed from the set S

only when x̂v is completely recovered. Eventually, x̂v will be perfectly recovered, since at all times,
either we explore by increasing S (and we can explore a finite number of times), or we completely
recover the signal in lying in a frequency cone (and this can of course happen a finite number of
times). The only thing that could stop this process is the check NodesExplored > C logN

α in Line 38.
Note that by an averaging argument there can be at most logN/α nodes u which are descendants
of v, such that ‖x̂u‖0 ≥ αs. The nodes that could ever be inserted in S are those nodes along with
their children, giving at most 3 logN

α nodes in total, each one causing at most 2 increments of the
counter NodesExplored. By setting C ≥ 6, we ensure that NodesExplored will never become more
than C logN

α , and hence the one part of the test in Line 38 will not force premature stop of the
algorithm.

26

Algorithm 5 ExactSparseFT(x, χ̂, v,SideTree, s)

1: //The algorithm tries to recover x̂ − χ̂ in FreqCone(v), by isolating also from all nodes in
SideTree, under the assumption that ‖ (x̂− χ̂)v ‖0 ≤ s.

2: if s ≤ 1/α then
3: //We shall set the parameter α := 2−Θ(

√
log k·log logn), where k is the sparsity of the initial

vector we want to recover.
4: χ̂out ← PromiseSparseFT(x, χ̂, v,SideTree, k, 1/α)

5: If ‖χ̂out‖0 ≤ 1
α return χ̂out else return {0}nd

6: χ̂out ← {0}n
d

7: S ← {v}
8: NodesExplored← 0
9: //S holds the descendants u of v (including itself), for which we guess that ‖ (x̂− χ̂− χ̂out)v ‖0 < α · s

10: repeat
11: z ← leaf in S with the minimum weight
12: NodesExplored← NodesExplored + 1
13: if ZeroTest(x, χ̂+ χ̂out, z, S ∪ SideTree, s logN) then
14: Remove z from S
15: Continue
16: if z is a leaf in T full

N then
17: χ̂out(fz)← EstimateFreq(x, χ̂+ χ̂out, z, S ∪ SideTree)
18: Remove z from S
19: Continue
20: zleft, zright ← left and right child of z in S respectively.
21: Pz ← sub-path of z in SideTree ∪ S
22: χ̂left ← ExactSparseFT(x, χ̂+ χ̂out, zleft, Pz ∪ {zright}, a · s)
23: χ̂right = ExactSparseFT(x, χ̂+ χ̂out, zright, Pz ∪ {zleft}, a · s)
24: IsZeroleft ← ZeroTest(x, χ̂+ χ̂out + χ̂left, zleft, S ∪ SideTree ∪ {zright}, 2C · s logN)
25: IsZeroright ← ZeroTest(x, χ̂+ χ̂out + χ̂right, zright, S ∪ SideTree ∪ {zleft}, 2C · s logN)
26: //Check whether residual signal was recovered correctly on children of z
27: if IsZeroleft and IsZeroright then
28: Remove z from S
29: χ̂out ← χ̂out + χ̂left + χ̂right

30: if not IsZeroleft and IsZeroright then
31: S ← S ∪ {zleft}
32: χ̂out ← χ̂out + χ̂right

33: if IsZeroleft and not IsZeroright then
34: S ← S ∪ {zright}
35: χ̂out ← χ̂out + χ̂left

36: if not IsZeroleft and not IsZeroright then
37: S ← S ∪ {zleft, zright}
38: until S = ∅ or NodesExplored > C logN

α
39: if S = ∅ and ‖χ̂out‖0 ≤ s then Return χ̂out
40: else Return {0}nd

27

The running time is a sum of the time spent ZeroTest and on the time spent on EstimateFreq.
Furthermore, note that we can split the total running time to three components:

(type-I runtime) time needed to access x;

(type-II runtime) time needed to subtract χ̂ from the measurements.

We note that the time needed to create the aliasing filters (time needed to compute Ĝ in Line 3
of EstimateFreq) constitutes a lower order term, and we therefore ignore it. The type-I running
time of the call ZeroTest(x, χ̂, v, T, s) is O(2wT (v) · |RIP|) = Õ(2wT (v) · s), the type-II running
time of the same call is O(‖χ̂‖0 · |RIP|) = Õ(‖χ̂‖0 · s). The type-I running time of the call
EstimateFreq(x, χ̂, u, S) is O(2wS(u)), the type-II running time is O(‖χ̂‖0). We shall bound each
type separately, and pick α := 2−Θ(

√
log k·log logN).

The following observations can be easily inferred by inspection of the algorithm. The first one
follows by the usage of the counter NodesExplored and the condition in Line 38, while the second
by the checks on ‖χ̂out‖0.
Observation I. In each call ExactSparseFT(x, χ̂, v,SideTree, s), there can be at most C logN

α

nodes ever inserted in S. Also, there are at most 2C logN
α recursive calls to ExactSparseFT.

Observation II. Each call ExactSparseFT(x, χ̂, v,SideTree, s) always outputs a vector which
has always sparsity at most s.
Observation III. In each execution of ExactSparseFT(x, χ̂, v,SideTree, s) we have at all times
‖χ̂+ χ̂out‖0 ≤ ‖χ̂‖0 + Õ(s). Indeed, by Observation I and II we have that ‖χ̂out‖0 ≤ (αs) · 2C logN

α =

Õ(s).
The following observation follows by Kraft averaging on S (Lemma 6), which satisfies |S| ≤ C logN

α
(due to the check on the variable NodesExplored).
Observation III. Consider the call ExactSparseFT(x, χ̂, v,SideTree, s), and some z picked in
Line 11 during the execution of the algorithm. It holds that

2wS∪SideTree(z) ≤ 2|SideTree| · C logN

α
.

Thus, for its children (if they exist), it holds that

2wS∪SideTree(zleft), 2wS∪SideTree(zright) ≤ 2|SideTree|+1 · C logN

α
.

Analysis of the time spent on accessing x (type-I). We define T1[s,W, `] to be the type-I
running time of ExactSparseFT(x, χ̂, v,SideTree, s), when SideTree ⊆ T full

N is a sub-path of
v in T full

N , 2|SideTree| = W , and ` is the distance of v to root. With the above notation, the time

complexity of ExactSparseFT(x, {0, 1}nd , {root},∅, 0) is T1[k, 1, 0].
By using Observations I-III, we obtain that the recursive calls in Line 22 and Line 23 take time

at most T1[αs, 2W · C logN
α , `+ 1], since the weights of zleft, zright are increased by a multiplicative

W · C logN
α factor, the sparsity budget decreases by a multiplicative α factor, and the distance of

zleft, zright to root ∈ T full
N increases by at least 1.

The base case corresponds to s ≤ 1
α or ` = logN . We have

T1[s,W, `] ≤Ws3 · poly(logN) (?),

by Lemma 11 and Lemma 8. In what follows, in order to simplify notation we define

sβ := αβs (sparsity after β recursive calls),

A :=
C logN

α

28

For the other setting of parameters, we can write the recursive relation of the type-I running
time as follows, using Lemma 9 and Observation II. In particular, we have

T1[s,W, `] ≤ A ·
(
Õ(W ·A · s) +O(W) + 2 · T1[αs, 2W ·A, `+ 1]

)
.

Let us explain the above relation. First of all, we have at most A = C logN
α nodes ever inserted in

S by Observation I. For any such node z, we may make at most 2 calls to ZeroTest with sparsity
budget O(s logN). By Observation III, we have wS(z) ≤ W · A. The term Õ(W · A · s) follows
by Lemma 9 and Observation III. The term O(W) follows by the guarantee of Lemma 8. For the
2 ·T1[αs, 2W ·A, `+ 1] first note that there are most 2A recursive calls (at most 2 children for each
node ever inserted in S). Again by Observation III, we have that weight of the third argument in
lines 22, 23 (i.e. wS(zleft), wS(zright)) will be at most 2 ·W · A. This explains the above recursive
relationship.

If we iterate the relation β times, with `+ β ≤ logN , we obtain the uncommon relationship

T1[s,W, `] ≤W · s ·Aβ · poly(logN)β + 2βAβ · T1[sβ, 2
β ·W ·Aβ, `+ β] (†).

For the minimum β? such that sβ? ≤ 1
α , i.e. for β? = 1 +

⌈
log s

log(1/α)

⌉
= log s

log(1/α) +O(1), we have

Aβ
?

= 2β
?·logA

= 2

(
log s

log(1/α)
+O(1)

)
·(log(1/α)+log logN+O(1))

= Õ

(
2

log s+ log s·log logN
log(1/α)

+ log s
log(1/α)

+O(log(1/α)
)

= Õ

(
s · 2

log s·log logN
log(1/α)

+ log s
log(1/α)

+O(log(1/α)
)

= Õ
(
s · 2O(

√
log k·log logN)

)
,

by our choice of α := 2−Θ(
√

log k·log logN) and the fact that s ≤ k. We also have the crude bound

2β
?

= 2
log s

log(1/α)
+O(1)

= 2O(
√

log k·log logn).

We also have that

(poly(logN))β
?

= 2β
?·O(log logN) =

2

(
log s

log(1/α)
+O(1)

)
·O(log logN)

=

Õ
(

2O(
√

log k·log logN)
)

Thus, getting back to (?) we obtain

T1[sβ? , 2
β?W ·Aβ? , `] = Õ

(
2β

?
W ·Aβ? · 2O(log(1/α))

)
= Õ

(
W · s2O(

√
log k·log logN)

)
.

Lastly, we get back to (†) for β = β? to obtain

T1[s,W, `] = Õ
(
W · s · s · 2O(

√
log k·log logN)

)
· (poly(logN))β

+ Õ
(
s · 2O(

√
log s·log logN)

)
· Õ
(
W · s2O(

√
log s·log logN)

)
= Õ

(
W · s2 · 2O(

√
log k·log logN)

)
.

29

Since we call ExactSparseFT(x, {0}nd , {root},∅, 0), we have that s = k,W = 1, ` = 0, and

hence we can upper bound the type-I running time by Õ
(
k2 · 2O(

√
log k·log logN)

)
, as desired.

Analysis of the time spent on subtracting χ̂ from the buckets (type-II). We define
T2[s, `] to be the type-II running time spent on the call ExactSparseFT(x, χ̂, v,SideTree, s),
when SideTree ⊆ T full

N is a sub-path of v in T full
N , and ` is the distance of v to root ∈ T full

N . With

the above notation, the time complexity of ExactSparseFT(x, {0, 1}nd , {root},∅, 0), i.e. which
is the call of the algorithm for Theorem 1, is T2[k, 0]. We also assume that ‖χ̂‖0 = Õ(k) at all
times, which is clearly the case for our algorithm.

For s ≤ 1
α we have T2[s, `] ≤ k ·

(
1
α

)2 · poly(logN) (? ?) by Lemma 11 and Observation III. For

` = logN we have T2[s, `] = Õ(k) by Lemma 8 and Observation III. Recall that

sβ := αβs (sparsity after β recursive calls),

A :=
c logN

α

Now, we may write down the recursive relationship as

T2[s, `] ≤ A ·
(
Õ(k + s) + 2 · T2[αs, `+ 1]

)
We explain the recursive relationship. As before there are at most A nodes ever inserted in S

(Observation I). For each such node the Õ(k + s) follows from ZeroTest follows by Lemma 9, or
by Lemma 8. The 2 ·T2[αs, `+ 1] component follows by the calls in line 22, 23. follows by Iterating
the relation β times, with `+ β ≤ logN , we obtain the interesting relationship

T2[s, `] = Õ(k) ·O
(

2βAβ
)

+ 2βAβ · T2[sβ, `+ β] (‡)

Consider the minimum β? such that sβ? ≤ 1
α , i.e. for β? = 1 +

⌈
log s

log(1/α)

⌉
= log s

log(1/α) + O(1).

Recall that Aβ
?

= s · 2O(
√

log k·log logn), 2β
?

= 2O(
√

log k·log logN), (poly(logN)β
?

= 2O(
√

log k·log logn) by
our choice of α. Given the above, we may now plug (? ?) in (‡) to obtain

T2[s, `] = Õ

(
k · s · 2O(

√
log k·log logn) + s · 2O(

√
log k·log logn) · k

(
1

α

)2
)
.

By our choice of α := 2−Θ(
√

log k·log logN) we obtain

T2[s, `] = Õ
(
sk2O(

√
log s log log k)

)
.

Thus, the total type-II running time is T2[k, 0] = Õ
(
k2 · 2O(

√
log k log logN)

)
.

Putting together the contribution from type-I and type-II running times, we obtain the desired
result.

30

9 Lower Bound on Non-Equispaced Fourier Transform

The main result of this section is the following theorem.

Theorem 9. (Detailed version of Theorem 2) For every c > 0 larger than an absolute constant
and every δ > 0 there exists c′ > 0 and δ′ > 0 such that if for all ε ∈ (0, 1/2), for all N a power of

two and all k ≤ 2c
′(logN)1/3

there exists an algorithm that solves the 1-dimensional non-equispaced
Fourier Transform problem on universe size N , sparsity k in time k2−δ′ poly(log(N/ε)), then there
exists an algorithm which solves OVk,d with d = c log k in time k2−δ.

As also mentioned in the abstract of this paper, this answers one of the subproblems of Problem
21 from IITK Workshop on Algorithms for Data Streams, Kanpur 2006. Additionally, the following
proof facilities gives also the lower bound on sparse multipoint evaluation, i.e. Theorem 3.

Proof. Given an Orthogonal Vectors instance, we shall appropriately construct a non-equispaced
Fourier transform instance, such that an algorithm for the non-equispaced Fourier transform with
strongly subquadratic running time in k implies a strongly subquadratic time algorithm for the
Orthogonal Vectors problem.

Let A = {a0, . . . , ak−1}, B = {b0, . . . , bk−1} ⊆ {0, 1}d be the input to an OVk,d instance with
d = c log k. We denote by aj(r) the r-th coordinate of vector aj ∈ A. We first pick sufficiently large
integers N,M, q that are powers of 2 such that M = kdC1d, q = C2d, and N = M2dq, where C1, C2

are sufficiently large absolute constants.
Next, we define for j ∈ [k]:

tj :=
∑
r∈[d]

aj(r) ·M rq, fj :=
∑
r∈[d]

bj(r) ·
N

M rq+1
,

and set F = {f0, . . . , fk−1}, T = {t0, . . . , tk−1}. Furthermore, we define vector x ∈ CN such that
xt = 1 if t ∈ T , and 0 otherwise, and we pick ε = 1

N . Thus, to transform our initial OVk,d instance to
an instance of non-equispaced Fourier transform, we show that from additive ε‖x̂‖2-approximations
of x̂f0 , . . . , x̂fk−1

we can infer whether (A,B) contains a pair of orthogonal vectors. It then follows

that an algorithm for non-equispaced Fourier transform running in time k2−δ′ poly(log(N/ε)) would
imply a strongly subquadratic time algorithm for Orthogonal Vectors.

Our first claim postulates that x̂fj corresponds to summing up exp
(
−2πi · 1

M 〈a`, bj〉
)

for all
` ∈ [k], up to error terms in the exponent.

Claim 1. For every j ∈ [k] it holds that

x̂fj =
∑
`∈[k]

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
,

for a real number ξ`,j satisfying

|ξ`,j | ≤
(
d

2

)
M−q−1.

31

Proof. Fix j ∈ [k] and note that

x̂fj =
∑
t∈T

exp

(
−2πi

fjt

N

)

=
∑
`∈[k]

exp

−2πi

N
·

∑
r′∈[d]

a`(r) ·M rq

 ·
∑
r∈[d]

bj(r
′) · N

M r′q+1

=
∑
`∈[k]

exp

−2πi ·
∑

(r,r′)∈[d]×[d]

a`(r)bj(r
′) ·M (r−r′)q−1

=
∑
`∈[k]

∏
(r,r′)∈[d]×[d]

exp
(
−2πi · a`(r)bj(r′) ·M (r−r′)q−1

)
We now investigate the exponents of the complex exponentials, namely a`(r)bj(r

′) ·M (r−r′)q−1

for ` ∈ [k] and (r, r′) ∈ [d]× [d]. In particular, we find that:

1. For any pair (r, r′) with r > r′, we have (r − r′)q − 1 ≥ 0, meaning that the corresponding
exponent is an integer multiple of 2πi. In turn, the corresponding term in the product
contributes 1, so it can be ignored.

2. For any pair (r, r′) with r < r′ we have (r − r′)q − 1 ≤ −q − 1. For a fixed `, there are
(
d
2

)
such products, and hence their total contribution to the exponent of the `-th summand is at
most

(
d
2

)
M−q−1 (in absolute value).

3. The pairs (r, r′) with r = r′ contribute to the exponent of the `-th summand the term
−2πi ·M−1

∑
r∈[d] a`(r)bj(r) = −2πi ·M−1〈a`, bj〉.

Putting everything together we arrive at the proof of the claim.

In the remainder of this proof we write

Vj,h :=
∑
`∈[k]

〈a`, bj〉h.

Next, we perform a series expansion and error analysis on the exponential function to obtain:

Claim 2. For every j ∈ [k] it holds that

x̂fj = ξ′j +
∑
h≥0

(
− 2πi

M

)h 1
h! · Vj,h,

for a complex number ξ′j satisfying

|ξ′j | ≤M−q.

Proof. Let a, b be real numbers. Starting from the basic fact | exp(−2πib) − 1| ≤ 2π|b|, we obtain
exp(−2πi(a + b)) = exp(−2πia) + exp(−2πia)(exp(−2πib) − 1) = exp(−2πia) + ξ′a,b with |ξ′a,b| ≤
2π|b|. In particular, with notation as in Claim 1, we have

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
= exp

(
−2πi · 1

M 〈a`, bj〉
)

+ ξ′`,j ,

with |ξ′`,j | ≤ 2π|ξ`,j | ≤ 2π
(
d
2

)
M−q−1 ≤M−q.

32

Summing over all ` ∈ [k] now yields

x̂fj =
∑
`∈[k]

exp
(
−2πi ·

(
1
M 〈a`, bj〉+ ξ`,j

))
= ξ′j +

∑
`∈[k]

exp
(
−2πi · 1

M 〈a`, bj〉
)
,

with |ξ′j | ≤ 2πk
(
d
2

)
M−q−1. Using that M = kdC1d for a sufficiently large constant C1 > 0, we

obtain |ξ′j | ≤M−q.
Finally, we use the series expansion of exp(.) to obtain

x̂fj = ξ′j +
∑
h≥0

(
− 2πi

M

)h 1
h! ·

∑
`∈[k]

〈a`, bj〉h.

We now show that in our expression for x̂fj the summands
(
− 2πi

M

)h 1
h! · Vj,h lie sufficiently far

apart, so that each summand can be reconstructed from an approximation of x̂fj .

Claim 3. Let j ∈ [k], H ∈ [d], and let x̃fj be an additive ε‖x̂‖2 approximation of x̂fj . Then

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h =

(
− 2πi

M

)H 1
H! ·

(
Vj,H + ξ′′j,H

)
,

for a complex number ξ′′j,H satisfying

|ξ′′j,H | < 1/3.

Proof. Note that by Parseval’s identity, we have ‖x̂‖2 =
√
N ·‖x‖2 =

√
N · k. Therefore, |x̃fj−x̂fj | ≤

ε‖x̂‖2 ≤ ε
√
N · k ≤

√
k/N as ε = 1/N . Since N = M2dq and M ≥ k, we obtain |x̃fj − x̂fj | ≤

M−(q−1).
Note that ∣∣∣∣ ∑

h>H

(
− 2πi

M

)h 1
h! · Vj,h

∣∣∣∣ ≤ ∑
h>H

(
2π
M

)h 1
h! ·

∑
`∈[k]

〈a`, bj〉h

≤
(

2π
M

)H 1
H! ·

∑
h>H

(
2π
M

)h−H · k · dh
=
(

2π
M

)H 1
H! · kd

H ·
∑
h>H

(
2πd
M

)h−H
.

Since M is sufficiently larger than d, the latter sum can be bounded by 4πd
M , and hence∣∣∣∣ ∑

h>H

(
− 2πi

M

)h 1
h! · Vj,h

∣∣∣∣ ≤ (
2π
M

)H 1
H! ·

4πkdH+1

M ≤ 1

10
·
(

2π
M

)H 1
H! , (2)

using the fact that M = kdC1d for a sufficiently large constant C1 > 0 and H ∈ [d].
We now, using Claim 2, decompose:

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h

=
(
x̃fj − x̂fj

)
+

(
x̂fj −

H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h

)
=
(
x̃fj − x̂fj

)
+ ξ′j +

(
− 2πi

M

)H 1
H! · Vj,H +

∑
h>H

(
− 2πi

M

)h 1
h! · Vj,h.

33

Recall that |x̃fj − x̂fj | ≤ M−(q−1) and |ξ′j | ≤ M−q. We use H ∈ [d] and our choice of M = kdC1d

and q = C2d for sufficiently large constants C1, C2 > 0 to conclude that M−(q−1) ≤ 1
10 ·

(
2π
M

)H 1
H! .

Together with inequality (2), this gives

x̃fj −
H−1∑
h=0

(
− 2πi

M

)h 1
h! · Vj,h =

(
− 2πi

M

)H 1
H! ·

(
Vj,H + ξ′′j,H

)
,

for a complex number ξ′′j,H with |ξ′′j,H | < 1/3.

Repeatedly applying the above claim allows us to reconstruct the numbers Vj,0, . . . , Vj,d:

Claim 4. Fix j ∈ [k]. Let ε = 1
N . Given an additive ε‖x̂‖2 =

√
k/N approximation to x̂fj we can

infer the exact values of

Vj,h :=
∑
`∈[k]

〈a`, bj〉h,

for any h ∈ [d], in time poly(d, log k).

Proof. Suppose that we have already computed the sums Vj,h for all 0 ≤ h < H. Then we know the
left hand side of Claim 3. Since |ξ′′j,H | < 1/3, there is a unique integer Vj,H =

∑
`∈[k]〈a`, bj〉H that

satisfies the equation in Claim 3. Hence, we can infer Vj,H . Therefore, we can iteratively compute
Vj,0, Vj,1, . . . , Vj,d−1.

Note that when evaluating expressions of the form
(
− 2πi

M

)h 1
h! , we can compute them up to pre-

cision ε in time poly(d, log k), since it suffices to perform arithmetic on numbers with poly(d, log k)
digits. This yields another additive error in the same order of magnitude as in the proof of Claim 3.
The same error analysis therefore shows that this precision is sufficient to compute the exact integers
Vj,h.

The above claim postulates that we can infer the values Vj,h for h ∈ [d]. We next show that
these values allow us to determine whether there exists a pair of orthogonal vectors.

Claim 5. Given the values Vh := Vj,h for all h ∈ [d] and some fixed j, we can find out whether
there exists an ` such that 〈a`, bj〉 = 0, in time poly(d, log k).

Proof. This relies on the observation that we can write Vh as

Vh =
d−1∑
r=0

Zr · rh

for
Zr := |{` ∈ [k] | 〈a`, bj〉 = r}| .

In other words, the values Vh are obtained from the values Zr by multiplication with a Vandermonde
matrix. Since this d × d matrix is invertible and all elements of this matrix and Vh are of value
at most k · dd, we can infer the values Zr from the values Vh in poly(d, log k) time. Indeed, we
can compute the inverse of this Vandermonde matrix multiplied by its determinant (so that the
resulting matrix contains integer entries) using poly(d) operations on integers with poly(d, log k)
digits (each such operation takes poly(d, log k) time). Multiplying the vector of Vh’s by this matrix
yields Zr’s multiplied by the determinant of the Vandermonde matrix, which can be computed and
canceled using poly(d, log k) operations by manipulating large integers with poly(d, log k) number
of digits. This yields the value Z0 = |{` | 〈a`, bj〉 = 0}| and thus allows us to decide whether bj ∈ B
is orthogonal to some vector in A.

34

Using Claims 4 and 5 over all Fourier evaluations {x̂f}f∈F we can determine in time k ·
poly(d, log k) whether whether (A,B) contains an orthogonal pair. Thus, for δ ∈ (0, 1/2) an
algorithm for non-equispaced Fourier transform running in time k2−δ′ poly(log(N/ε)) for ε = 1/N ,
would imply the existence of a k2−δ′ poly(d, log k) time algorithm for OVk,d, since log(N/ε) =
2 logN = O(d2) logM = poly(d, log k) for any choice of constants C1, C2 > 0. For any constant
c > 0, if dimension d = c log k, this running time can be bounded by O(k2−δ) as long as δ′ ≥ 2δ,
contradicting the Orthogonal Vectors Hypothesis (Conjecture 1). Finally, it remains to note that
since d = c log k and

N = M2dq = (kdC1d)2dq = (c log k)C1C2c3 log3 k,

we have that 2c
′(logN/ log logN)1/3 ≤ k ≤ 2c

′′(logN)1/3
as long as c′ is sufficiently small as a function

of c, C1, C2, and c′′ is sufficiently large as required.

