
ar
X

iv
:2

11
0.

10
28

3v
1

 [
cs

.C
G

]
 1

9
O

ct
 2

02
1

Fine-Grained Complexity Theory:

Conditional Lower Bounds for Computational Geometry

Karl Bringmann∗

December 26, 2021

Abstract

Fine-grained complexity theory is the area of theoretical computer science that proves conditional

lower bounds based on the Strong Exponential Time Hypothesis and similar conjectures. This area has

been thriving in the last decade, leading to conditionally best-possible algorithms for a wide variety of

problems on graphs, strings, numbers etc.

This article is an introduction to fine-grained lower bounds in computational geometry, with a focus

on lower bounds for polynomial-time problems based on the Orthogonal Vectors Hypothesis. Specifically,

we discuss conditional lower bounds for nearest neighbor search under the Euclidean distance and Fréchet

distance.

1 Introduction

The term fine-grained complexity theory was coined in the last decade to describe the area of theoretical
computer science that proves conditional lower bounds on the time complexity of algorithmic problems,
assuming some hypothesis. The goal is to explain the computational complexity of many different problems
based on a small number of core barriers. The general approach dates back to the introduction of 3SUM-
hardness in ’95 [25] (or even to the introduction of NP-hardness, depending on the interpretation). The
last decade has seen several new hypotheses and a wealth of new techniques for proving conditional lower
bounds, leading to a large body of literature on the topic, see the surveys [30, 10]. In this article we give a
self-contained introduction to recent fine-grained complexity results in the area of computational geometry.
Instead of the most technically deep results, we focus on simple techniques that can be easily transferred to
other problems. Moreover, we focus on lower bounds for polynomial-time problems.

The basic setup of fine-grained lower bounds is similar to classic NP-hardness reductions: A fine-grained
reduction from problem P to problem Q is an algorithm that given an instance I of size n for problem P
computes in time r(n) an equivalent instance J of size s(n) for problem Q.1 Thus, if there is an algorithm
solving problem Q in time T (n), by this reduction there is an algorithm solving problem P in time r(n) +
T (s(n)). In particular, if r(n) +T (s(n)) is faster than the hypothesized optimal time complexity of problem
P , then problem Q cannot be solved in time T (n) assuming the hypothesis for P . We will see several concrete
examples of this argumentation throughout this article.

∗Saarland University and Max Planck Institute for Informatics, Saarland Informatics Campus, Germany,
bringmann@cs.uni-saarland.de This work is part of the project TIPEA that has received funding from the European Re-
search Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No.
850979).

1What we sketched here is a many-one reduction, since each instance of P is reduced to one instance of Q. One can
also consider Turing reductions, where the reduction algorithm is allowed to make several calls to an oracle for Q. See [20,
Definition 1] for the formal definition of (Turing-style) fine-grained reductions.

1

http://arxiv.org/abs/2110.10283v1
bringmann@cs.uni-saarland.de

1.1 Hardness Hypotheses

Let us discuss the three main hypotheses used in computational geometry.

1.1.1 3SUM Hypothesis

In the 3SUM problem, given n integers, we want to decide whether any three of them sum to 0. The 3SUM
Hypothesis postulates that the classic O(n2)-time algorithm for 3SUM cannot be improved to time O(n2−ε)
for any ε > 0. This hypothesis was introduced in ’95 in a seminal work by Gajentaan and Overmars [25],
making computational geometry a pioneer in fine-grained complexity theory. We refer to [30] for an overview
of lower bounds based on the 3SUM Hypothesis; in this introduction we focus on other hypotheses.

1.1.2 Strong Exponential Time Hypothesis

The strongest new impulse for conditional lower bounds in the last two decades was the introduction of the
Strong Exponential Time Hypothesis. This hypothesis concerns the fundamental k-SAT problem: Given a
formula φ in conjunctive normal form of width k on n variables and m clauses, decide whether φ is satisfiable.
Naively this problem can be solved in time O(2nm). Improved algorithms solve k-SAT in time O(2(1−εk)n)
for some constant εk > 0, but for all known algorithms the constant εk tends to 0 for k → ∞. This lead
Impagliazzo and Paturi [26] to postulate the following:

Hypothesis 1. (Strong Exponential Time Hypothesis – SETH). For any ε > 0, there exists k ≥ 3
such that k-SAT on formulas with n variables cannot be solved in time O(2(1−ε)n).

