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Abstract

We study the c-approximate near neighbor problem under the continuous Fréchet distance:
Given a set of n polygonal curves with m vertices, a radius δ > 0, and a parameter k ≤ m, we
want to preprocess the curves into a data structure that, given a query curve q with k vertices,
either returns an input curve with Fréchet distance at most c · δ to q, or returns that there
exists no input curve with Fréchet distance at most δ to q. We focus on the case where the
input and the queries are one-dimensional polygonal curves—also called time series—and we
give a comprehensive analysis for this case. We obtain new upper bounds that provide different
tradeoffs between approximation factor, preprocessing time, and query time.

Our data structures improve upon the state of the art in several ways. We show that for
any 0 < ε ≤ 1 an approximation factor of (1 + ε) can be achieved within the same asymptotic
time bounds as the previously best result for (2 + ε). Moreover, we show that an approximation
factor of (2+ε) can be obtained by using preprocessing time and space O(nm), which is linear in
the input size, and query time in O( 1

ε )k+2, where the previously best result used preprocessing
time in n ·O( m

εk )k and query time in O(1)k. We complement our upper bounds with matching
conditional lower bounds based on the Orthogonal Vectors Hypothesis. Interestingly, some of
our lower bounds already hold for any super-constant value of k. This is achieved by proving
hardness of a one-sided sparse version of the Orthogonal Vectors problem as an intermediate
problem, which we believe to be of independent interest.
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1 Introduction

The Fréchet distance and its variants provide a versatile class of distance measures for parametrized
curves as they occur in application areas such as trajectories of moving objects (e.g., vehicles,
animals, or robots), outlines of shapes, signatures, gestures, and other types of time series from
sensor data [SBL20, SLZ+20]. This distance measure is very similar to the Hausdorff distance,
which is defined for sets, except that it takes the ordering of points along the curve into account.
At the same time, by assuming the equivalence class of all reparametrizations of a curve, it is robust
to local irregularities in the parametrization of the curves (e.g., errors due to local time delays or
irregular measurements). An intuitive definition of the distance measure is given as follows. Imagine
traversing the two curves at independent and varying speeds from the beginning to the end, and
consider the maximum (Euclidean) distance that the two positions can maintain throughout the
traversal without backtracking along the curves. Minimizing over all possible traversals yields the
Fréchet distance of the two curves.

Due to the popularity of the distance measure for trajectory analysis and data analysis applica-
tions, many heuristics and algorithm engineering solutions have been proposed to speed up the dis-
tance computation and similarity retrieval [dBGM17, BB17, DV17, BDvDM17, BKN19, GHPS20].
A fundamental task in this area is near neighbor searching: Preprocess n curves into a data struc-
ture, such that we can query this data structure with a curve and retrieve an input curve that has
small distance to the query curve. This problem has been studied intensively [dBIG13, dBMO17,
Ind02, AD18, EP20, FFK20, DS17, Mir20, DP21] and, for the discrete version of the Fréchet dis-
tance, these efforts lead to a simple and likely optimal data structure [FFK20]. However, for
the more classic continuous version of the Fréchet distance, the computational complexity of near
neighbor searching is still largely open, and seems very challenging to resolve.

Therefore, in this paper we focus on the special case of one-dimensional curves, which we also
refer to as time series. We aim to resolve approximate near neighbor searching for this special
case of the continuous Fréchet distance. We obtain strong lower bounds based on the Orthogonal
Vectors Hypothesis in the regime of small approximation factors. More specifically, we differentiate
a range of lower bounds for different approximation factors and preprocessing/query time. We show
that our bounds are tight by devising data structures that asymptotically match the lower bounds
in all cases considered. The new data structures improve upon the state of the art in several ways.
For the same preprocessing and query time, we can improve the approximation factor from (2 + ε)
to (1 + ε). For the same approximation factor (2 + ε), we get a better time complexity—in some
cases we can even achieve linear preprocessing time and space.

1.1 Problem Definition

Let us first formally define the distance measure considered in this work.

Definition 1 (Fréchet distance). Given two curves P,Q : [0, 1] 7→ Rd, their Fréchet distance is

dF(P,Q) := min
f,g∈T

max
t∈[0,1]

‖P (f(t))−Q(g(t))‖2,

where T is the set of all monotone and surjective functions from [0, 1] to [0, 1]. For functions f
and g that realize the minimum above, we define φ : [0, 1]→ [0, 1]2 with φ(t) = (f(t), g(t)), t ∈ [0, 1]
and we refer to φ as a realizing traversal of the two curves.

The central problem of this work is then defined as follows.
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Definition 2 (c-Approximate Near Neighbors problem (c-ANN)). The input consists of a set P
of n curves in Rd, each of complexity m, and a number 2 ≤ k ≤ m. Given a distance threshold
δ > 0 and an approximation factor c > 1, preprocess P into a data structure such that for any
query curve Q of complexity k, the data structure reports as follows:

• if ∃P ∈ P such that dF(P,Q) ≤ δ, then it returns P ′ ∈ P such that dF(P ′, Q) ≤ cδ,
• if ∀P ∈ P, dF(P,Q) ≥ cδ then it returns “no”,
• otherwise, it either returns a curve P ∈ P such that dF(P,Q) ≤ cδ, or “no”.

The assumption that all input curves have the same number of vertices m and that the queries
have k vertices is mostly to simplify presentation; all our data structures are easily generalized
to allow input curves of complexity at most m and query curves of complexity at most k. Note,
however, that we assume the input has size in Ω(nm) and that 2 ≤ k ≤ m. The case k = 1 is a
boundary case that is easier to solve; we ignore it throughout this paper.

1.2 State of the Art

We start by reviewing the state of the art for the discrete variant of the Fréchet distance. In
the discrete Fréchet distance, the continuous traversal φ is replaced by a discrete traversal of the
two point sequences, we refer to [FFK20] for the exact definition. The currently best known data
structure for (1 + ε)-ANN under the discrete Fréchet distance is by Filtser et al. [FFK20]. Their
data structure uses space in n · O(1/ε)kd +O(nm) and query time in O(kd), where k denotes the
complexity of the query (measured in the number of vertices), m denotes the complexity of an
input curve and n denotes the number of input curves. It is an interesting question whether the
same bounds can be obtained for the continuous Fréchet distance. At first glance, the discrete
and continuous variants of the Fréchet distance seem very similar, but there is an important differ-
ence: while the metric space of bounded complexity curves under the discrete Fréchet distance has
bounded doubling dimension, this does not hold in the continuous case, even when restricted to
polygonal curves of constant complexity [DKS16]. (A metric space has doubling dimension at most
d if any ball of any radius r can be covered by 2d balls of radius r

2 .) This immediately shows that
the technique employed by Filtser et al., which effectively applies a doubling oracle to the metric
balls centered at input curves (more specifically, simplifications thereof), does not directly extend
to the continuous Fréchet distance, since such a doubling oracle cannot exist in this case.

So the discrete Fréchet distance has a simple ANN that seems optimal, but there is indication
that for the continuous Fréchet distance resolving the time complexity of ANN is more challenging.

Note that it is possible to reduce the ANN problem for the continuous Fréchet distance to
the ANN problem for the discrete Fréchet distance by subsampling along the continuous curves.
However, it seems that this approach introduces an (otherwise avoidable) dependency on the ar-
clength. In 2018, Driemel and Afshani [AD18] described data structures based on multi-level
partition trees (using semi-algebraic range searching techniques) which can also be used for exact
near neighbor searching under the continuous Fréchet distance. For n curves of complexity m in
R2, their data structure uses space bounded by n ·(log log n)O(m2) and the query time is bounded by√
n · (log n)O(m2). (If the input is restricted to curves in R, these bounds can be slightly improved.)

Recently, Driemel and Psarros [DP21] obtained bounds for the continuous Fréchet distance that
are similar to the bounds of Filtser et al., albeit at the expense of a higher approximation fac-
tor and only for curves in R. They present a (5 + ε)-ANN data structure which uses space in

n · O
(

1
ε

)k
+ O(nm) and has query time in O (k), and a (2 + ε)-ANN data structure, which uses

space in n · O
(
m
kε

)k
+O(nm) and has query time in O

(
k · 2k

)
. Even more efficient data structures

can be obtained at the expense of an even larger approximation factor, see the work of Driemel,
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Silvestri, and Psarros [DS17] and [DP21] which uses locality-sensitive hashing. In these results
neither the space nor the query time is exponential in the complexity of the curves (neither input
nor query), but the approximation factor is linear in the query complexity k.

(Unconditional) lower bounds

Given these results, one may ask whether the cited bounds are optimal for the respective approxi-
mation factor that they guarantee. We review some efforts in answering this question and discuss
the limitations of the current techniques. Driemel and Psarros [DP21, DP20] approach this question
using a technique by Miltersen [Mil94] for proving cell-probe lower bounds. Their results indicate
that any data structure answering a query for a near neighbor under the continuous Fréchet dis-
tance by using only a constant number of probes to memory cells cannot have a space usage that
is independent of the arclength of the input curves (assuming a query radius of 1). In addition,
their bounds indicate that, in some cases, space exponential in the complexity of the query k is
necessary. However, these bounds hold only for data structures that use a constant number of
probes to memory cells for answering a query, while we would also be interested in data structures
that use higher query time, such as O(k) or O(log n). A different lower bound technique was used
by Driemel and Afshani [AD18]. They show a lower bound in the pointer model of computation on
the space-time tradeoff for range reporting under the Fréchet distance. In this problem, all curves
contained inside the query radius need to be output by the query. The resulting lower bound
matches the above cited upper bounds even up to the asymptotic number of factors of log(n). The
proof uses a construction of input curves in R2 and a set of queries, such that the intersection of
any two query results has small volume while the queries themselves have large volume. The main
drawback of this technique is that, being a volume argument, it inherently uses the fact that all
curves inside the query need to be returned and therefore it cannot easily be applied in the near
neighbor setting.

Conditional lower bounds

The recent rise of fine-grained complexity has also lead to a renewed interest in conditional lower
bounds for nearest neighbor data structure problems, see, e.g. [AW15, ARW17, Rub18, CGL+19,
CW19]. These lower bounds are for the offline version of the data structure problem, by considering
the total time needed for preprocessing and performing a number of queries. They are obtained in
a similar way as NP-hardness, specifically via reductions from some fine-grained hypothesis such
as the Strong Exponential Time Hypothesis (SETH) [IP01] or the Orthogonal Vectors Hypothesis
(OVH) [Wil05]. In the Orthogonal Vectors problem we are given two sets of vectors A,B ⊆ {0, 1}d
of size n and ask whether there exist two vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0. The hypothesis
postulates that for any constant ε > 0 there exists a constant c > 0 such that there is no algorithm
solving the Orthogonal Vectors problem in time O(n2−ε) in dimension d = c log n. It should be
noted that OVH is at least as believable as SETH, because SETH implies OVH [Wil05]. As an
example, based on the OV-hardness of bichromatic Euclidean closest pair [AW15] and reducing via
a variant of OV with unbalanced size |A| � |B| [AW14], one can show that for any ε, β > 0 there is
no data structure for Euclidean nearest neighbors on n points in Rd with preprocessing time O(nβ)
and query time O(n1−ε), in some dimension d = c log n. This rules out any sublinear query time
for any data structure with polynomial preprocessing time, unless OVH fails.

For computing the Fréchet distance of two polygonal curves there is a tight conditional lower
bound [Bri14], also for the one-dimensional case [BM16, BOS19]. However, thus far, there seems
to be no comprehensive study of conditional lower bounds for the corresponding data structure
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Table 1: Known upper bounds and our results. For the discrete case we only cite the best known
result. The space complexity is implicitly bounded by the preprocessing time in each case. Our
preprocessing time is randomized; the bounds can be derandomized at the cost of a factor log n in
preprocessing and query time (by using search trees instead of perfect hashing).

Fréchet distance Approximation Preprocessing Time Query Time Reference

discrete, dD (1 + ε)-ANN nm ·
(
O(1

ε )dk +O(d logm)
)

O(dk) [FFK20]

continuous, 1D (2 + ε)-ANN n · O(mkε)
k O(1)k [DP21]

(5 + ε)-ANN n · O(1
ε )k +O(nm) O(k) [DP21]

(1 + ε)-ANN n · O(mkε)
k O(1)k Theorem 27

(2 + ε)-ANN n · O(mkε)
k O(k) Theorem 29

continuous, 1D (2 + ε)-ANN n · O(1
ε )k +O(nm) O(1)k Theorem 31

(2 + ε)-ANN O(nm) O(1
ε )k+2 Theorem 33

(3 + ε)-ANN n · O(1
ε )k +O(nm) O(k) Theorem 35

Table 2: Our conditional lower bounds. Each row gives an approximation ratio and a setting
of k and m where any poly(n) preprocessing time and O(n1−ε′) query time cannot be achieved
simultaneously. The constants ε, ε′, c are quantified as ∀ε, ε′ > 0: ∃c > 0. By f(n)� g(n) we mean
f(n) = o(g(n)). We refer to the respective theorems in Section 8 for the exact statements.

Fréchet dist. Approx. Preproc. Query Parameter Setting Reference

continuous, 1D 2− ε poly(n) O(n1−ε′) 1� k � log n and m = k · nc/k Thm. 51

3− ε poly(n) O(n1−ε′) m = k = c log n Thm. 52

continuous, 2D 3− ε poly(n) O(n1−ε′) 1� k � log n and m = k · nc/k Thm. 53

problem. We want to close this gap and show tight bounds for the case of one-dimensional curves.
These are similar in spirit to the Euclidean nearest neighbor lower bounds discussed above.

1.3 Our Results

For the discrete Fréchet distance the ANN problem is by now well understood, but the continuous
Fréchet distance remains very challenging. Therefore, in this paper we focus on the important
special case of one-dimensional curves, which arise in various domains such as finance and signal
processing, where they are typically called “time series”. We give several new data structure
bounds for the problem of approximate near neighbor searching for one-dimensional curves under
the continuous Fréchet distance. Table 1 provides an overview of our upper bounds, compared to
known results. In the second part of our paper, we show that most of these upper bounds are
tight under the Orthogonal Vectors Hypothesis, when viewed as offline problems where the input
and the set of queries are given in advance. To obtain these lower bounds, we introduce a novel
OV-hard variant of Orthogonal Vectors in which one set contains sparse vectors, i.e., vectors that
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only contain few 1s; this problem may be of independent interest. Table 2 gives an overview of our
lower bound results. To argue that most of our upper bounds are tight, we consider the following
general scenario:

Suppose we have an α-ANN for some fixed constant α, we run its preprocessing on a
data set of n curves, and then we run n queries.

In particular, consider this scenario for the following three ranges of α.

• 1 < α < 2: Using our (1 + ε)-ANN, this scenario takes total time n · O(mkε)
k, which simplifies

to n · O(mk )k since ε = α− 1 is fixed. Assuming OVH, our first lower bound shows that this

running time cannot be improved to n · f(k) · (mk )o(k) for any function f , for the following

reason. Pick k = k(n) sufficiently small such that f(k) = no(1). Pick m = k · nc/k, so that

(mk )o(k) = (k·n
c/k

k )o(k) = no(1). Then the total running time would be n·f(k)·(mk )o(k) = n1+o(1),
which contradicts that either the preprocessing time is superpolynomial or the query time
near-linear, as stated in Theorem 51. This shows that the factor (mk )Θ(k) in our running time
is necessary. Our second lower bound shows that the running time cannot be improved to
n · (mk )f(k) · 2o(k) for any function f , as for m = k = c log n the total time would become

n · (mk )f(k) · 2o(k) = n · 1f(k) · no(1) = n1+o(1), which contradicts that either the preprocessing
time is superpolynomial or the query time near-linear, as stated in Theorem 52. This shows
that the factor O(1)k in our query time is necessary. In this sense, the running time of our
(1 + ε)-ANN is tight.