10 Robust analysis of adaptive aliasing filters

This section is devoted to our technical innovation regarding adaptive aliasing filters. This a delicate
analysis of how the filters act on an arbitrary vector. Such a robustification will be useful in order
to control the amount of energy a measurement receives from the elements outside of the head.
The absence of the properties derived in this section constitutes the restriction that has driven the
“exactly k-sparse” assumption in [KVZ19].

10.1 One-dimensional case

We first develop the appropriate machinery for the one-dimensional case. Generalizing the idea to
higher dimensions can be done using tensoring, as we shall show in the next subsection. We first
present a standalone computation of the Gram matrix of adaptive aliasing filters corresponding to
a specific tree T ⊆ T full

n .

Lemma 15. (Gram Matrix of adaptive aliasing filters) Consider a tree T ⊆ T full
n , and two distinct

leaves v, v′ of T . Let Gv (resp. Gv′) be the (v, T)-isolating (resp. (v′, T)-isolating) filter, as per
(1). Then,

1. (diagonal terms) the energy of the filter corresponding to v is proportional to 2−wT (v). In
particular,

‖Ĝv‖22 :=
∑
ξ∈[n]

|Ĝv(ξ)|2 =
n

2wT (v)
.

2. (cross terms) the adaptive aliasing filters corresponding to v and v′ are orthogonal, i.e.

〈Ĝv, Ĝv′〉 :=
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ) = 0.

Proof. We prove each bullet separately. Both bullets follow by symmetry considerations: cancella-
tions that occur either by the fact that roots of unity cancel across a poset of a group, or by the
sign change happening to specific complex exponentials at branching points of the tree T . The first
one uses Kraft’s equality.

35

Proof of Bullet 1. Let f := fv and f ′ := fv′ denote the labels of v and v′, respectively. By (1),
we have

|Ĝv(ξ)|2 = 4−wT (v) ·
∏

`∈Anc(v,T)

(
1 + e

2πi ξ−f
2`+1

)
·
(

1 + e
−2πi ξ−f

2`+1

)
= 4−wT (v) ·

∏
`∈Anc(v,T)

(
2 + e

2πi ξ−f
2`+1 + e

−2πi ξ−f
2`+1

)
= 4−wT (v) ·

∑
S,T⊆Anc(v,T)

S∩T=∅

2|Anc(v,T)|−|S∪T | · e2πi(ξ−f)·
(∑

`∈S
1

2`+1−
∑
`∈T

1

2`+1

)

= 4−wT (v) ·

2wT (v) +
∑

S,T⊆Anc(v,T)
S∩T=∅,S∪T 6=∅

2wT (v)−|S∪T | · e2πi(ξ−f)·
(∑

`∈S
1

2`+1−
∑
`∈T

1

2`+1

)
Note that the expression exprS,T =

∑
`∈S

1
2`+1 −

∑
`∈T

1
2`+1 inside the complex exponential can

be 0 if and only if S = T , which is precluded by the fact that S ∩ T = ∅, S ∪ T 6= ∅. Thus, this
gives rise to the exponential e2πi(ξ−f)·exprS,T , which cancels out when summing over all ξ. Hence,
we obtain that ∑

ξ∈[n]

|Ĝv(ξ)|2 =
∑
ξ∈[n]

4−wT (v) ·
(

2wT (v) + 0
)

=
n

2wT (v)
.

Proof of Bullet 2. By (1), we have that

〈Ĝv, Ĝv′〉 =
∑
ξ∈[n]

Ĝv(ξ) · Ĝv′(ξ)

=
∑
ξ∈[n]

 1

2wT (v)

∏
`∈Anc(v,T)

(
1 + e

2πi ξ−f
2`+1

) ·
 1

2wT (v′)

∏
`∈Anc(v′,T)

(
1 + e

−2πi ξ−f
′

2`+1

)
= 2−wT (v)−wT (v′) ·

∑
ξ∈[n]

∑
S⊆Anc(v,T)
S′⊆Anc(v′,T)

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1

= 2−wT (v)−wT (v′) ·
∑

S⊆Anc(v,T)
S′⊆Anc(v′,T)

∑
ξ∈[n]

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1

:= 2−wT (v)−wT (v′) · (A+B),

where A is sum of the terms that satisfy S 6= S′, and B is sum of terms satisfying S = S′. We will
show that A = B = 0 separately. The equality A = 0 holds by a summation over all ξ and the fact
that roots of unity cancel across a poset of a subgroup, whereas the equality B = 0 by a symmetry
argument which exploits the sign change in the lowest common ancestor of v and v′.

Computing A. We will prove that if S 6= S′ then∑
ξ∈[n]

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1 = 0,

36

which suffices to establish A = 0. Note that

e
2πi(ξ−f)·

∑
`∈S

1

2`+1−2πi(ξ−f ′)·
∑
`∈S′

1

2`+1 =

e
2πiξ·(

∑
`∈S

1

2`+1−
∑
`∈S′

1

2`+1) · g,

where g = e
2πif ′·

∑
`∈S′

1

2`+1−2πif ·
∑
`∈S

1

2`+1 does not depend on ξ. Summing over all ξ ∈ [n] and
taking into account that

∑
`∈S

1
2`+1 −

∑
`∈S′

1
2`+1 6= 0 by the fact that S 6= S′, yields the desired

result (the summation can also be viewed a summation of the roots of unity over n
2max{S4S′} copies

of a poset of an additive subgroup of size 2max{S4S′}, where 4 denotes symmetric difference of
sets).

Computing B. This quantity contains only terms corresponding to S = S′. Note that in this
case S ⊆ Anc(v, T) ∩Anc(v′, T), and we have

B =
∑

S⊆Anc(v,T)∩Anc(v′,T)

∑
ξ∈[n]

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 =

n ·
∑

S⊆Anc(v,T)∩Anc(v′,T)

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 .

Let u be the lowest common ancestor of v, v′ in tree T , i.e. the node on which the paths from the root
to those two nodes split. Partition the powerset of Anc(v, T) ∩Anc(v′, T) to pair (S, S ∪ {lT (u)}),
where lT (u) /∈ S. We shall prove that

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 + e
2πi(f ′−f)·

∑
`∈S∪{lT (u)}

1

2`+1 = 0.

Indeed, by definition of u we have that (f ′− f) ≡ 2lT (u) mod 2lT (u)+1, which in turn gives that

e
2πi(f ′−f)· 1

2lT (u)+1 = e
2πi 2lT (u)

2lT (u)+1 = eπi = −1. This gives

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 + e
2πi(f ′−f)·

∑
`∈S∪{lT (u)}

1

2`+1 =

e
2πi(f ′−f)·

∑
`∈S

1

2`+1 ·
(

1 + e
2πi(f ′−f)· 1

2lT (u)+1

)
= 0.

Thus, we conclude that B = 0, which finishes the proof of this Lemma.

The next lemma proves that for any tree T , the sum of squared values of adaptive aliasing
filters corresponding to all leaves of T is equal to 1 at every frequency. The (v, T)-isolating filters
for different leaves v of T can have very different behaviors and shapes in the Fourier domain,
nevertheless, these filters collectively act as an isometry in the sense that the sum of their squared
values is 1 everywhere in the Fourier domain.

Lemma 16. (Total contribution of adaptive aliasing filters to one frequency) Consider a tree T ⊆
T full
n . For every leaf v of T , let Gv denote the (v, T)-isolating filter as per (1), then it holds that

∀ξ ∈ [n] :
∑

v∈leaves(T)

|Gv(ξ)|22 = 1.

37

Proof. Fix ξ ∈ [n]. By (1), we have∑
v∈leaves(T)

|Ĝv(ξ)|2 =

∑
v∈leaves(T)

4−wT (v) ·
∏

`∈Anc(v,T)

∣∣∣1 + e2πi(ξ−fv)/2`+1
∣∣∣2 =

∑
v∈leaves(T)

4−wT (v) ·
∏

`∈Anc(v,T)

(
2 + e2πi(ξ−fv)/2`+1

+ e−2πi(ξ−fv)/2`+1
)

=

∑
v∈leaves(T)

2−wT (v) ·
∏

`∈Anc(v,T)

(
1 + cos

(
2π(ξ − fv)/2`+1

))
=

∑
v∈leaves(T)

2−wT (v)
∑

S⊆Anc(v,T)

∏
`∈S

cos

(
2π
ξ − fv
2`+1

)
.

Thus, it suffices to prove that for all ξ ∈ [n]∑
v∈leaves(T)

2−wT (v)
∑

S⊆Anc(v,T)

∏
`∈S

cos

(
2π
ξ − fv
2`+1

)
= 1. (3)

We will implicitly interchange the summation between v and S in (3) and carefully group terms
together so that most of them cancel out, due to the sign change in each branching point. In
particular, fix a branching point, i.e. a node u ∈ T with two children. We will estimate the
contribution of all sets S such that max(S) = lT (u) in (3). Let ul be the left child of u in T , and
let ur be the right child of u in T . Note that,

∀f ∈ FreqConeT (ul), f
′ ∈ FreqConeT (ur) : f − f ′ ≡ 2lT (u) mod 2lT (u)+1.

In turn, this implies that for any ξ ∈ [n] and any two f, f ′ as above we have: (ξ−f) ≡ (ξ−f ′)+2lT (u)

mod 2lT (u)+1, which gives the desired change in the branching point:

cos

(
2π

ξ − f
2lT (u)+1

)
= −cos

(
2π

ξ − f ′

2lT (u)+1

)
.

Thus, if we let Tr and Tl denote the subtrees of T rooted at ur and ul, respectively, then the total
contribution of a set S that satisfies max(S) = lT (u) and S ⊆ Anc(v, T) for some leaf v of T to (3)
can be expressed as

∏
`∈S\{lT (u)}

cos

(
2π
ξ − fu
2`+1

)
·

∑
v∈Tr

1

2wT (v)
−
∑
v∈Tl

1

2wT (v)

=

∏
`∈S\{br}

cos

(
2π
ξ − fu
2`+1

)
· 2−wT (u)

∑
v∈Tr

1

2wTr (v)
−
∑
v∈Tl

1

2wTl (v)

 = 0.

The latter holds since
∑

v∈Tr
1

2wTr (v) = 1 by Kraft’s equality; similarly
∑

v∈Tl
1

2
wTl

(v) = 1.

Thus, we will get cancellation of the contribution of all non-empty sets S by summing over all
branching points. On the other hand, the contribution of the empty set S = ∅ is exactly 2−wT (v),
for each leaf v. The sum of all those contributions is 1, again by Kraft’s equality, giving the lemma.

38

10.2 Extension to d dimensions

We are now ready to proceed with the generalization of the robustness properties of the adaptive
aliasing filters given in Section10.1 to high dimensions. The following lemma states that the isolating
filters constructed in Lemma 5, collectively for all leaves, preserve (in particular, do not increase)
the energy of a signal.

Lemma 17. Consider a tree T ⊆ T fullN . If for every leaf v of T we let Ĝv be the Fourier domain
(v, T)-isolating filter constructed in Lemma 5, then for every ξ ∈ [n]d,∑

v∈leaves(T)

|Ĝv(ξ)|2 = 1.

Proof. The proof is by induction on the dimension d.

Base of induction: Lemma 16 precisely proves the inductive claim for d = 1.

Inductive step: Suppose that the inductive hypothesis holds for d − 1 dimensional isolating
filters. Given this inductive hypothesis, we want to prove that the inductive claim holds for d
dimensional filters. Let T be a subtree of T fullN , where N = nd. For every leaf v of tree T , let
v0, v1, · · · vl denote the path from root to v where v0 is the root and vl = v. We let pv denote a
vertex in T , defined as

pv :=

{
vlog2 n if lT (v) ≥ log2 n

v otherwise
.

Now, we construct the tree T ∗ by making a copy of the tree T and then removing every node
which is at distance more than log2 n from the root. Let the nodes of T ∗ be labeled by projecting
the labels of T to their first coordinate as follows,

for every node u ∈ T ∗ : fu = f1, where (f1, f2, · · · fd) is the label of u in T.

One can easily verify that the set P := {pv : v ∈ leaves(T)} specifies the set leaves(T ∗). For
every u ∈ P let Hu be a (u, T ∗)-isolating filter, constructed as in Lemma 5.

Moreover, for every leaf u ∈ P we define Tu to be a copy of the subtree of T which is rooted at
u. We label the nodes of the tree Tu by projecting the labels of T to their last d− 1 coordintates
as follows,

for every node z ∈ Tu : fz = (f2, f3, · · · fd), where (f1, f2, · · · fd) is the label of u in T.

For every leaf v of T , let Q̂v be the Fourier domain (v, Tpv)-isolating filter constructed in Lemma 5.
Note that in case pv = v, the tree Tpv will be empty and by convention we define our (v, Tpv)-

isolating filter to be Q̂v ≡ 1. Therefore, using these definitions, for every leaf v ∈ leaves(T), the
(v, T)-isolating filter Ĝv constructed in Lemma 5 satisfies

Ĝv(ξ) ≡ Hpv(ξ1) ·Qv(ξ2, ξ3, . . . ξd),

39

for every ξ = (ξ1, ξ2, . . . , ξd) ∈ [n]d. Hence, we can write∑
v∈leaves(T)

∣∣∣Ĝv(ξ)
∣∣∣2 =

∑
v∈leaves(T)

|Hpv(ξ1) ·Qv(ξ2, ξ3, . . . ξd)|2

=
∑
u∈P

∑
v∈leaves(T)

s.t. pv=u

|Hu(ξ1)|2 · |Qv(ξ2, ξ3, . . . ξd)|2

=
∑
u∈P
|Hu(ξ1)|2

∑
v∈leaves(T)

s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 .

We proceed by proving that for every u ∈ P ,
∑

v∈leaves(T)
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 = 1. Recall that for

every leaf v ∈ leaves(T), Qv is a (v, Tpv)-isolating filter, constructed in Lemma 5. Therefore, for
every leaf v of T such that pv = u, Qv is indeed a (v, Tu)-isolating filter as per the construction of
Lemma 5. Hence, ∑

v∈leaves(T)
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 =
∑

v∈leaves(Tu)

|Qv(ξ2, ξ3, . . . ξd)|2 .

Now we can invoke the inductive hypothesis because Tu is a subtree of T fullN ′ where N ′ = nd−1.
therefore, ∑

v∈leaves(T)
s.t. pv=u

|Qv(ξ2, ξ3, . . . ξd)|2 =
∑

v∈leaves(Tu)

|Qv(ξ2, ξ3, . . . ξd)|2 = 1.

Consequently, we have,∑
v∈leaves(T)

∣∣∣Ĝv(ξ)
∣∣∣2 =

∑
u∈P
|Hu(ξ1)|2 =

∑
u∈leaves(T ∗)

|Hu(ξ1)|2 = 1,

where the last equality follows because Hu is a (u, T ∗)-isolating filter as per the construction of
Lemma 4 and hence by Lemma 16,

∑
u∈leaves(T ∗) |Hu(ξ1)|2 = 1. This completes the inductive proof

and ergo the Lemma.

We readily find that the following corollary of the above lemma holds,

Corollary 1. The Fourier domain isolating filter Ĝ constructed in Lemma 5 satisfies ‖Ĝ‖∞ ≤ 1.

40

11 Robust Sparse Fourier Transform I

The section is devoted to proving our first result on robust Sparse Fourier transforms, which
illustrates techniques II to IV and partially technique I. We first remind the reader about the high
SNR regime we consider.

k-High SNR Regime. A vector x : [n]d → C satisfies the k-high SNR assumption, if there exists
vectors w, η : [n]d → C such that i) x̂ = ŵ + η̂, ii) supp(ŵ) ∩ supp(η̂) = ∅, iii) |supp(ŵ)| ≤ k and
iv) |ŵf | ≥ 3 · ‖η̂‖2, for every f ∈ supp(ŵ). In the rest of this section we prove the following main
theorem.

Theorem 10 (Robust Sparse Fourier Transform). Given oracle access to x : [n]d → C with
x = w + η in k-high SNR model and parameter ε > 0, we can find using

m = Õ

(
k7/3 +

k2

ε

)
samples from x and in Õ

(
k3

ε

)
time a signal χ̂ such that

‖χ̂− x̂‖22 ≤ (1 + ε) · ‖η̂‖22,

with high probability in N .

For every tree T and node v ∈ T , we let x̂v be the vector x̂FreqCone(v), i.e. signal x̂ supported on
frequencies in the frequency cone of v and zeroed out everywhere else. At all times, for every v ∈ T ,
our algorithm maintains a signal χ̂v : [n]d → C that is supported on FreqConeT (v). This signal will

serve as our estimate for ŵv. Initially, all these vectors are going to be {0}nd . The execution of
our algorithm ensures that we can always keep sparse representations of those vectors. Parameters
and variables n, d and N = nd are treated as global.

Furthermore, for any signal y : [n]d → C and parameter µ ≥ 0 we define

headµ(y) :=
{
j ∈ [n]d : |yj | ≥ 3µ

}
. (4)

Under this notation, we are interested in recovering the set head‖η̂‖2(x̂), as well as obtain accurate
estimations for the values of x̂ on frequencies in set head‖η̂‖2(x̂). Using the notion of headµ(y), one
can see that a signal x is in the k-high SNR regime iff there exists a µ > 0 such that |headµ(x̂)| ≤ k
and µ ≥

∥∥x̂− x̂headµ(x̂)

∥∥
2
.

At all times, we keep a set Est, corresponding to the coordinates in supp(ŵ) that we have
estimated. We define Lv := FreqConeT (v)∩(supp(ŵ) \Est), which corresponds to the unestimated
coordinates in the support of w that lie in the frequency cone of v.

Our main algorithm consists of an outer loop that we call RobustSparseFFT and an inner
loop that we call RobustPromiseSFT. Our algorithm also makes use of an auxiliary primitive
for estimating the values of located frequencies as well as a primitive for testing whether a signal
is “heavy” (meaning that it contains a head element). In the rest of this section we first give the
primitives Estimate and HeavyTest together with the guarantee on their performance. Then
we present the main algorithm and prove its performance. The HeavyTest routine is analogous
to ZeroTesT from Section 6. However, the RIP property alone does not suffice (and hence we
cannot pick a deterministic collection of samples). Instead, we use a random collection of samples,
which suffices for upper bounding the contribution of the tail while simultaneously satisfying RIP.

41

11.1 Computational Primitives for the Robust Setting

In this subsection we give some of the primitives that will be used in our algorithms. The proof of
correctness of these primitives is postponed to subsection 11.3.

The very first primitive we present is HeavyTest, see Algorithm 6. This primitive performs a
test on the signal to detect whether a given frequency cone contains heavy elements or not.

Algorithm 6 Test whether v is a frequency-active node, i.e. ‖(x̂− χ)v‖2 > 2‖η̂‖2
1: procedure HeavyTest(x, χ̂, T, v,m, θ)
2: f ← fv
3: (Gv, Ĝv)←MultiDimFilter(T, v, n)
4: //(v, T)-isolating filters as per Lemma 5
5: for z = 1 to 32 logN do
6: RIPzm ← Multiset of m i.i.d. uniform samples from [n]d

7:

8: hz∆ ←
∑
ξ∈[n]d

(
e2πi ξ

>∆
n · χ̂(ξ) · Ĝv(ξ)

)
for every ∆ ∈ RIPzm

9: Hz ← 1
|RIPzm|

∑
∆∈RIPzm

∣∣∣N ·∑j∈[n]d Gv(∆− j) · x(j)− hz∆
∣∣∣2

10: if Medianz∈[32 logN] {Hz} ≤ θ then
11: //θ = 5‖η̂‖22.
12: return False
13: else
14: return True

Lemma 18 (HeavyTest guarantee). Consider signals x, χ̂ : [n]d → C and an arbitrary subtree

T of T fullN . For an arbitrary leaf v of T , let ŷ := (x̂− χ̂) · Ĝv, where Ĝv be the Fourier domain
(v, T)-isolating filter constructed in Lemma 5. Then the following statements hold, for any θ > 0:

• If there exists a set S ⊆ [n]d such that ‖ŷS‖22 >
11θ
10 , then HeavyTest(x, χ̂, T, v,m, θ) (Al-

gorithm 6) outputs True with probability 1 − 1
N16 , provided that m is a large enough integer

satisfying

m = Ω

(
|S| ·

‖ŷ‖22
‖ŷS‖22

· log2 |S| logN

)
.

• If ‖ŷ‖22 ≤ θ/5, then HeavyTest outputs False with probability 1− 1
N5 .

• The sample complexity of this procedure is Õ
(
2wT (v) ·m

)
.

• The runtime of the HeavyTest procedure is Õ
(
‖χ̂‖0 ·m+ 2wT (v) ·m

)
.

Next, we present the second auxiliary primitive Estimate in Algorithm 6.

Lemma 19 (Estimate guarantee). Consider signals signals x, χ̂ : [n]d → C, a subtree T of T fullN ,
and an integer parameter m. For a subset S ⊆ leaves(T), the procedure Estimate(x, χ̂, T, S,m)

(see Algorithm 7) outputs
{
Ĥv

}
v∈S

such that

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≤ 16

m

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ)
∣∣∣2
 ≥ 1− |S|

N8
.

42

Algorithm 7 For S ⊆ T , estimates (x̂− χ̂)S by isolating S from every node in T .

1: procedure Estimate(x, χ̂, T, S,m)
2: for v ∈ S do
3: f ← fv
4: (Gv, Ĝv)←MultiDimFilter(T, v, n)
5: //(v, T)-isolating filters as per Lemma 5
6: for z = 1 to 16 logN do
7: RIPzm ← Multiset of B i.i.d. uniform samples from [n]d

8:

9: hzv ←
∑

∆∈RIPzm
e−2πi f

>∆
n
∑
ξ∈[n]d e

2πi ξ
>∆
n · χ̂(ξ) · Ĝv(ξ)

10: Hz
v ← 1

|RIPzm|

(
N ·

∑
∆∈RIPzm

(
e−2πi f

>∆
n
∑
j∈[n]d Gv(∆− j) · x(j)

)
− hzv

)
11: Ĥv ←Medianz∈[16 logN] {Hz

v}
12: //Median of real and imaginary parts separately

13: return
{
Ĥv

}
v∈S

The sample complexity of this procedure is Õ
(
m ·

∑
v∈S 2wT (v)

)
and the runtime of the procedure is

Õ
(
m ·

∑
v∈S 2wT (v) + |S| ·m · ‖χ̂‖0

)
.

Lastly, we need the following primitive whose objecive is to find a subset of identified leaves
that are cheap to estimate on average.

Claim 6 (ExtractCheapSubset guarantee). For every subtree T of T full
N and every subset

S ⊆ leaves(T) that satisfies
∑

u∈S 2−wT (u) ≥ 1
2 , the primitive ExtractCheapSubset(T, S)

(see bottom of Algorithm 9) outputs a non-empty subset L ⊆ S such that

|L| · (8 + 4 log |S|) ≥ max
v∈L

2wT (v).

11.2 Main Algorithm

In this subsection we present our main sparse FFT algorithm. The algorithms consists of an outer
loop and an inner loop. The outer loop, called RobustSparseFT, always maintains a vector χ̂ a
tree Frontier such that

headµ(x̂− χ̂) ⊆ ∪u∈Frontier FreqCone(u).

At every point in time, we explore the frequency cones of the low-weight Frontier by running the
RobustPromiseSFT algorithm. For the pseudocodes of the routines RobustPromiseSFT and
RobustSparseFT, see Algorithms 8 and 9, respectively.