This has become the most standard hypothesis in fine-grained complexity theory [30], and it has been
used to prove tight lower bounds for a wide variety of problems, see, e.g., [1, 3, 9, 12, 14, 15, 16, 17, 18, 19,
22, 28, 32].

1.1.3 Orthogonal Vectors Hypothesis

In the Orthogonal Vectors problem (OV), given sets of Boolean vector A,B ⊆ {0, 1}d of size n, we ask

whether there exists a pair (a, b) ∈ A× B that is orthogonal, that is, 〈a, b〉 = ∑d
i=1 ai · bi = 0. Naively this

problem can be solved in time O(n2d). For small dimension d = O(log n) there are improved algorithms [4],
but for ω(logn) ≤ d ≤ no(1) no algorithm running in time O(n2−ε) is known. This barrier is formalized as
follows.

Hypothesis 2. (OV Hypothesis – OVH [31]). For any ε > 0, OV cannot be solved in time O(n2−ε poly(d)).

Note that for d = nΩ(1) we can naively solve OV in time O(n2d) = poly(d) = O(n2−ε poly(d)), and thus
OVH does not apply. Indeed, the hypothesis only asserts that there exists a dimension d = d(n) such that
OV cannot be solved in time O(n2−ε poly(d)); this dimension d must be of the form ω(log n) ≤ d ≤ no(1).

OVH has been used to prove tight conditional lower bounds for a wide range of problems, see, e.g., [1,
9, 12, 14, 16, 17, 19, 32]. It is known that OVH is at least as believable as SETH, because SETH implies
OVH [31].

In this article we focus on lower bounds based on OVH (since SETH implies OVH this also yields lower
bounds based on SETH). Specifically, in Section 2 we consider nearest neighbor search, and in Section 3 we
discuss curve similarity.

2 Nearest Neighbor Search

A fundamental problem of computer science is to compute the nearest neighbor of a point q ∈ R
d among

a set of points P ⊂ R
d, that is, to determine the point p ∈ P minimizing the Euclidean distance ‖p − q‖.

This has an abundance of applications such as pattern recognition, spell checking, or coding theory. These

2

applications often come in the form of a data structure problem, where we can first preprocess P to build a
data structure that can then quickly answer nearest neighbor queries. Naively, a nearest neighbor query can
be answered in time O(nd), where n is the number of points in the data set P . Improved algorithms exist in
small dimensions, for example k-d-trees have a worst-case query time of O(d ·n1−1/d) [27]. However, already
for a large constant dimension d ≥ 1/ε this query time is essentially linear, specifically it is Ω(n1−ε). We
can thus ask:

Does high-dimensional nearest neighbor search require near-linear query time?

In the following we answer this question affirmatively assuming OVH. To connect nearest neighbor search
to the OV problem we make use of the following embedding, which maps Boolean vectors to points in R

d

such that from the points’ Euclidean distance we can read off whether the vectors are orthogonal.

Lemma 1 (Embedding Orthogonality into Euclidean Distance). There are functions A,B : {0, 1}d 7→ R
d

and a threshold τ such that 〈a, b〉 = 0 if and only if ‖A(a)− B(b)‖ ≤ τ for any a, b ∈ {0, 1}d. The functions

A,B and the threshold τ can be evaluated in time O(d).

Proof. For any a ∈ {0, 1}d we construct p := A(a) by setting pi := 1 + 2ai for any 1 ≤ i ≤ d. Similarly, for
any b ∈ {0, 1}d we construct q := B(b) by setting qi := 2 − 2bi. Note that |pi − qi| = |2(ai + bi)− 1|, which
evaluates to 3 if ai = bi = 1 and to 1 otherwise. Therefore, we obtain

‖p− q‖ =
(

d
∑

i=1

|pi − qi|2
)1/2

=
(

32 · 〈a, b〉+ 12 · (d− 〈a, b〉)
)1/2

= (d+ 8〈a, b〉)1/2.

Setting τ := d1/2 yields ‖p− q‖ = ‖A(a)− B(b)‖ ≤ τ if and only if 〈a, b〉 = 0.

2.1 Bichromatic Closest Pair

We use the above embedding to prove a conditional lower bound for the the Bichromatic Closest Pair
problem, an offline variant of nearest neighbor search:

Problem 2 (Bichromatic Closest Pair). Given sets P,Q ⊂ R
d of size n, compute the pair (p, q) ∈ P × Q

minimizing the Euclidean distance ‖p− q‖.