• 2 < α < 3: By using our second or third (2+ε)-ANN (Theorem 31 or 33) we solve this scenario
in total time O(nm) + n · O(1

ε )k+2, which simplifies to O(nm) + n · O(1)k since ε = α− 2 is
fixed. Assuming OVH, our second lower bound shows that this cannot be improved to time
n · (mk )f(k) · 2o(k) for any function f , as for m = k = c log n we would obtain a total time of

n · (mk )f(k) · 2o(k) = n · 1f(k) · no(1) = n1+o(1), which contradicts that either the preprocessing
time is superpolynomial or the query time near-linear, as stated in Theorem 52. This shows
that the factor O(1)k in our running time is necessary. In this sense, the running time of our
(2 + ε)-ANNs from Theorems 31 and 33 are tight. (Our (2 + ε)-ANN from Theorem 29 is not
tight in this sense, but it realizes a different tradeoff between preprocessing and query time.)

• α > 3: In this range, our ANNs still require exponential time in terms of k, but we cannot
hope for a tight lower bound using the current techniques. This is due to a fundamental
limitation of proving inapproximability factor > 3 for a metric problem, cf. e.g. [Rub18,
Open Question 3]. For this reason, we have no tight lower bounds in this range.

1.4 Technical Overview

The high-level view of our data structures employs a well-known technique: exhaustively enumerate
a strategic subset of the query space with a set of “candidate” query curves during preprocessing,
and store the answers to these candidate queries in a dictionary. During query time, we apply a
simple transformation to the query curve (such as rounding vertices to a scaled integer grid) and look
up the answer in the dictionary. Filtser et al. [FFK20] used this technique for the discrete Fréchet
distance and Driemel and Psarros [DP21] showed that it can also be applied for the continuous
Fréchet distance of one-dimensional curves. A particular challenge that appears in the continuous
case is that the doubling dimension can be unbounded, even if the complexity of the curves is small.
Intuitively, what can happen is that the query contains some small noise that appears in the middle
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of a long edge. The continuous Fréchet distance—being robust to this noise—may match these short
edges to the interior of a long edge on the near neighbor input curve. However, we cannot afford
to generate all possible noisy query curves of this type, since this would introduce a dependency
on the arclength in our time and space bounds. Driemel and Psarros overcome this challenge with
the use of signatures, which allow to “guess” the approximate shape of a query curve within some
approximation factor. The idea is that the signature acts as a “low-pass” filter that eliminates the
noisy short edges. However, this is a delicate process as the signature may eliminate too many
edges on one of the curves (either on the near neighbor or on the query curve) leading to the near
neighbor being missed during query time. In addition, the process may introduce false-positives,
hence the high approximation factor of (5 + ε) in the result of [DP21].

We see our contributions as three-fold:

1. Our first contribution is to improve the approximation factors of Driemel and Psarros [DP21]
while staying within the same time bounds, cf. Table 1 for a comparison.

(a) For Theorem 35, we use almost the same algorithm as Driemel and Psarros, but combine
this with a more careful analysis based on new observations on the Fréchet distance of
approximately monotone curves. As a result, we can achieve a (3 + ε)-approximation
within the same time bounds as the previous (5 + ε)-ANN.

(b) In Theorem 27 we even achieve an approximation factor of (1 + ε) within the same time
bounds as the previous (2 + ε)-ANN. To achieve this result, we introduce the concept
of straightenings in Section 3. Straightenings share some properties of signatures, but
they provide a more refined approximation, leading to fewer false positives. They allow
us to “guess” the shape of a query curve up to approximation factor (1 + ε).

We derive useful properties of both signatures and straightenings. Central to our analysis is
the concept of δ-visiting orders, which we introduce in Section 3 and analyze in Section 7.

2. Our second contribution is a range of data structures for the (2 + ε)-ANN which together
provide a tradeoff between preprocessing time and query time (see Theorems 29, 31, and 33).
In each case, the preprocessing time implicitly bounds the number of candidates that are
generated and therefore the size of the dictionary used by the data structure. Thus, these data
structures also achieve a tradeoff between space and query time. An important observation
that leads to this result is that the enumeration of candidates can be “dualized” and then be
shifted from the preprocessing time to the query time. In the extreme case, this allows us to
design a data structure that has linear preprocessing time and space, by performing most of
the candidate generation during query time, see Theorem 33 for the exact result.

3. Given the diverse range of upper bounds, it is natural to ask if these bounds can be improved.
Our third main contribution is to show that most of our upper bounds are tight under the
Orthogonal Vectors Hypothesis. All known OV-based hardness results for the Fréchet distance
encode each of the dimensions using at least one vertex, thus transforming d-dimensional
vectors into curves of length k = Ω(d). Since OVH postulates a lower bound in dimension
d = c log n, it is thus natural to prove OV-based lower bounds for curves of length k = c log n.
Our lower bound in Theorem 52 handles this setting, cf. Table 2.

However, for some of our lower bounds we require k = o(log n), as this is necessary to
rule out time (m/k)o(k). Surprisingly, we overcome the barrier of using at least one vertex
per dimension. Specifically, we prove OV-based lower bounds for any 1 � k � log n, see
Theorem 51. For this, we use two crucial observations: (i) it is possible to only encode the 1s
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of one vector set, while the 0s do not require any additional vertices on the curve, and (ii) we
can show hardness of a variant of OV where one set contains only sparse vectors, i.e., vectors
with a very small number of 1s. See Theorem 51 for the hardness result we obtain in this
case. Interestingly, a similar construction is also possible for (3−ε)-ANN for two-dimensional
curves, see Theorem 53.

Organization

In Section 2 we define the notation and state some known facts and observations. In Section 3
we define key concepts, and we present their properties and our main technical lemmas. Our data
structures are described and analyzed in Sections 4, 5, and 6. In Section 7 we prove our main
technical lemmas. In Section 8 we present our conditional lower bounds.

2 Preliminaries

For any positive integer n, we define [n] := {1, . . . , n}. For any two points p, q ∈ Rd, pq denotes
the directed line segment connecting p with q in the direction from p to q. Any sequence of points
p1, . . . , pm ∈ Rd defines a polygonal curve formed by the ordered line segments pipi+1. We call
the points pi the vertices of the curve and the line segments pipi+1 the edges. The resulting curve
can be viewed as a continuous function P : [0, 1] 7→ Rd. For d = 1, we may refer to the curve as a
one-dimensional curve or as a time series. We define the complexity of a polygonal curve P as the
number of its vertices and we denoted it by |P |. We say a polygonal curve is degenerate if there
are three consecutive vertices p, q, r, such that q lies on the line segment pr. In this case, we call
q a degenerate vertex of this curve. Given a sequence of points p1, . . . , pm, we can define a non-
degenerate curve by omitting degenerate vertices. We denote the resulting curve by 〈p1, . . . , pm〉.
Note that for one-dimensional curves, the vertices of the resulting non-degenerate curve are the
extrema of the function. For any two 0 ≤ ta < tb ≤ 1 and any curve P , we denote by P [ta, tb]
the subcurve of P starting at P (ta) and ending at P (tb). For any two curves P , Q, with vertices
p1, . . . , pa and pb, . . . , pm, respectively, P ◦ Q denotes the polygonal curve 〈p1, . . . , pa, pb, . . . pm〉,
that is the concatenation of P and Q. For n polygonal curves P1, . . . , Pn, we denote by©n

i=1Pi the
concatenation P1 ◦P2 ◦ · · · ◦Pn. Given a polygonal curve P = 〈p1, . . . , pm〉 and a point x in Rd, we
define the translated curve as P + x := 〈p1 + x, . . . , pm + x〉. For a point x ∈ Rd and a polygonal
curve P , we use the notation x ∈ P to indicate that there exists a t ∈ [0, 1] such that P (t) = x.
Let Gε := {i · ε | i ∈ Z} be the regular grid with side-length ε > 0.

We will use the following known observations (see also [BBW08] and [DHP13]).

Observation 3. For any two line segments X = ab, Y = cd it holds that dF(X,Y ) = max{‖a −
c‖, ‖b− d‖}.

Observation 4. Let two polygonal curves Q : [0, 1] 7→ Rd and P : [0, 1] 7→ Rd be the concate-
nations of two subcurves each, Q = Q1 ◦ Q2 and P = P1 ◦ P2. Then it holds that dF(P,Q) ≤
max{dF(Q1, P1), dF(Q2, P2)}.

Observation 5. Let Q be a line segment and let P be a curve with dF(P,Q) ≤ δ. Let P ′ be a curve
that is formed from a subsequence of the vertex sequence of P including the first and last vertex of
P . Then, dF(P ′, Q) ≤ δ.

We also make use of an algorithm by Alt and Godau [AG95] for deciding whether the Fréchet
distance between two polygonal curves exceeds a given threshold.
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Theorem 6 ([AG95]). There is an algorithm which, given polygonal curves P , Q and a threshold
parameter δ > 0, decides in O(|P | · |Q|) time whether dF(P,Q) ≤ δ.

Our data structures can be implemented to work on the Word-RAM and under certain assump-
tions on the Real-RAM, as discussed next. Central to our approach is the use of a dictionary, which
we define as follows.

Definition 7 (Dictionary). A dictionary is a data structure which stores a set of (key, value) pairs
and when presented with a key, either returns the corresponding value, or returns that the key is
not stored in the dictionary.

In the Word-RAM model, such a dictionary can be implemented using perfect hashing. For
storing a set of n (key,value) pairs, where the keys come from a universe Uk, perfect hashing
provides us with a dictionary using O(n) space and O(k) query time which can be constructed
in O(n) expected time [FKS84]. During look-up, we compute the hash function in O(k) time,
we access the corresponding bucket in the hashtable in O(1) time and check if the key stored
there is equal to the query in O(k) time. This gives an efficient randomized implementation of
dictionaries. Alternatively, we can use balanced binary search trees and pay an additional log n
factor in preprocessing and query time of the dictionary. This deterministic algorithm also works
in the Real-RAM model, if we assume that the floor function can be computed in constant time—a
model which is often used in the literature [HP11]. In the Word-RAM model, we use the standard
assumption that the word size is logarithmic in the size of the input, and we ensure that all numbers
(vertices of the time series, results of intermediate computations, etc.) are restricted to be of the
form a/b where a is an integer in [−(nm)O(1), (nm)O(1)] and b = (nm)O(1).

3 Simplifications, signatures, and straightenings

In this section we state the main definitions and lemmas. To allow for an easier understanding of
our results, we then already describe our algorithms and prove correctness using these lemmas. In
Section 7 we then give the proofs of the lemmas presented in the current section.

3.1 Definitions

Let us start with two basic definitions.

Definition 8. We say a curve P : [0, 1] → R is δ-monotone if one of the following statements
holds:

(i) ∀ t < t′ ∈ [0, 1] : P (t′) ≥ P (t)− δ,
(ii) ∀ t < t′ ∈ [0, 1] : P (t′) ≤ P (t) + δ.

More specifically, we say the curve is δ-monotone increasing in case (i) and δ-monotone decreasing
in case (ii). Note that a curve can be both δ-monotone increasing and decreasing at the same time.
In addition, we may say P is δ-monotone with respect to a directed edge ab, if a ≤ b in case (i)
and if b ≤ a in case (ii).

Definition 9. The δ-range of a point p ∈ R is the interval B(p, δ) = [p− δ, p+ δ]. The δ-range of
a curve P is the interval B(P, δ) =

⋃
x∈P B(x, δ).

We now define the notion of simplification that we use in this work.
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Definition 10 (δ-simplification). Given a curve P : [0, 1] 7→ Rd, a δ-simplification is a curve
P ′ : [0, 1] 7→ Rd that is given as P ′ = 〈P (t1), . . . , P (t`)〉 for a sequence of values 0 = t1 < · · · <
t` = 1, such that each P (ti) is a vertex of P , P ′ is non-degenerate, and

(1) dF(P (ti)P (ti+1), P [ti, ti+1]) ≤ δ, for all 1 ≤ i < `.

We also refer to (1) as the locality property. Furthermore, note that if P ′ is a δ-simplification
of P , then dF(P, P ′) ≤ δ and the complexity of P ′ is at most the complexity of P . Note that the
vertices of a δ-simplification P ′ give us a natural partition of P . Furthermore, we want to highlight
that our definition of a simplification is one out of many definitions that are used in literature.
In particular, in other work curves which are degenerate or non vertex-restricted are also called
simplifications. Now we define some properties that a simplification can or must have.

Observation 11 (direction-preserving property). For any δ-simplification P ′ = 〈P (t1), . . . , P (t`)〉
of a curve P : [0, 1] 7→ R and any index i, the subcurve P [ti, ti+1] is 2δ-monotone with respect to
P (ti)P (ti+1).

Definition 12 (vertex-range-preserving property). Let P ′ = 〈P (t1), . . . , P (t`)〉 be a δ-simplification
of a curve P : [0, 1] 7→ R. We say P ′ is range-preserving on the vertex P (ti) if the following holds:

(i) if P (ti) is a local maximum on P ′, then P (t) ≤ P (ti) for all t in [ti−1, ti+1], and

(ii) if P (ti) is a local minimum on P ′, then P (t) ≥ P (ti) for all t in [ti−1, ti+1].

We say P ′ is vertex-range-preserving, if it is vertex-range-preserving on all interior vertices.

Definition 13 (edge-range-preserving property). Let P ′ = 〈P (t1), . . . , P (t`)〉 be a δ-simplification
of P : [0, 1] 7→ R. We say that P ′ is edge-range-preserving on edge P (ti)P (ti+1) if for any
t ∈ [ti, ti+1] it holds that P (t) ∈ P (ti)P (ti+1). We say P ′ is edge-range-preserving if this condition
holds for all edges of P ′.

Note that the vertex-range-preserving property is implied by the edge-range-preserving property,
but not the other way around. However, the vertex-range preserving property implies the edge-
range-preserving property on all edges except the first and the last edge.

Definition 14 (δ-edge-length property). We say that a one-dimensional curve P = 〈p1, . . . , pm〉
has the δ-edge-length property if

• |p1 − p2| > δ and |pm−1 − pm| > δ, and

• |pi − pi+1| > 2δ for all i ∈ {2, . . . ,m− 2}.

Finally, we can define two of the main concepts that we use in our algorithms: δ-signatures
and δ-straightenings. These two definitions help us to preprocess the input set of one-dimensional
curves and the query curve in ways such that an efficient retrieval is possible.

Definition 15 (δ-signature). A δ-simplification P ′ of a one-dimensional curve P is a δ-signature
if it has the δ-edge length property and is vertex-range-preserving.

Definition 16 (δ-straightening). A δ-simplification P ′ of a one-dimensional curve P is a δ-
straightening if it is edge-range-preserving.
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P0 : P1 :

-2

-1

0

1

2
P2 : P3 :

Figure 1: P1 is a 1-signature of P0, whereas P2 and P3 are 1-straightenings of P0.