Overview of RobustPromiseSFT (Algorithm8): Consider an invocation of RobustPromis-
eSFT(x, χ̂in,SideTree, v, b, k, µ). Suppose that ŷ := x̂− χ̂in is a signal in the k-high SNR regime,
i.e., ŷ has k heavy frequencies and the value of each such heavy frequency is at least 3 times higher
than the tail’s norm. More formally, let head ⊆ [n]d denote the set of heavy (head) frequencies of
ŷ and suppose that |head| ≤ k, and the tail norm of ŷ satisfies ‖ŷ − ŷhead‖2 ≤ µ and additionally
suppose that |ŷ(f)| ≥ 3µ for every f ∈ head. If SideTree fully captures the heavy frequencies of
ŷ, i.e., head ⊆ supp(SideTree), and the number of heavy frequencies in frequency cone of node v

43

v

SideTree

subtree T

yet to be explored subtree

Marked leaves

recovered & subtracted

leaves (frequencies)
head ∩ FreqConeSideTree(v)

Figure 5: Illustration of an instance of RobustPromiseSFT (Algorithm 8). This procedure takes
in a tree SideTree (shown with thin edges) together with a leaf v ∈ leaves(SideTree) and
adaptively explores/constructs the subtree T rooted at v to find all heavy frequencies that lie
in FreqConeSideTree(v). If head denotes the set of heavy frequencies, then the algorithm finds
head ∩ FreqConeSideTree(v) by exploring T . Once the identity of a leaf is fully revealed, the
algorithm adds that leaf to the set Marked. When the number of marked leaves grows to the
point where marked frequencies can be estimated cheaply, our algorithm estimates them all in a
batch, subtracts off the estimated signal, and removes all corresponding leaves from T .

is bounded by b, i.e., |head ∩ FreqConeSideTree(v)| ≤ b, then RobustPromiseSFT finds a signal

χ̂v such that supp(χ̂v) = head ∩ FreqConeSideTree(v) := S and ‖ŷS − χ̂v‖22 ≤
µ2

20 . An example of
the input tree SideTree is illustrated in Figure 5 with thin solid black edges. Additionally, one
can see node v which is a leaf of SideTree in this figure.

Algorithm 8 recovers heavy frequencies in the subree of v, i.e., S = head∩FreqConeSideTree(v),
by iteratively exploring the subtree of SideTree rooted at v, which we denote by T , and simul-
taneously updating χ̂v. We show an example of subtree T at some iteration of our algorithm in
Figure 5 with thick solid edges. Our algorithm, in all iterations, maintains a subtree T such that
the frequency cone of each of its leaves contain at least one head element, i.e.,

for every u ∈ leaves(T) : FreqConeSideTree∪T (u) ∩ head 6= ∅. (5)

We demonstrate, in Figure 5, the leaves that correspond to set S = head ∩ FreqConeSideTree(v)
via leaves at bottom level of the subtree rooted at v. One can easily verify (5) in this figure by
noting that the frequency cone of each leaf of T contains at least one element from the set head.
Additionally, at every iteration of the algorithm, the union of all frequency cones of subtree T
captures all heavy frequencies that are not recovered yet, i.e.,

S \ supp(χ̂v) ⊆ supp(SideTree ∪ T). (6)

44

In Figure 5, we show the set of fully recovered leaves (frequencies), i.e., supp(χ̂v), using red thin
dashed subtrees. These frequencies are subtracted from the residual signal ŷ − χ̂v and their corre-
sponding leaves are removed from subtree T , as well. One can verify that condition 6 holds in the
example depicted in Figure 5. Moreover, the estimated value of every frequency that is recovered
so far, is accurate up to an average error of µ√

20b
. More precisely, in every iteration of the algorithm

the following property is maintained,∑
f∈supp(χ̂v) |ŷ(f)− χ̂v(f)|2

|supp(χ̂v)|
≤ µ2

20b
. (7)

At the start of the procedure, subtree T is initialized to be the leaf v, i.e., T = {v}. Moreover,
we initialize χ̂v ≡ 0. Trivially, these initial values satisfy (5), (6), and (7). The algorithm also keeps
a subset of leaves denoted by Marked that contains the leaves of T that are fully identified, that
is the set of leaves that are at the bottom level and hence there is no ambiguity in their frequency
content. Initially Marked is empty. We show the set of marked leaves in Figure 5 using blue
squares. The algorithm operates by picking the unmarked leaf of T that has the smallest weight.
Then the algorithm explores the children of this node by running HeavyTest on them to detect if
any heavy frequencies lie in their frequency cone. If a child passes the HeavyTest the algorithm
updates tree T by adding that child to T . As soon as a leaf of T gets to the bottom level and
becomes a leaf of T full

N , the algorithm marks it, i.e., adds that leaf to the Marked set. It can be
seen in Figure 5 that all marked leaves are at the bottom level of the tree. The marked leaves need
not be explored any further because they are at the bottom level and their frequency content is
fully identified. These operations ensure that the invariants (5), (6), and (7) are maintained.

Once the size of set Marked grows sufficiently, the algorithm estimates the values of the marked
frequencies. More precisely, at some point, the size of Marked will be comparable to the maximum
weight of the leaves it contains, and when this happens, the values of all marked frequencies can
be estimated cheaply. Hence, when Marked is a cheap to estimate set of leaves, our algorithm
esimates those frequencies in a batch up to an average error of µ

20b , updates χ̂v accordingly and
removes all estimated (Marked) leaves from T . This ensures that invariants (5), (6), and (7) are
maintained. The estimated leaves are illustrated in Figure 5 using red thin dashed subtrees. We
also demontrate the subtrees of T that contain head element and are yet to be explored by our
algorithm using gray cones and dashed edges in Figure 5. The gray cone means that there are
heavy elements in that frequency cone that need to be identified as that node has not reached the
bottom level yet.

Finally, the algorithm keeps tabs on the runtime it spends and ensures that even if the in-
put signal does not satisfy the preconditions for successful recovery, in particular if |head ∩
FreqConeSideTree(v)| > b, the runtime stays bounded. Additionally, the algorithm performs a
quality control by running a HeavyTest on the residual and if the recovered signal is not correct
due to violation of some preconditions, it reflects this in its output.

Overview of Algorithm 9: Consider an invocation of RobustSparseFT(x, k, ε, µ). Suppose
that x̂ is a signal in the k-high SNR regime, i.e., x̂ has k heavy frequencies and the value of each
such heavy frequency is at least 3 times higher than the tail’s norm. More formally, let head ⊆ [n]d

denote the set of heavy (head) frequencies of x̂ and suppose that |head| ≤ k, and the tail norm of
x̂ satisfies ‖x̂ − x̂head‖2 ≤ µ and additionally suppose that |x̂(f)| ≥ 3µ for every f ∈ head. The
primitive RobustSparseFT finds a signal χ̂ such that ‖x̂− χ̂‖22 ≤ (1 + ε)µ2.

Algorithm 9 recovers heavy frequencies of the input signal x̂, i.e., head, by iteratively exploring
the tree that captures the heavy frequencies, which we denote by Frontier, and simultaneously

45

Algorithm 8 The Inner Loop of Sparse FFT Algorithm

1: procedure RobustPromiseSFT(x, χ̂in,SideTree, v, b, k, µ)
2: // µ: upper bound on tail norm ‖η‖2
3: χ̂out ← {0}n

d
. Sparse vector to approximate (x̂− χ̂in)FreqConeSideTree(v)

4: Marked← ∅ . Set of marked nodes to be estimated later
5: Let T denote the subtree of SideTree rooted at v – i.e., T ← {v}
6: repeat
7: if |leaves(T)|+ ‖χ̂v‖0 > b then

8: return
(

False, {0}nd
)

. Exit because budget of v is wrong

9: if Marked 6= ∅ and |Marked|
maxu∈Marked 2wT (u) ≥ 1

4+2 log b then

10: //The set of marked frequencies that are cheap to estimate on average

11:

{
Ĥu

}
u∈Marked

← Estimate
(
x, χ̂in + χ̂out,SideTree ∪ T,Marked, 368b

|Marked|

)
12: for u ∈Marked do
13: χ̂out(fu)← Ĥu

14: Remove node u from T
15: Marked← ∅
16: continue
17: z ← argminu∈leaves(T)\MarkedwT (u)
18: //Find the minimum weight unmarked leaf in T
19: if z ∈ leaves(T full

N) then
20: //Frequency fz and leaf z are fully identified
21: Marked←Marked ∪ {z}
22: else
23: zleft := left child of z and zright := right child of z
24: T ′ ← T ∪ {zleft, zright} . Explore children of z
25: Heavy` ← HeavyTest

(
x, χ̂in + χ̂v,SideTree ∪ T ′, zleft, O(b log3N), 6µ2

)
26: Heavyr ← HeavyTest

(
x, χ̂in + χ̂v,SideTree ∪ T ′, zright, O(b log3N), 6µ2

)
27: if Heavy` then
28: Add zleft as the left child of z to tree T

29: if Heavyr then
30: Add zright as the right child of z to tree T

31: if z 6= v and both Heavy` and Heavyr are False then

32: return
(

False, {0}nd
)

. Exit because budget of v is wrong

33: until T has no leaves besides v
34: if HeavyTest

(
x, χ̂in + χ̂v,SideTree, v, O(k log3N), 6µ2

)
then

35: //The number of heavy coordinates in FreqConeSideTree(v) is more than b

36: return
(

False, {0}nd
)

37: else
38: return (True, χ̂out)

updating the proxy signal χ̂. At the begining of the procedure, tree Frontier only consists of a
root and will be dynamically changing throughout the execution of our algorithm. Moreover, χ̂ is
initially zero. The algorithm also maintains a subset of leaves denoted by Marked that contains
the leaves of Frontier that are fully identified, that is the set of leaves that are at the bottom

46

level and hence there is no ambiguity in their frequency content (there is exactly one element in
frequency cone of marked leaves). Tree Frontier, in all iterations of our algorithm, maintains
the invariant that the frequency cone of each of its leaves contain at least one head element and
furthermore the frequency cone of each of its unmarked leaves contain at least b+ 1 head element,
where b = k1/3, i.e.,

|FreqConeFrontier(v) ∩ head| ≥

{
1 for every v ∈Marked

b+ 1 for every v ∈ leaves(Frontier) \Marked
. (8)

Additionally, at every iteration of the algorithm, the union of all frequency cones of tree Frontier
captures all heavy frequencies that are not recovered yet, i.e.,

head \ supp(χ̂) ⊆ supp(Frontier). (9)

The set of fully recovered leaves (frequencies), i.e., supp(χ̂v), are subtracted from the residual
signal x̂− χ̂ by our algorithm and their corresponding leaves get removed from Frontier, as well.
Moreover, the estimated value of every frequency that is recovered so far, is accurate up to an
average error of

√
ε
k · µ. More precisely, in every iteration of the algorithm the following property

is maintained, ∑
f∈supp(χ̂) |x̂(f)− χ̂(f)|2

|supp(χ̂)|
≤ ε

k
· µ2. (10)

At the start of the procedure, Frontier is initialized to only contain a root, i.e., Frontier =
{root}. Moreover, we initialize χ̂ ≡ 0. Trivially, these initial values satisfy (8), (9), and (10). Also
the set of fully identified leaves Marked is initially empty. The algorithm explores Frontier
by picking the unmarked leaf that has the smallest weight, let us call it v. Then the algorithm
explores the children of this node by running RobustPromiseSFT on them to recover the heavy
frequencies that lie in their frequency cone. We denote by vleft and vright the left and right chil-
dren of v. Let us consider exploration of the left child vleft, the right child is exactly the same.
If the number of heavy frequencies in the frequency cone of vleft is bounded by b = k1/3, i.e.,
|head ∩ FreqConeFrontier∪{vleft,vright}(vleft)| ≤ b, then RobustPromiseSFT recovers every fre-

quency in the set head ∩ FreqConeFrontier∪{vleft,vright}(vleft) up to average error µ√
20b

. Note that

this everage estimation error is not sufficient for achieving the invariant (10), hence, instead of di-
rectly using the values that RobustPromiseSFT recovered and update χ̂ at the newly recovered
heavy frequencies, our algorithm adds the leaves corresponding to the recovered set of frequencies,
i.e., head ∩ FreqConeFrontier∪{vleft,vright}(vleft), at the bottom level of Frontier and marks them
as fully identified (adds them to Marked). For achieving maximum efficinecy we employ a new
lazy estimation scheme, that is, the estimation of values of marked leaves is delayed until there is a
large number of marked leaves and thus there exists a subset of them that is cheap to estimate. On
the other hand, if the number of head elements in frequency cone of vleft is more than b then Ro-
bustPromiseSFT detects this and notifies our algorithms about it and our algorithm adds node
vleft to Frontier. These operations ensure that the invariants (8), (9), and (10) are maintained.

Once the size of set Marked grows sufficiently such that it contains a subset that is cheap
to estimate, our algorithm estimates the values of the cheap frequencies. More precisely, at some
point, Marked will contains a non-empty subset Cheap such that the values of all frequencies
in Cheap can be estimated cheaply and subsequently, our algorithm esimates those frequencies
in a batch up to an average error of

√
ε
k · µ, updates χ̂ accordingly and removes all estimated

(Cheap) leaves from Frontier and Marked. This ensures that invariants (8), (9), and (10) are
maintained.

47

Algorithm 9 Robust High-dimensional Sparse FFT Algorithm

1: procedure RobustSparseFT(x, k, ε, µ)
2: //µ is an upper bound on tail norm ‖η‖2
3: Frontier← {root}, froot ← 0
4: b← dk1/3e
5: χ̂← {0}nd

6: Marked← ∅ . Set of fully identified leaves (frequencies)
7: repeat
8: if

∑
u∈Marked 2−wFrontier(u) ≥ 1

2 then
9: Cheap← ExtractCheapSubset (Frontier,Marked)

10: //Lazy estimation: We extract from the batch of marked leaves a subset that is cheap
to estimate on average

11:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂,Frontier,Cheap, 32k

ε·|Cheap|

)
12: for u ∈ Cheap do
13: χ̂(fu)← Ĥu

14: Remove node u from tree Frontier
15: Marked←Marked \Cheap
16: continue
17: v ← argminu∈leaves(Frontier)\MarkedwFrontier(u)
18: //pick the minimum weight leaf in Frontier which is not in Marked
19: vleft ← left child of v and vright ← right child of v
20: T ← Frontier ∪ {vleft, vright}
21: (IsCorrleft, χ̂left)← RobustPromiseSFT (x, χ̂, T, vleft, b, k, µ)
22: (IsCorrright, χ̂right)← RobustPromiseSFT (x, χ̂, T, vright, b, k, µ)
23: if IsCorrleft then
24: ∀f ∈ supp(χ̂left), add the unique leaf corresponding to f to Frontier and Marked
25: else
26: Add vleft to Frontier

27: if IsCorrright then
28: ∀f ∈ supp(χ̂right), add the unique leaf corresponding to f to Frontier and Marked

29: else
30: Add vright to Frontier

31: if IsCorrleft and IsCorrright then
32: Remove v from Frontier
33: until Frontier has no leaves besides root
34: return χ̂

35: procedure ExtractCheapSubset(T, S)
36: L← ∅
37: while |L| · (8 + 4 log |S|) < maxv∈L 2wT (v) do

38: L← L ∪
{

argminu∈S\LwT (u)
}

39: Return L

Analysis of RobustPromiseSFT. First we analyze the runtime and sample complexity of
primitive RobustPromiseSFT in the following lemma.

Lemma 20 (RobustPromiseSFT – Time and Sample Complexity). Consider an invocation of

48

RobustPromiseSFT (x, χ̂in,SideTree, v, b, µ), where SideTree is a subtree of T full
N , v is some

leaf of T , k and b are integers with k > b, µ ≥ 0, and x, χ̂in : [n]d → C. Then

• The running time of primitive is bounded by

Õ
(
‖χ̂in‖0 ·

(
b2 + k

)
+ bk + 2wSideTree(v) ·

(
b3 + k

))
.

• The number of accesses it makes on x is always bounded by

Õ
(

2wSideTree(v) ·
(
b3 + k

))
.

Furthermore, the output signal χ̂v always satisfies ‖χ̂v‖0 ≤ b and supp(χ̂v) ⊆ FreqConeSideTree(v).

Proof. First we prove that Algorithm 8 terminates after a bounded number of iterations. In order
to bound the number of iterations of RobustPromiseSFT, we use a potential function argument.

Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let T (t) denote

the subtree T at the end of tth iteration. Additionally, let Marked(t) and Identified(t) denote the
set Marked (defined in Algorithm 8) at the end of iteration t.

We prove that the algorithm always terminates after O (b · logN) iterations. We prove this by
contradiction. For any integer t, define the following potential function

φt :=
∣∣∣Marked(t)

∣∣∣+ 2 logN ·
∥∥∥χ̂(t)

v

∥∥∥
0

+
∑

u∈leaves(T (t))

lT (t)(u).

Towards contradiction, suppose that Algorithm 8 does not terminate after 4b logN iterations. We
show that the above potential function increases by at least 1 at every iteration 2 ≤ t ≤ 4b logN ,
i.e., φt ≥ φt−1 + 1. This is enough to conclude the termination of the algorithm because the if-

statement in line 7 ensures that
∣∣∣Marked(t)

∣∣∣ ≤ ∣∣leaves (T (t)
)∣∣ ≤ b and also

∥∥∥χ̂(t)
v

∥∥∥
0
≤ b, thus,

φt = O(b logN) for any t, which proves that algorithm terminates after O(b logN) iterations.
At any given iteration t of the algorithm, there are 3 possibilities that can happen. We show

that if any of these possibilities happen, then the potential function φt increases by at least 1.

Case 1 – the if-statement in line 9 of Algorithm 8 is True. In this case, the algorithm
constructs T (t) by removing all leaves that are in the set Marked(t−1) from tree T (t−1) and leaving
the rest of the tree unchanged. Furthermore, the algorithm sets Marked(t) ← ∅. By construction,
the level of the leaves that are in Marked(t−1) is at most logN , thus∑

u∈leaves(T (t))

lT (t)(u) ≥
∑

u∈leaves(T (t−1))

lT (t−1)(u)− logN ·
∣∣∣Marked(t−1)

∣∣∣
Additionally, in this case, the algorithm computes {Ĥu}u∈Marked(t−1) by running the proce-

dure Estimate in line 11 and then updates χ̂
(t)
v (fu) ← Ĥu for every u ∈ Marked(t−1) and

χ̂
(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ. Therefore,

∥∥∥χ̂(t)
v

∥∥∥
0

=
∥∥∥χ̂(t)

v

∥∥∥
0

+
∣∣∣Marked(t−1)

∣∣∣.
Also,

∣∣∣Marked(t)
∣∣∣ = 0. Hence,

φt − φt−1 ≥ (logN − 1) ·
∣∣∣Marked(t−1)

∣∣∣ ≥ 1,

where the inequality above holds because the if-statement in line 9 of the algorithm is True, ensuring
that Marked(t−1) 6= ∅.

49

Case 2 – the if-statement in line 9 is False and if-statement in line 19 is True. In this
case, in line 21, the algorithm updates Marked by adding the leaf z to this set, i.e., Marked(t) ←
Marked(t−1) ∪ {z}. Additionally, tree T and signal χ̂v stay unchanged, i.e., χ̂

(t)
v = χ̂

(t−1)
v and

T (t) = T (t−1). Therefore, in this case, φt+1 − φt = 1.

Case 3 – both if-statements in lines 9 and 19 are False. In this case, either the algorithm
terminates by the if-statement in line 31, which is exactly what we have assumed towards a con-
tradiction that did not happen, or

∑
u∈leaves(T (t)) lT (t)(u) ≥

∑
u∈leaves(T (t−1)) lT (t−1)(u) + 1, while∣∣∣Marked(t)

∣∣∣ =
∣∣∣Marked(t−1)

∣∣∣ and
∥∥∥χ̂(t)

v

∥∥∥
0

=
∥∥∥χ̂(t−1)

v

∥∥∥
0

(since we assumed t ≥ 2 and hence z 6= v).

Thus, φt+1 − φt ≥ 1.
So far we have showed that at every iteration, under the cases 1, 2, and 3, the potential

function φt increases by at least one. Now we show that, at every iteration, exactly one of these
three cases happens and hence the algorithm never stalls. For the sake of contradiction suppose
that at iteration t, the algorithm stalls. For this to happen, we must have that all leaves of T (t−1)

are in the set Marked(t−1). By the if-statement in line 7 of Algorithm 8, we are guaranteed that
|Marked(t−1)| ≤ b. Therefore, by Lemma 7, there must exist a subset ∅ 6= L ⊂Marked(t−1) such

that |L| ≥ 1
4+2 log b ·maxu∈L 2wT (t−1) (u). Hence, it follows from the way our algorithm explores the

nodes of the tree in an increasing order of weights, that there must exist some t′ < t such that ∅ 6=
Marked(t′−1) ⊆Marked(t−1) such that the if-statement in line 9 becomes True on Marked(t′−1).
Therefore, case 1 must have happened at iteration t′, resulting in emptying the set of identified
frequencies, i.e., Marked(t′) ← ∅. This would have resulted in Marked(t′−1) * Marked(t−1)

which is the contradiction we wanted. Therefore the algorithm never stalls and always exactly one
of case 1, 2, and 3 happen.

We proved that φt must increase by at least 1 at every iteration. Since φ1 ≥ 0 and we assumed
that the algorithm did not terminate after q = 4b logN iterations, this potential will have a value
of at least 4b logN − 1:

φq ≥ 4b logN − 1, where q = 4b logN.

On the other hand, since the if-statement in line 7 ensures that the number of leaves of T (t) is always

bounded by b−
∥∥∥χ̂(t)

v

∥∥∥
0
, the sum

∑
u∈leaves(T (t)) lT (t)(u) is always bounded by

(
b−

∥∥∥χ̂(t)
v

∥∥∥
0

)
· logN .

Also, the size of the set Marked(t), which is a subset of leaves(T (t)), is always bounded by

b −
∥∥∥χ̂(t)

v

∥∥∥
0
. This means that we must have φq ≤ b · (logN + 1) + (logN − 1) ·

∥∥∥χ̂(q)
v

∥∥∥
0
. The if-

statement in line 7 also ensures that
∥∥∥χ̂(q)

v

∥∥∥
0
≤ b which implies that φq ≤ 2b·logN which contradicts

φq ≥ 4b · logN − 1. This proves that the number of iterations of the algorithm must be bounded
by O (b · logN), guaranteeing termination of RobustSparseFT. The termination quarantee along
with the way our algorithm constructs χ̂v and the if-staement in line 7, imply that the output signal
χ̂v always satisfies ‖χ̂v‖0 ≤ b and supp(χ̂v) ⊆ FreqConeSideTree(v). Now we bound the running
time and sample complexity of the algorithm.

Sample Complexity and Runtime: First recall that we proved
∥∥∥χ̂(t)

v

∥∥∥
0
≤ b for every iteration

t. Additionally, the weight of the node z at every iteration of the algorithm is bounded by wT (t)(z) ≤
log(2b). To see this, note that if at some iteration t, the set of identified frequencies (or leaves) that
our algorithm keeps, Marked(t), is such that there exists a leaf u ∈ Marked(t) with wT (t)(u) >
log(2b), then by Lemma 7, Marked(t) contains a non-empty subset that is cheap to estimate. Thus,
at some iteration t′ < t, where ∅ 6= Marked(t′) ⊂ Marked(t) holds, it must have been the case

50

that the if-statement in line 9 became True on Marked(t′). If this happened, our algorithm would
have estimated Marked(t′) at iteration t′ and so we would have Marked(t′) ∩Marked(t) = ∅
which is a contradiction.

Given the above inequalities, by Lemma 18, time and sample complexities of every invocation
of HeavyTest in lines 25 and 26 of Algorithm 8 are bounded by Õ

(
‖χ̂in‖0 · b+ 2wSideTree(v) · b2

)
and Õ

(
2wSideTree(v) · b2

)
, respectively. Also, since ‖χ̂v‖0 ≤ b, the runtime and sample complexity

of the HeavyTest in line 34 of the algorithm are bounded by Õ
(
‖χ̂in‖0 · k + bk + 2wSideTree(v) · k

)
and Õ

(
2wSideTree(v) · k

)
, respectively. Thus, total sample and time complexity of all invocations of

HeavyTest throughout the execution of our algorithm are bounded by Õ
(
2wSideTree(v) · (b3 + k)

)
and Õ

(
‖χ̂in‖0 · (b2 + k) + bk + 2wSideTree(v) · (b3 + k)

)
, respectively

Additionally, by Lemma 19, the sample and time complexity of every invocation of Esti-

mate in line 11 of our algorithm are bounded by Õ

(
b·2wSideTree(v)

|Marked(t−1)| ·
∑

u∈Marked(t−1) 2wT (t−1) (u)

)
and Õ

(
b·2wSideTree(v)

|Marked(t−1)| ·
∑

u∈Marked(t−1) 2wT (t−1) (u) + b · ‖χ̂‖0
)

, respectively. Because we run Esti-

mate only when the if-statement in line 9 holds true, the runtime and sample complexity of

Estimate can be further upper bounded by Õ
(∣∣∣Marked(t−1)

∣∣∣ · b · 2wSideTree(v) + b · ‖χ̂‖0
)

and

Õ
(∣∣∣Marked(t−1)

∣∣∣ · b · 2wSideTree(v)
)

, respectively. Using the fact that

∑
t: if-statement in line 9 is True

∣∣∣Marked(t−1)
∣∣∣ = ‖χ̂v‖0 ≤ b,

the total runtime and sample complexity of all invocations of Estimate in all iterations can be
upper bounded by Õ

(
2wSideTree(v) · b2 + b2 · ‖χ̂‖0

)
and Õ

(
2wSideTree(v) · b2

)
, respectively. Therefore,

by adding up the above contributions we can upper bound the total runtime and sample complexity
by Õ

(
‖χ̂in‖0 ·

(
b2 + k

)
+ bk + 2wSideTree(v) ·

(
b3 + k

))
and Õ

(
2wSideTree(v) ·

(
b3 + k

))
which completes

the proof of the lemma.