Bichromatic Closest Pair cannot be solved in time O(n2−ε poly(d)) under OVH:

Theorem 3 (Lower Bound for Bichromatic Closest Pair [6]). For any ε > 0, Bichromatic Closest Pair

cannot be solved in time O(n2−ε poly(d)), unless OVH fails.

Proof. We reduce from OV to Bichromatic Closest Pair using the embedding from Lemma 1. Given an OV
instance (A,B) of size n in dimension d, we construct the point sets P = {A(a) | a ∈ A} and Q := {B(b) |
b ∈ B}. By Lemma 1, the bichromatic closest pair of (P,Q) has distance ≤ τ if and only if there exists an
orthogonal pair of vectors. Thus, a solution to the constructed Bichromatic Closest Pair instance solves the
given OV instance. Since n and d do not change, the running time lower bound is immediate from OVH
(Hypothesis 2).

2.2 Nearest Neighbor Data Structures

Now we consider the data structure version of nearest neighbor search.

Problem 4 (Nearest Neighbor Data Structure). In the preprocessing we are given a set P ⊂ R
d of size n

and we build a data structure. The data structure allows to answer nearest neighbor queries: Given a point

q ∈ R
d, compute the point p ∈ P minimizing the Euclidean distance ‖p− q‖.

3

Observe that any nearest neighbor data structure also solves the Bichromatic Closest Pair Problem, by
building the data structure for P and then querying every q ∈ Q. If the data structure has preprocessing
time TP (n, d) and query time TQ(n, d), then this solves Bichromatic Closest Pair in time TP (n, d) + n ·
TQ(n, d). Theorem 3 thus implies that Bichromatic Closest Pair cannot be solved with preprocessing time
O(n2−ε poly(d)) and query time O(n1−ε poly(d)):

Corollary 5 (Lower Bound for Nearest Neighbor Data Structures I). For any ε > 0, there is no nearest

neighbor data structure with preprocessing time O(n2−ε poly(d)) and query time O(n1−ε poly(d)), unless

OVH fails.

It might seem natural that the preprocessing time is limited to O(n2−ε), because from OVH we can prove
only quadratic lower bounds. In the following we show that this intuition is wrong, and the above corollary
can be improved to rule out any polynomial preprocessing time. To this end, we need an unbalanced version
of OVH, which shows that the brute force enumeration of all |A| · |B| pairs of vectors is also necessary when
|A| = nα ≪ n = |B|. This tool was introduced in [3]; see also [14] for a proof that unbalanced OV and
standard OV are equivalent.

Lemma 6 ([3]). For any ε, α ∈ (0, 1), OV on instances (A,B) with |B| = n and |A| = Θ(nα) cannot be

solved in time O(n1+α−ε poly(d)), unless OVH fails.

Proof. Let (A′, B′) be a balanced instance of OV, that is, |A′| = |B′| = n. Split B′ into Θ(n1−α) sets
B′

1, . . . , B
′
ℓ of size Θ(nα). Run an unbalanced OV algorithm on each pair (A′, B′

i), and note that from the
results we can infer whether (A′, B′) contains an orthogonal pair of vectors. If each unbalanced instance can
be solved in time O(n1+α−ε), then all Θ(n1−α) unbalanced instances in total can be solved in time O(n2−ε),
contradicting OVH.

With this tool, we can rule out any polynomial preprocessing time poly(n, d) and query time O(n1−ε poly(d))
for nearest neighbor search:

Theorem 7 (Lower Bound for Nearest Neighbor Data Structures II). For any ε, β > 0, there is no nearest

neighbor data structure with preprocessing time O(nβ poly(d)) and query time O(n1−ε poly(d)), unless OVH
fails.