The above definition of a δ-signature is equivalent to the definition given in [DKS16]. For any
δ > 0 and any curve P : [0, 1] 7→ R of complexity m, a δ-signature of P can be computed in O(m)
time [DKS16]. The δ-signature of a curve is unique under certain general-position assumptions,
however we do not explicitly use this property in our proofs. Note that δ-straightenings are not
unique. In fact, there can be many different δ-straightenings of the same curve, e.g., P itself is a
δ-straightening of P for any δ > 0. We give an example of a signature and different straightenings
of the same curve in Figure 1.

We introduce the notion of visiting orders, which we will use to prove correctness of our data
structures.

Definition 17. Let P : [0, 1] → R and Q : [0, 1] → R be curves. Let u1, . . . , u` denote the ordered
vertices of Q and let v1, . . . , vm denote the ordered vertices of P . A (partial) δ-visiting order of
Q on P is a sequence of indices i1 ≤ · · · ≤ i`, such that |uj − vij | ≤ δ for each vertex uj of Q.

In particular, if we know that there exists a δ-visiting order of Q on P , then we can approxi-
mately “guess” Q from the vertex sequence of P , by enumerating all possible visiting orders of the
vertices of P and for any fixed visiting order, enumerating all eligible grid sequences within the
δ-ranges of these vertices.

Driemel, Krivosija and Sohler proved the following lemma (rephrased using δ-visiting orders).

Lemma 18 (Lemma 3.2 [DKS16]). Let P : [0, 1]→ R and Q : [0, 1]→ R be curves and let P ′ be a
δ-signature of P . If dF(P,Q) ≤ δ, then there exists a δ-visiting order of P ′ on Q.

3.2 Main lemmas

In this section we present the main lemmas for signatures and straightenings that we will use in
Sections 4 to 6. Their proofs are deferred to Section 7.

Most of our lemmas improve the basic triangle inequality dF(P,Q) ≤ dF(P,X) + dF(X,Q) in
some situations involving signatures and straightenings.

Lemma 19. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves and let Q′ be any δ-straightening
of Q. If dF(P,Q′) ≤ δ then dF(P,Q) ≤ δ.

We would like to show the equivalent statement of Lemma 19 for signatures. However, as the
example in Figure 2 shows, this is not possible. Instead, we show a slightly weaker bound in the
following lemma.

Lemma 20. Let δ = δ′+ δ′′ for δ, δ′, δ′′ ≥ 0 and let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves.
Let Q′ be any δ′-signature of Q. If dF(Q′, P ) ≤ δ, |Q(0)−P (0)| ≤ δ′′, and |Q(1)−P (1)| ≤ δ′′, then
dF(P,Q) ≤ δ.
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P : X : Q :

-2

-1

0

1

2

Figure 2: This example shows that an equivalent statement of Lemma 19 for signatures is not true.
The curve X = 〈−1, 2〉 is a 1-signature of Q = 〈−1,−2, 2〉 and the curve P = 〈0, 1,−1, 2〉 has
Fréchet distance 1 to X, but the Fréchet distance of P to Q is 2.

Note that Lemma 19 is much stronger than what we would get by merely applying the triangle
inequality on the Fréchet distances on the curves P , Q and Q′. Lemma 20, although weaker, is still
stronger than the bound we would get from the triangle inequality. To illustrate this we include the
following corollary. Note that merely using triangle inequality would yield dF(P,Q) ≤ 6δ, instead
of dF(P,Q) ≤ 3δ.

Corollary 21. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′ be the 2δ-
signature of Q. If dF(P ′, Q′) ≤ 3δ and |P ′(0)−Q′(0)| ≤ δ, |P ′(1)−Q′(1)| ≤ δ, then dF(P,Q) ≤ 3δ.

Proof. Follows from applying of Lemma 20 twice. We first apply the lemma to P ′, Q′ and P
and obtain dF(P,Q′) ≤ 3δ. In the second step, we apply the lemma to P , Q′ and Q and obtain
dF(P,Q) ≤ 3δ.

The following lemma is used to show correctness for our (1 + ε) and (2 + ε)-ANN.

Lemma 22. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ, there exists a
δ-straightening Q′ of Q which satisfies the following properties:

(i) there exists a 11δ-visiting order of Q′ on P , and
(ii) dF(Q′, P ) ≤ δ.

We use the following lemma to show correctness for our (3 + ε)-ANN. One part of the lemma
statement, the existence of a 2δ-visiting orders, was already used in [DP20]. However, the resulting
approximation factor of the ANN obtained there was (5 + ε). In order to show correctness of our
(3 + ε)-ANN, it is necessary to prove the bound of 3δ on the resulting Fréchet distance of the two
signature curves. Note that the triangle inequality implies a bound of 4δ—which would not be
sufficient for us.

Lemma 23. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′ be a 2δ-
signature of Q. If dF(P,Q) ≤ δ then dF(P ′, Q′) ≤ 3δ and there exists a 2δ-visiting order of Q′

on P ′.

4 (1 + ε)-Approximation

In this section, we show that there exists a (1 + ε)-ANN data structure for one-dimensional curves
under the Fréchet distance, with space in n · O(mkε)

k, expected preprocessing time in nm · O(mkε)
k

and query time in O(k · 2k). We describe the data structure in Section 4.1 and we analyze its
performance in Section 4.2.
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4.1 The data structure

Data structure

We are given as input a set of one-dimensional curves P, as sequences of vertices, the distance
threshold δ > 0, the approximation error ε > 0, and the complexity of the supported queries k. To
discretize the query space, we use the grid Gεδ/2 (recall that Gε := {i · ε | i ∈ Z} is the regular grid
with side-length ε). Let H be a dictionary which is initially empty. For each input one-dimensional
curve P ∈ P we compute a set C′ := C′(P ) which contains all curves Q such that: i) Q has
complexity at most k, ii) all vertices of Q belong to Gεδ/2, and iii) there is an ((11 + ε/2)δ)-visiting
order of Q on P . Formally,

C′ = {〈u1, . . . , u`〉 | ` ≤ k and

∃(i1, . . . , i`)(i1 ≤ · · · ≤ i` and (∀j ∈ [`])(uj ∈ B(pij , (11 + ε/2)δ) ∩ Gεδ/2))}.

Next, we filter C′ to obtain the set C(P ) = {Q ∈ C′ | dF(Q,P ) ≤ (1 + ε/2)δ}. We store C(P )
in H as follows: for each Q ∈ C(P ), if Q is not already stored in H, then we insert Q into H,
associated with a pointer to P .

The complete pseudocode for the preprocessing algorithm can be found in Algorithms 1 and 2.
To achieve approximation factor (1 + ε), we run preprocess(P, δ, ε/2, k).

Query algorithm

Let Q be the query curve with vertices q1, . . . , qk and let ε > 0 be the approximation error. The
query algorithm first enumerates all curves Q′ such that

Q′ ∈ {〈q1, S, qk〉 | S is a subsequence of q2, . . . , qk−1}.

For each such Q′ we test whether it is a δ-straightening of Q. To this end, we first test if each
shortcut taken in Q′ is within distance δ from the corresponding subcurve of Q. Then we check for
each shortcut if the corresponding subcurve of Q stays within range by testing all vertices of the
subcurve one by one. If Q′ is a δ-straightening of Q, then we snap the vertices of Q′ to Gεδ/2, to
obtain a new curve Q′′ and we probe H: if Q′′ is stored in H, then we return its associated input
curve P ∈ P. If Q′′ is not stored in H, then we return “no”.

The complete pseudocode for the query algorithm can be found in Algorithm 3. To achieve
approximation factor (1 + ε), we run query(Q, δ, ε/2).

Algorithm 1 A call to generate orders(m, k) returns all (i1, . . . , i`) ∈ [m]`, where ` ∈ [k] and
such that 1 = i1 ≤ · · · ≤ i` = m. We assume k ≥ 2.

1: procedure generate orders(m ∈ N, k ∈ N)
2: I2 ← {(1,m)}
3: for each ` = 3, . . . , k do
4: I` ← ∅
5: for each (i1, . . . , i`−1) ∈ I`−1 do . i`−1 = m
6: for each j = i`−2, . . . ,m do
7: I` ← I` ∪ {(i1, . . . , i`−2, j,m)}
8: return

⋃
2≤`≤k I`
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Algorithm 2 Preprocessing algorithm. We call preprocess to build the data structure.

1: procedure preprocess(input set P, δ > 0, ε > 0, k ∈ N)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: C(P )← generate keys(P, δ, ε, k)
5: for each Q ∈ C(P ) do
6: if Q not in H then
7: insert key Q in H, associated with a pointer to P

8: procedure generate keys(curve P , δ > 0, ε > 0, k ∈ N)
9: C′ ←generate candidates(P, δ, (11 + ε), ε, k)

10: C ← ∅
11: for each Q ∈ C′ do
12: if dF(P,Q) ≤ (1 + ε)δ then
13: C ← C ∪ {Q}
14: return C
15: procedure generate candidates(curve P with vertices p1, . . . , pm, δ > 0, r > 0, ε > 0, k ∈ N)
16: S ← ∅, C′ ← ∅
17: I ←generate orders(m, k)
18: for each (i1, . . . , i`) ∈ I do
19: S ← S ∪

∏`
j=1B(pij , rδ) ∩ Gεδ

20: for each σ ∈ S do
21: C′ ← C′ ∪ {〈σ〉}
22: return C′

Algorithm 3 Query algorithm

1: procedure query(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: I ←generate orders(k, k)
3: for each (i1, . . . , i`) ∈ I do
4: flag ← 1
5: for j = 1, . . . , `− 1 do
6: if dF(qijqij+1 ,

〈
qij , . . . , qij+1

〉
) > δ then . test δ-simplification property

7: flag ← 0

8: for each t = ij , . . . , ij+1 do . test edge-range-preserving property
9: if qt /∈ qijqij+1 then

10: flag ← 0

11: if flag = 1 then
12: Q′ ← 〈qi1 , . . . , qi`〉 . a δ-straightening of Q

13: Q′′ ←
〈⌊ qi1

εδ

⌋
· (εδ), . . . ,

⌊
qi`
εδ

⌋
· (εδ)

〉
. snap Q′ to Gεδ

14: if Q′′ in H then
15: return input curve P associated with Q′′ in H
16: return “no”
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4.2 Analysis

In this section, we analyze the performance of our data structure.

Lemma 24. For any curve P with vertices p1, . . . , pm, δ > 0, ε > 0, r ≥ ε, k ∈ N, the procedure
generate candidates(P, δ, r, ε, k) has running time in(

m+ k − 2

k − 2

)
· O
(r
ε

)k
.

Proof. The set I contains all sequences of indices (i1, . . . , i`) ∈ [m]` such that ` ≤ k, and 1 =
i1 ≤ · · · ≤ i` = m. Let I` be the subset of I containing the sequences of length ` as denoted
in generate orders. We first claim that generate orders(m, k) runs in time O(|I| · k). To
see that, consider any sequence of indices s ∈ I. During the execution of generate orders, s
is added to the sets of indices (Line 7) only once. This step costs O(k), therefore the running
time of generate orders(m, k) is in O(|I| · k). Now, let S ′ be a multiset which contains all
sequences (including duplicates) which are generated and inserted to S in all executions of Line 19 of
generate candidates. The running time of generate candidates(P, δ, r, ε, k) is upper bounded
by O(|S ′| · k), because |S ′| ≥ |I| and computing C′ costs O(|S ′| · k) time. We proceed by showing
an upper bound on |S ′|.

Any sequence (x1, . . . , x`) ∈ G`εδ, which is included in S ′, may appear in the computation taking
place in Line 19 multiple times: once for each sequence of indices (i1, . . . , i`) ∈ I such that for each
j ∈ [`], xj ∈ B(pij , rδ). Notice that |I`| is equal to the number of combinations of `−2 objects taken

(with repetition) from a set of size m, i.e. |I`| =
(
m+`−3
`−2

)
. Hence, by the Hockey-stick identity,

|I| =
k∑
`=2

|I`| =
k∑
`=2

(
m+ `− 3

`− 2

)
=

k−2∑
`=0

(
m+ `− 1

`

)
=

(
m+ k − 2

k − 2

)
.(2)

Using (2), we can bound |S ′| as follows:

|S ′| ≤
k∑
`=2

∑
(i1,...i`)∈I`

∣∣∣∣∣∣
∏̀
j=1

B(pij , rδ) ∩ Gεδ

∣∣∣∣∣∣
≤

k∑
`=2

|I`| · O
(r
ε

)`
≤ |I| · O

(r
ε

)k
≤
(
m+ k − 2

k − 2

)
· O
(r
ε

)k
.

Hence, the running time is O(|S ′| · k) =
(
m+k−2
k−2

)
· O
(
r
ε

)k
.

Lemma 25. If query(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤ (1 + ε)δ. If
query(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. When query(Q, δ, ε/2) returns an input curve P ∈ P, it must be that there exists a δ-
straightening Q′ of Q such that P is associated with Q′′ in H. This implies that dF(Q′′, P ) ≤
(1 + ε/2)δ. By the triangle inequality,

dF(Q′, P ) ≤ dF(Q′′, Q′) + dF(Q′′, P ) ≤ (1 + ε)δ.

Since Q′ is a δ-straightening of Q, we have that dF(Q′, Q) ≤ δ. Hence, by Lemma 19 applied on
P,Q,Q′ for distance threshold (1 + ε)δ, we obtain dF(Q,P ) ≤ (1 + ε)δ.
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If query(Q, δ, ε/2) returns “no” then there is no δ-straightening Q′ of Q such that Q′′ is as-
sociated with an input curve in H. Suppose, for the sake of contradiction, that there exists a
curve P ∈ P such that dF(Q,P ) ≤ δ. By Lemma 22, there exists a δ-straightening Q′ of Q such
that i) there exists an 11δ-visiting order of Q′ on P and ii) dF(Q′, P ) ≤ δ. Let Q′′ be the curve
obtained by snapping vertices of Q′ to the grid Gεδ/2. By the triangle inequality, there exists a
((11 + ε/2)δ)-visiting order of Q′′ on P and

dF(Q′′, P ) ≤ dF(Q′′, Q′) + dF(Q′, P ) ≤ (1 + ε/2)δ.

Hence, Q′′ ∈ C(P ) and Q′′ is associated with some input curve P ′ in H. This leads to contradiction
and we conclude that if query(Q, δ, ε/2) returns “no” then there is no curve P ∈ P such that
dF(P,Q) ≤ δ.

Lemma 26. For any query curve Q of complexity k, δ > 0, ε > 0, query(Q, δ, ε) runs in time
O(k · 2k).

Proof. Let q1, . . . , qk be the vertices of Q. We enumerate all sequences starting with q1, followed
by any possible subsequence of q2, . . . , qk−1 and ending with qk. There are at most 2k−2 such
sequences, and for each one of them we test whether it defines a δ-straightening of Q. This is done
in two steps: we first test if each shortcut is within distance δ from the corresponding subcurve, and
then we decide if the edge-range-preserving property is satisfied. Computing the Fréchet distance
between a shortcut and the original subcurve costs linear time in the complexity of the subcurve by
Theorem 6. Hence, we can decide in O(k) time if the sequence in question defines a δ-simplification
of Q. To decide if the edge-range-preserving property is satisfied, we check for each shortcut if the
corresponding subcurve stays within range by testing all of its vertices one by one. Therefore, this
step also costs O(k) time. Since we employ perfect hashing, each probe to H costs O(k) time. We
can also check in O(k) time if the answer returned by H is the one we are searching for. Hence,
the overall query time is in O(k · 2k).