We are now in a position to present the main invariant of primitive RobustPromiseSFT.

Lemma 21 (RobustPromiseSFT - Invariants). Consider the preconditions of Lemma 20. Let
ŷ := x̂ − χ̂in and S := FreqConeSideTree(v) ∩ headµ(ŷ), where headµ(·) is defined as per (4). If

i) headµ(ŷ) ⊆ supp(SideTree), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
11µ2

10 , and iii) |S| ≤ k, then with probability

at least 1− 1
N4 , the output (Budget, χ̂v) of Algorithm 8 satisfies the following,

1. If |S| ≤ b then Budget = True, supp(χ̂v) ⊆ S, and ‖ŷS − χ̂v‖22 ≤
µ2

20 ;

2. If |S| > b then Budget = False and χ̂v ≡ {0}n
d
.

Proof. We first analyze the algorithm under the assumption that the primitives HeavyTest and
Estimate are replaced with more powerful primitives that succeeds deterministically. Hence, we
assume that HeavyTest correctly tests the “heavy” hypothesis on its input signal with probability
1 and also Estimate achieves the estimation guarantee of Lemma 19 deterministrically. With these
assumptions in place, we prove that the lemma holds deterministically (with probability 1). We
then establish a coupling between this idealized execution and the actual execution of our algorithm,
leading to our result.

51

We prove the first statement of lemma by induction on the Repeat-Until loop of the algorithm.

Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let T (t) denote

the subtree T at the end of tth iteration. Additionally, let Marked(t) denote the set Marked
(defined in Algorithm 8) at the end of iteration t. We prove that if the precondition of statement 1
(that is |S| ≤ b) together with i, ii and iii hold, then at every iteration t = 0, 1, 2, . . . of Algorithm 8,
the following properties are maintained,

P1(t) S \ supp
(
χ̂

(t)
v

)
⊆ supp

(
T (t)

)
:=
⋃
u∈leaves(T (t)) FreqConeSideTree∪T (t)(u);

P2(t) For every leaf u 6= v of subtree T (t), headµ(ŷ) ∩ FreqConeSideTree∪T (t)(u) 6= ∅;

P3(t)
∥∥∥ŷS(t) − χ̂(t)

v

∥∥∥2

2
≤ |S

(t)|
20b · µ

2, where S(t) := supp
(
χ̂

(t)
v

)
;

P4(t) S(t) ⊆ S and S(t) ∩

(⋃
u∈leaves(T (t))

u6=v

FreqConeSideTree∪T (t)(u)

)
= ∅;

The base of induction corresponds to the zeroth iteration (t = 0), at which point T (0) = {v}
is a subtree of SideTree that solely consists of node v. Moreover, χ̂

(0)
v ≡ 0. Thus, statement P1(0)

trivially holds by definition of set S. The statement P2(0) holds since there exists no leaf u 6= v in

T (0). Statements P3(0) and P4(0) hold because of the fact that χ̂
(0)
v ≡ 0.

We now prove the inductive step by assuming that the inductive hypothesis, P (t − 1) is
satisfied for some iteration t−1 of Algorithm 8, and then proving that P (t) holds. First, we remark
that if inductive hypotheses P2(t−1) and P4(t−1) hold true, then by the precondition of statement
1 of the lemma (that is |S| ≤ b) the if-statement in line 7 of Algorithm 8 is False and hence lines 7
and 8 of the algorithm can be ignored in our analysis. We proceed to prove the induction by
considering the three cases that can happen in iteration t:

Case 1 – the if-statement in line 9 of Algorithm 8 is True. In this case, the algorithm

computes {Ĥu}u∈Marked(t−1) by running the procedure Estimate in line 11 and then updates

χ̂
(t)
v (fu) ← Ĥu for every u ∈ Marked(t−1) and χ̂

(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ.

Therefore, if we let L :=
{
fu : u ∈Marked(t−1)

}
, then S(t) \ S(t−1) = L, by inductive hypothesis

P4(t−1). By P3(t−1) along with Lemma 19 (its deterministic version that succeeds with probability
1), we find that∥∥∥(χ̂(t)

v − ŷ)S(t)

∥∥∥2

2
=
∥∥∥(χ̂(t)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥(χ̂(t−1)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)L

∥∥∥2

2

≤
∣∣S(t−1)

∣∣
20b

µ2 +
|L|
23b

∑
ξ∈[n]d\supp(SideTree∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2 . (11)

52

Now we bound the second term above,∑
ξ∈[n]d\supp(SideTree∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +
∑

ξ∈FreqConeSideTree(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

=
∑

ξ∈[n]d\(supp(SideTree∪T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
(by P1(t− 1), precondition i and definition of S)

≤ 23

20
· µ2 (by P3(t− 1) and P4(t− 1) and precondition |S| ≤ b).

Therefore, by plugging the above bound back to (11) we find that,∥∥∥(χ̂(t)
v − ŷ)S(t)

∥∥∥2

2
≤
∣∣S(t−1)

∣∣
20b

· µ2 +
|L|
23b
·
(

23

20
µ2

)
=

∣∣S(t)
∣∣

20b
· µ2,

which proves the inductive claim P3(t). Moreover, P2(t − 1) implies that L ⊆ S. Thus, the fact
S(t) = S(t−1)∪L together with inductive hypothesis P4(t−1) as well as the construction of T (t) (T (t)

is constructed by removing leaves of Marked(t−1) from tree T (t−1)), imply P4(t). The construction
of T (t) together with the fact that |FreqConeSideTree∪T (t−1)(u)| = 1 for every u ∈ Marked(t−1)

give P1(t) and P2(t).
We now consider the other two cases. Let z ∈ leaves

(
T (t−1)

)
be the smallest weight leaf

chosen by the algorithm in line 17.

Case 2 – the if-statement in line 9 is False and if-statement in line 19 is True. In this
case, in line 21, the algorithm updates Marked by adding the leaf z to this set, i.e., Marked(t) ←
Marked(t−1) ∪ {z}. Additionally, in this case the tree T and signal χ̂v stay unchanged, i.e.,

χ̂
(t)
v = χ̂

(t−1)
v and T (t) = T (t−1). Therefore, P1(t), P2(t), P3(t), and P4(t) all trivially hold because

of the inductive hypothesis P (t− 1).

Case 3 – both if-statements in lines 9 and 19 are False. In this case, the algorithm con-
structs tree T ′ by adding leaves zright and zleft to tree T (t−1) as right and left children of z in line 24.
Then we compute Heavy` and Heavyr in lines 25 and 26 by running the primitive HeavyTest with

inputs
(
x, χ̂

(t−1)
v + χ̂in,SideTree ∪ T ′, zleft, O(b log3N), 6µ2

)
and

(
x, χ̂

(t−1)
v + χ̂in,SideTree ∪ T ′, zright, O(b log3N), 6µ2

)
,

respectively. There are two possibilities that can happen to each of Heavy` and Heavyr. In the
following we focus on analyzing Heavy`, but Heavyr can be analyzed exactly the same way.

Possibility 1) FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) = ∅. Note that, by construction of T ′

we have

FreqConeSideTree∪T (t−1)(z) = FreqConeSideTree∪T ′(zleft) ∪ FreqConeSideTree∪T ′(zright).

53

Hence, by inductive hypothesis P4(t− 1) we have,∑
ξ∈[n]d\supp(SideTree∪T ′)

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeSideTree(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\(supp(SideTree∪T ′)∪S(t−1))

|ŷ(ξ)|2 +
µ2

20
,

where the last inequality above follows by inductive hypotheses P3(t−1) and P4(t−1) and precon-

dition |S| ≤ b. Therefore, if Ĝ` is a (zleft,SideTree∪ T ′)-isolating filter as per the construction in
Lemma 5, then by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(t−1)

v

)
· Ĝ`

∥∥∥2

2
≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)

∥∥2

2
+

∑
ξ∈[n]d\supp(SideTree∪T ′)

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)

∥∥2

2
+

∑
ξ∈[n]d\(supp(SideTree∪T ′)∪S(t−1))

|ŷ(ξ)|2 +
µ2

20

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
µ2

20

≤ 23

20
· µ2

where the third line above follows from the assumption that FreqConeSideTree∪T ′(zleft)∩headµ(ŷ) =
∅, inductive hypothesis P1(t−1), precondition i of the lemma together with the definition of set S.
This proves that the precondition of the second claim of Lemma 18 holds and therefore by invoking
this lemma (the deterministic version of it that succeeds with probability 1), we have that Heavy`
in line 25 of the algorithm is False. Using a similar argument, if FreqConeSideTree∪T ′(zright) ∩
headµ(ŷ) = ∅, then Heavyr is False.

Possibility 2) Suppose that FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) 6= ∅. If filter Ĝ` is a
(zleft,SideTree ∪ T ′)-isolating filter constructed in Lemma 5, then by Corollary 1 along with
inductive hypothesis P4(t− 1),∥∥∥∥((ŷ − χ̂(t−1)

v

)
· Ĝ`

)
[n]d\S

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝ`)
[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeSideTree∪T ′ (zleft)\S

∥∥2

2
+

∑
ξ∈[n]d\(supp(SideTree∪T ′)∪S)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)

54

Additionally, ∥∥∥((ŷ − χ̂(t−1)
v

)
· Ĝ`

)
S

∥∥∥2

2
≥
∥∥∥∥(ŷ − χ̂(t−1)

v

)
FreqConeSideTree∪T ′ (zleft)∩S

∥∥∥∥2

2

=
∥∥ŷFreqConeSideTree∪T ′ (zleft)∩S

∥∥2

2
≥ 9µ2,

which follows by the assumption FreqConeSideTree∪T ′(zleft) ∩ headµ(ŷ) 6= ∅ along with the defi-
nition of S and headµ(·). Hence, by the above inequalities and the precondition |S| ≤ b, we can
invoke Lemma 18 to conclude that Heavy` in line 25 of the algorithm is True. Using a similar
argument, if FreqConeSideTree∪T ′(zright) ∩ headµ(ŷ) 6= ∅ then Heavyr is True.

Based on the above arguments, according to the values of Heavy` and Heavyr, there are various
cases that can happen. First, it cannot happen that Heavy` and Heavyr are both False unless z = v,
by the inductive hypothesis P (t−1). If Heavy` = Heavyr = False and z = v, the algorithm returns

χ̂
(t)
v ≡ {0}n

d
which satisfies all properties in P (t). The second case corresponds to Heavy` = False

and Heavyr = True. In this case, tree T (t) is obtained from T (t−1) by adding zright as the right
child of z. Therefore, by inductive hypothesis P (t − 1), all properties in P (t) immediately hold.
One can show that P (t) holds in the case of Heavy` = True and Heavyr = False in exactly the
same fashion. Finally, if both of Heavy` and Heavyr are True, then tree T (t) is obtained by adding
leaves zright and zleft as right and left children of z to tree T (t−1). It follows straightforwardly from
the inductive hypothesis P (t− 1) that P (t) holds.

So far we have showed that under cases 1, 2, and 3, the property P (t) is maintained. Recall that
in the proof of Lemma 20 we showed that, at every iteration, exactly one of these three cases happen
and hence the algorithm never stalls. This completess the induction and proves that properties
P (t) are maintained throughout the execution of Algorithm 8, assuming that preconditions i, ii,
and iii of the lemma along with the precondition |S| ≤ b hold.

In Lemma 20 we showed that Algorithm 8 must terminate after some q iterations. When the
algorithm terminates, the condition of the Repeat-Until loop in line 33 of the algorithm must be

True. Thus, when the algorithm terminates, at qth iteration, there is no leaf in subtree T
(q)
v besides

v and as a consequence the set Marked(q) must be empty. This, together with P1(q) imply that

the signal χ̂
(q)
v satisfies,

supp
(
χ̂(q)
v

)
= S = FreqConeSideTree(v) ∩ headµ(ŷ).

Moreover, P3(q) together with precondition |S| ≤ b imply that∥∥∥ŷS − χ̂(q)
v

∥∥∥2

2
≤ |S|

20b
· µ2 ≤ µ2

20
.

Now we analyze the if-statement in line 34 of the algorithm. The above equalities and inequal-

ities on χ̂
(q)
v imply that,∥∥∥∥(ŷ − χ̂(q)

v

)
FreqConeSideTree(v)

∥∥∥∥2

2

=
∥∥ŷFreqConeSideTree(v)\S

∥∥2

2
+
∥∥∥(ŷ − χ̂(q)

v

)
S

∥∥∥2

2

≤
∥∥ŷFreqConeSideTree(v)\headµ(ŷ)

∥∥2

2
+
µ2

20
.

Therefore, if Ĝv is a Fourier domain (v,SideTree)-isolating filter constructed in Lemma 5, then

55

by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(q)
v

)
· Ĝv

∥∥∥2

2
≤

∑
ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +

∥∥∥∥(ŷ − χ̂(q)
v

)
FreqConeSideTree(v)

∥∥∥∥2

2

≤
∑

ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2 +
∥∥ŷFreqConeSideTree(v)\headµ(ŷ)

∥∥2

2
+
µ2

20

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
+
µ2

20
≤ 23

20
· µ2.

Thus, the preconditions of the second claim of Lemma 18 hold. So, we can invoke this lemma to
conclude that the if-statement in line 34 of the algorithm is False and hence the algorithm outputs(

True, χ̂
(q)
v

)
. This proves statement 1 of the lemma.

Now we prove the second statement of lemma. Suppose that preconditions i, ii, iii along with
the precondition of statement 2 (that is |S| > b) hold. Lemma 20 proved that the signal χ̂v
always satisfies supp(χ̂v) ⊆ FreqConeSideTree(v) and ‖χ̂v‖0 ≤ b. Therefore, S \ supp(χ̂v) 6= ∅.
Consequently, if Ĝv is a Fourier domain (v,SideTree)-isolating filter constructed in Lemma 5,
then by definition of isolating filters we have∥∥∥∥((ŷ − χ̂v) · Ĝv

)
S∪supp(χ̂v)

∥∥∥∥2

2

≥
∥∥∥(ŷ − χ̂v)S∪supp(χ̂v)

∥∥∥2

2
≥
∥∥ŷS\supp(χ̂v)

∥∥2

2
≥ 9µ2,

which follows from the definition of S and headµ(·). On the other hand,∥∥∥∥((ŷ − χ̂v) · Ĝv
)

[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝv)[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

≤
∥∥∥∥(ŷ · Ĝv)[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeSideTree(v)\S

∥∥2

2
+

∑
ξ∈[n]d\supp(SideTree)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)

Additionally note that |S ∪ supp(χ̂v)| ≤ k+ b ≤ 2k by preconditions of the lemma and property of
supp(χ̂v) that we have proved. Hence, by invoking the first claim of Lemma 18, the if-statement

in line 34 of the algorithm is True and hence the algorithm outputs
(

False, {0}nd
)

. This proves

statement 2 of the lemma.
Finally, observe that throughout this analysis we have assumed that Lemma 18 holds with

probability 1 for all the invocations of HeavyTest by our algorithm. Moreover, we assumend that
Estimate successfully works with probability 1. In reality, we have to take the fact that these
primitives are randomized into acount of our analysis.

The first source of randomness is the fact that HeavyTest only succeeds with some high prob-
ability. In fact, Lemma 18 tells us that every invocation of HeavyTest succeeds with probability
at least 1− 1/N5. Our analysis in proof of Lemma 20 shows that RobustPromiseSFT makes at
most O (b logN) calls to HeavyTest. Therefore, by a union bound, the overall failure probability

of all invocations of HeavyTest is bounded by O
(
b logN
N5

)
.

The second source of randomness is the fact that Estimate only succeeds with some high
probability. Lemma 19 tells us that every invocation of Estimate on a set Marked, succeeds

56

with probability 1 − |Marked|/N8. Therefore if the algorithm invokes Estimate at iterations
t1, t2, . . . , then, by union bound, the total failure probability of all invocations of this primitive will

be bounded by
∑

i
|Marked(ti)|

N8 = |supp(χ̂v)|
N8 ≤ b

N8 .
Finally, by another application of union bound, the overall failure probability of Algorithm 8,

is bounded by 1
N4 . This proves that the lemma holds.

Analysis of RobustSparseFT. Now we present the invariants of RobustSparseFT.

Lemma 22 (Invariant of RobustSparseFT: Signal Containment and Energy Control). For every
integer t ≥ 0, let χ̂(t) and Marked(t) denote the signal χ̂ and the set Marked at the end of itera-
tion t of Algorithm 9, respectively. Furthermore, let Frontier(t) denote the tree Frontier at the
end of tth iteration and let Est(t) denote the set of “estimated frequencies” so far, i.e., Est(t) :=

supp
(
χ̂(t)
)
. Additionaly, for every leaf v of Frontier(t), let L

(t)
v denote the “unestimated” frequen-

cies in support of x̂ that lie in frequency cone of v, i.e., L
(t)
v := FreqConeFrontier(t)(v)∩headµ(x̂),

where headµ(·) is defined as per (4). If |headµ(x̂)| ≤ k and
∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ, then for ev-

ery non-negative integer t the following properties are maintained at the end of tth iteration of
Algorithm 9, with probability at least 1− 4t

N4 ,

P1(t) headµ(x̂) \Est(t) ⊆ supp
(
Frontier(t)

)
;

P2(t) For every leaf u 6= root of tree Frontier(t),
∣∣∣L(t)
u

∣∣∣ ≥ 1. Additionally, if u /∈Marked(t), then∣∣∣L(t)
u

∣∣∣ > b;

P3(t)
∥∥x̂Est(t) − χ̂(t)

∥∥2

2
≤ ε · |Est

(t)|
k · µ2;

P4(t) Est(t) ⊆ headµ(x̂) and Est(t) ∩ supp
(
Frontier(t)

)
= ∅;

P5(t) In every iteration t > 1, if the if-statement in line 8 of Algorithm 9 is False, then the following
potential function decreases by at least b. Additionally, when the if-statement in line 8 is
True, the potential decreases by at least logN . Furthermore, the potential does not increase
at iteration t = 1.

φt :=
∑

u∈leaves(Frontier(t))

(
2 logN − lFrontier(t)(u)

)
·
∣∣∣L(t)
u

∣∣∣ ;
Proof. The proof is by induction on the Repeat-Until loop of the algorithm. The base of induction
corresponds to the zeroth iteration (t = 0), at which point Frontier(0) = {root} is a tree that
solely consists of a root and has no other leaves. Moreover, χ̂(0) ≡ 0. The statement P1(t) trivially
holds because FreqConeFrontier(0)(r) = [n]d. The statement P2(t) holds since there exists no leaf

u 6= root in Frontier(0). The statements P3(t) and P4(t) hold because of the facts χ̂(0) ≡ 0 and
Est(0) = ∅.

We now prove the inductive step by assuming that the inductive hypotheses, i.e property
P (t− 1) is satisfied for some iteration t− 1 of Algorithm 9 with probability a least 1− 4(t−1)

N4 , and
then proving that property P (t) holds at the end of iteration t with probabiliy at least 1 − 4t

N4 .
We also show that the value of the quantity φt defined in P5(t), satisfies φt − φt−1 ≤ −b if the
if-statement in line 8 of the algorithm is False in iteration t > 1 and φt − φt−1 ≤ − logN if the
if-statement in line 8 is True in iteration t and also φ1 − φ0 ≤ 0. At any given iteration t of

57

the algorithm, there are two possibilities that can happen. We proceed to prove the induction by
considering any of the two possibilities:

Case 1 – the if-statement in line 8 of Algorithm 9 is True. In this case, we have that∑
u∈Marked(t−1) 2−wFrontier(t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap ⊆Marked(t−1) that
the algorithm computes in line 9 by running the primitive ExtractCheapSubset satisfies the

property that |Cheap|·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap 2wFrontier(t−1) (u). Clearly Cheap 6=

∅, by Claim 6. Then the algorithm computes {Ĥu}u∈Cheap by running the procedure Estimate
in line 11 and then updates χ̂(t)(fu) ← Ĥu for every u ∈ Cheap and χ̂(t)(ξ) = χ̂(t−1)(ξ) at every
other frequency ξ. Therefore, if we let L := {fu : u ∈ Cheap}, then Est(t) \ Est(t−1) = L, by
inductive hypothesis P4(t − 1). By P3(t − 1) along with Lemma 19, we find that with probability

at least 1− |Cheap|
N8 ≥ 1− 1

N7 the following holds,∥∥∥χ̂(t) − x̂Est(t)

∥∥∥2

2
=
∥∥∥χ̂(t−1) − x̂Est(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t) − x̂

)
L

∥∥∥2

2

≤ ε|Est(t−1)|
k

µ2 +
ε |L|
2k

∑
ξ∈[n]d\supp(Frontier(t−1))

∣∣∣(χ̂(t−1) − x̂
)

(ξ)
∣∣∣2 . (12)

Now we bound the second term above,∑
ξ∈[n]d\supp(Frontier(t−1))

∣∣∣(x̂− χ̂(t−1)
)

(ξ)
∣∣∣2

=
∑

ξ∈[n]d\(supp(Frontier(t−1))∪Est(t−1))

|x̂(ξ)|2 +
∥∥∥x̂Est(t−1) − χ̂(t−1)

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(x̂)

|x̂(ξ)|2 +
∥∥∥x̂Est(t−1) − χ̂(t−1)

∥∥∥2

2
(by P1(t− 1))

≤ 2µ2 (by P3(t− 1) and P4(t− 1), preconditions of lemma and ε ≤ 1).

Therefore, by plugging the above bound back to (12) we find that,∥∥∥χ̂(t) − x̂Est(t)

∥∥∥2

2
≤ ε · |Est

(t−1)|
k

· µ2 + ε · |L|
2k
·
(
2µ2
)

= ε · |Est
(t)|

k
· µ2,

which proves the inductive claim P3(t). Moreover, P2(t − 1) implies that L ⊆ headµ(x̂). Thus,
the fact that Est(t) = Est(t−1) ∪ L together with inductive hypothesis P4(t − 1) as well as
the construction of Frontier (Frontier(t) is constructed by removing leaves of Cheap from
tree Frontier(t−1)), imply P4(t). The construction of Frontier(t) together with the fact that
|FreqConeFrontier(t−1)(u)| = 1 for every u ∈ Cheap give P1(t) and P2(t). Additionally, we have,

φt − φt−1 = −
∑

u∈Cheap

(2 logN − lFrontier(t−1)(u)) ·
∣∣∣L(t−1)
u

∣∣∣
= −

∑
u∈Cheap

logN ·
∣∣∣L(t−1)
u

∣∣∣
= −

∑
u∈Cheap

logN ≤ − logN,

where the last inequality follows from the fact that Cheap 6= ∅. This proves P5(t).

58

Case 2 – the if-statement in line 8 is False. Let v ∈ leaves(Frontier(t−1))\Marked(t−1)

be the smallest weight leaf chosen by the algorithm in line 17. The algorithm constructs tree
T by adding leaves vright and vleft to tree Frontier(t−1) as right and left children of v, in
line 20. Then, the algorithm runs RobustPromiseSFT with inputs (x, χ̂(t−1), T, vleft, b, k, µ) and
(x, χ̂(t−1), T, vright, b, k, µ) in lines 21 and 22 respectively. In the following we focus on analyzing
(IsCorrleft, χ̂left) but (IsCorrright, χ̂right) can be analyzed exactly the same way. There are two
possibilities that can happen:

Possibility 1) |FreqConeT (vleft) ∩ headµ(x̂)| ≤ b. In this case, the inductive hypothesis P4(t−
1) implies that |Est(t−1)| ≤ k and hence inductive hypothesis P3(t− 1) along with the assumption
ε ≤ 1

10 gives ∥∥∥x̂Est(t−1) − χ̂(t−1)
∥∥∥2

2
≤ εµ2 ≤ µ2

10
, (13)

hence, headµ
(
x̂− χ̂(t−1)

)
= headµ(x̂) \ Est(t−1). Consequently, if we let ŷ := x̂ − χ̂(t−1),

then: i) headµ(ŷ) ⊆ supp(T ′), by P1(t − 1), ii) ‖ŷ − ŷheadµ(ŷ)‖22 ≤
11µ2

10 , by precondition of
the lemma along with (13), and iii) |FreqConeT (vleft) ∩ headµ(ŷ)| ≤ b, by the assumption that
|FreqConeT (vleft) ∩ headµ(x̂)| ≤ b. Therefore, all preconditions of the first statement of Lemma 21
hold, and thus, by invoking this lemma we have that, with probability at least 1− 1

N4 , IsCorrleft =

True, and supp(χ̂left) ⊆ FreqConeT (vleft) ∩ headµ(ŷ), and
∥∥ŷFreqConeT (vleft)∩headµ(ŷ) − χ̂left

∥∥2

2
≤ µ2

20 .