Proof. Fix ε, β > 0 and suppose nearest neighbor can be solved with preprocessing time O(|P |β poly(d)) and
query time O(|P |1−ε poly(d)). Set α := 1/β. Given an OV instance (A,B) with |B| = n and |A| = Θ(nα),
we use the embedding from Lemma 1 to construct the sets P := {A(a) | a ∈ A} and Q := {B(b) | b ∈ B}.
We run the preprocessing of the nearest neighbor data structure on P ; this takes time O(|P |β poly(d)) =
O((nα)β poly(d)) = O(n poly(d)). Then we query the data structure for each q ∈ Q; over all |Q| queries this
takes total time

O(|Q| · |P |1−ε poly(d)) = O(n1+α·(1−ε) poly(d)) = O(n1+α−ε′ poly(d)),

for ε′ := α · ε. By Lemma 1, some query q ∈ Q returns a point p ∈ P within distance τ if and only if there
exists an orthogonal pair of vectors in A×B. We can thus solve unbalanced OV in time O(n1+α−ε′ poly(d)),
contradicting Lemma 6.

We have thus shown that high-dimensional nearest neighbor search requires almost-linear query time,
even if we allow any polynomial preprocessing time.

2.3 Further Results on Nearest Neighbor Search

Let us discuss some advanced research directions on nearest neighbor search. The proofs here are beyond
the scope of this introduction to the topic.

4

• Smaller Dimension: The best known query time for nearest neighbor search is of the form n1−Θ(1/d) [27],
which is near-linear n1−o(1) for any unbounded dimension d = ω(1). Recall that OVH asserts hardness
for some dimension ω(logn) ≤ d ≤ no(1). A line of research has tried to close this gap [32, 22]; the
current record shows that Theorem 3 already holds in dimension d = 2O(log∗ n) [22]. It remains an
important open problem to close the remaining gap and show hardness for any dimension d = ω(1).

• Approximate Nearest Neighbor: In many practical applications it suffices to compute nearest neighbors
approximately. Note that the OV problem asks whether there is a pair of vectors with 〈a, b〉 = 0
or whether all vectors have 〈a, b〉 ≥ 1. Inspecting the proof of Lemma 1, we see that it is hard to
distinguish between Euclidean distance at most d1/2 or at least (d + 8)1/2. This shows hardness of
computing a (d + 8)1/2/d1/2 = 1 + Θ(1/d) approximation for Bichromatic Closest Pair. A big leap
forward was made by Rubinstein [28], who proved that Theorem 3 even holds for (1+δ)-approximation
algorithms, where δ = δ(ε) is some positive constant. See also [29] for more hardness of approximation
results in fine-grained complexity theory.

3 Curve Similarity and the Fréchet Distance

We now turn to a different realm of applications. For our purposes, a curve is a sequence of points in the
plane, that is, π = (π1, . . . , πn) with πi ∈ R

2. We call n the length of π. A typical task is to judge the
similarity of two given curves. Several distance measures have been proposed for this task, but the most
classical and most popular in computational geometry is the Fréchet distance2. For intuition, imagine a
dog walking along curve π and its owner walking along curve σ, connected by a leash. They start at the
respective startpoints and end at their endpoints, and at any point in time either the dog advances to the
next vertex along its curve, or the owner advances, or they both advance together. The shortest possible
leash length admitting such a traversal is called the Fréchet distance of π and σ.

Formally, for curves π = (π1, . . . , πn) and σ = (σ1, . . . , σm), a traversal is a sequence ((i1, j1), . . . , (iT , jT))
such that (i1, j1) = (1, 1), (iT , jT) = (n,m), and for every 1 ≤ t < T we have (it+1, jt+1) ∈ {(it+1, jt), (it, jt+
1), (it + 1, jt + 1)}. The (discrete) Fréchet distance between π and σ is defined as

dF (π, σ) = min
((i1,j1),...,(iT ,jT))

max
1≤t≤T

‖πit − σjt‖,

where the minimum goes over all traversals of π and σ.
The Fréchet distance of two curves of length n can be computed in time O(n2), by a simple dynamic

programming algorithm that computes the Fréchet distance of any prefix (π1, . . . , πi) of π and any prefix
(σ1, . . . , σj) of σ [24].

In the following, we first discuss the Fréchet distance from the viewpoint of nearest neighbor search, and
then we elaborate on the problem of computing the Fréchet distance of two given curves.

3.1 Nearest Neighbor Search under Fréchet Distance

We start with an embedding of vectors into curves, similar to Lemma 1.

Lemma 8 (Embedding Orthogonality into Fréchet Distance [9]). There are functions A,B mapping any

z ∈ {0, 1}d to a curve of length d in the plane, such that 〈a, b〉 = 0 if and only if dF (A(a),B(b)) ≤ 1 for any

a, b ∈ {0, 1}d. The functions A,B can be evaluated in time O(d).