Theorem 27. Let ε ∈ (0, 1]. There is a data structure for the (1 + ε)-ANN problem, which stores
n one-dimensional curves of complexity m and supports query curves of complexity k, uses space

in n · O
(
m
kε

)k
, needs O(nm) · O

(
m
kε

)k
expected preprocessing time and answers a query in O(k · 2k)

time.

Proof. The data structure is described in Section 4.1. Correctness follows from Lemma 25. The
bound on the query time follows from Lemma 26. It remains to analyze the running time of
preprocess(P, δ, ε/2, k) and the space complexity of the data structure.

By Lemma 24, for any P ∈ P, the running time needed to compute C′ is upper bounded by(
m+k−2
k−2

)
· O
(

1
ε

)k
= O

(
m
kε

)k
. Hence, for each P ∈ P, |C(P )| = O

(
m
kε

)k
. Therefore, the space

required for each input curve P ∈ P is upper bounded by O(|C(P )| · k). Computing C(P ) costs

O(|C′| ·mk) = O
(
m
kε

)k · O(m) time, because we need to decide for each curve Q ∈ C′, whether its
Fréchet distance from P is at most (1+ε/2)δ, which can be done inO(|Q|·|P |) time using Theorem 6.

Assuming perfect hashing for H, the overall expected preprocessing time is in O(nm) ·O
(
m
kε

)k
and

the space usage is in O(n) · O
(
m
kε

)k
.

5 (2 + ε)-Approximation

In this section we present three (2 + ε)-ANN data structures with different tradeoffs between
preprocessing and query time.
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5.1 Fast query algorithm

In this section, we propose a data structure for the (2 + ε)-ANN problem, with query time in O(k).
The space complexity and the preprocessing time are the same as in the (1+ε)-ANN data structure
of Theorem 27.

Data structure

We are given as input a set of one-dimensional curves P, as sequences of vertices, the distance
threshold δ > 0, the approximation error ε > 0 and the complexity of the supported queries k. The
data structure is exactly the same as in Section 4. To build it, we call preprocess(P, δ, ε/2, k),
as defined in Algorithm 2, in Section 4.1. Let H be the resulting dictionary, constructed by
preprocess(P, δ, ε/2, k).

Query algorithm

Let Q be the query curve with vertices q1, . . . , qk and let ε > 0 be the approximation error. The
query algorithm first computes a δ-signature Q′ of Q, and then it snaps the vertices of Q′ to the
grid Gεδ/2, to obtain a curve Q′′. If Q′′ is stored in H, then we return its associated input curve
P ∈ P, otherwise we return ”no”. The query algorithm is implemented in query2, which can be
found in Algorithm 4. To achieve approximation factor 2 + ε, we run query2(Q, δ, ε/2).

Algorithm 4 Query algorithm

1: procedure query2(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: Q′ ← δ-signature of Q
3: q′1, . . . , q

′
` ← vertices of Q′

4: Q′′ ←
〈⌊

q′1
εδ

⌋
· (εδ), . . . ,

⌊
q′`
εδ

⌋
· (εδ)

〉
. snap Q′ to Gεδ

5: if Q′′ in H then
6: return input curve P associated with Q′′ in H
7: return “no”

Lemma 28. If query2(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤ (2 + ε)δ. If
query2(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. If query2(Q, δ, ε/2) returns an input curve P ∈ P, then it must be that Q′′ is stored in H,
and P is its associated input curve. By the construction ofH, it must be that dF(P,Q′′) ≤ (1+ε/2)δ.
By the definition of signatures we know that dF(Q,Q′) ≤ δ, and by the triangle inequality we obtain

dF(Q,Q′′) ≤ dF(Q,Q′) + dF(Q′′, Q′) ≤ (1 + ε/2)δ.

Hence, by the triangle inequality we obtain

dF(P,Q) ≤ dF(P,Q′′) + dF(Q,Q′′) ≤ (2 + ε)δ.

Now suppose that query2(Q, δ, ε/2) returns “no”. This means that Q′′ is not stored in H.
Suppose that there exists a P ∈ P such that dF(P,Q) ≤ δ. Then by Lemma 18 there exists a
δ-visiting order of Q′ on P . Therefore, by the triangle inequality, there exists a ((1+ε/2)δ)-visiting
order of Q′′ on P , which implies that Q′′ ∈ C(P ), and hence Q′′ is stored in H. This leads to
a contradiction, since we have assumed that Q′′ is not stored in H. Hence, if query2(Q, δ, ε/2)
returns “no” then there is no P ∈ P such that dF(P,Q) ≤ δ.
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Theorem 29. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem, which stores
n one-dimensional curves of complexity m and supports query curves of complexity k, uses space in

n · O
(
m
kε

)k
, needs O(nm) · O

(
m
kε

)k
expected preprocessing time and answers a query in O(k) time.

Proof. Correctness of the data structure follows from Lemma 28. The space complexity and the pre-
processing time are analyzed in the proof of Theorem 27. It remains to show that query2(Q, δ, ε/2)
runs in O(k) time.

To compute a δ-signature of Q, we use the algorithm of Driemel, Krivosija and Sohler [DKS16],
which runs in O(k) time. Since we employ perfect hashing and we assume that the floor function
can be computed in constant time, each probe to H costs O(k) time, and we can also check at
the same time if the answer returned by H is the one we are searching for. We conclude that
query2(Q, δ, ε/2) runs in O(k) time.

5.2 Improved preprocessing time

In this section, we show that there exists a data structure for the (2 + ε)-ANN problem, with space
complexity and preprocessing time in n · O(1/ε)k + O(nm). The query time is in O(k · 2k). This
avoids the factor (m/k)k of our previous data structures.

Data structure

We are given as input a set of one-dimensional curves P, as sequences of vertices, the distance
threshold δ > 0, the approximation error ε > 0, and the complexity of the supported queries k. To
build the data structure, we use a modified version of the preprocessing algorithm in Section 4. For
each input curve P ∈ P, we compute a δ-signature P ′ of P . If the complexity of P ′ is at most k+ 2
then we compute a set C′ := C′(P ′) which contains all curves Q such that: i) Q has complexity at
most k, ii) all vertices of Q belong to Gεδ/2, and iii) there is a ((16 + ε/4)δ)-visiting order of Q on
P ′. This step is similar to the one in the preprocessing algorithm in Section 4, although here we
consider signatures of the input curves instead of the original curves.

The filtering process is also slightly different. We filter C′ to obtain a set C(P ) which contains
only those curves of C′ with: i) Fréchet distance at most (2 + ε/4)δ from P , ii) their first point
within distance (1 + ε/4)δ from P (0), and iii) their last point within distance (1 + ε/4)δ from P (1).
Let H be a dictionary which is initially empty. For each P ∈ P, we store C(P ) in H as follows:
for each Q ∈ C(P ), if Q is not already stored in H, then we insert Q into H, associated with a
pointer to P . The preprocessing algorithm is implemented in preprocess2, which can be found in
Algorithm 5. We also make use of the subroutine generate candidates described in Algorithm 2,
in Section 4.1. To achieve approximation factor (2 + ε), we run preprocess2(P, δ, 22, 2, ε/4, k).

Query algorithm

Let Q be the query curve with vertices q1, . . . , qk and let ε > 0 be the approximation error. The
query algorithm is the same as in the data structure of Section 4, but we run it with different input
parameters. In particular, we run query(Q, 2δ, ε/4) (see Algorithm 3) on the dictionary H which
is constructed by preprocess2(P, δ, 22, 2, ε/4, k).

Lemma 30. If query(Q, 2δ, ε/4) returns an input curve P ∈ P, then dF(Q,P ) ≤ (2 + ε)δ. If
query(Q, 2δ, ε/4) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. When query(Q, 2δ, ε/4) returns an input curve P ∈ P, it must be that there is a δ-
straightening Q′ of Q such that P is associated with Q′′ in H, where Q′′ denotes the curve
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Algorithm 5 Preprocessing algorithm. We call preprocess2 to build the data structure.

1: procedure preprocess2(input set P, δ > 0, r > 0, t > 0, ε > 0, k ∈ N)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: P ′ ← δ-signature of P
5: if |P ′| ≤ k + 2 then
6: C(P )← generate keys2(P ′, δ, r, t, ε, k)
7: for each Q ∈ C(P ) do
8: if Q not in H then
9: insert key Q in H, associated with a pointer to P

10: procedure generate keys2(curve P , δ > 0, r > 0, t > 0, ε > 0, k)
11: C′ ←generate candidates(P, δ, r + ε, ε, k)
12: C ← ∅
13: for each Q ∈ C′ do
14: if dF(P,Q) ≤ (t+ ε)δ and |P (0)−Q(0)| ≤ (1 + ε)δ and |P (1)−Q(1)| ≤ (1 + ε)δ then
15: C ← C ∪ {Q}
16: return C

produced by snapping vertices of Q′ to Gεδ/4. This implies that Q′′ ∈ C(P ), and therefore
dF(P ′, Q′′) ≤ (2 + ε/4)δ, |P ′(0) − Q′′(0)| ≤ (1 + ε/4)δ, |P ′(1) − Q′′(1)| ≤ (1 + ε/4)δ, where P ′

is the δ-signature of P computed by preprocess. By the triangle inequality,

dF(P ′, Q′) ≤ dF(P ′, Q′′) + dF(Q′, Q′′) ≤ (2 + ε/2)δ.

Similarly, by the triangle inequality, |P ′(0) − Q′(0)| ≤ (1 + ε/2)δ, |P ′(1) − Q′(1)| ≤ (1 + ε/2)δ.
Lemma 20 implies that dF(P,Q′) ≤ (2+ε)δ, because P ′ is a δ-signature of P , dF(P ′, Q′) ≤ (2+ε/2)δ,
|P (0)−Q′(0)| ≤ (1 + ε/2)δ and |P (1)−Q′(1)| ≤ (1 + ε/2)δ. Then, by Lemma 19, we conclude that
dF(P,Q) ≤ (2 + ε)δ.

If query(Q, 2δ, ε/4) returns “no”, then there is no input curve P ∈ P such that |P ′| ≤ k + 2,
where P ′ is the δ-signature computed by preprocess2 and such that there exists a δ-straightening
Q′ of Q with Q′ ∈ C(P ). Suppose for the sake of contradiction that there is an input curve P ∈ P
such that dF(Q,P ) ≤ δ. Then by the triangle inequality and the fact that dF(P, P ′) ≤ δ, we
obtain dF(Q,P ′) ≤ 2δ. In addition, by Lemma 18 there is a δ-visiting order of P ′ on Q. Since P ′

satisfies the δ-edge-length property, any two consecutive interior vertices lie at distance at least 2δ
to each other. Thus, no two consecutive interior vertices can belong to the same δ-range. Hence,
|P ′| ≤ |Q|+ 2 ≤ k + 2. By Lemma 22, there exists a 2δ-straightening Q′ of Q which satisfies

i) there exists a 22δ-visiting order of Q′ on P ′,
ii) dF(Q′, P ′) ≤ 2δ.

By the definition of signatures, we have P (0) = P ′(0) and P (1) = P ′(1), and since dF(P,Q) ≤ δ,
we have |P ′(0) − Q(0)| ≤ δ and |P ′(1) − Q(1)| ≤ δ. By the definition of straightenings, we have
Q′(0) = Q(0) and Q′(1) = Q(1) and therefore |P ′(0)−Q′(0)| ≤ δ and |P ′(1)−Q′(1)| ≤ δ. Hence, by
the triangle inequality there exists a ((22+ε/4)δ)-visiting order of Q′′ on P ′, dF(Q′′, P ′) ≤ (2+ε/4)δ,
|P ′(0)−Q′′(0)| ≤ (1 + ε/4)δ and |P ′(1)−Q′′(1)| ≤ (1 + ε/4)δ. This implies that Q′′ ∈ C(P ) which
leads to a contradiction.

Theorem 31. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem, which stores
n one-dimensional curves of complexity m and supports query curves of complexity k, uses space
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in n · O
(

1
ε

)k
+O(nm), needs n · O

(
1
ε

)k
+O(nm) expected preprocessing time and answers a query

in O(k · 2k) time.

Proof. Correctness follows from Lemma 30. The bound on the query time follows from Lemma 26.
It remains to bound the space complexity and the preprocessing time of the data structure.

Computing one δ-signature for each P ∈ P takes linear time O(mn) in total, using the algorithm
of Driemel, Krivosija and Sohler [DKS16]. Let P ′ be the δ-signature of some curve P ∈ P as
computed during preprocessing. If |P ′| > k we ignore P . By Lemma 24, for any P ′ ∈ P ′, the

running time needed to compute C′, is upper bounded by
(|P ′|+k−2

k−2

)
· O
(

1
ε

)k
= O

(
1
ε

)k
. The space

required for P ′ is upper bounded by O(|C(P ′)|·k+m) = O(|C′|·k+m) = O
(

1
ε

)k
+O(m). Computing

C(P ′) costs O(|C′| ·k) = O
(

1
ε

)k
time, since we take a decision on the Fréchet distance between each

curve in C′, and P ′, by making use of Theorem 6 . Assuming perfect hashing for H, the overall

expected preprocessing time is in O(n) · O
(

1
ε

)k
and the space usage is in O(n) · O

(
1
ε

)k
.

5.3 Linear preprocessing time

In this section we present a data structure for the (2 + ε)-ANN problem with linear space and
preprocessing time O(nm) and with query time in O(1/ε)k.

Data structure

We are given as input a set of one-dimensional curves P, as sequences of vertices, a distance
threshold δ > 0, the approximation error ε > 0 and the complexity of the supported queries k.
For each input curve P ∈ P, we compute a δ-signature P ′ of P . If |P ′| > k + 2 then we ignore
P , otherwise we snap it to Gεδ/2 to obtain a curve P ′′. Let H be a dictionary which is initially
empty. For each P ∈ P, we store P ′′ in H as follows: if P ′′ is not already stored in H, then we
insert P ′′ into H, associated with a pointer to P . To achieve approximation factor 2 + ε, we run
preprocess3(P, δ, ε/2, k), as defined in Algorithm 6.

Query algorithm

Let Q be a query curve of complexity k. We compute a set C′ := C′(Q) which contains all curves
P such that: i) P has complexity at most k, ii) all vertices of P belong to Gεδ/2, and iii) there is a
((1 + ε/2)δ)-visiting order of P on Q. We filter C′ to obtain a set C(Q) which contains only those
curves of C′ with: i) Fréchet distance at most (2 + ε/2)δ from Q, ii) their first point within distance
(1+ε/2)δ from Q(0), and iii) their last point within distance (1+ε/2)δ from Q(1). We probe H for
each key P ∈ C(Q): if we find a P ∈ C(Q) stored in H then we return the associated input curve.
If there is no P ∈ C(Q) stored in H then we return “no”. To achieve the desired approximation,
we run query3(Q, δ, ε/2), as defined in Algorithm 7.