This together with inductive hypothesis P4(t − 1) imply that, with probability at least 1 − 1
N4 ,

IsCorrleft = True and supp(χ̂left) = FreqConeT (vleft) ∩ headµ(x̂).
So, the if-statement in line 23 of the algorithm is True and consequently the algorithm adds all

leaves that correspond to frequencies in FreqConeT (vleft) ∩ headµ(x̂) to Frontier(t−1) and also
updates

Marked(t) ←Marked(t−1) ∪ {u ∈ leaves(Frontier) : fu ∈ FreqConeT (vleft) ∩ headµ(x̂)} .

By a similar argument, if |FreqConeT (vright) ∩ headµ(x̂)| ≤ b, then, with probability at least 1− 1
N4 ,

the algorithm adds all leaves corresponding to frequencies in FreqConeT (vright) ∩ headµ(x̂) to

Frontier(t−1) and updates

Marked(t) ←Marked(t−1) ∪ {u ∈ leaves(Frontier) : fu ∈ FreqConeT (vright) ∩ headµ(x̂)} .

Possibility 2) |FreqConeT (vleft) ∩ headµ(x̂)| > b. Same as in possibility 1, the inductive hy-
pothesis P4(t−1) implies that |Est(t−1)| ≤ k and hence inductive hypothesis P3(t−1) along with the
assumption ε ≤ 1

10 gives (13). Hence, headµ
(
x̂− χ̂(t−1)

)
= headµ(x̂) \ Est(t−1). Consequently, if

we let ŷ := x̂−χ̂(t−1), then it holds that: i) headµ(ŷ) ⊆ supp(T), by P1(t−1), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
11µ2

10 , by precondition of the lemma along with (13), and iii) |FreqConeT (vleft) ∩ headµ(ŷ)| ≤
|headµ(x̂)| ≤ k, by precondition of the lemma. Additionally, by P4(t− 1), we find that

|FreqConeT (vleft) ∩ headµ(ŷ)| = |FreqConeT (vleft) ∩ headµ(x̂)| > b.

Therefore, all preconditions of the second statement of Lemma 21 hold, and thus, by invoking this
lemma we have that, with probability at least 1 − 1

N4 , IsCorrleft = False, and χ̂left ≡ 0. So, the
if-statement in line 23 of the algorithm is False and consequently the algorithm adds leaf vleft as the
left child of v to tree Frontier(t−1). By a similar argument, if |FreqConeT (vright) ∩ headµ(x̂)| >
b, then, with probability 1 − 1

N4 , the algorithm adds leaf vright as the left child of v to tree

Frontier(t−1).
Based on the above arguments, according to the values of IsCorrleft and IsCorrright, there are

various cases that can happen. From the way tree Frontier(t) and set Marked(t) are obtained

59

from Frontier(t−1) and Marked(t−1), it follows that in any case, the first 4 properties of P (t) are
maintained with probability at least 1− 2

N4 . Furthermore, the way tree T (t) is constructed implies
that, ∑

u∈leaves
(
Frontier

(t)
v

)
∣∣∣L(t)
u

∣∣∣ =
∣∣∣L(t−1)
v

∣∣∣ .
Therefore, for every t > 1, by inductive hypothesis P2(t − 1), the change in potential is bounded
as follows,

φt − φt−1 =
∑

u∈leaves
(
Frontier

(t)
v

) (2 logN − lFrontier(t)(u)) ·
∣∣∣L(t)
u

∣∣∣− (2 logN − lFrontier(t−1)(v)) ·
∣∣∣L(t−1)
v

∣∣∣
≤ −

∣∣∣L(t−1)
v

∣∣∣ < −b.
Moreover, if t = 1 then the change in potential satisfies φ1 − φ0 ≤ −

∣∣∣L(t−1)
v

∣∣∣ ≤ 0 (because in this

case v = root). This proves the inductive claim P5(t).
We have proved that for every t, if the inductive hypothesis P (t−1) is satisfied then the property

P (t) is maintained with probability at least 1− 2
N4 − 1

N7 ≥ 1− 4
N4 . Therefore, using the inductive

hypothesis that Pr[P (t− 1)] ≥ 1− 4(t−1)
N4 , by using union bound we find that

Pr[P (t)] ≥ Pr[P (t)|P (t− 1)] · Pr[P (t− 1)] ≥ 1− 4t

N4
.

This complets the proof of the lemma.

Now we are in a position to prove the main result of this section.

Proof of Theorem 10. The proof basically follows by invoking Lemma 22 and then analyzing the
runtime and sample complexity of Algorithm 9. If we let µ := ‖η‖2 then because x is a signal in the
k-high SNR regime, we have that |headµ(x̂)| ≤ k and

∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ. Therefore, if we run

the procedure RobustSparseFT (Algorithm 9) with inputs (x, k, ε, µ), then the preconditions of
Lemma 22 hold and hence by invoking this lemma we conclude that all the invariants P1(t) through
P5(t), defined in Lemma 22, hold throughout the execution of Algorithm 9 for every non-negative
integer t.

Using this, we first prove the termination of the algorithm. Let q = O
(
k + k logN

b

)
be some

large enough integer. We show that the algorithm must terminate in q iterations. Note that
the probability that the properties P (t) hold for all iterations t ∈ {0, 1, . . . q} of algorithm Ro-

bustSparseFFT is at least 1− 4(q+1)
N4 ≥ 1− 1

N3 , by Lemma 22. From now on, we condition on the
event corresponding to P (t) holding for all iterations t ∈ {0, 1, . . . q}, which holds with probability
at least 1 − 1

N3 . Conditioned on this event we prove that the algorithm terminates in less than q
iterations.

Note that, the potential function φt defined in P5(t) is non-negative for every t. Moreover, at

the zeroth iteration of the algorithm T (0) = {root} and hence L
(0)
root = headµ(x̂), thus

φ0 ≤ 2k logN.

Therefore, it follows from P5(t) that Algorithm 9 must terminate in at most q = O
(
k + k logN

b

)
iterations.

60

When the algorithm terminates, the condition of the Repeat-Until loop in line 33 of the algorithm
must be True. Thus, when the algorithm terminates, there is no leaf in tree T (q) besides the root.
Cosequently, by invariants P1(q) and P3(q), the output of the algorithm satisfies, headµ(x̂) ⊆
supp(χ̂) and ‖x̂Est − χ̂‖22 ≤

ε|Est|
k · µ2, where Est = supp(χ̂). Using the invariant P4(q), the

latter can be Further upper bounded as ‖x̂Est − χ̂‖22 ≤ ε · µ2. This together with the k-high
SNR assumption of the theorem gives the approximation guarantee of the theorem ‖x̂− χ̂‖22 ≤
(1 + ε) · ‖η‖22.

Runtime and Sample Complexity. The expensive components of the algorithm are primi-
tive Estimate in line 11 and primitive RobustPromiseSFT in lines 21 and 22 of the algorithm.
We first bound the time and sample complexity of invoking Estimate in line 11. We remark that,
at any iteration t, the algorithm runs primitive Estimate only if case 1 that we mentioned earlier
in the proof happens. Therefore, in this case, the set ∅ 6= Cheap(t) ⊆Marked(t−1) that our algo-
rithm computes in line 9 by running the primitive ExtractCheapSubset satisfies the property

that
∣∣∣Cheap(t)

∣∣∣ · (8 + 4 log
∣∣∣Marked(t−1)

∣∣∣) ≥ maxu∈Cheap(t) 2wFrontier(t−1) (u). By P2(t − 1), and

k-high SNR assumption, this implies that
∣∣∣Cheap(t)

∣∣∣ · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wFrontier(t−1) (u).

Thus, by Lemma 19, the runtime and sample complexity of every invocation of Estimate in

line 11 of our algorithm are bounded by Õ

(
k

ε·|Cheap(t)|
∑

u∈Cheap(t) 2wFrontier(t−1) (u) + k
ε ‖χ̂

(t−1)‖0
)

and Õ

(
k

ε·|Cheap(t)|
∑

u∈Cheap(t) 2wFrontier(t−1) (u)

)
, respectively. Using P4(t − 1), the runtime and

sample complexity of Estimate can be further upper bounded by Õ
(
k
ε ·
∣∣∣Cheap(t)

∣∣∣+ k2

ε

)
and

Õ
(
k
ε ·
∣∣∣Cheap(t)

∣∣∣), respectively. By property P5(t) we find that the total number of iterations in

which case 1 happens, and hence number of times we run Estimate in line 11 of the algorithm, is

bounded by O(k). Using this together with the fact that
∑

t: if-statement in line 8 is True

∣∣∣Cheap(t)
∣∣∣ =

‖χ̂‖0 ≤ k, the total runtime and sample complexity of all invocations of Estimate in all iterations

can be upper bounded by Õ
(
k3

ε

)
and Õ

(
k2

ε

)
, respectively.

Now we bound the runtime and sample complexity of invoking RobustPromiseSFT in lines 21
and 22 of the algorithm. Note that at any iteration t, the algorithm runs RobustPromiseSFT in
lines 21 and 22 only if case 2 that we mentioned earlier in the proof happens. Since we pick leaf
v in line 17 of the algorithm with smallest weight, and since the number of leaves that are not in
the set Marked(t−1) are bounded by k

b (by invariant P2(t− 1)), we have wT (t−1)(v) ≤ log k
b . Also

note that
∥∥χ̂(t−1)

∥∥
0
≤ k by invariant P4(t− 1) and the k-high SNR assumption.

Therefore, by Lemma 20, the runtime and sample complexity of each invokation of Robust-
PromiseSFT by our algorithm are bounded by Õ

(
k · (b2 + k) + k

b · (b
3 + k)

)
and Õ

(
k
b · (b

3 + k)
)
.

By property P5(t) we find that the total number of iterations in which case 2 happens, and
hence the number of times we run RobustPromiseSFT in lines 21 and 22 of the algorithm, is

bounded by O
(
k logN

b

)
. Therefore, by using b ≈ k1/3, we find that the total runtime and sample

complexity of all invocations of RobustPromiseSFT are bounded by Õ
(
k8/3

)
and Õ

(
k7/3

)
, re-

spectively. Hence, the total time and sample complexity of the algorithm are bounded by Õ
(
k3

ε

)
and Õ

(
k7/3 + k2

ε

)
, respectively.

61

11.3 Proving the Correctness of our Computational Primitives

In this subsection, we shall prove Lemmas 18, 19, and Claim 6. We proceed by proving them in
the aforementioned order.
Proof of Lemma 18:

By convolution-multiplication theorem, hz∆ computed in line 8 of Algorithm 6 satisfies hz∆ =
N · (χ ? Gv) (∆), and thus

Hz =
1

|RIPzm|
∑

∆∈RIPzm

∣∣∣∣∣∣N ·
∑
j∈[n]d

Gv(∆− j) · x(j)− hz∆

∣∣∣∣∣∣
2

=
N2

|RIPzm|
∑

∆∈RIPzm

|((x− χ) ? Gv) (∆)|2 .

Therefore, by the convolution-multiplication duality and using the definition ŷ := (x̂− χ̂) · Ĝv, if
we let y be the inverse Fourier transform of ŷ, we find that for every z ∈ [32 logN],

Hz =
N2

|RIPzm|
∑

∆∈RIPzm

|y(∆)|2 .

We first prove the first claim of the Lemma. Let us write ŷ = ŷS+ ŷS̄ , where ŷS ∈ Cnd is defined

as ŷS(f) := ŷ(f) · 1{f∈S} and ŷS̄ ∈ Cnd is defined as ŷS̄(f) := ŷ(f) · 1{f /∈S}. By the assumption of

lemma ‖ŷS‖22 > 11θ
10 . Let yS and yS̄ denote the inverse Fourier transform of ŷS and ŷS̄ respectively.

We have y = yS + yS̄ . Thus we find that,

1

|RIPzm|
∑

∆∈RIPzm

|y(∆)|2 =
1

m

∑
∆∈RIPzm

|yS(∆) + yS̄(∆)|2

=
1

m

∑
∆∈RIPzm

|yS(∆)|2 + |yS̄(∆)|2 + 2<{yS(∆)∗ · yS̄(∆)}

≥ 1

m

∑
∆∈RIPzm

|yS(∆)|2 + 2<{yS(∆)∗ · yS̄(∆)}

First note that since ŷS is |S|-sparse and because we assumed m = Ω
(
|S| log2 |S| logN

)
and because

∆’s are i.i.d. uniform samples from [n]d, by Theorem 5,

Pr

 1

m

∑
∆∈RIPzm

|yS(∆)|2 ≥ 0.99 · ‖ŷS‖
2
2

N2

 ≥ 1− 1

N2
. (14)

Now it suffices to bound the term 1
m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}. First, note that

E

 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

 =
1

m

∑
∆∈RIPzm

E [yS(∆)∗ · yS̄(∆)] + E [yS(∆) · yS̄(∆)∗]

=
1

m

∑
∆∈RIPzm

1

N
〈yS , yS̄〉+

1

N
〈yS̄ , yS〉

=
1

m

∑
∆∈RIPzm

1

N2
〈ŷS , ŷS̄〉+

1

N2
〈ŷS̄ , ŷS〉

= 0,

62

where the last line follows because the support of ŷS̄ and ŷS are disjoint. We proceed by bounding
the second moment of the quantity 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)} as follows,

E

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣
2 ≤ E

∣∣∣∣∣∣ 2

m

∑
∆∈RIPzm

yS(∆)∗ · yS̄(∆)

∣∣∣∣∣∣
2

=
4

m
E
[
|yS(∆)∗ · yS̄(∆)|2

]
(By independence of ∆’s)

≤ 4

m
E
[
‖yS‖2∞ |yS̄(∆)|2

]
=

4

m
‖yS‖2∞E

[
|yS̄(∆)|2

]
=

4

m
‖yS‖2∞

‖ŷS̄‖22
N2

By Chebyshev’s inequality we have the following,

Pr

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣ ≥ 1/20 · ‖ŷS‖
2
2

N2

 ≤ 1600N2‖yS‖2∞‖ŷS̄‖22
m‖ŷS‖42

≤ 1600‖ŷS‖21‖ŷS̄‖22
m‖ŷS‖42

≤ 1600|S| · ‖ŷS‖22‖ŷS̄‖22
m‖ŷS‖42

(Cauchy-Schwarz)

=
1600|S| · ‖ŷS̄‖22

m‖ŷS‖22
.

Therefore because we assumed that m = Ω
(
|S| ‖ŷ‖

2
2

‖ŷS‖22

)
, the following holds,

Pr

∣∣∣∣∣∣ 1

m

∑
∆∈RIPzm

2<{yS(∆)∗ · yS̄(∆)}

∣∣∣∣∣∣ ≥ 1/20 · ‖ŷS‖
2
2

N2

 ≤ 1/10.

Combining the above inequality with (14) using union bound gives,

Pr
[
Hz ≤ 0.94 · ‖ŷS‖22

]
≤ 1/8.

Since in line 11 of the algorithm we compare Medianz∈[32 logN] {Hz} to θ, using the fact that

‖ŷS‖22 > 11θ
10 , we have the following,

Pr [HeavyTest = False] ≤ Pr
[
Medianz∈[32 logN] {Hz} ≤ 10/11 · ‖ŷS‖22

]
≤
(

32 logN

16 logN

)
1

816 logN

≤ 232 logN

816 logN
=

1

N16
.

This completes the proof of the first claim.
The proof of the second claim of the lemma is more straightforward. The expected value

of Hz is,

E[Hz] =
N2

|RIPzm|
∑

∆∈RIPzm

E
[
|y(∆)|2

]
= ‖ŷ‖22.

63

Therefore by Markov’s inequality we find that for every z ∈ [32 logN],

Pr
[
Hz ≥ 5‖ŷ‖22

]
≤ 1/5.

The assumption of the lemma in this case is that ‖ŷ‖22 ≤ θ/5, thus we have,

Pr [HeavyTest = True] ≤ Pr
[
Medianz∈[32 logN]

{
Hz
f

}
> 5 · ‖ŷS‖22

]
≤
(

32 logN

16 logN

)
1

516 logN

≤ 232 logN

516 logN
=

1

N5
.

This completes the proof of the second claim of the lemma.

Sample Complexity and Runtime: Computing the filters (Gv, Ĝv) uses O
(
2wT (v) + logN

)
runtime, by Lemma 5. Given filter Ĝv, computing the quantities hz∆ for all ∆ and z in line 8
of the algorithm uses O (‖χ̂‖0 ·

∑
z |RIPzm|) = O (‖χ̂‖0 ·m logN) time. Given filter Gv with

|supp(Gv)| = 2wT (v), computing the quantity Hz for all z requires O
(
2wT (v) ·

∑
z |RIPzm|

)
=

O
(
2wT (v) ·m logN

)
accesses to the signal x and O

(
2wT (v) ·m logN

)
runtime. Therefore, the total

sample complexity of the algorithm is O
(
2wT (v) ·m logN

)
and the total runtime of the algorithm

is O
(
2wT (v) ·m logN + ‖χ̂‖0 ·m logN

)
Proof of Lemma 19: Note that the algorithm constructs (v, T)-isolating filters (Gv, Ĝv) for every
leaf v ∈ S. By Lemma 5, constructing filters Gv and Ĝv takes time O

(
2wT (v) + logN

)
. Moreover,

Lemma 5 tells us that filter Gv has support size |supp(Gv)| = 2wT (v) and Ĝv can be accessed at
any frequency using O(logN) operations.

Therefore, for every fixed v ∈ S, computing hzv =
∑

∆∈RIPzm
e−2πi f

>∆
n
∑
ξ∈[n]d e

2πi ξ
T∆
n · χ̂ξ · Ĝv(ξ) in

line 9 of Algorithm 7 can be done in total timeO (|RIPzm| logN · ‖χ̂‖0) = O (B logN · ‖χ̂‖0) for all z.

By convolution-multiplication duality theorem, hzv satisfies hzv = N ·
∑

∆∈RIPzm
e−2πi f

>∆
n (χ ? Gv) (∆),

and thus, for every leaf v ∈ S:

Hz
v =

1

|RIPzm|
·

N · ∑
∆∈RIPzm

e−2πi f
>∆
n

∑
j∈[n]d

Gv(∆− j) · x(j)

− hzv

=
N

|RIPzm|
∑

∆∈RIPzm

e−2πi f
>∆
n ((x− χ) ? Gv) (∆).

To simplify the notation, let us use yv := (x− χ)?Gv. BecauseGv is (v, T)-isolating, by Definition 7,
we have that ŷv(ξ) = 0 for every ξ ∈

⋃
u∈leaves(T)

u6=v
FreqConeT (u) and also ŷv(f) = (x̂− χ)(f), where

f := fv is the frequency label of the leaf v. Using these facts together with the above equality and
the assumption of the lemma on IsIdentified(T, v) = True, we can write,

Hz
v =

N

|RIPzm|
∑

∆∈RIPzm

e−2πi f
>∆
n yv(∆)

= ŷv(f) +
1

|RIPzm|
∑

∆∈RIPzm

∑
ξ∈[n]d\supp(T)

e2πi
(ξ−f)>∆

n · ŷv(ξ).

64

We continue by computing the expectation of the above quantity. Since f ∈ FreqConeT (v), ξ−f 6=
0 for every ξ ∈ [n]d \ supp(T), which in turn implies that,

E [Hz
v] = ŷv(f) +

1

|RIPzm|
∑

∆∈RIPzm

∑
ξ∈[n]d\supp(T)

E∆

[
e2πi

(ξ−f)>∆
n

]
ŷv(ξ) = ŷv(f).

In the above expectation we used the fact that ∆ is distributed uniformly on [n]d. Next we compute
the second moment of Hz

v . We have,

E
[
|Hz

v − ŷv(f)|2
]

=
1

|RIPzm|2
∑

∆∈RIPzm

E

∣∣∣∣∣∣
∑

ξ∈[n]d\supp(T)

e2πi
(ξ−f)>∆

n ŷv(ξ)

∣∣∣∣∣∣
2 (by independence of ∆’s)

=
1

|RIPzm|
∑

ξ∈[n]d\supp(T)

|ŷv(ξ)|2 (since ∆ is uniform over [n]d and ξ − f 6= 0)

=
1

B

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 . (by definition of y)

In the final line above we used the fact that the multiset RIPzm defined in Algorithm 7 has size m.
Therefore, Markov’s inequality implies that for every z ∈ [16 logN],

Pr

|Hz
v − ŷv(f)|2 ≥ 8

m
·

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ 1

8
.

Since in line 11 of Algorithm 7 we set Ĥv = Medianz∈[16 logN] {Hz
v}, where the median of real and

imaginary parts are computed separately, we find that

Pr

∣∣∣Ĥv − ŷv(f)
∣∣∣2 ≥ 16

m
·

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ (16 logN

8 logN

)
1

88 logN

≤ 216 logN

88 logN
=

1

N8
.

By recalling that ŷv(f) = (x̂− χ)(fv) for every v ∈ S and applying union bound we find that,

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≥ 16

m
·
∑
v∈S

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2
 ≤ |S|

N8
. (15)

In the last step, we bound the quantity
∑

v∈S
∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 as follows,

∑
v∈S

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ) · Ĝv(ξ)
∣∣∣2 =

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ)
∣∣∣2 ·∑

v∈S

∣∣∣Ĝv(ξ)
∣∣∣2

≤
∑

ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ)
∣∣∣2 · ∑

v∈leaves(T)

∣∣∣Ĝv(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ)
∣∣∣2 , (By Lemma 17)

65

hence, plugging the above bound into (15) gives,

Pr

∑
v∈S

∣∣∣Ĥv − (x̂− χ)(fv)
∣∣∣2 ≥ 16

m
·

∑
ξ∈[n]d\supp(T)

∣∣∣(x̂− χ)(ξ)
∣∣∣2
 ≤ |S|

N8
.

Lastly, we prove the correctness of ExtractCheapSubset, and in particular Claim 6.
Proof of Claim 6: First let S′ :=

{
u ∈ S : 2wT (u) ≤ 4|S|

}
. It easily follows that

∑
u∈S′ 2

−wT (u) ≥
1
4 . For every j = 0, 1, . . . blog(4|S|)c, let Lj denote the subset of S′ defined as Lj := {u : u ∈
S′, wT (u) = j}. We can write, ∑

u∈S′
2−wT (u) =

blog(4|S|)c∑
j=0

|Lj |
2j

Therefore, by the fact that
∑

u∈S′ 2
−wT (u) ≥ 1

4 , we have that there must exist an integer j ∈
{0, 1, . . . blog(4|S|)c} such that

|Lj |
2j
≥ 1

4blog(4|S|)c . Hence, there must exist a set L ⊆ S such that |L| ·
(8 + 4 log |S|) ≥ maxv∈L 2wT (v). The primitive ExtractCheapSubset finds this set L efficiently.

66

12 Robust Sparse Fourier Transform II

In this section we present an algorithm that can compute a 1 + ε approximation to the Fourier
transform of a singnal in the k-high SNR regime using a sample complexity that is nearly quadratic
in k and a runtime that is cubic in k, fully making use of techniques I-IV.

Formally we prove the following theorem,

Theorem 4 (Robust Sparse Fourier Transform with Near-quadratic Sample Complexity). Given
oracle access to x : [n]d → C in the k-high SNR model and parameter ε > 0, we can solve the `2/`2
Sparse Fourier Transform problem with high probability in N using

m = Õ

(
k2

ε
+ k2 · 2Θ(

√
log k·log logN)

)
samples from x and Õ

(
k3

ε

)
running time.