Proof. For any a ∈ {0, 1}d we construct the curve π := A(a) by setting πi := (3i, 1 + 2ai) ∈ R
2 for any

1 ≤ i ≤ d. Similarly, for any b ∈ {0, 1}d we construct σ := B(b) by setting σi := (3i, 2 − 2bi). Note that
‖πi − σi‖ = |2(ai + bi) − 1|, which evaluates to 3 if ai = bi = 1 and to 1 otherwise. Moreover, for i 6= j we
have ‖πi − σj‖ ≥ 3.

2For simplicity, we focus on the discrete Fréchet distance [24] instead of the slightly more standard continuous variant [7].

5

Consider a traversal of π and σ. If at some point the dog advances but not the owner (or the owner
advances but not the dog), we get a distance of the form ‖πi − σj‖ for i 6= j, and thus the leash length must
be at least 3. In the remaining case, the dog and its owner always advance together, meaning that at time i
the dog is at position πi and the owner is at position σi. This traversal has distance max1≤i≤d ‖πi − σi‖ =
max1≤i≤d |2(ai + bi)− 1|, which is 1 if a, b are orthogonal, and 3 otherwise. Hence, dF (π, σ) ≤ 1 holds if and
only if 〈a, b〉 = 0.

Using this embedding, we can show lower bounds for nearest neighbor search among curves in the plane,
analogously to the results for Euclidean nearest neighbor search from Section 2 (the same proofs work almost
verbatim). Specifically, in the problem Bichromatic Closest Pair under Fréchet Distance we are given sets
P,Q, each containing n curves of length d in the plane, and we want to compute the pair (π, σ) ∈ P × Q
that minimizes the Fréchet distance dF (π, σ). Naively, this can be solved in time O(n2d2).

Theorem 9 (Lower Bound for Bichromatic Closest Pair under Fréchet Distance). For any ε > 0, Bichro-
matic Closest Pair under Fréchet Distance cannot be solved in time O(n2−ε poly(d)), unless OVH fails.

Similarly, in nearest neighbor data structures for the Fréchet distance we can preprocess a given set P
consisting of n curves of length d in the plane, and then given a query curve σ of length d in the plane we
want to find the curve π ∈ P minimizing dF (π, σ).

Theorem 10 (Lower Bound for Nearest Neighbor Data Structures under Fréchet Distance). For any ε, β >
0, there is no data structure for nearest neighbor search under Fréchet distance with preprocessing time

O(nβ poly(d)) and query time O(n1−ε poly(d)), unless OVH fails.

3.2 Computing the Fréchet Distance

A classic dynamic programming algorithm computes the Fréchet distance between two curves of length n in
time O(n2) [24]. A breakthrough result from ’14 shows a tight lower bound ruling out time O(n2−ε) under
OVH [9]. This result paved the way for tight lower bounds for many other dynamic programming problems
(mostly outside of computational geometry, see, e.g., [1, 12]). Here we give a very brief sketch of this result.

Theorem 11 (Lower Bound for Fréchet Distance [9]). For any ε > 0, the Fréchet distance cannot be

computed in time O(n2−ε).

Proof Sketch. Given an OV instance (A,B) on n vectors in dimension d, we construct two curves π, σ
of length N = O(nd) such that dF (π, σ) ≤ 1 if and only if (A,B) contains an orthogonal pair. It then
follows that if the Fréchet distance can be computed in time O(N2−ε), then OV can be solved in time
O((nd)2−ε) = O(n2−ε poly(d)), contradicting OVH (Hypothesis 2).

To construct the curves π, σ, we start with vector gadgets. These gadgets are similar to the embedding
in Lemma 8, but they are restricted to a much smaller region in space. Specifically, for each vector a ∈ A we
construct a curve V G(a) as the sequence of points ((−1)iδ, 0.5− (−1)aiδ2) ∈ R

2 for 1 ≤ i ≤ d, where δ > 0
is a small constant. Similarly, for each vector b ∈ B we construct a curve V G(b) as the sequence of points
((−1)iδ,−0.5+ (−1)biδ2) for 1 ≤ i ≤ d. Analogously to Lemma 8, we can show that dF (V G(a), V G(b)) ≤ 1
if and only if 〈a, b〉 = 0.