Lemma 32. If query3(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤ (2 + ε)δ. If
query3(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. If query3(Q, δ, ε/2) returns an input curve, then it must be that there is a curve P ′′ ∈ C(Q)
which is stored in H, associated with a pointer to P . Since P ′′ is stored in H, there is a curve
P ∈ P with a δ-signature P ′ such that dF(P ′, P ′′) ≤ εδ/2. Moreover, since P ′′ ∈ C(Q), we have that
dF(Q,P ′′) ≤ (2 + ε/2)δ, |Q(0)− P ′′(0)| ≤ (1 + ε/2)δ, |Q(1)− P ′′(1)| ≤ (1 + ε/2)δ. By the triangle
inequality we obtain, dF(Q,P ′) ≤ (2 + ε)δ, |Q(0)−P ′(0)| ≤ (1 + ε)δ, |Q(1)−P ′(1)| ≤ (1 + ε)δ. By

19



Algorithm 6 Preprocessing algorithm

1: procedure preprocess3(input set P, δ > 0, ε > 0, k)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: P ′ ← δ-signature of P
5: if |P ′| ≤ k + 2 then
6: p1, . . . , p` ← vertices of P ′

7: P ′′ ←
〈⌊p1

εδ

⌋
· (εδ), . . . ,

⌊p`
εδ

⌋
· (εδ)

〉
8: if P ′′ not in H then
9: insert key P ′′ in H, associated with a pointer to P

Algorithm 7 Query algorithm

1: procedure query3(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: C(Q)← generate keys2(Q, δ, 1, 2, ε, k + 2)
3: for each P ′′ ∈ C(Q) do
4: if P ′′ in H then
5: return input curve P associated with P ′′ in H
6: return “no”

Lemma 20, since dF(Q,P ′) ≤ (2 + ε)δ, |Q(0)− P ′(0)| ≤ (1 + ε)δ, |Q(1)− P ′(1)| ≤ (1 + ε)δ and P ′

is a δ-signature of P , we conclude dF(Q,P ) ≤ (2 + ε)δ.
If query3(Q, δ, ε/2) returns “no”, then it must be that there is no curve P ′′ ∈ C(Q) which is

stored in H. Suppose for the sake of contradiction that there is an input curve P ∈ P such that
dF(Q,P ) ≤ δ. Let P ′ be the δ-signature of P , as computed during preprocessing. By Lemma 18,
there is a δ-visiting order of P ′ on Q and therefore |P ′| ≤ k + 2. Let P ′′ be the curve produced by
snapping the vertices of P ′ to the grid Gεδ/2. By the triangle inequality there is a ((1+ε/2)δ)-visiting
order of P ′′ on Q. Therefore, P ′′ must be included in C(Q), which leads to contradiction.

Theorem 33. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem, which stores
n one-dimensional curves of complexity m and supports query curves of complexity k, uses space
in O(nm), needs O(nm) expected preprocessing time and answers a query in O(1/ε)k+2 time.

Proof. Correctness follows from Lemma 32. It remains to bound the space complexity, the prepro-
cessing time and the query time.

Using the algorithm of Driemel, Krivosija and Sohler [DKS16], we can compute a signature
in linear time. Since we assume that the floor function can be computed in O(1), and that H is
implemented using perfect hashing, preprocess3(P, 1, ε/2, k) has running time O(nm). Therefore,
the space usage is also in O(nm).

To bound the query time, we bound the running time of generate keys2(Q, δ, 1, 2, ε/2, k+ 2),
because the last part of query3 is an enumeration over all curves returned by generate keys2 and
probingH for each one of them. To bound the running time of generate keys2(Q, δ, 1, 2, ε/2, k+2),
it suffices to bound the running time of generate candidates(Q, δ, (1 + ε/2), ε/2, k + 2). By

Lemma 24, this running time is upper bounded by
(

2k
k−2

)
· O
(

1
ε

)k+2
= O

(
1
ε

)k+2
. Recall that we

employ perfect hashing and we assume that the floor function can be computed in constant time.
Hence each probe to H costs O(k) time, and we can also check in O(k) if H returns the correct

answer. We conclude that query2(Q, δ, ε/2) runs in time O
(

1
ε

)k+2
.
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6 (3 + ε)-Approximation

In this section, we present a data structure for the (3 + ε)-ANN problem with preprocessing time
and space complexity in n · O(1/ε)k +O(nm) and query time in O(k).

Data structure

We are given as input a set of one-dimensional curves P, as sequences of vertices, a distance
threshold δ > 0, the approximation error ε > 0 and the complexity of the supported queries k. To
build the data structure, we use the preprocessing algorithm of the data structure in Section 5.2.
Let H be the dictionary, constructed by preprocess2(P, δ, 2, 3, ε/2, k).

Query algorithm

Let Q be a query curve. We run the query algorithm of the data structure in Section 5.1. In
particular, we run query2(Q, 2δ, ε/2) on H.

Lemma 34. If query2(Q, 2δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤ (3 + ε)δ. If
query2(Q, 2δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. Let Q′ be the 2δ-signature of Q and let Q′′ be the curve obtained by snapping vertices of
Q′ to Gεδ/2, as computed in query2.

If query2(Q, 2δ, ε/2) returns an input curve P ∈ P, then it must be that Q′′ ∈ C(P ), where
C(P ) is the result of generate keys2(P ′, δ, 2, 3, ε/2, k) and P ′ is a δ-signature of P , as computed
by preprocess2. By the construction of C(P ), it must be that dF(P ′, Q′′) ≤ (3 + ε/2)δ, |P ′(0) −
Q′′(0)| ≤ (1+ε/2)δ and |P ′(1)−Q′′(1)| ≤ (1+ε/2)δ. Hence, by the triangle inequality dF(Q′, P ′) ≤
(3 + ε)δ, |P ′(0) − Q′(0)| ≤ (1 + ε)δ and |P ′(1) − Q′(1)| ≤ (1 + ε)δ. We now apply Lemma 20
twice. We first apply it on P ′, Q′, Q. Since dF(P ′, Q′) ≤ (3 + ε)δ, |P ′(0) − Q′(0)| ≤ (1 + ε)δ,
|P ′(1)−Q′(1)| ≤ (1 + ε)δ and Q′ is a 2δ-signature of Q, we obtain dF(P ′, Q) ≤ (3 + ε)δ. Then, we
apply it on P ′, P , Q. Since dF(P ′, Q) ≤ (3+ε)δ, |P ′(0)−Q(0)| = |P ′(0)−Q′(0)| ≤ (1+ε)δ ≤ (2+ε)δ,
|P ′(1) − Q(1)| = |P ′(1) − Q′(1)| ≤ (1 + ε)δ ≤ (2 + ε)δ, and P ′ is a δ-signature of P , we obtain
dF(P,Q) ≤ (3 + ε)δ.

If query2(Q, 2δ, ε/2) returns “no” then Q′′ is not stored in H as a key. For the sake of contradic-
tion, we assume that there exists an input curve P ∈ P such that dF(P,Q) ≤ δ. Then by definition,
|P ′(0)−Q′(0)| ≤ δ and |P ′(1)−Q′(1)| ≤ δ. In addition, by Lemma 23, dF(P ′, Q′) ≤ 3δ and there
is a 2δ-visiting order of Q′ on P ′, By the triangle inequality we obtain dF(P ′, Q′′) ≤ (3 + ε/2)δ,
|P ′(0)−Q′′(0)| ≤ (1 + ε/2)δ, |P ′(1)−Q′′(1)| ≤ (1 + ε/2)δ, and that there is a ((2 + ε/2)δ)-visiting
order of Q′′ on P ′. Hence, by the construction of C(P ), it must be that Q′′ ∈ C(P ) which implies
that Q′′ is stored as a key in H. This is a contradiction.

Theorem 35. Let ε ∈ (0, 1]. There is a data structure for the (3 + ε)-ANN problem, which stores
n one-dimensional curves of complexity m and supports query curves of complexity k, uses space in
n · O(1/ε)k +O(nm), needs n · O(1/ε)k +O(nm) expected preprocessing time and answers a query
in O(k) time. where k is the complexity of the query curve.

Proof. Correctness follows from Lemma 34. The bounds on the preprocessing time and space
complexity follow from Theorem 31. The bound on the query time follows from Theorem 29.
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7 Proofs of main lemmas

In this section we give full proofs of the lemmas stated in Section 3. We start by proving a funda-
mental observation and lemma on the Fréchet distance of approximately monotone one-dimensional
curves.

Observation 36. Let Q be a directed line segment and let P : [0, 1] 7→ R be a curve. It holds that
dF(P,Q) ≤ δ if and only if the following conditions are satisfied:

(i) P is 2δ-monotone with respect to Q, and
(ii) |P (0)−Q(0)| ≤ δ, |P (1)−Q(1)| ≤ δ, and

(iii) P ⊆ B(Q, δ).

Proof. We assume that Q(0) ≤ Q(1) as the other case is symmetric. Now, assume first that
dF(P,Q) ≤ δ, then (ii) holds because start and end points are matched in any traversal and (iii)
holds as the Hausdorff distance is a lower bound for the Fréchet distance. Finally, (i) holds as
otherwise there exist two indices s, t ∈ [0, 1] with s < t and P (t) < P (s)− 2δ. As Q is increasing,
no traversal can match P (s) and P (t) in distance at most δ.

Second, assume that (i), (ii), and (iii) hold. Then dF(P,Q) ≤ δ is implied by Lemma 37, below,
but to provide some intuition we give a simpler proof here. The following traversal with position s
on P and position t on Q stays within distance δ. We start in P (0), Q(0), then we continue on P
until P (s) = Q(0)+δ. Then we always choose t such that Q(t) = mins′≥s P (s′)+δ while traversing
P , i.e., continuously increasing s. When we reach the end of Q, we can traverse P until the end
while staying in Q(1). It is easy to check that properties (i), (ii), and (iii) ensure distance δ during
the described traversal.

The following lemma statement is similar to the above observation with the important difference
that the line segment Q is replaced by a 2δ-monotone curve. The proof works by constructing a
traversal greedily and showing correctness of the greedy algorithm.

Lemma 37. Let P and Q be 2δ-monotone curves with
(i) P is 2δ-monotone with respect to Q(0)Q(1), and

(ii) |P (0)−Q(0)| ≤ δ, |P (1)−Q(1)| ≤ δ, and
(iii) P ⊆ B(Q, δ), and
(iv) Q ⊆ Q(0)Q(1).

It holds that dF(P,Q) ≤ δ.

Proof. We assume that Q(0) ≤ Q(1) as the other case is symmetric. If Q is not 2δ-monotone
increasing, then it also cannot be 2δ-monotone decreasing: if there are two points s, t ∈ [0, 1]
with s < t such that Q(t) < Q(s) − 2δ, then, as Q(t) ≥ Q(0) by condition (iv), we have that
Q(s) > Q(t) + 2δ ≥ Q(0) + 2δ and thus Q is not 2δ-monotone decreasing. However, as Q is
2δ-monotone, it has to be 2δ-monotone increasing. Due to condition (i), P is also 2δ-monotone
increasing. We give a traversal of P,Q with distance at most δ — denoting the position during the
traversal with (s, t) ∈ [0, 1]2 — that tries to maintain two invariants:

(1) P and Q are in a position (s, t) ∈ [0, 1]2 such that P (s) = Q(t) + δ.

(2) The suffix of Q is strictly greater than the current value Q(t), i.e., ∀t′ > t : Q(t′) > Q(t).

In general, both invariants may be violated at the very beginning of the traversal, that is, for s =
t = 0. Let us first describe how we traverse from the beginning of P,Q to a position (s, t) ∈ [0, 1]2

such that these invariants are fulfilled. We first traverse P until it first reaches Q(0) + δ, while in Q
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we stay in Q(0). Note that by condition (ii), we cannot have P (0) > Q(0) + δ. Furthermore, this
traversal is feasible as the traversed prefix of P is in the range [Q(0)−δ,Q(0)+δ], by condition (iii),
and thus within distance δ to Q(0). If we reach P (1) before reaching Q(0) + δ, then we know that
Q ⊆ [P (1)−δ, P (1)+δ] and we can thus traverse complete Q and dF(P,Q) ≤ δ. If we did not reach
P (1), we now traverse Q until its last point with value Q(0), which is possible as the traversed
prefix of Q lies in [Q(0), Q(0) + 2δ], due to condition (iv) and as Q is 2δ-monotone increasing, and
the position on P is currently Q(0) + δ.

From now on, we traverse P and Q with the same speed in image space, unless one of the two
invariants would be violated by continuing the traversal. If both invariants would be violated at the
same time, we break ties by restoring Invariant (1) before Invariant (2). Now, let s be the position
on P and t the position on Q when an invariant would be violated. When Invariant (1) would
be violated, we continue traversing P while staying in Q(t) on Q until the next time we reach a
position s′ on P with value P (s′) = P (s). Note that we might not reach such a position s′ because
we reached the end of P . However, if we did not reach the end of P , the invariant is restored.
This traversal keeps the two positions at distance δ as P (s) = Q(t) + δ and as P is 2δ-monotone
increasing. In case Invariant (2) would be violated, we continue traversing Q until we reach the
largest position t′ > t such that Q(t′) = Q(t). Note that afterwards, both invariants hold (as we
restore Invariant (1) before Invariant (2)), and, in particular, we cannot reach the end of Q due
to the existence of Q(t′) which we reach at the end of restoring Invariant (2). This traversal also
keeps the two positions at distance δ as initially Q(t) = P (s)− δ and Q is 2δ-monotone increasing
and there is no position t′′ on Q with Q(t′′) < Q(t), i.e., all the points before reaching position t′

on Q have to be in the range [Q(t), Q(t) + 2δ].
In all of the above cases we are guaranteed to make progress in our traversal. Furthermore, we

will reach the end of P before or at the same time as we reach the end of Q because, first, while
restoring invariants we can only reach the end of P but not of Q as argued above and, second, if
we reach the end of Q while both invariants would continue to hold, we also have to reach the end
of P at the same time as otherwise we would violate condition (iii) of the lemma. When we reach
the end of P , we know that P (1) ∈ [Q(1)− δ,Q(1) + δ] due to condition (ii), and the remaining Q
is in [P (1)− δ,Q(1)]. Thus, the remaining Q is in [P (1)− δ, P (1) + δ] and consequently Q can be
traversed until the end.

It follows from the traversal constructed thereby that dF(P,Q) ≤ δ.

7.1 Proofs of lemmas for straightenings

Next, we want to prove Lemma 19 from Section 3. We first prove a simpler statement, which can
be thought of as a special case where the straightening consists of only one edge.

Lemma 38. Let X = ab ⊂ R be a line segment and let Q : [0, 1] 7→ R be a curve such that:
Q(0) = X(0), Q(1) = X(1), for all t ∈ [0, 1] : Q(t) ∈ ab and dF(Q,X) ≤ δ. For any curve
P : [0, 1] 7→ R with dF(P,X) ≤ δ, it holds that dF(P,Q) ≤ δ.

Proof. To show the lemma statement, we want to apply Lemma 37 to P and Q. For this, we need
to show that the conditions on Q and P from the lemma statement are met. By Observation 36
applied to Q and the line segment X, it follows that Q must be 2δ-monotone with respect to X, and
by our assumptions, Q is range-preserving (condition (iv)). By Observation 36 applied to P and
X, it also follows that P is 2δ-monotone, and conditions (ii), (iii) and (i) are satisfied. Therefore,
Lemma 37 can be applied to P and Q and the claim is implied.