We first present a recursive procedure in Algorithm 10 that is the main computational compo-
nent of achieving the abovementioned theorem for a constant value of ε = 1

20 . Any sparse χ̂ that
satisfies the approximation guarantee of Theorem 4 for constant ε, by the k-high SNR assumption,
must recover all the head elements of x̂ correctly. Once we have the set of heavy frequencies of x̂ we
can estimate the head vlaues to a higher ε precision for arbitrarily small ε using a simple algorithm.
We present the procedure that achieves such 1+ε approximation and thus achieves the guarantee of
Theorem 4 in Algorithm 11. We demonstrate the execution of primitive RecursiveRobustSFT
(Algorithm 10) in Figure 6.

Overview of RecursiveRobustSFT (Algorithm 10): Consider an invocation of Recur-
siveRobustSFT(x, χ̂in,Frontier, v, k, α, µ). Suppose that ŷ := x̂ − χ̂in is a signal in the high
SNR regime, i.e., the value of each heavy frequency of signal ŷ is at least 3 times higher than
the tail’s norm. More formally, let head ⊆ [n]d denote the set of heavy (head) frequencies of
ŷ and suppose that the tail norm of ŷ satisfies ‖ŷ − ŷhead‖2 ≤ µ and additionally suppose that
|ŷ(f)| ≥ 3µ for every f ∈ head. If Frontier fully captures the heavy frequencies of ŷ, i.e.,
head ⊆ supp(Frontier), and the number of heavy frequencies in frequency cone of node v is
bounded by k, i.e., |head∩FreqConeFrontier(v)| ≤ k, then RecursiveRobustSFT finds a signal

χ̂v such that supp(χ̂v) = head∩FreqConeFrontier(v) := S and ‖ŷS− χ̂v‖22 ≤
µ2

40 log2
1
α
k
. An example

of the input tree Frontier is illustrated in Figure 6 with thin solid black edges. Additionally, one
can see node v which is a leaf of Frontier in this figure.

Algorithm 10 recovers heavy frequencies of signal ŷ that lie in the subree of v, i.e., set S =
head ∩ FreqConeFrontier(v), by iteratively exploring the subtree of Frontier rooted at v, which
we denote by T , and simultaneously updating the proxy signal χ̂v. We show an example of subtree
T at some iteration of our algorithm in Figure 6 with thick solid edges. The algorithm also
maintains a subset of leaves denoted by Marked that contains the leaves of Frontier that are
fully identified, that is the set of leaves that are at the bottom level and hence there is no ambiguity
in their frequency content (there is exactly one element in frequency cone of marked leaves). We
show the set of marked leaves in Figure 6 using blue squares. Subtree T , in all iterations of our
algorithm, maintains the invariant that the frequency cone of each of its leaves contain at least one
head element and furthermore the frequency cone of each of its unmarked leaves contain at least
b+ 1 head element, where b = αk, i.e.,

|FreqConeFrontier∪T (u) ∩ head| ≥

{
1 for every u ∈Marked

b+ 1 for every u ∈ leaves(T) \Marked
. (16)

67

v

Frontier

subtree T

yet to be explored

Marked leaves

recovered & subtracted

leaves (frequencies)

head ∩ FreqConeFrontier(v)

Figure 6: Illustration of an instance of RecursiveRobustSFT (Algorithm 10). This procedure
takes in a tree Frontier (shown with thin edges) together with a leaf v ∈ leaves(Frontier) and
adaptively explores/constructs the subtree T rooted at v to find all heavy frequencies that lie in
FreqConeFrontier(v). If head denotes the set of heavy frequencies, then the algorithm finds head∩
FreqConeSideTree(v) by exploring T . Once the identity of a leaf is fully revealed, the algorithm
adds that leaf to the set Marked. When the number of marked leaves grows to the point where
there exists a subset of marked frequencies that can be estimated cheaply, our algorithm estimates
the Cheap subset in a batch, subtracts off the estimated signal, and removes all corresponding
leaves from T and Marked.

We demonstrate, in Figure 6, the leaves that correspond to set S = head ∩ FreqConeFrontier(v)
via leaves at bottom level of the subtree rooted at v. Assuming that for the example shown in this
figure b = αk = 2, one can easily verify (16) by noting that the frequency cone of each leaf of T
contains at least one element from the set head and frequency cones of unmarked leaves contain
at least two element of head. Additionally, at every iteration of the algorithm, the union of all
frequency cones of subtree T captures all heavy frequencies that are not recovered yet, i.e.,

S \ supp(χ̂v) ⊆ supp(Frontier ∪ T). (17)

In Figure 6, we show the set of fully recovered leaves (frequencies), i.e., supp(χ̂v), using red thin
dashed subtrees. These frequencies are subtracted from the residual signal ŷ − χ̂v and their corre-
sponding leaves are removed from subtree T , as well. One can verify that condition 17 holds in the
example depicted in Figure 6. Moreover, the estimated value of every frequency that is recovered
so far, is accurate up to an average error of µ√

40k·log 1
α
k
. More precisely, in every iteration of the

68

algorithm the following property is maintained,∑
f∈supp(χ̂v) |ŷ(f)− χ̂v(f)|2

|supp(χ̂v)|
≤ µ2

40k · log2
1
α

k
. (18)

At the begining of the procedure, subtree T is initialized to be the leaf v, i.e., T = {v}, and
will be dynamically changing throughout the execution of our algorithm. Moreover, we initialize
χ̂v ≡ 0. Trivially, these initial values satisfy (16), (17), and (18).

The algorithm operates by picking the unmarked leaf of T that has the smallest weight. Then
the algorithm explores the children of this node by recursively running RecursiveRobustSFT
on them with a reduced budget to recover the heavy frequencies that lie in their frequency cones.
To be more precise, let us call the unmarked leaf of T that has the smallest weight z. We denote
by zleft and zright the left and right children of z. Let us consider exploration of the left child zleft,
the right child is exactly the same. If the number of heavy frequencies in the frequency cone of zleft

is bounded by b = αk, i.e., |head ∩ FreqConeFrontier∪{zleft,zright}(zleft)| ≤ b, then RecursiveR-
obustSFT(x, χ̂in + χ̂v,Frontier ∪ T ∪ {zleft, zright}, zleft, b, α, µ) recovers every frequency in the
set head ∩ FreqConeFrontier∪{zleft,zright}(zleft) up to an average error of µ√

40b·log 1
α
b
. Note that this

everage estimation error is not sufficient for achieving the invariant (18), hence, instead of directly
using the values that the recursive call of RecursiveRobustSFT recovered to update χ̂v at the
newly recovered heavy frequencies, our algorithm adds the leaves corresponding to the recovered
set of frequencies, i.e., head ∩ FreqConeFrontier∪{vleft,vright}(vleft), at the bottom level of T and
marks them as fully identified (adds them to Marked). It can be seen in Figure 6 that all marked
leaves are at the bottom level of the tree. For achieving maximum efficinecy we employ a new lazy
estimation scheme, that is, the estimation of values of marked leaves is delayed until there is a
large number of marked leaves and thus there exists a subset of them that is cheap to estimate.
On the other hand, if the number of head elements in frequency cone of zleft is more than b then
our algorithm detects this and subsequently adds node zleft to T . These operations ensure that the
invariants (16), (17), and (18) are maintained.

Once the size of set Marked grows sufficiently such that it contains a subset that is cheap
to estimate, our algorithm estimates the values of the cheap frequencies. More precisely, at some
point, Marked will contains a non-empty subset Cheap such that the values of all frequencies
in Cheap can be estimated cheaply and subsequently, our algorithm esimates those frequencies in

a batch up to an average error of O
(

µ√
k·logN

)
, updates χ̂ accordingly and removes all estimated

(Cheap) leaves from Frontier and Marked. This ensures that invariants (16), (17), and (18)
are maintained. The estimated leaves are illustrated in Figure 6 using red thin dashed subtrees.
We also demontrate the subtrees of T that contain head element and are yet to be explored by
our algorithm using gray cones and dashed edges in Figure 6. The gray cone means that there are
heavy elements in that frequency cone that need to be identified as that node has not reached the
bottom level yet.

Finally, the algorithm keeps tabs on the runtime it spends and ensures that even if the in-
put signal does not satisfy the preconditions for successful recovery, in particular if |head ∩
FreqConeFrontier(v)| > k, the runtime stays bounded. Additionally, the algorithm performs a
quality control by running HeavyTest on the residual and if the recovered signal is not correct
due to violation of some preconditions, it will be reflected in the output of our algorithm.

Analysis of RecursiveRobustSparseFT. Frirst we analyze the runtime and sample complex-
ity of RecursiveRobustSparseFT in the following lemma.

69

Algorithm 10 A Recursive Robust High-dimensional Sparse FFT Algorithm

1: procedure RecursiveRobustSFT(x, χ̂in,Frontier, v, k, α, µ)
2: // µ: upper bound on tail norm ‖η‖2
3: if k ≤ 1

α then return PromiseSparseFT
(
x, χ̂in,Frontier, v, k, d kαe, µ

)
4: Let T denote the subtree of Frontier rooted at v – i.e. T ← {v}
5: χ̂v ← {0}n

d
. Sparse vector to approximate (x̂− χ̂in)FreqConeFrontier(v)

6: b← dαke, Marked← ∅ . Marked: set of fully identified leaves (frequencies)
7: repeat
8: if (b+ 1) · |leaves(Tv) \Marked|+ |Marked|+ ‖χ̂v‖0 > k then

9: return
(

False, {0}nd
)

. Exit because budget of v is wrong

10: if
∑

u∈Marked 2−wT (u) ≥ 1
2 then

11: Cheap← FindCheapToEstimate (T,Marked)
12: //Lazy estimation: We extract from the batch of marked leaves a subset that is cheap

to estimate on average

13:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂in + χ̂v,Frontier ∪ T,Cheap, 736k·log2 N

|Cheap|

)
14: for u ∈ Cheap do
15: χ̂v(fu)← Ĥu

16: Remove node u from subtree T
17: Marked←Marked \Cheap
18: continue
19: z ← argminu∈leaves(T)\MarkedwT (u)
20: //pick the minimum weight leaf in subtree T which is not in Marked
21: zleft := left child of z and zright := right child of z
22: T ′ ← T ∪ {zleft, zright} . Explore children of z
23: (IsCorrleft, χ̂left)← RecursiveRobustSFT (x, χ̂in + χ̂v,Frontier ∪ T ′, zleft, b, α, µ)

24: (IsCorrright, χ̂right)← RecursiveRobustSFT (x, χ̂in + χ̂v,Frontier ∪ T ′, zright, b, α, µ)

25: if IsCorrleft and IsCorrright and z 6= v and ‖χ̂left‖0 + ‖χ̂right‖0 ≤ b then

26: return
(

False, {0}nd
)

. Exit because budget of v is wrong

27: if IsCorrleft then
28: ∀f ∈ supp(χ̂left), add the unique leaf corresponding to f to subtree T and Marked
29: else
30: Add zleft to subtree T

31: if IsCorrright then
32: ∀f ∈ supp(χ̂right), add the unique leaf corresponding to f to subtree T and Marked

33: else
34: Add zright to subtree T

35: until T has no leaves besides v
36: if HeavyTest

(
x, χ̂in + χ̂v,Frontier, v, O

(
k
α log3N

)
, 6µ2

)
then

37: //The number of heavy coordinates in FreqConeFrontier(v) is more than k

38: return
(

False, {0}nd
)

39: else
40: return (True, χ̂v)

70

Algorithm 11 Robust High-dimensional Sparse FFT with Õ(k3) Time and Õ
(
k2+o(1)

)
Samples

1: procedure RobustSFT(x, k, ε, µ)

2: α← 2−
√

log k·log(2 logN)

3: (IsCorr, χ̂)← RecursiveRobustSFT
(
x, {0}nd , {root}, root, k, α, µ

)
4: Let T be the splitting tree corresponding to the set supp(χ̂)

5: χ̂ε ← {0}n
d

6: while tree T has a leaf besides its root do
7: Cheap← FindCheapToEstimate (T, leaves(T))
8: //The set of frequencies that are cheap to estimate on average

9:

{
Ĥu

}
u∈Cheap

← Estimate
(
x, χ̂ε, T,Cheap, 32k

ε·|Cheap|

)
10: for u ∈ Cheap do
11: χ̂ε(fu)← Ĥu

12: Remove node u from tree T
13: return χ̂ε

Lemma 23 (RecursiveRobustSFT – Time and Sample Complexity). For every subtree Frontier

of T full
N , every leaf v of Frontier, positive integer k, every α = o

(
1

logN

)
and µ ≥ 0, and every sig-

nals x, χ̂in : [n]d → C, consider an invocation of primitive RecursiveRobustSFT (Algorithm 10)
with inputs (x, χ̂in,Frontier, v, k, α, µ). Then,

• The running time of primitive is bounded by

Õ

((
k2

α
· 2wFrontier(v) +

k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ k2 · ‖χ̂in‖0 + k3

)
.

• The number of accesses it makes on x is always bounded by

Õ

(
k2

α
· 2wFrontier(v) · (2 logN)

log 1
α
k
)
.

Moreover, the output signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v) and ‖χ̂v‖0 ≤ k.

Proof. The proof is by induction on parameter k. The base of induction corresponds to k ≤ 1
α .

For every k ≤ 1
α , Algorithm 10 simply runs PromiseSparseFT(x, χ̂in,Frontier, v, k, d kαe, µ) in

line 3. Therefore, by Lemma20, the runtime and sample complexity of our algorithm are bounded

by Õ
(
k
α · ‖χ̂in‖0 + k2

α · 2
wFrontier(v)

)
and Õ

(
k2

α · 2
wFrontier(v)

)
, respectively. Moreover, by Lemma20,

the output signal χ̂v satisfies ‖χ̂v‖0 ≤ k as well as supp(χ̂v) ⊆ FreqConeFrontier(v). This proves
that the inductive hypothesis holds for every integer k ≤ 1

α , hence the base of induction holds.
To prove the inductive step, suppose that the lemma holds for every k ≤ m−1 for some integer

m ≥ b 1
αc+ 1. Assuming the inductive hypothesis, we prove that the lemma holds for k = m. First,

we prove that Algorithm 10 terminates after a bounded number of iterations. For the purpose of
having a tight analysis of the runtime and sample complexity, we need to have tight upper bounds
on the number of times our algorithm invokes primitive Estimate in line 13 as well as the number
of times our algorithm recursively calls itself in lines 23 and 24. First, we show that the number
of iterations in which the if-staement in line 10 is True, and hence the number of times we invoke
Estimate in line 13, is bounded by O(k). The reason is, everytime the if-staement in line 10

71

becomes True the sparsity of χ̂v, i.e., ‖χ̂v‖0, increases by |Cheap| ≥ 1, because the if-staement in
line 10 ensures that preconditions of Claim 6 hold, hence, by invoking this claim, Cheap 6= ∅. On
the other hand, we can see from the way our algorithm operates that the sparity of χ̂v does not
decrease in any of the iterations of our algorithm. Therefore, because the if-statement in line 8
of the algorithm makes sure that ‖χ̂v‖0 does not exceed k, we conclude that the total number of
iterations in which the if-statement in line 10 is True is bounded by O(k). Hence, the number of
times our algorithm calls Estimate in line 13 is O(k).

In order to bound the number of iterations of our algorithm in which the if-statement in line 10

is False, we use a potential function. Let χ̂
(t)
v denote the signal χ̂v at the end of iteration t of the

algorithm. Furthermore, let T (t) denote the subtree T at the end of tth iteration. Additionally,
let Marked(t) denote the set Marked (defined in Algorithm 10) at the end of iteration t. We
prove that the number of iterations in which the if-statement in line 10 of our algorithm is False is

bounded by O
(

logN
α

)
using the following potential function, defined for non-negative integer t:

φt := (logN + 1) · |Marked(t)|+ 2 logN · ‖χ̂(t)
v ‖0 + b ·

∑
u∈leaves(T (t))\Marked(t)

lT (t)(u).

We prove that assuming the algorithm does not terminate in q iterations, for some integer q, then in
every positive iteration t ≤ q, if the if-statement in line 10 of Algorithm 10 is False, then the above
potential function increases by at least b, i.e., φt ≥ φt−1 + b. Additionally, when the if-statement in
line 10 is True, the potential increases by at least logN−1, i.e., φt ≥ φt−1+logN−1. We show that
at any given iteration t of the algorithm the potential function φt increases in the abovementioned
fashion.

Case 1 – the if-statement in line 10 of Algorithm 10 is True. In this case, we have
that

∑
u∈Marked(t−1) 2−wT (t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap(t) ⊆ Marked(t−1)

that the algorithm computes in line 11 by running the primitive FindCheapToEstimate is non-
empty. Then, the algorithm constructs T (t) by removing all leaves that are in the set Cheap(t)

from tree T (t−1) and leaving the rest of the tree unchanged. Furthermore, the algorithm updates
the set Marked(t) by subtracting Cheap(t) from Marked(t−1). Additionally, in this case, the
algorithm computes {Ĥu}u∈Cheap(t) by running the procedure Estimate in line 13 and then up-

dates χ̂
(t)
v (fu) ← Ĥu for every u ∈ Cheap(t) and χ̂

(t)
v (ξ) = χ̂

(t−1)
v (ξ) at every other frequency ξ.

Therefore, ‖χ̂(t)
v ‖0 = ‖χ̂(t)

v ‖0 + |Cheap(t)|. Thus,

φt − φt−1 = (logN − 1) · |Cheap(t)| ≥ logN − 1,

where the inequality follows from Cheap(t) 6= ∅. This proves the potential increase that we wanted.

Case 2 – the if-statement in line 10 is False. In this case, either the algorithm terminates
by the if-statement in line 25, which contradicts with our assumption that the algorithm does not
terminate after q ≥ t iterations, or the following holds,

|Marked(t)|+ b ·
∑

u∈leaves(T (t))\Marked(t)

lT (t)(u)

≥ |Marked(t−1)|+ b ·
∑

u∈leaves(T (t−1))\Marked(t−1)

lT (t−1)(u) + b,

72

while |Marked(t)| ≥ |Marked(t−1)| and ‖χ̂(t)
v ‖0 = ‖χ̂(t−1)

v ‖0. Thus, in this case, φt+1 − φt ≥ b
which is the potential increase that we wanted to prove.

So far, we proved that φt must increase by at least logN −1 at every iteration of the algorithm.
Moreover, at every iteration of the algorithm where the if-statement in line 10 is False the potential
increases by at least b. Also, the potential function φt is non-negative for every t. On the other
hand, the if-statement in line 8 ensures that at any iteration t ≤ q it must hold that φt ≤ 2k logN .
Therefore, the potential increse that we proved implies that Algorithm 10 must terminate after at
most q = 2k logN iterations, where only in 2 logN

α of the iterations the if-statement in line 10 can
be False. Therefore, the total number of times our algorithm recursively invokes itself in lines 23
and 24 is bounded by 2 logN

α .
Now that we have the termination quarantee, we can use the fact that our algorithm constructs

χ̂v by exclusively estimating the values of frequencies that lie in FreqConeFrontier(v) in line 13, one
can see that the output signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v). Additionally,
the if-staement in line 8, ensures that ‖χ̂v‖0 ≤ k. Now we bound the running time and sample
complexity of the algorithm.

Sample Complexity and Runtime: The expensive components of the algorithm are primitive
Estimate in line 13, the recursive call of RecursiveRobustSFT in lines 23 and 24, and invocation
of HeavyTest in line 36 of the algorithm.

We first bound the time and sample complexity of invoking Estimate in line 13. We remark
that, at any iteration t, the algorithm runs primitive Estimate only if case 1 that we mentioned
earlier in the proof happens. Therefore, by Claim 6, the set ∅ 6= Cheap(t) ⊆Marked(t−1) that our
algorithm computes in line 11 by running the primitive FindCheapToEstimate satisfies the prop-

erty that |Cheap(t)| ·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap(t) 2wT (t−1) (u). By the if-statement

in line 8 of the algorithm, this implies that |Cheap(t)| · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u).
Thus, by Lemma 19, the time and sample complexity of every invocation of Estimate in line 13
of our algorithm are bounded by

Õ

 k

|Cheap(t)|

∑
u∈Cheap(t)

2wFrontier∪T (t−1) (u) + k ·
∥∥∥χ̂(t−1)

v + χ̂in

∥∥∥
0

and Õ

(
k

|Cheap(t)|
∑

u∈Cheap(t) 2wFrontier∪T (t−1) (u)
)

, respectively. Using the fact that ‖χ̂(t−1)
v ‖0 ≤ k,

these time and sample complexities are further upper bounded by

Õ
(
k ·
(

2wFrontier(v) · |Cheap(t)|+ ‖χ̂in‖0
)

+ k2
)

and Õ
(
k · 2wFrontier(v) · |Cheap(t)|

)
, respectively. We proved that the total number of times we run

Estimate in line 13 of the algorithm, is bounded by O(k). Using this together with the fact that∑
t: if-statement in line 10 is True

∣∣∣Cheap(t)
∣∣∣ = ‖χ̂v‖0 ≤ k, the total runtime and sample complexity of all

invocations of Estimate in all iterations can be upper bounded by Õ
(
k3 + k2(‖χ̂in‖0 + 2wFrontier(v))

)
and Õ

(
k2 · 2wFrontier(v)

)
, respectively.

Now we bound the runtime and sample complexity of invoking RecursiveRobustSFT in
lines 23 and 24 of the algorithm. Note that at any iteration t, our algorithm recursively calls
RecursiveRobustSFT only if case 2 that we mentioned earlier in the proof occurs. As we
showed, the total number of times that this happens is bounded by 2 logN

α . Since, in line 19 of

73

the algorithm, we pick leaf z with the smallest weight, and since the number of leaves of subtree
T (t−1) that are not in the set Marked(t−1) are bounded by k

b+1 (ensured by the if-statement in

line 8), we have wFrontier∪T ′(zleft) = wFrontier∪T ′(zright) ≤ wFrontier(v) + log k
b+1 + 1. Also note

that ‖χ̂(t−1)
v ‖0 ≤ k, ensured by the if-statement in line 8. Therefore, by the inductive hypothesis,

the time and sample complexities of each recursive invocation of RecursiveRobustSFT by our
algorithm are bounded by

Õ

((
b2 · 2wFrontier(v)

α2
+
b

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
b

+ b2 · ‖χ̂in‖0 + kb2

)

and Õ
(
b2

α2 · 2wFrontier(v) · (2 logN)
log 1

α
b
)

. We proved that the total number of iterations in which

case 2 happens, and hence the number of times we run RecursiveRobustSFT in lines 23 and
24 of the algorithm, is bounded by 2 logN

α . Therefore, the total time and sample complexity of all
invocations of PromiseSparseFT in lines 23 and 24 are bounded by

Õ

((
k2

α
· 2wFrontier(v) +

k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ αk2 · ‖χ̂in‖0 + αk3

)
and Õ

(
k2

α · 2
wFrontier(v) · (2 logN)

log 1
α
k
)

, respectively.

Finally, we bound the time and sample complexity of invoking HeavyTest in line 36 of our
algorithm. Since ‖χ̂v‖0 ≤ k, by Lemma 18, the time and sample complexity of the HeavyTest in

line 36 are bounded by Õ
(
‖χ̂in‖0 · kα + k2

α + 2wFrontier(v) · kα
)

and Õ
(
2wFrontier(v) · kα

)
, respectively.

Hence, we find that the total time and sample complexity of our algorithm are bounded by

Õ

((
k2 · 2wFrontier(v)

α
+
k

α
· ‖χ̂in‖0

)
· (2 logN)

log 1
α
k

+ k2 · ‖χ̂in‖0 + k3

)

and Õ
(
k2

α · 2
wFrontier(v) · (2 logN)

log 1
α
k
)

, respectively. This proves the inductive step of the proof

and consequently completes the proof of our lemma.

Now we are in a position to present the main invariant of primitive RecursiveRobustSFT.

Lemma 24 (RecursiveRobustSFT - Invariants). Consider the preconditions of Lemma 23. Let
ŷ := x̂ − χ̂in and S := FreqConeT (v) ∩ headµ(ŷ), where headµ(·) is defined as per (4). If i)

headµ(ŷ) ⊆ supp(Frontier), ii) ‖ŷ− ŷheadµ(ŷ)‖22 ≤
21µ2

20 + µ2

20 log 1
α

(k/α) , and iii) |S| ≤ k
α , then with

probability at least 1−O
((

2 logN
α

)log 1
α
k
·N−4

)
, the output (Budget, χ̂v) of Algorithm 10 satisfies

the following,

1. If |S| ≤ k then Budget = True, supp(χ̂v) ⊆ S, and ‖ŷS − χ̂v‖22 ≤
µ2

40 log2
1/α k

;

2. If |S| > k then Budget = False and χ̂v ≡ {0}n
d
.

Proof. The proof is by induction on parameter k. The base of induction corresponds to k ≤ 1
α .