The final and most complicated step of the reduction is the OR gadget. This gadget combines the curves
V G(a) for all a ∈ A into one curve π, and similarly it combines the curves V G(b) for all b ∈ B into one
curve σ, such that dF (π, σ) ≤ 1 if and only if there exist a ∈ A, b ∈ B with dF (V G(a), V G(b)) ≤ 1. To this
end, we introduce auxiliary points at the following positions:

s = (−0.5, 0), t = (0.5, 0), s∗ = (−0.5,−1), t∗ = (0.5, 1).

The final curve π repeats the pattern (s, V G(a), t) for all a ∈ A. The final curve σ starts with s and s∗, then
walks through all vector gadgets V G(b), and ends with t∗ and t. One can show that these curves satisfy
dF (π, σ) ≤ 1 if and only if (A,B) contains an orthogonal pair, for details see [9].

6

3.3 Further Results on Fréchet Distance

• Robustness: For reductions to geometric problems a common concern is the precision needed to write
down the constructed instances. The reductions shown in this article are very robust: they only require
O(log d)-bit coordinates, and some can even be made to work with O(1)-bit coordinates.

• Hardness of Approximation: Inspecting the proof of Lemma 8, we see that it is hard to distinguish
Fréchet distance at most 1 or at least 3. Therefore, Theorems 9 and 10 even hold against multiplicative
2.999-approximation algorithms. For approximation algorithms we refer to [16, 21].

• One-dimensional Curves: We showed hardness for curves in the plane. The same results hold for
one-dimensional curves, of the form π = (π1, . . . , πd) with πi ∈ R, see [16, 19].

• Continuous and Weak Variants: The same lower bounds as in Theorems 9, 10, and 11 also hold for
other standard variants of the Fréchet distance [9, 19].

• Realistic Input Curves: In order to avoid the quadratic worst-case complexity, geometers have studied
several models of realistic input curves. For example, on so-called c-packed curves the Fréchet distance
can be (1 + ε)-approximated in time Õ(cn/

√
ε) [23, 13], which matches a conditional lower bound [9].

• Logfactor Improvements: Lower bounds under OVH rule out polynomial improvements of the form
O(n2−ε). What about logfactor improvements? An algorithm running in time O(n2 log logn/ logn)
is known [5]. Can we improve this to time O(n2/ log100 n)? Such an improvement was shown to be
unlikely, as it would imply new circuit lower bounds [2].

4 More Fine-Grained Computational Geometry

In this article we focused on nearest neighbor search and the Fréchet distance. Further work on fine-grained
complexity in computational geometry includes conditional lower bounds for a variant of Fréchet distance
between k curves [18], the dynamic time warping distance [12, 1], the Fréchet distance under translation [15]
and Hausdorff distance under translation [17], curve simplification under Fréchet distance [11, 18], and
Maximum Weight Rectangle [8].

References

[1] Abboud, A., Backurs, A., Vassilevska Williams, V.: Tight hardness results for LCS and other sequence similarity measures.
In: FOCS. pp. 59–78. IEEE Computer Society (2015)

[2] Abboud, A., Bringmann, K.: Tighter connections between Formula-SAT and shaving logs. In: ICALP. LIPIcs, vol. 107,
pp. 8:1–8:18 (2018)

[3] Abboud, A., Vassilevska Williams, V.: Popular conjectures imply strong lower bounds for dynamic problems. In: FOCS.
pp. 434–443. IEEE Computer Society (2014)

[4] Abboud, A., Williams, R.R., Yu, H.: More applications of the polynomial method to algorithm design. In: SODA. pp.
218–230. SIAM (2015)

[5] Agarwal, P.K., Avraham, R.B., Kaplan, H., Sharir, M.: Computing the discrete Fréchet distance in subquadratic time.
SIAM J. Comput. 43(2), 429–449 (2014)

[6] Alman, J., Williams, R.: Probabilistic polynomials and Hamming nearest neighbors. In: FOCS. pp. 136–150. IEEE
Computer Society (2015)

[7] Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl. 5, 75–91
(1995)

[8] Backurs, A., Dikkala, N., Tzamos, C.: Tight hardness results for maximum weight rectangles. In: ICALP. LIPIcs, vol. 55,
pp. 81:1–81:13 (2016)

[9] Bringmann, K.: Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH
fails. In: FOCS. pp. 661–670. IEEE Computer Society (2014)