Lemma 19. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves and let Q′ be any δ-straightening
of Q. If dF(P,Q′) ≤ δ then dF(P,Q) ≤ δ.
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Proof. Let q1, . . . , q` be the parameters corresponding to the vertices of Q′ in Q, i.e., the vertices
of Q′ are Q(q1), . . . , Q(q`). Let φ : [0, 1]→ [0, 1]2 be a δ-traversal between P and Q′. Let 0 = t1 ≤
· · · ≤ t` = 1 be a partition of the parameter space of P such that for any 1 ≤ i ≤ ` − 1, the edge
Q(qi)Q(qi+1) is mapped to P [ti, ti+1] under φ. As such, we have

dF(P [ti, ti+1], Q(qi)Q(qi+1)) ≤ δ

By the locality property of δ-simplifications, we also have that

dF(Q[qi, qi+1], Q(qi)Q(qi+1)) ≤ δ

Now, Lemma 38 implies that
dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

Finally, we apply Observation 4 on P =©`
i=1P [ti, ti+1] and Q =©`

i=1Q[qi, qi+1], and we obtain

dF(P,Q) ≤ max
i∈[`]

dF (P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

7.2 Proofs of lemmas for signatures

Next, we want to prove Lemma 20 from Section 3. We first prove an auxiliary statement for
signature edges in Lemma 39. In particular, we need to take care of the first and last edge of the
signature. For the other edges we can use Lemma 38. Technically, we will also need the symmetric
statement of this lemma for a > b; this follows by mirroring at the origin. The proof of this lemma
turns out be technically involved. For the proof of Lemma 20 we can then use the same approach
as for Lemma 19 above.

Lemma 39. Let δ = δ′ + δ′′ for δ, δ′, δ′′ ≥ 0. Let X = ab ⊂ R be a line segment with a ≤ b and
let Q : [0, 1] 7→ R be a curve such that: Q(0) = X(0), Q(1) = X(1) and dF(Q,X) ≤ δ′. Let
P : [0, 1] 7→ R be a curve with dF(P,X) ≤ δ.

If either
(i) |Q(0)− P (0)| ≤ δ′′ and |Q(1)− P (1)| ≤ δ′′, or

(ii) |Q(0)− P (0)| ≤ δ′′ and maxt∈[0,1](Q(t)) ≤ Q(1), or
(iii) mint∈[0,1](Q(t)) ≥ Q(0) and |Q(1)− P (1)| ≤ δ′′,
then it holds that dF(P,Q) ≤ δ.

Proof. Let tmin = arg min{Q(t)} and tmax = arg max{Q(t)}. In case the minimum (resp. maximum)
is not unique, we choose any of them. By Observation 36, we have that ∀t ∈ [0, 1] Q(t) ∈ [Q(0)−
δ′, Q(1) + δ′] and by assumption of case (i) |P (0)−Q(0)| ≤ δ′′ and |P (1)−Q(1)| ≤ δ′′. Therefore,
by triangle inequality, we have in case (i), that

|P (0)−Q(tmin)| ≤ δ and |P (1)−Q(tmax)| ≤ δ

It is easy to see that this holds in the cases (ii) and (iii), as well, since |P (0) − Q(0)| ≤ δ and
|P (1)−Q(1)| ≤ δ holds in any case as we assume dF(P,X) ≤ δ.

Now, define
t1 = min{t ∈ [0, 1] | P (t) ≥ Q(tmin) + δ}

t2 = max{t ∈ [0, 1] | P (t) ≤ Q(tmax)− δ}
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If such a t1 does not exist, then we set t1 = 1. If t2 does not exist, then we set t2 = 0.
Note that by construction and Observation 36 we have

(3) dF(P [0, t1], Q(0)) ≤ δ and dF(P [t2, 1], Q(1)) ≤ δ

Indeed, (3) holds true since Q(tmin) ≤ Q(0) ≤ Q(tmin) + δ′ and, likewise, Q(tmax) ≥ Q(1) ≥
Q(tmax)− δ′, and, moreover, the image of the subcurve P [0, t1] is contained in the interval [Q(0)−
δ,Q(tmin)+δ] and the image of the subcurve P [t2, 1] is contained in the interval [Q(tmax)−δ,Q(1)+δ].

In addition, we have

(4) dF(P (t1), Q[0, tmin]) ≤ δ and dF(P (t2), Q[tmax, 1]) ≤ δ

Indeed, (4) holds true, since δ′ ≤ δ and by Observation 36, Q is 2δ′-monotone increasing, and
therefore the image of the subcurve Q[0, tmin] is contained in the interval [Q(tmin), Q(tmin) + 2δ′]
which by construction is equal to [P (t1) − δ′, P (t1) + δ′] and the image of the subcurve Q[tmax, 1]
is contained in the interval [Q(tmax) − 2δ′, Q(tmax)], which by construction is equal to [P (t2) −
δ′, P (t2) + δ′].

Now, assume that t1 ≤ t2 and tmin ≤ tmax. In this case, the subcurves P [t1, t2] and Q[tmin, tmax]
are well-defined. By construction, |P (t1)−Q(tmin) |≤ δ, |P (t2)−Q(tmax) |≤ δ and Q[tmin, tmax] ⊆
Q(tmin)Q(tmax). By Observation 36, P and Q are both 2δ-monotone with respect to X, and, by def-
inition, X = Q(0)Q(1). Moreover, by the definition of t1, t2, we have P [t1, t2] ⊆ B(Q[tmin, tmax], δ).
Therefore all conditions of Lemma 37 are satisfied, which implies that

(5) dF(P [t1, t2], Q[tmin, tmax]) ≤ δ

In summary, we have by (3),(4), and (5) that

max


dF(P [0, t1], Q(0))

dF(P (t1), Q[0, tmin])
dF(P [t1, t2], Q[tmin, tmax])

dF(P (t2), Q[tmax, 1])
dF(P [t2, 1], Q(1))

 ≤ δ
Now, by Observation 4 we can concatenate these subcurves and dF(P,Q) ≤ δ is implied.

If the assumption t1 ≤ t2 fails, then, in fact, a simpler decomposition works. Indeed, if t1 > t2,
then it holds by (3) and (4) that

max

dF(P [0, t1], Q(0))
dF(P (t1), Q)

dF(P [t1, 1], Q(1))

 ≤ δ
Therefore, also in this case, dF(P,Q) ≤ δ holds true.

Finally, we need to consider the case that the assumption tmin ≤ tmax fails. We may assume
that t1 ≤ t2, as we covered the case t1 > t2 above. We will consider the different cases from the
lemma statement separately. First, note that if tmin > tmax, then |Q(tmax) − Q(tmin)| ≤ 2δ, since
Q is 2δ-monotone, and therefore, Q is contained in the interval [P (t1)− δ, P (t1) + δ]. By a similar
argument, Q is contained in the interval [P (t2)− δ, P (t2) + δ].

Now, assume case (ii) from the lemma statement. In this case, we have by the above and by
Lemma 37

max

 dF(P [0, t1], Q(0))
dF(P (t1), Q[0, tmin])

dF(P [t1, 1], Q[tmin, 1]))

 ≤ δ
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Assume case (iii) from the lemma statement. In this case, we have symmetrically

max

dF(P [0, t2], Q[0, tmax])
dF(P (t2), Q[tmax, 1])

dF(P [t2, 1], Q(1))

 ≤ δ
Now, for case (i), we claim that there exist 0 ≤ q1 ≤ q2 ≤ 1, such that

max


dF(P [0, t1], Q(0))
dF(P (t1), Q[0, q1])

dF(P [t1, t2], Q[q1, q2])
dF(P (t2), Q[q2, 1])
dF(P [t2, 1], Q(1))

 ≤ δ
Indeed, from what we derived, dF(P (t1), Q[0, q1]) ≤ δ and dF(P (t2), Q[q2, 1]) ≤ δ holds for any
choice of q1, q2 ∈ [0, 1]. The first and last line hold by (3). It remains to show that we can choose
q1, q2 so that dF(P [t1, t2], Q[q1, q2]) ≤ δ holds. Since dF(P,X) ≤ δ, there must be a subsegment
X[x1, x2] of X, such that dF(P [t1, t2], X[x1, x2]) ≤ δ. Recall that Q(0)Q(1) = X and by the
intermediate value theorem we can define suitable q1, q2 as follows

q1 = max{q ∈ [0, 1] | Q(q) = X(x1)}

q2 = min{q ∈ [q1, 1] | Q(q) = X(x2)}
Now, we can apply Lemma 37 and conclude that dF(P [t1, t2], Q[q1, q2]) ≤ δ. Therefore, also in case
(i), we have dF(P,Q) ≤ δ.

Now we are ready to prove Lemma 20.

Lemma 20. Let δ = δ′+ δ′′ for δ, δ′, δ′′ ≥ 0 and let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves.
Let Q′ be any δ′-signature of Q. If dF(Q′, P ) ≤ δ, |Q(0)−P (0)| ≤ δ′′, and |Q(1)−P (1)| ≤ δ′′, then
dF(P,Q) ≤ δ.
Proof. This follows by a modification of the proof of Lemma 19. Although the two proofs are very
similar, the differences are subtle. Therefore, we give the full proof for the sake of completeness.
Let q1, . . . , q` be the parameters corresponding to the vertices of Q′ in Q, i.e., the vertices of Q′ are
Q(q1), . . . , Q(q`). Let φ : [0, 1]→ [0, 1]2 be a δ-traversal between P andQ′. Let 0 = t1 ≤ · · · ≤ t` = 1
be a partition of the parameter space of P such that for any 1 ≤ i ≤ `− 1, the edge Q(qi)Q(qi+1)
is mapped to P [ti, ti+1] under φ. As such, we have

(6) dF(P [ti, ti+1], Q(qi)Q(qi+1)) ≤ δ

By the definition of δ-simplifications, we also have that

(7) dF(Q[qi, qi+1], Q(qi)Q(qi+1)) ≤ δ′ ≤ δ

Now, if the edge Q(qi)Q(qi+1) of Q′ is range-preserving, then Lemma 38 implies that

(8) dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

Otherwise, it must be (by the definition of signatures) that either i = 1 or i + 1 = ` or both (the
edge is the first or last edge of the signature Q′ or Q′ consists of just one edge). In any of those
cases, Lemma 39 implies dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

Finally, we apply Observation 4 on P =©`
i=1P [ti, ti+1] and Q =©`

i=1Q[qi, qi+1], and we obtain

dF(P,Q) ≤ max
i∈[`]

dF (P [ti, ti+1], Q[qi, qi+1]) ≤ δ.
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7.3 Proofs of lemmas for visiting orders

In order to prove the existence of δ′-visiting orders for some δ′ ∈ O(δ) as claimed in Lemma 22, we
introduce the concept of a visiting sequence. A visiting sequence is not necessarily monotonically
increasing, while visiting orders according to Definition 17 are. Nonetheless, this definition of
visiting sequence will turn out to be useful. It is important that a δ-visiting sequence is derived
from a monotone traversal. We will show (Lemma 42 and 43) that any non-monotonic visiting
sequence can be turned into a monotonic one at the expense of a constant factor in the radius of
the visiting sequence.

Definition 40. Let P : [0, 1]→ R and Q : [0, 1]→ R be curves, let δ > 0, and let φ : [0, 1]→ [0, 1]2

be a monotone traversal. We say a vertex w of Q δ-visits a vertex v of P under φ if the following
holds:

(i) |w − v| ≤ δ and
(ii) at least one of the following holds:

(a) φ associates w with v, or
(b) φ associates w with the interior of an edge of P that is incident to v, or
(c) φ associates v with the interior of an edge of Q that is incident to w.

Note that the induced relation on the vertices is symmetric for any fixed δ and φ.

Definition 41. Let P : [0, 1] → R and Q : [0, 1] → R be curves and let φ : [0, 1] → [0, 1]2 be a
monotone traversal. Let S be a subsequence of the vertices of Q of length `. Let u1, . . . , u` denote
the ordered vertices of S and let v1, . . . , vm denote the ordered vertices of P . A δ-visiting sequence
of S on P under φ is a sequence of indices i1, . . . , i`, such that each uj of S δ-visits the vertex vij
of P under φ.

Lemma 42. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ and let φ be a
monotone traversal realizing this distance. Let vi, vj be two vertices of Q with i < j in the ordering
along Q. Assume vi δ-visits a vertex wa of P under φ and vj δ-visits a vertex wb of P under φ
such that a > b in the ordering along P . Then, it must be that vi 3δ-visits wb under φ and that vj
3δ-visits wa under φ.

Proof. As a > b, however, in φ a point on an adjacent edge of wa is matched earlier than a point
on an adjacent edge of wb, we conclude due to the monotonicity of φ that wbwa is an edge in P .
Let P (t) and P (t′) be the points that vi and vj are mapped to on wbwa under φ, respectively. By
the monotonicity of φ we have t ≤ t′. See Figure 3 for an illustration.

Assume that wa < wb, as the case wa > wb is symmetric. Since P (t) and P (t′) are both on the
edge wbwa, the fact that t ≤ t′ implies that P (t′) ≤ P (t). Using the facts that |vi − wa| ≤ δ and
|vj − wb| ≤ δ, we obtain

vi − δ ≤ wa ≤ P (t′) ≤ P (t) ≤ wb ≤ vj + δ.

At the same time we have
vj − δ ≤ P (t′) ≤ P (t) ≤ vi + δ.

It follows that |vi − vj | ≤ 2δ.
Thus, the claim that vi is contained in the 3δ-range of wb is then implied by triangle inequality,

as well as the symmetric claim that vj is contained in the 3δ-range of wa. As vi and vj are
both matched to the edge wbwa, we also have that vi and vj visit the 3δ-ranges of wb and wa,
respectively.
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P
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wb

wa

P (t)
P (t′)

vi

vj

Figure 3: Illustration to the proof of Lemma 42. Assuming wa < wb as in the proof, vi visits wa
and vj visits wb, but i < j and a > b, so the visiting sequence is not monotone.

Lemma 43. Let P : [0, 1] → R and Q : [0, 1] → R be curves and let φ : [0, 1] → [0, 1]2 be a
monotone traversal that maps them within distance δ. Let S be a subsequence of the vertices of Q.
Any δ-visiting sequence of S on P under φ implies a 3δ-visiting order of S on P .

Proof. Let u1, . . . , u` denote the vertices of S and let i1, . . . , i` denote the visiting sequence. We
generate a monotonically increasing sequence as follows. For every uj , we set ij to the minimum of
the suffix sequence ij , . . . , i`. If ij was already a minimum, then nothing changes. Otherwise, let
ik be an index, where this minimum was attained. By Lemma 42 the vertex uj is contained in the
3δ-range of the vertex vik . After applying this to all elements of the sequence, starting with j = 1
and ending with j = `, the sequence i1, . . . , i` is monotonically increasing.

The next two lemmas are used in the proof of Lemma 22.

Lemma 44. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ and let φ be
a monotone traversal realizing this distance. If none of the inner vertices of P and Q δ-visit each
other under φ, then P and Q are 2δ-monotone.