For every k ≤ 1
α , Algorithm 10 simply runs PromiseSparseFT

(
x, χ̂in,Frontier, v, k, d kαe, µ

)
in

line 3. Therefore, by Lemma21, the claims of the lemma hold with probability at least 1− 1
N4 . This

74

proves that the inductive hypothesis holds for every integer k ≤ 1
α , hence the base of induction

holds.
To prove the inductive step, suppose that the lemma holds for every k ≤ m − 1 for some

integer m ≥ b 1
αc + 1. Assuming the inductive hypothesis, we prove that the lemma holds for

k = m. To prove the inductive claim, we first analyze the algorithm under the assumption that the
primitives HeavyTest and Estimate are replaced with more powerful primitives that succeeds
deterministically. Hence, we assume that HeavyTest correctly tests the “heavy” hypothesis on its
input signal with probability 1 and also Estimate achieves the estimation guarantee of Lemma 19
deterministrically. Moreover, we assume that our inductive invocation of RecursiveRobustSFT
in lines 23 and 24 of the algorithm succeed deterministically, hence, we assume that the inductive
hypothesis (the lemma) holds with probability 1. With these assumptions in place, we prove that
the lemma holds deterministically (with probability 1). We then establish a coupling between this
idealized execution and the actual execution of our algorithm, leading to our result.

We prove the first statement of lemma by (another) induction on the Repeat-Until loop of
the algorithm. Note that we are proving the inductive step of an inductive proof using another
induction (two nested inductions). The first (outer) induction was on the integer k and the second

(inner) induction is on the iteration number t of the Repeat-Until loop of our algorithm. Let χ̂
(t)
v

denote the signal χ̂v at the end of iteration t of the algorithm. Furthermore, let Frontier(t)

denote the subtree T at the end of tth iteration. Also, let Marked(t) denote the set Marked
(defined in Algorithm 10) at the end of iteration t. Additionaly, for every leaf u of subtree T (t),

let L
(t)
u denote the “unestimated” frequencies in support of ŷ that lie in frequency cone of u, i.e.,

L
(t)
u := FreqConeFrontier∪T (t)(u) ∩ headµ(ŷ) We prove that if preconditions i, ii and iii together

with the presondition of statement 1 (that is |S| ≤ k), hold, then at every iteration t = 0, 1, 2, . . .
of Algorithm 10, the following properties are maintained,

P1(t) S \ supp
(
χ̂

(t)
v

)
⊆ supp

(
T (t)

)
:=
⋃
u∈leaves(T (t)) FreqConeFrontier∪T (t)(u);

P2(t) For every leaf u 6= v of subtree T (t),
∣∣∣L(t)
u

∣∣∣ ≥ 1. Additionally, if u /∈ Marked(t), then∣∣∣L(t)
u

∣∣∣ > b;

P3(t)
∥∥∥ŷS(t) − χ̂(t)

v

∥∥∥2

2
≤ |S(t)|

40k·log2
1/α k

· µ2, where S(t) := supp
(
χ̂

(t)
v

)
;

P4(t) S(t) ⊆ S and S(t) ∩

(⋃
u∈leaves(T (t))

u6=v

FreqConeFrontier∪T (t)(u)

)
= ∅;

The base of induction corresponds to the zeroth iteration (t = 0), at which point T (0) is a

subtree that solely consists of node v and has no other leaves. Moreover, χ̂
(0)
v ≡ 0. Thus, statement

P1(0) trivially holds by definition of set S. The statement P2(0) holds since there exists no leaf

u 6= v in T (0). The statements P3(0) and P4(0) hold because of the fact χ̂
(0)
v ≡ 0.

We now prove the inductive step by assuming that the inductive hypothesis, P (t − 1) is
satisfied for some iteration t − 1 of Algorithm 10, and then proving that P (t) holds. First, we
remark that if inductive hypotheses P2(t − 1) and P4(t − 1) hold true, then by the precondition
of statement 1 of the lemma (that is |S| ≤ k) the if-statement in line 8 of Algorithm 10 is False
and hence lines 8 and 9 of the algorithm can be ignored in our analysis. We proceed to prove the
induction by considering the two cases that can happen in every iteration t of the algorithm:

75

Case 1 – the if-statement in line 10 of Algorithm 10 is True. In this case, we have that∑
u∈Marked(t−1) 2−wT (t−1) (u) ≥ 1

2 . As a result, by Claim 6, the set Cheap ⊆ Marked(t−1) that
the algorithm computes in line 11 by running the primitive FindCheapToEstimate satisfies the

property that |Cheap| ·
(

8 + 4 log |Marked(t−1)|
)
≥ maxu∈Cheap 2wT (t−1) (u). Clearly Cheap 6= ∅,

by Claim 6. Then the algorithm computes {Ĥu}u∈Cheap by running the procedure Estimate in
line 13 and then updates χ̂(t)(fu) ← Ĥu for every u ∈ Cheap and χ̂(t)(ξ) = χ̂(t−1)(ξ) at every
other frequency ξ. Therefore, if we let L := {fu : u ∈ Cheap}, then S(t) \S(t−1) = L, by inductive
hypothesis P4(t − 1). By P3(t − 1) along with Lemma 19 (its deterministic version that succeeds
with probability 1), we find that∥∥∥χ̂(t)

v − ŷS(t)

∥∥∥2

2
=
∥∥∥(χ̂(t)

v − ŷ)S(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥χ̂(t−1)

v − ŷS(t−1)

∥∥∥2

2
+
∥∥∥(χ̂(t)

v − ŷ)L

∥∥∥2

2

≤
∣∣S(t−1)

∣∣ · µ2

40k log2
1/α k

+
|L|

46k log2N

∑
ξ∈[n]d\supp(Frontier∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2 . (19)

Now we bound the second term above,∑
ξ∈[n]d\supp(Frontier∪T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +
∑

ξ∈FreqConeFrontier(v)\supp(T (t−1))

∣∣∣(ŷ − χ̂(t−1)
v

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2

+
∑

ξ∈FreqConeFrontier(v)\(supp(T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

=
∑

ξ∈[n]d\(supp(Frontier∪T (t−1))∪S(t−1))

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(ŷ)

|ŷ(ξ)|2 +
∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
(by P1(t− 1), precondition i and definition of S)

≤ 21µ2

20
+

µ2

20 log 1
α

(k/α)
+

µ2

40 log2
1
α
k

(by P3(t− 1) and P4(t− 1) and precondition |S| ≤ b)

≤ 23µ2

20
.

Therefore, by plugging the above bound back to (19) we find that,∥∥∥χ̂(t)
v − ŷS(t)

∥∥∥2

2
≤

∣∣S(t−1)
∣∣

40k log2
1
α

k
· µ2 +

|L|
46k log2N

·
(

23

20
µ2

)
≤

∣∣S(t)
∣∣

40k log2
1
α

k
· µ2,

which proves the inductive claim P3(t).
Moreover, in this case, the algorithm constructs T (t) by removing all leaves that are in the set

Cheap from tree T (t−1) and leaving the rest of the tree unchanged. Furthermore, the algorithm
updates the set Marked(t) by subtracting Cheap from Marked(t−1). Note that, P2(t−1) implies

76

that L ⊆ S. Thus, the fact S(t) = S(t−1) ∪ L together with inductive hypothesis P4(t − 1) as
well as the construction of T (t), imply P4(t). The construction of T (t) together with the fact that
|FreqConeFrontier∪T (t−1)(u)| = 1 for every u ∈Marked(t−1) give P1(t) and P2(t).

Case 2 – the if-statement in line 10 is False. Let z ∈ leaves
(
T (t−1)

)
\Marked(t−1) be

the smallest weight leaf chosen by the algorithm in line 19. In this case, the algorithm constructs
tree T ′ by adding leaves zright and zleft to tree T (t−1) as right and left children of z in line 22.

Then, the algorithm runs RecursiveRobustSFT with inputs
(
x, χ̂in + χ̂

(t−1)
v , T ′, zleft, b, α, µ

)
and

(
x, χ̂in + χ̂

(t−1)
v , T ′, zright, b, α, µ

)
in lines 23 and 24 respectively. Now we analyze the output

of the recursive invocation of RecursiveRobustSFT in lines 23 and 24. In the following we
focus on analyzing (IsCorrleft, χ̂left) but (IsCorrright, χ̂right) can be analyzed exactly the same
way. There are two possibilities that can happen:

Possibility 1) |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b. In this case, the inductive hypoth-
esis P4(t− 1) implies that |S(t−1)| ≤ k and hence inductive hypothesis P3(t− 1) gives∥∥∥ŷS(t−1) − χ̂(t−1)

v

∥∥∥2

2
≤ µ2

40 log2
1/α k

, (20)

hence, headµ

(
ŷ − χ̂(t−1)

v

)
= headµ(ŷ) \ S(t−1). Consequently, if we let ĝ := ŷ − χ̂

(t−1)
v , then:

i) headµ(ĝ) ⊆ supp(Frontier ∪ T ′), by (20) along with P1(t − 1), ii) ‖ĝ − ĝheadµ(ĝ)‖22 ≤
21µ2

20 +
µ2

20 log 1
α

(b/α) , by precondition of the lemma along with (20), and iii)

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| ≤ b,

by assumption |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b. Therefore, all preconditions of the first
statement of Lemma 24 hold. Since we invoke primitive RecursiveRobustSFT with sparsity
b ≤ m− 1, by our inducive hypothesis that Lemma 24 holds for any sparsity parameter k ≤ m− 1,
we can invoke this lemma (a deterministic version of it that succeeds with probability 1) and
conclude that, IsCorrleft = True, and supp(χ̂left) ⊆ FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ), and∥∥ĝFreqConeFrontier∪T ′ (zleft)∩headµ(ĝ) − χ̂left

∥∥2

2
≤ µ2

40 log2
1/α b

≤ µ2

10 . This together with inductive hypothe-

sis P4(t− 1) imply that, supp(χ̂left) = FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ).
So, if |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| ≤ b, then the algorithm adds all leaves that

correspond to frequencies in FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ) to tree T (t−1) as well as set
Marked(t−1). By a similar argument, if |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| ≤ b, then the
algorithm adds all leaves corresponding to frequencies in FreqConeFrontier∪T ′(zright)∩headµ(ŷ) to

tree T (t−1) and set Marked(t−1).
Possibility 2) |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| > b. Same as in possibility 1, the

inductive hypothesis P4(t− 1) implies that |S(t−1)| ≤ k, hence, inductive hypothesis P3(t− 1) gives

(20). Hence, headµ

(
ŷ − χ̂(t−1)

v

)
= headµ(ŷ) \ S(t−1). Consequently, if we let ĝ := ŷ − χ̂(t−1)

v ,

then we find that i) headµ(ĝ) ⊆ supp(Frontier ∪ T ′), by P1(t− 1), ii) ‖ĝ − ĝheadµ(ĝ)‖22 ≤
21µ2

20 +
µ2

20 log 1
α

(b/α) , by precondition of the lemma along with (20), and iii)

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| ≤ |S| ≤ k,

by precondition of statement 1 of the lemma. Additionally, by P4(t− 1), we find that

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ĝ)| = |FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)| > b.

77

Since we invoke primitive RecursiveRobustSFT with sparsity b ≤ m − 1, by our inducive hy-
pothesis that Lemma 24 holds for any sparsity parameter k ≤ m− 1, we can invoke this lemma (a
deterministic version of it that succeeds with probability 1) and conclude that, IsCorrleft = False,
and χ̂left ≡ 0.

We remark that since

|FreqConeFrontier∪T ′(zleft) ∩ headµ(ŷ)|+ |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| =
∣∣∣L(t−1)
z

∣∣∣ ,
the inductive hypothesis P2(t− 1) along with the above arguments imply that the if-statement in
line 25 of our algorithm cannot be True and hence in the rest of our analysis we can ignore lines 25
and 26 of the algorithm. Furthermore, in this case the algorithm adds leaf zleft as the left child of
v to tree T (t−1). By a similar argument, if |FreqConeFrontier∪T ′(zright) ∩ headµ(ŷ)| > b, then the
algorithm adds leaf zright as the left child of v to tree T (t−1).

Based on the above arguments, according to the values of IsCorrleft and IsCorrright, there

are various cases that can happen. From the way tree T (t) and set Marked(t) are obtained from
T (t−1) and Marked(t−1), it follows that in any case all 4 properties of P (t) are maintained. We
have proved that for every t, if the inductive hypothesis P (t − 1) is satisfied then the property
P (t) is maintained. This completess the induction (i.e., the inner induction, recall that we have
nested inductions) and proves that properties P (t) is maintained throughout the execution of
Algorithm 10, assuming that preconditions i, ii, and iii of the lemma along with the precondition
|S| ≤ k of statement 1 of the lemma hold.

Lemma 23 proves that Algorithm 10 must terminate after some q iterations. When the algorithm
terminates, the condition of the Repeat-Until loop in line 35 of the algorithm must be True. Thus,
when the algorithm terminates, at qth iteration, there is no leaf in subtree T (q) besides v and as a
consequence the set Marked(q) must be empty. This, together with P1(q) imply that the signal

χ̂
(q)
v satisfies,

supp
(
χ̂(q)
v

)
= S = FreqConeFrontier(v) ∩ headµ(ŷ).

Moreover, P3(q) together with precondition |S| ≤ k imply that∥∥∥ŷS − χ̂(q)
v

∥∥∥2

2
≤ |S|

40k log2
1/α k

· µ2 ≤ µ2

40 log2
1/α k

.

Now we analyze the if-statement in line 36 of the algorithm. The above equalities and inequal-

ities on χ̂
(q)
v imply that,∥∥∥∥(ŷ − χ̂(q)

v

)
FreqConeFrontier(v)

∥∥∥∥2

2

=
∥∥ŷFreqConeFrontier(v)\S

∥∥2

2
+
∥∥∥(ŷ − χ̂(q)

v

)
S

∥∥∥2

2

≤
∥∥ŷFreqConeFrontier(v)\headµ(ŷ)

∥∥2

2
+
µ2

40
.

Therefore, if Ĝv is a Fourier domain (v,Frontier)-isolating filter constructed in Lemma 5, then
by Corollary 1 along with the above inequality, we have∥∥∥(ŷ − χ̂(q)

v

)
· Ĝv

∥∥∥2

2
≤

∑
ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +

∥∥∥∥(ŷ − χ̂(q)
v

)
FreqConeFrontier(v)

∥∥∥∥2

2

≤
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2 +
∥∥ŷFreqConeFrontier(v)\headµ(ŷ)

∥∥2

2
+
µ2

40

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
+
µ2

40
≤ 11

10
· µ2.

78

Thus, the preconditions of the second claim of Lemma 18 hold. So, we can invoke this lemma to
conclude that the if-statement in line 36 of the algorithm is False and hence the algorithm outputs(

True, χ̂
(q)
v

)
. This completes the inductive proof of statement 1 of the lemma.

Now we proceed with the inductive step towards proving the second statement of lemma. Sup-
pose that preconditions i, ii, iii along with the precondition of statement 2 (that is |S| > k)
hold. Lemma 23 proved that the signal χ̂v always satisfies supp(χ̂v) ⊆ FreqConeFrontier(v) and
‖χ̂v‖0 ≤ k. Therefore, S \ supp(χ̂v) 6= ∅. Consequently, if Ĝv is a Fourier domain (v,Frontier)-
isolating filter constructed in Lemma 5, then by definition of isolating filters we have∥∥∥∥((ŷ − χ̂v) · Ĝv

)
S∪supp(χ̂v)

∥∥∥∥2

2

≥
∥∥∥(ŷ − χ̂v)S∪supp(χ̂v)

∥∥∥2

2
≥
∥∥ŷS\supp(χ̂v)

∥∥2

2
≥ 9µ2,

which follows from the definition of S and headµ(·). On the other hand,∥∥∥∥((ŷ − χ̂v) · Ĝ`
)

[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

=

∥∥∥∥(ŷ · Ĝ`)[n]d\(S∪supp(χ̂v))

∥∥∥∥2

2

≤
∥∥∥∥(ŷ · Ĝ`)[n]d\S

∥∥∥∥2

2

≤
∥∥ŷFreqConeFrontier(v)\S

∥∥2

2

+
∑

ξ∈[n]d\supp(Frontier)

|ŷ(ξ)|2

≤
∥∥ŷ − ŷheadµ(ŷ)

∥∥2

2
≤ 11

10
· µ2. (precondition ii)

Additionally note that |S ∪ supp(χ̂v)| ≤ k/α + k ≤ 2k/α by preconditions of the lemma and
property of supp(χ̂v) that we have proved. Hence, by invoking the first claim of Lemma 18, the

if-statement in line 36 of the algorithm is True and hence the algorithm outputs
(

False, {0}nd
)

.

This proves statement 2 of the lemma.
Finally, observe that throughout this analysis we have assumed that Lemma 18 holds with

probability 1 for all the invocations of HeavyTest by our algorithm. Moreover, we assumend that
Estimate successfully works with probability 1. Also we assumed that the inductive hypothesis
(that is Lemma 24 for sparsity parameters k ≤ m− 1) holds deterministically. In reality, we have
to take the fact that these primitives are randomized into acount of our analysis.

The first source of randomness is the fact that HeavyTest only succeeds with some high prob-
ability. In fact, Lemma 18 tells us that every invocation of HeavyTest succeeds with probability
at least 1− 1/N5.

The second source of randomness is the fact that Estimate only succeeds with some high
probability. Lemma 19 tells us that every invocation of Estimate on a set Cheap, succeeds
with probability 1 − |Cheap|

N8 ≥ 1 − 1
N7 . Since, our analysis in proof of Lemma 23 shows that

RecursiveRobustSFT makes at most k recursive calls to Estimate, by a union bound, the
overall failure probability of all invocations of this primitive will be bounded by k

N7 .
The third and last source of randomness in our algorithm is the recursive invocations of Re-

cursiveRobustSFT in lines 23 and 24 of our algorithm. By the inductive hypothesis (statement of

Lemma 24), the invocation of this primitive succeeds with probability 1−O
((

2 logN
α

)log1/α b ·N−4

)
.

Our analysis in proof of Lemma 23 shows that RecursiveRobustSFT makes at most 2 logN
α recur-

79

sive calls to RecursiveRobustSFT. Therefore, by a union bound, the overall failure probability

of all invocations of RecursiveRobustSFT is bounded by O

((
2 logN
α

)log1/α k ·N−4

)
.

Finally, by another application of union bound, the overall failure probability of Algorithm 10,

is bounded by O

((
2 logN
α

)log1/α k ·N−4

)
. This completes the proof of the lemma.

Now we are ready to present our main robust sparse Fourier transform algorithm that achieves
the guarantee of Theorem 4 for any ε using a number of samples that is near quadratic in k and a
runtime that is cubic and prove the main result of this section.
Proof of Theorem 4: The procedure that achieves the guarantees of the theorem is presented
in Algorithm 11. The correctness proof basically follows by invoking Lemma 24 and the runtime
and sample complexity follows from Lemma 23. If we let µ := ‖η‖2 then because x is a signal in
the k-high SNR regime, we have that |headµ(x̂)| ≤ k and

∥∥x̂− x̂headµ(x̂)

∥∥
2
≤ µ. Therefore, the

signal χ̂ that we computed in line 3 of Algorithm 11 by running procedure RecursiveRobustSFT

(Algorithm 10) with inputs
(
x, {0}nd , {root}, root, k, α, µ

)
, then all preconditions of Lemma 24 hold

and hence by invoking the first statement of this lemma we conclude that, with probability at least
1− 1

2N3 , χ̂ satisfies the following properties:

‖x̂− χ̂‖22 ≤
µ2

40
and supp(χ̂) ⊆ headµ(x̂).

This together with the k-high SNR assumption imply that, with probability at least 1 − 1
2N3 ,

supp(χ̂) = headµ(x̂). Therefore, tree T that we construct in line 4 of Algorithm 11 is in fact the
spliting tree of the set headµ(x̂), that is, supp(T) = headµ(x̂) and |leaves(T)| = |headµ(x̂)|.

In the rest of the correctness proof we condition on the event that tree T is the spliting tree of
the set headµ(x̂) and analyze the evolution of singal χ̂ε and tree T in every iteration t = 0, 1, 2, ...

of the while loop in Algorithm 11. Let χ̂
(t)
ε denote the signal χ̂ε at the end of iteration t, and let

T (t) denote the tree T at the end of iteration t. In every iteration t, Algorithm 11 computes a
subset Cheap(t) of leaves of the tree T (t−1) by running the primitive FindCheapToEstimate in
line 7 of the algorithm. By Claim 6, the set Cheap(t) ⊆ leaves

(
T (t−1)

)
satisfies the property that∣∣∣Cheap(t)

∣∣∣ · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u). Clearly Cheap(t) 6= ∅, by Claim 6. Then

the algorithm computes {Ĥu}u∈Cheap(t) by running the procedure Estimate in line 9 and then

updates χ̂
(t)
ε (fu)← Ĥu for every u ∈ Cheap(t) and χ̂

(t)
ε (ξ) = χ̂

(t−1)
ε (ξ) at every other frequency ξ.

Moreover, the algorithm updates the tree T (t) by removing every leaf that is in the set Cheap from
tree T (t−1). Hence, one can readily see that since at each iteration of the while loop, tree T looses
at least one of its leaves, the algorithm terminates after at most

∣∣leaves (T (0)
)∣∣ = k iterations,

since initially the number of leaves of T (0) equals |headµ(x̂)| = k.

If we denote by S(t) the set supp
(
χ̂

(t)
ε

)
for every t, then we claim that the following holds,

Pr

[∥∥∥x̂S(t) − χ̂(t)
ε

∥∥∥2

2
≤
ε
∣∣S(t)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t)
∣∣

N8
.

We prove the above claim by induction on iteration number t of the while loop of our algorithm.

One can see that the base of induction trivially holds for t = 0 because χ̂
(0)
ε ≡ 0. To prove the

80

inductive step, suppose that the inductive hypothesis holds for t− 1, that is,

Pr

[∥∥∥x̂S(t−1) − χ̂(t−1)
ε

∥∥∥2

2
≤
ε
∣∣S(t−1)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t−1)
∣∣

N8
.

If we let L :=
{
fu : u ∈ Cheap(t)

}
, then one can see from the way our algorithm updates signal

χ̂
(t)
ε and tree T (t) that S(t) \S(t−1) = L for every iteration t. Furthermore, by Lemma 19 and union

bound, we find that with probability at least 1− |S
(t−1)|
N8 − |Cheap(t)|

N8 = 1− |S
(t−1)|
N8 the following holds∥∥∥x̂S(t) − χ̂(t)

ε

∥∥∥2

2
=
∥∥∥(x̂− χ̂(t)

ε)S(t−1)

∥∥∥2

2
+
∥∥∥(x̂− χ̂(t)

ε)S(t)\S(t−1)

∥∥∥2

2

=
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2
+
∥∥∥(x̂− χ̂(t)

ε)L

∥∥∥2

2

≤ ε|S(t−1)|µ2

k
+
ε |L|
2k

∑
ξ∈[n]d\supp(T (t−1))

∣∣∣(x̂− χ̂(t−1)
ε

)
(ξ)
∣∣∣2 . (21)

Now we bound the second term above,∑
ξ∈[n]d\supp(T (t−1))

∣∣∣(x̂− χ̂(t−1)
ε

)
(ξ)
∣∣∣2

=
∑

ξ∈[n]d\(supp(T (t−1))∪S(t−1))

|x̂(ξ)|2 +
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2

≤
∑

ξ∈[n]d\headµ(x̂)

|x̂(ξ)|2 +
∥∥∥x̂S(t−1) − χ̂(t−1)

ε

∥∥∥2

2
(T was initially the splitting tree of headµ(x̂))

≤ 2µ2 (by the inductive hypothesis).

Therefore, by plugging the above bound back to (21) we find that,

Pr

[∥∥∥x̂S(t) − χ̂(t)
ε

∥∥∥2

2
≤
ε
∣∣S(t)

∣∣
k

· µ2

]
≥ 1−

∣∣S(t)
∣∣

N8
,

which proves the inductive claim. Therefore, by another application of union bound, with proba-
bility at least 1− 1

N3 , the output of the algorithm χ̂ε satisfies ‖x̂− χ̂ε‖22 ≤ (1 + ε) · µ2. This proves
the correctness of Algorithm 11.