[10] Bringmann, K.: Fine-grained complexity theory (tutorial). In: STACS. LIPIcs, vol. 126, pp. 4:1–4:7 (2019)

7

[11] Bringmann, K., Chaudhury, B.R.: Polyline simplification has cubic complexity. In: Symposium on Computational Geom-
etry. LIPIcs, vol. 129, pp. 18:1–18:16 (2019)

[12] Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string problems and dynamic time warping. In:
FOCS. pp. 79–97. IEEE Computer Society (2015)

[13] Bringmann, K., Künnemann, M.: Improved approximation for Fréchet distance on c-packed curves matching conditional
lower bounds. Int. J. Comput. Geom. Appl. 27(1-2), 85–120 (2017)

[14] Bringmann, K., Künnemann, M.: Multivariate fine-grained complexity of longest common subsequence. In: SODA. pp.
1216–1235. SIAM (2018)

[15] Bringmann, K., Künnemann, M., Nusser, A.: Fréchet distance under translation: Conditional hardness and an algorithm
via offline dynamic grid reachability. In: SODA. pp. 2902–2921. SIAM (2019)

[16] Bringmann, K., Mulzer, W.: Approximability of the discrete Fréchet distance. J. Comput. Geom. 7(2), 46–76 (2016)

[17] Bringmann, K., Nusser, A.: Translating Hausdorff is hard: Fine-grained lower bounds for Hausdorff distance under
translation. In: Symposium on Computational Geometry (2021), to appear.

[18] Buchin, K., Buchin, M., Konzack, M., Mulzer, W., Schulz, A.: Fine-grained analysis of problems on curves. EuroCG,
Lugano, Switzerland (2016)

[19] Buchin, K., Ophelders, T., Speckmann, B.: SETH says: Weak Fréchet distance is faster, but only if it is continuous and
in one dimension. In: SODA. pp. 2887–2901. SIAM (2019)

[20] Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.: Nondeterministic extensions of the
Strong Exponential Time Hypothesis and consequences for non-reducibility. In: ITCS. pp. 261–270. ACM (2016)

[21] Chan, T.M., Rahmati, Z.: An improved approximation algorithm for the discrete Fréchet distance. Inf. Process. Lett. 138,
72–74 (2018)

[22] Chen, L.: On the hardness of approximate and exact (bichromatic) maximum inner product. Theory Comput. 16, 1–50
(2020)

[23] Driemel, A., Har-Peled, S., Wenk, C.: Approximating the Fréchet distance for realistic curves in near linear time. Discret.
Comput. Geom. 48(1), 94–127 (2012)

[24] Eiter, T., Mannila, H.: Computing Discrete Fréchet Distance. Tech. Rep. CD-TR 94/64, Christian Doppler Laboratory
(1994)

[25] Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational geometry. Comput. Geom. 5, 165–185
(1995)

[26] Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

[27] Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in multidimensional binary search trees
and balanced quad trees. Acta Informatica 9, 23–29 (1977)

[28] Rubinstein, A.: Hardness of approximate nearest neighbor search. In: STOC. pp. 1260–1268. ACM (2018)

[29] Rubinstein, A., Vassilevska Williams, V.: SETH vs approximation. SIGACT News 50(4), 57–76 (2019)

[30] Vassilevska Williams, V.: On some fine-grained questions in algorithms and complexity. In: Proc. of the ICM. vol. 3, pp.
3431–3472. World Scientific (2018)

[31] Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci. 348(2-3),
357–365 (2005)

[32] Williams, R.: On the difference between closest, furthest, and orthogonal pairs: Nearly-linear vs barely-subquadratic
complexity. In: SODA. pp. 1207–1215. SIAM (2018)

8

	1 Introduction
	1.1 Hardness Hypotheses
	1.1.1 3SUM Hypothesis
	1.1.2 Strong Exponential Time Hypothesis
	1.1.3 Orthogonal Vectors Hypothesis

	2 Nearest Neighbor Search
	2.1 Bichromatic Closest Pair
	2.2 Nearest Neighbor Data Structures
	2.3 Further Results on Nearest Neighbor Search

	3 Curve Similarity and the Fréchet Distance
	3.1 Nearest Neighbor Search under Fréchet Distance
	3.2 Computing the Fréchet Distance
	3.3 Further Results on Fréchet Distance

	4 More Fine-Grained Computational Geometry