Proof. We prove the lemma by induction. We reconstruct the matching φ and use “matched”
as shorthand for “matched under φ”. Recall that we denote the ordered vertices of P and Q by
p1, p2, . . . and q1, q2, . . . , respectively. Note that if either P or Q consist of a single vertex or single
segment, then the claim immediately follows from Observation 36. Otherwise, either p2 is matched
to a point on q1q2 or q2 is matched to a point on p1p2 and p2, q2 are inner vertices. As the lemma
statement is symmetric with respect to P and Q, we assume without loss of generality that p2 is
matched to q1q2. As p2 and q2 are inner vertices, they cannot δ-visit each other, and thus either
p2 < q2 − δ or p2 > q2 + δ. By mirroring the curves P and Q at the origin, these two cases are
symmetric, and we thus assume p2 < q2 − δ without loss of generality. As p2 is matched to q1q2,
it follows that q1 < q2. Thus, q1q2 is increasing and p1p2 has to be 2δ-monotone increasing as
otherwise the matching would have distance larger than δ. Now, for the inductive step, assume
that 〈p1, . . . , pi〉 and 〈q1, . . . , qj〉 are 2δ-monotone increasing curves, pi, qj are inner vertices, and pi
is matched to a point on qj−1qj with pi < qj − δ. Note that this again implies qj−1 < qj .

Let us now prove the inductive step. If pi+1 is an inner vertex, then either (i) pi+1 is also
matched to a point on qj−1qj or (ii) qj is matched to a point on pipi+1.

In case (i), pi+1 extends a subcurve 〈pi′ , . . . , pi〉 with i′ ≥ 1 that is completely matched to a
part of the increasing segment qj−1qj . The subcurve 〈pi′ , . . . , pi〉 has to be 2δ-monotone increasing
according to Observation 36. Either pi′ is the start of P (i.e, i′ = 1) and thus 〈p1, . . . , pi+1〉 is
2δ-monotone increasing, or pi′−1 has to be matched to a part of Q before qj−1 and thus qj−1 is
an inner vertex. As qj−1 was already matched, it follows that either pi′−1 is the start of P (i.e.,
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i′ − 1 = 1) and pi′−1 ≤ qj−1 + δ, or pi′−1 is an inner vertex and pi′−1 < qj−1 − δ as they do not
δ-visit each other. In both cases 〈p1, . . . , pi′−1〉 is contained in [−∞, qj−1 + δ); for the first case this
holds as 〈p1, . . . , pi′−1〉 is 2δ-monotone increasing by induction. Consequently, the concatenation of
〈p1, . . . , pi′−1〉 and 〈pi′ , . . . , pi+1〉 is also 2δ-monotone increasing.

Now consider case (ii), i.e., qj is matched to a point on pipi+1. In this case pipi+1 is increasing as
pi < qj and qj < pi+1, which is the case because qj is matched to pipi+1 and pi < qj − δ. Therefore,
also in this case it holds that 〈p1, . . . , pi+1〉 is 2δ-monotone increasing. Note that after exchanging
P and Q, we again fulfill the inductive hypothesis. In particular, since qj is matched to pipi+1 but
pi+1 and qj do not δ-visit each other as both are inner vertices, we must have qj < pi+1 − δ.

Now consider the case that pi+1 is not an inner vertex, i.e., it is the last vertex of P . In this
case, part of pipi+1 has to be matched to qj as no previous part of P was matched to qj . This
implies that pipi+1 again is increasing as pi < qj − δ and pi+1 ≥ qj − δ. Hence 〈p1 . . . pi+1〉 is
2δ-monotone increasing. As the remainder of Q, starting from qj , has to be matched to part of
pipi+1 and therefore this part is 2δ-monotone increasing by Observation 36, and 〈q1, . . . , qj−1〉 is
2δ-monotone by induction and also contained in [−∞, pi − δ) as pi is matched to the increasing
qj−1qj , it follows that the whole curve Q is 2δ-monotone increasing.

Lemma 45. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ and let
φ be a monotone traversal realizing this distance. Further assume that for all t ∈ [0, 1] we have
Q(t) ∈ Q(0)Q(1). If none of the inner vertices of Q δ-visit an inner vertex of P under φ, then the
line segment Q′ = Q(0)Q(1) is a range-preserving δ-simplification of Q with dF(Q′, P ) ≤ δ.

Proof. By Lemma 44, Q and P must be 2δ-monotone. Moreover, Q′ is range-preserving by as-
sumption. Therefore, Q′ is a range-preserving δ-simplification of Q. It remains to show the bound
on the Fréchet distance of P and Q′. To this end, we want to invoke Observation 36. Indeed, it
must be that

∀t ∈ [0, 1] : P (t) ∈
⋃

s∈[0,1]

B(Q(s), δ),

since dF(P,Q) ≤ δ and since Q′ is range-preserving. Therefore, the conditions of Observation 36
are satisfied and the bound is implied.

We are now ready to prove Lemma 22 from Section 3.

Lemma 22. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ, there exists a
δ-straightening Q′ of Q which satisfies the following properties:

(i) there exists a 11δ-visiting order of Q′ on P , and
(ii) dF(Q′, P ) ≤ δ.

Proof. Let φ be a monotone traversal that realizes the Fréchet distance between P and Q. We will
construct a δ-straightening Q′ together with a O(δ)-visiting order of Q′ on P . To this end, consider
the subset of vertices of Q that each δ-visit some vertex of P under φ (Definition 40). Denote this
subset by S. Lemma 43 implies that there exists a 3δ-visiting order of S on P . We denote this
visiting order by the function κ : S → [m] that assigns every vertex of S the index of a vertex of P
(where m denotes the number of vertices of P ).

It is quite possible that S is not a δ-simplification of Q with the desired properties. In a second
phase of the construction we will therefore add more vertices of Q to S. Consider any maximal
subcurve Q[s, s′] of Q, such that none of the inner vertices of Q[s, s′] δ-visit a vertex of P under φ.
It must be that Q(s) corresponds to some vertex w of S and Q(s′) corresponds to some vertex w′

of S. Moreover, w′ comes directly after w along Q among the vertices included in S. Assume that
Q[s, s′] has at least one inner vertex. We distinguish two cases:
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(C1) B(vκ(w), 3δ) ∩B(vκ(w′), 3δ) 6= ∅,

(C2) otherwise

In the first case (C1), we will add all inner vertices Q[s, s′] to S and assign them the index κ(w)
in the constructed visiting order κ. In the second case (C2), we will only add a specific subset of
vertices, which we define as follows. Define α and β as follows:

α = max{t | t ∈ [s, s′] and Q(t) ∈ B(vκ(w), 3δ)}

β = min{t | t ∈ [α, s′] and Q(t) ∈ B(vκ(w′), 3δ)}

Since the 3δ-ranges of vκ(w) and vκ(w′) are disjoint, α and β are well-defined and it follows by
definition that s ≤ α ≤ β ≤ s′. Therefore, the subcurves Q[s, α], Q[α, β], and Q[β, s′] are well-
defined. Now, we proceed as follows, we add the inner vertices of Q[s, α] to S and assign them the
index κ(w) in the constructed visiting order κ. Secondly, we add the inner vertices of Q[β, s] to S
and assign them the index κ(w′) in the constructed visiting order κ.

We apply this to all such maximal subcurves Q[s, s′] (note that these are pairwise disjoint),
thereby constructing the sequence S along with the visiting order κ. Let u1, . . . , u` be the sequence
of vertices of the resulting S in their order along Q. Denote with Q′ the curve that results from
linearly interpolating u1, . . . , u`. Note that it is different from Q only in the sections where we omit-
ted the vertices of the subcurve Q[α, β] in case (C2). We claim that Q′ is an edge-range-preserving
δ-simplification of Q. To see this, consider a subcurve Q[s, s′], assume we are in case (C2). By
construction, the subcurve Q[α, β] is range-preserving (for all x ∈ [α, β] we have Q(x) ∈ Q(α)Q(β)).
Let P [t, t′] be a subcurve of P mapped to Q[α, β] under φ. Now, Lemma 45 applied to the subcurves
P [t, t′] and Q[α, β] implies that Q(α)Q(β) is an edge-range-preserving δ-simplification of Q[α, β]
with dF(Q(α)Q(β), P [t, t′]) ≤ δ. Therefore, by Observation 4, when removing all vertices of Q in
the parameter range (α, β) for each such maximal subcurve Q[s, s′], we obtain a δ-straightening Q′

of Q with dF(Q′, P ) ≤ δ.
Finally, we argue that the constructed visiting order κ(u1), . . . , κ(u`) is an 11δ-visiting order of

Q′ on P . Clearly it is monotonically increasing by construction. Also, it is clear that any vertex
added in the first phase is contained in the 3δ-range of its assigned vertex of P . It remains to argue
for any vertex added to S in the second phase, that it is contained in the 11δ-range of its assigned
vertex in P . Consider a subcurve Q[s, s′] from above and assume we are in case (C1). We have
that Q(s) ∈ B(vκ(w), 3δ) and Q(s′) ∈ B(vκ(w′), 3δ). By the case distinction, these two ranges are
not disjoint. Therefore, the subcurve starts and ends in the 9δ-range of the assigned vertex vκ(w).
Moreover, by Lemma 44, Q[s, s′] has to be 2δ-monotone. This implies that the entire subcurve lies
in the 11δ-range of vκ(w) and this is also the vertex that we assigned to all of its inner vertices.
A similar argument can be applied in case (C2). By the way we chose α, we have that Q(α) is
contained in the 3δ-range of vκ(w), which is also the vertex assigned to the entire subcurve. Since
also the subcurve Q[s, α] is 2δ-monotone, all remaining vertices in the range [s, α] are contained in
the 5δ-range of the same vertex. A symmetric argument can be applied to show that all remaining
vertices in the range [β, s′] are contained in the 5δ-range of their assigned vertex.

Finally, we also prove Lemma 23 from Section 3.

Lemma 23. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′ be a 2δ-
signature of Q. If dF(P,Q) ≤ δ then dF(P ′, Q′) ≤ 3δ and there exists a 2δ-visiting order of Q′

on P ′.
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Proof. By the triangle inequality we have that dF(P ′, Q) ≤ dF(P ′, P ) + dF(P,Q) ≤ 2δ. Now
Lemma 18 applied to P ′ and the 2δ-signature of Q implies that there exists a 2δ-visiting order of
Q′ on P ′.

It remains to argue that dF(P ′, Q′) ≤ 3δ. Let φ : [0, 1] → [0, 1]2 be a δ-traversal of P and Q.
Consider an edge X of Q′ and let Q[α, β] be the subcurve of Q that corresponds to X. Let P [α′, β′]
be a subcurve of P that is mapped to Q[α, β] under φ. By the triangle inequality

dF(P [α′, β′], X) ≤ dF(P [α′, β′], Q[α, β]) + dF(Q[α, β]), X) ≤ 3δ

Assume that P ′ is range-preserving for now (we will treat the general case below) and let
P ′[α′′, β′′] be the corresponding subcurve of P ′ starting at P (α′), ending at P (β′), and with inner
vertices being the δ-signature vertices of P in the parametrization interval [α′, β′]. Note that
P ′[α′′, β′′] is well-defined since P ′ is a range-preserving as assumed above. By Observation 5 it
follows that dF(P ′[α′′, β′′], X) ≤ 3δ. To show the claim for the case of range-preserving P ′, we now
want to use Observation 4 to concatenate the corresponding subcurves of P ′ and Q′ and obtain
that dF(P ′, Q′) ≤ 3δ. For this, we can choose the values of α′ and β′ in the above argument such
that we obtain a decomposition of P into subcurves. Concretely, let X1, . . . , Xs be the edges of Q′

in their order along Q′, with Xi = Q(αi)Q(βi). Then, we can choose the corresponding subcurves
of P as P [α′i, β

′
i], with

α′i−1 ≤ β′i−1 = α′i ≤ β′i
for any 1 < i ≤ s, with α′1 = 0 and β′s = 1. Thus, we obtain a decomposition of P . Now, if P ′ is
a range-preserving simplification of P , then the above construction induces a decomposition of P ′

into subcurves P ′[α′′i , β
′′
i ] and we can apply Observation 4.

As noted above, P ′ is not necessarily range-preserving on all edges since it is a signature. In
particular, it may not be range-preserving on the first edge (or the last edge, or neither). This
could lead to P (α′2) (resp. P (α′s) for the last edge) not being included in the image of the signature
edge of P ′ that corresponds to the subcurve of P containing α′2 (resp., α′s). Note that if P (α′2) is
not contained in the image of the first signature edge, then it must be that |P (α′2) − P (0)| ≤ δ,
and in fact, it must be that this holds for the entire subcurve, that is |P (t) − P (0)| ≤ δ for any
t ∈ [0, α′2]. We claim that in this case we can simply set α′′2, and β′′1 to 0 (resp., we can set β′′s−1, and
α′′s to 1). We argue that this way of choosing the decomposition leads to dF(P ′[α′′1, β

′′
1 ], X1) ≤ 3δ

and dF(P ′[α′′2, β
′′
2 ], X2) ≤ 3δ so that the above arguments can be applied (for the last two edges of

Q′ a symmetric argument can be applied and we will omit the explicit analysis).
By the triangle inequality, we have that

|P ′(0)−Q(α2)| ≤ |P (0)− P (α′2)|+ |P (α′2)−Q(α2)| ≤ 2δ.

Together with
|P ′(0)−Q(α1)| = |P (0)−Q(0)| ≤ δ

this implies by Observation 3 that dF(P ′(0), X1) ≤ 3δ since X1 is a line segment and X1 =
Q(0)Q(α2). Applying the triangle inequality again, we obtain for any t ∈ [0, α′2] that

|P (t)−Q(α2)| ≤ |P (t)− P (0)|+ |P (0)−Q(α2)| ≤ 3δ

By Observation 4 and since X2 = Q(α2)Q(β2), this implies that

dF(P [0, β′2], X2) ≤ max
(

dF(P [0, α′2], Q(α2)) , dF(P [α′2, β
′
2], Q(α2)Q(β2))

)
≤ 3δ

By Observation 5 it follows that dF(P ′[0, β′′2 ], X2) ≤ 3δ.
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8 Lower Bounds

In this section we show several conditional lower bounds for (2−ε) and (3−ε)-approximate nearest
neighbor data structures. We use the well-known Orthogonal Vectors problem as the problem that
we base our hardness results on.

Definition 46 (Orthogonal Vectors (OV)). Given two sets of vectors A,B ⊆ {0, 1}d, do there exist
two vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0?

Definition 47 (Orthogonal Vectors Hypothesis (OVH)). For all ε > 0 there exists a c > 0 such
that there is no algorithm solving OV instances A,B ⊂ {0, 1}d with |A| = |B| and d = c log |A| in
time O(|A|2−ε).

The above hypothesis is also sometimes called the Low-Dimensional Orthogonal Vectors Hy-
pothesis and it is implied by the Strong Exponential Time Hypothesis [Wil05]. We use this version
of the Orthogonal Vectors Hypothesis as it allows us to rule out running times using an arbitrarily
small ε while still reducing from an instance where vectors have a logarithmic dimension. It is well
known that balanced OV with sets of the same size is equally hard as unbalanced OV [AW14, BK18].

Lemma 48 (Unbalanced Orthogonal Vectors Hypothesis). Assume OVH holds true. For every
α ∈ (0, 1) and ε > 0 there exists a c > 0 such that there is no algorithm solving OV instances
A,B ⊂ {0, 1}d with |B| = |A|α and d = c log |A| in time O(|A|1+α−ε).