Runtime and Sample Complexity. By Lemma 23, the running time and sample complex-
ity of invoking primitive RecursiveRobustSFT in line 3 of the algorithm are bounded by

Õ(k3) and Õ
(
k2 · 22

√
log k·log(2 logN)

)
, respectively. Additionally, by Lemma 19, the runtime and

sample complexity of every invocation of Estimate in line 9 of our algorithm are bounded by

Õ
(

k
ε|Cheap(t)|

∑
u∈Cheap(t) 2wT (t−1) (u) + k

ε · ‖χ̂
(t−1)
ε ‖0

)
and Õ

(
k

ε|Cheap(t)|
∑

u∈Cheap(t) 2wT (t−1) (u)
)

, re-

spectively. Using the fact that |Cheap(t)| · (8 + 4 log k) ≥ maxu∈Cheap(t) 2wT (t−1) (u) together with

‖χ̂(t−1)
ε ‖0 ≤ k, these time and sample complexities are further upper bounded by Õ

(
k|Cheap(t)|

ε + k2

ε

)
and Õ

(
k
ε · |Cheap(t)|

)
, respectively. We proved that the total number of iterations, and hence num-

ber of times we run Estimate in line 9 of the algorithm, is bounded by k. Using this together with

81

the fact that
∑

t

∣∣∣Cheap(t)
∣∣∣ = ‖χ̂ε‖0 = |headµ(x̂)| ≤ k, the total runtime and sample complexity

of all invocations of Estimate in all iterations can be upper bounded by Õ
(
k3

ε

)
and Õ

(
k2

ε

)
,

respectively. Therefore the total time and sample complexities of our algorithm are bounded by

Õ
(
k3

ε

)
and Õ

(
k2

ε + k2 · 22
√

log k·log(2 logN)
)

, respectively.

13 Experiments

In this section, we empirically show that our FFT backtracking algorithm for high dimensional
sparse signals is extremely fast and can compete with highly optimized software packages such as
the FFTW [Fri99, FJ]. Our experiments mainly focus on our Algorithm 4 which exploits only one
level of FFT backtracking and runs in Õ(k2.5) time (see Theorem 7). One of the baselines that
we compare our algorithm to is the vanilla FFT tree pruning of [KVZ19], in order to demonstrate
the speed gained by our backtracking technique. Furthermore, we compare our method against
the SFFT 2.0 [HIKP12b, HIKP], which is optimized for 1-dimensional signals, and show that our
method’s performance for small sparsity k is comparable to that of the SFFT 2.0 even in dimension
one.

In a subset of our experiments, we exploit a technique introduced in [GHI+13] to speed up
the high-dimensional Sparse FFT algorithms. This method works as follows. By fixing one of the
coordinates of a d-dimensional signal we get a (d− 1)-dimensional signal whose Fourier transform
corresponds to projecting (aliasing) the Fourier transform of the original signal along the coordinate
that was fixed in time domain. Thus we can effectively project the Fourier spectrum into a (d− 1)-
dimensional plane by computing a (d−1)-dimensional FFT. Using a small number of measurements
(projections with different values of the fixed coordinate) we can figure out which frequencies are
projected without collision and recover them. We use this trick to recover the frequencies that get
isolated under the projection and then run our algorithm on the residual signal. Since the residual
signal is likely to have a smaller sparsity than the original one, this projection technique can speed
up our Sparse FFT algorithms.

Sparse signal classes: In our experiments, we benchmark all methods on the following classes
of k-sparse signals:

1. Random support with overtones: The Fourier spectrum of this signal class is the super-
position of a set of random frequencies and a set of overtones of these frequencies. Specifically,
the support of this signal is supp(x̂) = Srandom ∪ Sovertone, which are defined as follows,

Srandom :=
{
f1,f2, . . .fk/(d+1) ∼ i.i.d. Unif(Zdn)

}
,

Sovertone := {f + (n/2) · ei : ∀f ∈ Srandom, i ∈ [d]} ,
where ei is the standard basis vector along coordinate i in dimension d. Note that every
f ∈ Srandom will collide with at least one overtone under projection along any coordinate,
thus, Srandom cannot be recovered using the projection trick. We added the overtones precisely
for this reason, i.e., to ensure that the projection trick does no recover the signal entirely and
there will be something left for the Sparse FFT to recover.

2. Randomly shifted d-dimensional Dirac Comb: The Fourier support of a Dirac Comb
(without shift) is the following,

Scomb :=
{(
i1 ·

n

k1/d
, i2 ·

n

k1/d
, . . . id ·

n

k1/d

)
: i1, i2, . . . id ∈ [k1/d]

}
.

82

25 26 27 28

Sparsity k

100

101

102

103
Ru

nt
im

e
(m

s)
3D combined signal, size N=221, no projection

Vanilla SFT, k3

Backtracked SFT, k21
2

(a) Mixture of random support
and a 3D Dirac Comb

25 26 27 28

Sparsity k

100

101

102

103

Ru
nt

im
e

(m
s)

3D comb signal, size N=221, no projection
Vanilla SFT, k3

Backtracked SFT, k21
2

(b) Randomly shifted 3D Dirac
Comb

25 26 27 28

Sparsity k

100

101

102

103

Ru
nt

im
e

(m
s)

3D comb-mixture, size N=221, no projection
Vanilla SFT, k3

Backtracked SFT, k21
2

(c) Mixture of two randomly
shifted 3D Dirac Combs

Figure 7: The runtime of recovering: (a) superposition of a k/2-sparse signal with random support
and a 3D Dirac Comb of sparsity k/2, (b) a randomly shifted 3D Dirac Comb with sparsity k, and
(c) mixture of two randomly shifted 3D Dirac Combs of sparsities k/2.

We generate a random frequency shift f̃ ∼ Unif(Zdn) and a random phase shift t̃ ∼ Unif(Zdn)
then define the k-sparse x̂ as,

x̂f :=
∑

j∈Scomb

e2πi f
> t̃
n · 1{f=j+f̃}.

Note that the projection trick will not help at all on this signal and thus it is a good test case
for the Sparse FFT algorithms. Additionally, this signal in time domain is also a randomly
shifted Dirac Comb with sparsity N/k and thus distinguishing it from zero with constant
probability would require Ω(k) samples. This makes the Dirac Comb a hard test case for our
tree exploration algorithms which heavily rely on the ZeroTest primitive to distinguish a
sparse signal from a zero signal.

3. Superposition of a k/2-sparse signal with random support and a d-dimensional
Dirac Comb of sparsity k/2: This signal is a mixture of instances defined in (1) and (2)

4. Superposition of two randomly shifted d-dimensional Dirac Combs of sparsity k/2:
This signal is a mixture of two independent instances of the randomly shifted Dirac Comb
defined in (2).

Reproducibility. All the codes used to produce our experimental results are publicly available
at this link: https://bitbucket.org/michaelkapralov/sfft-experiments/src/master/

13.1 FFT Backtracking vs Vanilla FFT Tree Pruning

We first show that our backtracking technique highly improves the runtime of FFT tree pruning
and compare our Algorithm 4 against the vanilla tree exploration of Kapralov et al. [KVZ19] as a
baseline. We run both algorithms on a variety of sparse signals of size N = 221 in dimension d = 3.
We tune the parameters of both algorithms to achieve success probabilities of higher than 90% over
100 independent trials with different random seeds. Projection recovery [GHI+13] is turned off for
both algorithms to fairly demonstrate the effect of our backtracking technique. In Figure 7, we
benchmark our methods on 3 different classes of k-sparse signals and observe that our Backtracked
Sparse FFT algorithm consistently achieves a faster runtime and also scales slower as a function of
sparsity k compared to the Vanialla Sparse FFT Tree Pruning of [KVZ19].

83

https://bitbucket.org/michaelkapralov/sfft-experiments/src/master/

210 212 214 216 218 220 222 224

Signal Size N

10 3

10 2

10 1

100

101

102

103

104
Ru

nt
im

e
(m

s)
3D comb-mixture, sparsity=32, no projection

FFTW 3.3.9
Backtracked SFT, k21

2

210 212 214 216 218 220 222 224

Signal Size N

10 2

10 1

100

101

102

103

Ru
nt

im
e

(m
s)

3D comb signal, sparsity=32, no projection
FFTW 3.3.9
Backtracked SFT, k21

2

(a) The input signal classes are: (Left) mixture of two randomly shifted 3D Dirac Combs and
(Right) a randomly shifted 3D Dirac Comb

210 212 214 216 218 220 222 224

Signal Size N

10 2

10 1

100

101

102

103

104

Ru
nt

im
e

(m
s)

3D random signal, sparsity=32, with projection
FFTW 3.3.9
Backtracked SFT, k21

2

210 212 214 216 218 220 222 224

Signal Size N

10 2

10 1

100

101

102

103
Ru

nt
im

e
(m

s)

3D combined signal, sparsity=32, with projection
FFTW 3.3.9
Backtracked SFT, k21

2

(b) The input signal classes are: (Left) a random support signal with overtones and (Right)
mixture of random support and a randomly shifted 3D Dirac Comb

Figure 8: The runtime of recovering various signal classes with sparsity k = 32. We consider two
variants of our Backtracked Sparse FFT: (a) purely Algorithm 4 with no prefiltering or projection
tricks, (b) enhanced version of Algorithm 4 which first applies the projection trick.

13.2 Sparse FFT Backtracking vs FFTW

Next we compare our Algorithm 4 against the highly optimized FFTW 3.3.9 software package and
show that our algorithm outperforms FFTW by a large margin when the signal size N is large. We
run both algorithms on a variety of signals of sparsity k = 32 in dimension d = 3. As in previous
set of experiments, the parameters of our algorithm is tuned to succeed in over 90% of instances.
In Figure 8, we benchmark our method and the FFTW on 4 different classes of k-sparse signals and
observe that in all cases the runtime of our Backtracked Sparse FFT algorithm scales very weakly
with signal size N , particularly, our runtime grows far slower than that of FFTW. Consequently
our algorithm is orders of magnitude faster than FFTW for any N ≥ 218.

84

215 217 219 221 223

Signal Size N

10 1

100

101

102

103
Ru

nt
im

e
(m

s)
1D random signal, sparsity=32, no projection

FFTW 3.3.9
Backtracked SFT, k21

2

SFFT 2.0

(a) Random Fourier support

215 217 219 221 223

Signal Size N

10 1

100

101

102

103

Ru
nt

im
e

(m
s)

1D comb signal, sparsity=32, no projection
FFTW 3.3.9
Backtracked SFT, k21

2

SFFT 1.0

(b) Randomly shifted Dirac Comb

Figure 9: The runtime of recovering: (a) k-sparse signal with random support and (b) a randomly
shifted Dirac Comb with sparsity k.

13.3 Comparison to SFFT 2.0 in Dimension One

Finally, in this set of experiments we compare our Algorithm 4 against the SFFT software pack-
age [HIKP] which is highly optimized for 1-dimensional sparse signals and show that we can achieve
comparable performance even in dimension one. We run both algorithms on two classes of signals
with sparsity k = 32 in dimension d = 1. We remark that the runtime of SFFT, which is imple-
mented based on [HIKP12b], will certainly scale badly in high dimensions due to filter support
increasing. However, since there is no optimized code available for SFFT in high dimensions, we
feel that it is more informative to compare our optimized code to their optimized code in 1D rather
than have a weak extension of their approach as a benchmark.

The SFFT package includes two versions: 1.0 and 2.0. The difference is that SFFT 2.0 adds a
Comb prefiltering heuristic to improve the runtime. The idea of this heuristic is to apply the aliasing
filter, which is very efficient and has no leakage, to restrict the locations of the large coefficients
according to their values mod some number B = O(k). The heuristic, in a preprocessing stage,
subsamples the signal at rate 1/B and then takes the FFT of the subsampled signal.

In Figure 9, we benchmark our method and SFFT (1.0 and 2.0) on 2 different classes of k-sparse
signals and observe that the runtime of our Backtracked Sparse FFT algorithm is comparable to
that of SFFT. In Fig. 9a we run the algorithms on a signal with random Fourier support and
observe that SFFT 2.0 runs slightly faster. Since the support is random, the heuristic trick used
in SFFT 2.0 can recover a large portion of the frequencies and thus SFFT 2.0 owes much of its
speed to the heuristic trick. On the other hand, in Fig. 9b, we run the algorithms on a randomly
shifted Dirac Comb and observe that our method outperforms SFFT 1.0. Note that since the Comb
prefiltering heuristic used in SFFT 2.0 completely fails on a Dirac Comb input, we used SFFT 1.0
in this experiment instead. This result demonstrates that for signals with small sparsity k, our
algorithm can run even faster than SFFT when the input’s support is a multiplicative subgroup of
Zn, such as the Dirac Comb.

85

14 Acknowledgements

Michael Kapralov and Amir Zandieh have received funding from the European Research Coun-
cil (ERC) under the European Unions Horizon 2020 research and innovation programme (grant
agreement No. 759471) for the project SUBLINEAR. Amir Zandieh was supported by the Swiss
NSF grant No. P2ELP2 195140. Karl Bringmann and Vasileios Nakos have received funding from
the European Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979) for the project TIPEA.

References

[ABDN18] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences
of falsifying SETH and the orthogonal vectors conjecture. In Ilias Diakonikolas, David
Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 253–266. ACM, 2018.

[AGS03] A Akavia, S Goldwasser, and S Safra. Proving hard-core predicates using list decod-
ing. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 146–157. IEEE, 2003.

[Aka10] Adi Akavia. Deterministic sparse fourier approximation via fooling arithmetic progres-
sions. In COLT, pages 381–393, 2010.

[AWW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of
faster alignment of sequences. In International Colloquium on Automata, Languages,
and Programming, pages 39–51. Springer, 2014.

[AZKK19] Andisheh Amrollahi, Amir Zandieh, Michael Kapralov, and Andreas Krause. Efficiently
Learning Fourier Sparse Set Functions. Advances In Neural Information Processing
Systems 32 (Nips 2019), 32(CONF), 2019.

[BCG+12] Petros Boufounos, Volkan Cevher, Anna C Gilbert, Yi Li, and Martin J Strauss. What’s
the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages
61–72. Springer, 2012.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly learning DNF and characterizing statistical query learning
using Fourier analysis. In Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 253–262, 1994.

[BM96] Sonali Bagchi and Sanjit K Mitra. The nonuniform discrete fourier transform and its
applications in filter design. i. 1-d. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 43(6):422–433, 1996.

[BM12] Sonali Bagchi and Sanjit K Mitra. The nonuniform discrete Fourier transform and its
applications in signal processing, volume 463. Springer Science & Business Media, 2012.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the twentieth annual ACM symposium on
Theory of computing, pages 301–309, 1988.

86

[Bou14] Jean Bourgain. An improved estimate in the restricted isometry problem. In Geometric
aspects of functional analysis, pages 65–70. Springer, 2014.

[Can] E. Candes. Lecture 11 from the course Applied Fourier Analysis and Elements of
Modern Signal Processing, Winter 2016. https://statweb.stanford.edu/~candes/

teaching/math262/Lectures/Lecture11.pdf.

[CGV13] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry
of Fourier matrices and list decodability of random linear codes. SIAM Journal on
Computing, 42(5):1888–1914, 2013.

[CI17] Mahdi Cheraghchi and Piotr Indyk. Nearly optimal deterministic algorithm for sparse
Walsh-Hadamard transform. ACM Transactions on Algorithms (TALG), 13(3):1–36,
2017.

[CKPS16] Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation
without a frequency gap. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 741–750. IEEE, 2016.

[CKSZ17] Volkan Cevher, Michael Kapralov, Jonathan Scarlett, and Amir Zandieh. An adaptive
sublinear-time block sparse Fourier transform. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 702–715, 2017.

[CRT06] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52:489–509, 2006.

[CT06] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random
projections: Universal encoding strategies? IEEE transactions on information theory,
52(12):5406–5425, 2006.

[Don06] D. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[DR93] Alok Dutt and Vladimir Rokhlin. Fast Fourier transforms for nonequispaced data.
SIAM Journal on Scientific computing, 14(6):1368–1393, 1993.

[FJ] Matteo Frigo and Steven G. Johnson. FFTW: C subroutine library for computing the
discrete fourier transform (DFT). https://www.fftw.org/.

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sens-
ing. Springer, 2013.

[Fri99] Matteo Frigo. A fast Fourier transform compiler. In Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation, pages 169–180,
1999.

[FS03] Jeffrey A Fessler and Bradley P Sutton. Nonuniform fast fourier transforms using
min-max interpolation. IEEE transactions on signal processing, 51(2):560–574, 2003.

[GGI+02] Anna C Gilbert, Sudipto Guha, Piotr Indyk, Shanmugavelayutham Muthukrishnan,
and Martin Strauss. Near-optimal sparse Fourier representations via sampling. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
152–161, 2002.

87

https://statweb.stanford.edu/~candes/teaching/math262/Lectures/Lecture11.pdf
https://statweb.stanford.edu/~candes/teaching/math262/Lectures/Lecture11.pdf
https://www.fftw.org/

[GHI+13] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price, and Lixin Shi.
Sample-optimal average-case sparse Fourier transform in two dimensions. In 2013 51st
Annual Allerton Conference on Communication, Control, and Computing (Allerton),
pages 1258–1265. IEEE, 2013.

[GIKW19] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Complete-
ness for first-order properties on sparse structures with algorithmic applications. ACM
Trans. Algorithms, 15(2):23:1–23:35, 2019.

[GL89] Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing,
pages 25–32, 1989.

[GL04] Leslie Greengard and June-Yub Lee. Accelerating the nonuniform fast fourier transform.
SIAM review, 46(3):443–454, 2004.

[GMS05] Anna C Gilbert, Shan Muthukrishnan, and Martin Strauss. Improved time bounds
for near-optimal sparse Fourier representations. In Wavelets XI, volume 5914, page
59141A. International Society for Optics and Photonics, 2005.

[GR87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.
Journal of computational physics, 73(2):325–348, 1987.

[HIKP] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Sparse Fast Fourier
Transform code (SFFT 1.0 and 2.0). https://groups.csail.mit.edu/netmit/sFFT/
code.html.

[HIKP12a] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse
Fourier transform. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 563–578. ACM, 2012.

[HIKP12b] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical
algorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 1183–1194. SIAM, 2012.

[HR16] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled Fourier
matrices. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
pages 288–297. Association for Computing Machinery, 2016.

[HR17] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier
matrices. In Geometric aspects of functional analysis, pages 163–179. Springer, 2017.

[IGS07] M. A. Iwen, A. Gilbert, and M. Strauss. Empirical Evaluation of a Sub-Linear Time
Sparse DFT Algorithm. Communications in Mathematical Sciences, 5, 2007.

[IK14] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any constant
dimension. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Sci-
ence, pages 514–523. IEEE, 2014.

[IKP14] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) Sample-optimal sparse Fourier
transform. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 480–499. SIAM, 2014.

88

https://groups.csail.mit.edu/netmit/sFFT/code.html
https://groups.csail.mit.edu/netmit/sFFT/code.html

[Iwe10] Mark A Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Com-
putational Mathematics, 10(3):303–338, 2010.

[JENR15] Nagaraj Thenkarai Janakiraman, Santosh K. Emmadi, Krishna R. Narayanan, and
Kannan Ramchandran. Exploring connections between sparse fourier transform com-
putation and decoding of product codes. In 53rd Annual Allerton Conference on Com-
munication, Control, and Computing, Allerton 2015, Allerton Park & Retreat Center,
Monticello, IL, USA, September 29 - October 2, 2015, pages 1366–1373. IEEE, 2015.

[JLS20] Yaonan Jin, Daogao Liu, and Zhao Song. A robust multi-dimensional sparse Fourier
transform in the continuous setting. arXiv preprint arXiv:2005.06156, 2020.

[Kap16] Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 264–277, 2016.

[Kap17] Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via isolation
on average. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual
Symposium on, pages 651–662. Ieee, 2017.

[KKP09] Jens Keiner, Stefan Kunis, and Daniel Potts. Using nfft 3—a software library for various
nonequispaced fast fourier transforms. ACM Transactions on Mathematical Software
(TOMS), 36(4):1–30, 2009.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the fourier spec-
trum. SIAM Journal on Computing, 22(6):1331–1348, 1993.

[KVZ19] Michael Kapralov, Ameya Velingker, and Amir Zandieh. Dimension-independent sparse
Fourier transform. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2709–2728. SIAM, 2019.

[KY11] Krzysztof Kazimierczuk and Vladislav YU. Accelerated nmr spectroscopy by using
compressed sensing. Angewandte Chemie International Edition, 2011.

[LDSP08] Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed
sensing MRI. IEEE signal processing magazine, 25(2):72–82, 2008.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and
learnability. Journal of the ACM (JACM), 1993.

[Man94] Y. Mansour. Learning Boolean Functions via the Fourier Transform. Theoretical Ad-
vances in Neural Computation and Learning, 1994.

[Man95] Yishay Mansour. Randomized interpolation and approximation of sparse polynomials.
SIAM Journal on Computing, 24(2):357–368, 1995.

[Mat] Non-uniform fast fourier transforms in matlab. https://www.mathworks.com/help/

matlab/ref/double.nufft.html.

[MZIC17] Sami Merhi, Ruochuan Zhang, Mark A Iwen, and Andrew Christlieb. A New Class of
Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations with Guar-
antees. Journal of Fourier Analysis and Applications, pages 1–34, 2017.

89

https://www.mathworks.com/help/matlab/ref/double.nufft.html
https://www.mathworks.com/help/matlab/ref/double.nufft.html

[NSW19] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly) sample-optimal sparse fourier
transform in any dimension; ripless and filterless. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 1568–1577. IEEE, 2019.

[OHR19] Frank Ong, Reinhard Heckel, and Kannan Ramchandran. A fast and robust paradigm
for fourier compressed sensing based on coded sampling. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United
Kingdom, May 12-17, 2019, pages 5117–5121. IEEE, 2019.

[OPR15] Frank Ong, Sameer Pawar, and Kannan Ramchandran. Fast and efficient sparse 2d
discrete fourier transform using sparse-graph codes. CoRR, abs/1509.05849, 2015.

[PR13] Sameer Pawar and Kannan Ramchandran. Computing a k-sparse n-length discrete
fourier transform using at most 4k samples and o (k log k) complexity. In 2013 IEEE
International Symposium on Information Theory, pages 464–468. IEEE, 2013.

[PR14] Sameer Pawar and Kannan Ramchandran. A robust R-FFAST framework for com-
puting a k-sparse n-length DFT in o (k log n) sample complexity using sparse-graph
codes. In 2014 IEEE International Symposium on Information Theory, pages 1852–
1856. IEEE, 2014.

[PS15] Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages
583–600. IEEE, 2015.

[PST01] Daniel Potts, Gabriele Steidl, and Manfred Tasche. Fast fourier transforms for noneq-
uispaced data: A tutorial. In Modern sampling theory, pages 247–270. Springer, 2001.

[Sau18] Tomas Sauer. Prony’s method: an old trick for new problems. 2018.

[Uma19] Chris Umans. Fast generalized dfts for all finite groups. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 793–805. IEEE, 2019.

[Wil05] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implica-
tions. Theoretical Computer Science, 348(2-3):357–365, 2005.

[Wol67] J Wolf. Decoding of bose-chaudhuri-hocquenghem codes and prony’s method for curve
fitting (corresp.). IEEE Transactions on Information Theory, 13(4):608–608, 1967.

90

	1 Introduction
	2 Computational Tasks and Formal Results Statement
	3 Preliminaries and notation
	3.1 Fourier Transform basics
	3.2 Notation for manipulating FFT computation trees

	4 Techniques and Comparison with the Previous Technology
	4.1 Previous Techniques
	4.2 Our Techniques
	4.3 Explanation of the barriers faced

	5 Roadmap
	6 Machinery from Previous work: Adaptive Aliasing Filters
	6.1 One-dimensional Fourier transform
	6.2 d-dimensional Fourier transform

	7 Kraft-McMillan inequality and averaging claims
	8 Exactly k-sparse Case
	8.1 Warm Up
	8.2 The Almost Quadratic-Time Algorithm

	9 Lower Bound on Non-Equispaced Fourier Transform
	10 Robust analysis of adaptive aliasing filters
	10.1 One-dimensional case
	10.2 Extension to d dimensions

	11 Robust Sparse Fourier Transform I
	11.1 Computational Primitives for the Robust Setting
	11.2 Main Algorithm
	11.3 Proving the Correctness of our Computational Primitives

	12 Robust Sparse Fourier Transform II
	13 Experiments
	13.1 FFT Backtracking vs Vanilla FFT Tree Pruning
	13.2 Sparse FFT Backtracking vs FFTW
	13.3 Comparison to SFFT 2.0 in Dimension One

	14 Acknowledgements