Proof sketch. We briefly outline why this hardness holds. To that end, assume that we can solve
the unbalanced case in time O(|A|1+α−ε) for some ε > 0. Then we could solve the balanced case
by splitting B into |A|1−α parts of size |A|α, solve these instances in time O(|A|1+α−ε), and thus
solve the balanced problem in time O(|A|1−α · |A|1+α−ε) = O(|A|2−ε).

Leveraging this insight, we later reduce from unbalanced OV instances to show stronger hardness
results. For convenience, we introduce some additional notation. For a vector a ∈ {0, 1}d, we use
a[i] to refer to its ith entry, where the entries are 0-index, i.e., a = (a[0], . . . , a[d− 1]). Recall that
we use the “◦” operator to concatenate curves and that the curve P where each point is translated
by τ is denoted as P + τ .

Instead of reducing directly from OV, we introduce a novel problem called OneSidedSparseOV
and show that it is hard under OV. Subsequently, we reduce from this problem to the ANN problems
introduced above.

8.1 OneSidedSparseOV

This problem can be thought of as a variant of OV with an additional restriction on one of the
input sets. More precisely, for one set we allow at most k non-zero entries in each vector.

Definition 49 (OneSidedSparseOV). Given a value k ∈ N and two sets of vectors A,B ⊆ {0, 1}d
where each a ∈ A contains at most k non-zero entries, do there exist two vectors a ∈ A, b ∈ B such
that 〈a, b〉 = 0?

We also refer to OneSidedSparseOV with parameter k as OneSidedSparseOV(k). We now
show that this problem is hard under OV, interestingly, this is already the case for k ∈ ω(1).

Lemma 50. Assume OVH holds true. For every α ∈ (0, 1), ε > 0 there is a c > 0 such that for any
k ∈ ω(1)∩o(log |A|) there is no algorithm solving OneSidedSparseOV(k) instances A,B ⊂ {0, 1}d
with |B| = |A|α and d = k · |A|c/k in time O(|A|1+α−ε).
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Proof. For any α ≤ 1, ε > 0, let c > 0 be the constant from Lemma 48. Thus, unless OVH
fails, we cannot solve OV instances A,B ⊂ {0, 1}d with |B| = |A|α and d = c log |A| in time
O(|A|1+α−ε). For any k ∈ ω(1) ∩ o(log |A|), we now reduce to OneSidedSparseOV(k) as follows.
We convert A to a set of sparse vectors A′ and B to a set B′ such that A′, B′ is an equivalent
OneSidedSparseOV(k) instance. To achieve this, we increase the dimensionality of the vectors
in the OneSidedSparseOV instance. Given a vector a ∈ A, partition the dimensions of a into k
blocks of size d/k.1 More precisely, let

ai =

(
a

[
i · d
k

]
, a

[
i · d
k

+ 1

]
, . . . , a

[
i · d
k

+
d

k
− 1

])
for i ∈ {0, . . . , k − 1}. Let âi ∈

[
2d/k

]
be defined as the binary vector ai interpreted as a binary

number. We now construct the corresponding a′ ∈ A′ as follows. We choose the dimension of the
vectors in A′, B′ as d′ = k · 2d/k — note that this equals k · |A|c/k as stated in the lemma. For
each i ∈ {0, . . . , k − 1}, we set a′[i · 2k + âi] = 1. All other entries of a′ are set to 0. Thus, each
vector a′ ∈ A′ contains exactly k 1-entries. The vectors b′ ∈ B′ we construct as follows. Given a
vector b ∈ B, we also partition its dimensions the same way as we did for a ∈ A and obtain vectors
b0, . . . , bk−1. For each i ∈ {0, . . . , k − 1} and all β ∈ {0, 1}d/k — where we again use β̂ to denote β
being interpreted as a binary number — we set b′[i · 2k + β̂] = 1 if 〈bi, β〉 > 0, otherwise we set it to
zero. This completes the description of the reduction. Note that while we changed the dimension
of the vectors, the size of the sets remained the same, that is |A′| = |A| and |B′| = |B|.

Note that for any vectors a ∈ A and b ∈ B with 〈a, b〉 > 0 there exist parts ai, bi and a
coordinate ` such that ai[`] = bi[`] = 1, and thus 〈ai, bi〉 > 0. Hence, by construction of b′, there
exists a dimension in a′ and b′ where both have a 1. On the other hand, if a′ and b′ contain a
1 in the same dimension, then by construction of b′ there have to be two parts ai, bi such that
〈ai, bi〉 > 0 and thus 〈a, b〉 > 0.

The total running time of this reduction consists of constructing the vectors in A′ — which
takes time proportional to the number of entries — and the inner product computation between
vectors of dimensionality d/k for each of the k · 2d/k dimensions of each vector in B′:

O
(
|A′| · k · 2d/k + |B′| · k · 2d/k · d

k

)
= O

(
|A| · 2c log |A|/k · c log |A|

)
= O

(
|A|1+c/k · c log |A|

)
,

which simplifies to |A|1+o(1) as k ∈ ω(1) and log |A| = O(|A|o(1)). Thus, if indeed we can solve
OneSidedSparseOV(k) in time O(|A′|1+α−ε) and add the running time of the reduction, then we
can solve unbalanced OV in time

O(|A′|1+α−ε) + |A|1+o(1) = O(|A|1+α−ε),

which would refute OVH.

Using this insight, we now proceed to proving hardness results for different approximation ratios
for ANN under the continuous Fréchet distance.

8.2 Hardness of (2 − ε)-Approximation in 1D

In this section we present our first hardness result. We note that the gadgets that we use to encode
our vectors are inspired by [DP20].

1If d is not divisible by k, increase the dimension until this is the case and fill these dimensions with zeros.
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a = (0, 1, 0, 0) :

b = (1, 0, 0, 1) :
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Figure 4: Visualization of the 2− ε lower bound in 1D.

Theorem 51. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that there is no
(2 − ε)-ANN for the continuous Fréchet distance supporting query curves of any complexity k ∈
ω(1)∩ o(log n) and storing n one-dimensional curves of complexity m = k · nc/k with preprocessing
time poly(n) and query time O(n1−ε′).

Proof. We show the hardness by a reduction from OneSidedSparseOV(k). To that end, let
A,B ⊂ {0, 1}d be a OneSidedSparseOV(k) instance with |B| = |A|α for a constant α ≤ 1 that
we specify later, k ∈ ω(1)∩ o(log |A|), and d = k · |A|c/k with a constant c > 0 that we later choose
sufficiently large. Recall that, by Lemma 50, there exists a c > 0 such that OneSidedSparseOV(k)
is OV-hard in this regime. The goal is to use the k-sparsity of the vectors in A to obtain short
query curves of length O(k).

Let us first give the reduction. To that end, we define the following subcurves:

0A := 〈0, 6〉 , 1A := 〈0, 6, 2, 6〉 , 0B := 〈0, 5, 3, 6〉 , 1B := 〈0, 6〉

Now, given a OneSidedSparseOV(k) instance A,B, we create the input set P and the query set
Q of a (2 − ε)-ANN instance with distance threshold δ = 1 as follows. For each vector a ∈ A, we
add the curve Qa to Q which is defined as

Qa :=
d−1
©
i=0

V i
a with V i

a := a[i]A + 6i,

where a[i]A is either 0A or 1A, depending on the value of a[i], and the “+6i” is a translation of each
point of the curve by 6i. For each vector b ∈ B, we add the curve Pb to P which is defined as

Pb :=
d−1
©
i=0

V i
b with V i

b := b[i]B + 6i,

where b[i]B is either 0B or 1B, depending on the value of b[i]. It is crucial that we make the resulting
curves non-degenerate by removing all degenerate vertices. In particular, all connecting vertices
between gadget curves will be removed and any sequence of consecutive gadgets 0A will be turned
into a single line segment. Thus, the curves in Q will have complexity O(k). See Figure 4 for an
example of the construction.

We now show correctness of the reduction. Let Pb ∈ P and Qa ∈ Q be any curves in these sets.
Note that if dF(Pb, Qa) < 2, then if the traversal is a distance 2 into the gadget V i

a , then we also
have to be in the gadget V i

b , as there is no other gadget in distance less than 2. The same statement
holds for V i

a and V i
b exchanged. Thus, we traverse the gadgets synchronously. Now consider the

case 〈a, b〉 = 0. As dF(0A, 0B) = dF(0A, 1B) = dF(1A, 0B) = 1, also dF(Pb, Qa) = 1, as there is no
i ∈ {0, . . . , d− 1} for which the gadget V i

a is of type 1A and V i
b is of type 1B. Conversely, consider

the case 〈a, b〉 = 1. Then there exist an i ∈ {0, . . . , d − 1} such that V i
a is of type 1A and V i

b is of
type 1B. As we traverse the gadgets synchronously and as dF(V i

b , V
i
a ) = 2, we have dF(Pb, Qa) = 2.
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Thus, if we have a (2− ε)-ANN, then we can use it to check if there exist orthogonal vectors a ∈ A
and b ∈ B by the above reduction.

It remains to show that this reduction implies the claimed lower bound. The time to compute
the reduction is linear in the output size and thus negligible. Recall that P is the input set, i.e., it is
the set that we preprocess, and we run a query for each curve in Q. Note that by the construction
of the above reduction we have |P| = |A|α, and |Q| = |A|. Towards a contradiction, assume that we
can solve (2−ε)-ANN with preprocessing time O(|P|α′

) for some α′ > 0 and query time O(|P|1−ε′)
for some ε′ > 0. Choosing α = 1/α′, we obtain preprocessing time O(|P|α′

) = O(|A|αα′
) = O(|A|)

and total query time

O(|Q| · |P|1−ε′) = O(|A| · |A|α(1−ε′)) = O(|A|1+α−ε′α).

Thus, we could solve OneSidedSparseOV(k) in time O(|A|1+α−ε′α). However, by Lemma 50,
there exists a c > 0 such that this contradicts OVH.

8.3 Hardness of (3 − ε)-Approximation in 1D

We now show the first of two hardness results that rule out certain preprocessing and query times
for (3− ε)-approximations. Note that ruling out higher approximation ratios is not possible using
gadgets that encode the single coordinates, as the distance between the gadgets that encode 1-
entries can be at most 3 times the threshold distance due to the triangle inequality between the
other gadgets, for details see [BOS19]. For one-dimensional curves we obtain the following lower
bound. We note that the gadgets that we use to encode our vectors are inspired by [BOS19].

Theorem 52. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that there is no
(3− ε)-ANN for the continuous Fréchet distance storing n one-dimensional curves of complexity m
and supporting query curves of complexity k with m = k = c log n such that we have preprocessing
time poly(n) and query time O(n1−ε′).

Proof. We show the hardness by a reduction from OV. To that end, let A,B ⊂ {0, 1}d be an OV
instance with |B| = |A|α for a constant α ≤ 1 that we specify later and d = c log |A| for a constant
c > 0 that we later choose sufficiently large. Recall that, by Lemma 48, there exists a c > 0 such
that this problem is OV-hard. We now create the input set P and query set Q of a (3 − ε)-ANN
instance with distance threshold δ = 1 as follows. For convenience, we define the curves

1A := 〈0, 6, 0〉 , 0B := 〈0, 7, 0〉 , 0A := 〈0, 8, 0〉 , 1B := 〈0, 9, 0〉 .

First, for each vector a ∈ A we create a new curve Qa ∈ Q defined as

Qa :=
d−1
©
i=0

V i
a with V i

a := a[i]A,

where a[i]A is either 0A or 1A, depending on the value of a[i]. Second, for each vector b ∈ B we
create a new curve Pb ∈ P defined as

Pb :=
d−1
©
i=0

V i
b with V i

b := b[i]B,

where b[i]B is either 0B or 1B, depending on the value of b[i]. See Figure 5 for examples of these
curves.

We now prove the correctness of the reduction. Consider any Qa ∈ Q and Pb ∈ P. We first
show that if dF(Qa, Pb) < 3, then any traversal realizing this distance has to visit vertices of both
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Figure 5: Visualization of the 3− ε lower bound in 1D.

curves synchronously. More precisely, a traversal can be in the gadgets V i
a and V j

b with i 6= j only
if the positions on both curves are strictly less than 6 in image space. Towards a contradiction,
consider the first point in the traversal where this occurs and without loss of generality let the
traversal be at position 6 in Qa. As the traversal on Qa visited 0 before, the traversal on Pb has
to be below 3 and thus the positions on Qa and Pb are within distance more than 3, which is a
contradiction. Thus, when traversing gadgets V i

a and V j
b above 6, then i = j.

We now proceed with showing that for all a ∈ A and b ∈ B it holds that dF(Qa, Pb) ≤ 1 if
and only if 〈a, b〉 = 0, and dF(Qa, Pb) ≥ 3 otherwise. Assume that 〈a, b〉 = 0, then, by traversing
all V i

a , V
i
b for i ∈ {0, . . . , d − 1} synchronously, they can always stay within distance at most 1,

as dF(0A, 0B) = dF(0A, 1B) = dF(1A, 0B) = 1. However, if 〈a, b〉 > 0, then there exists an index
i ∈ {0, . . . , d − 1} such that a[i] = b[i] = 1. If dF(Qa, Pb) < 3, then we have to traverse these V i

a

and V i
b synchronously but as dF(1A, 1B) = 3, there is a point in the traversal where the curves

have distance at least 3 and thus dF(Qa, Pb) ≥ 3. It follows that, if we have a (3 − ε)-ANN, then
it would find if there exists orthogonal vectors in A and B by querying each Q ∈ Q.

Let us now show that this implies the desired lower bounds. The time to compute the reduction
is linear in the output size and thus negligible. Note that by construction we have m = k =
O(c log |A|) ≤ c′ log |A| for some constant c′ > 0. By adding dummy vertices, say many points
close to the starting point, we can ensure m = k = c′ log |A| (we could also achieve any intended
value m ≥ k, but this is not necessary for the theorem statement). Moreover, |P| = |A|α and
|Q| = |A|. Towards a contradiction, assume that we can solve (3−ε)-ANN with preprocessing time
O(|P|α′

) for some α′ > 0 and query time O(|P|1−ε′) for some ε′ > 0. Choosing α = 1/α′, we obtain
preprocessing time O(|P|α′

) = O(|A|αα′
) = O(|A|) and total query time

O(|Q| · |P|1−ε′) = O(|A| · |A|α(1−ε′)) = O(|A|1+α−ε′α).

Thus, we could solve unbalanced OV in time O(|A|1+α−ε′α). However, by Lemma 48, there exists
a c > 0 such that this contradicts OVH.

8.4 Hardness of (3 − ε)-Approximation in 2D

While until here we only considered algorithmic and hardness results for one-dimensional curves,
we now show a hardness result for two-dimensional curves. This is the only technical section in
this paper where we consider two-dimensional curves. Note that in Section 2 we defined most of
our notation for curves in Rd and thus the notation of the previous hardness results carries over.
For two-dimensional curves we obtain the following lower bound.

Theorem 53. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that there is no
(3 − ε)-ANN for the continuous Fréchet distance supporting query curves of any complexity k ∈
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ω(1)∩ o(log n) and storing n two-dimensional curves of complexity m = k · nc/k with preprocessing
time poly(n) and query time O(n1−ε′).

Proof. This proof is very similar to the proof of Theorem 51. The significant difference is the
gadgets that we construct. To this end, consider a OneSidedSparseOV(k) instance A,B, where
we again use the k-sparsity of the vectors in A to obtain short query curves of length O(k). We
define the generic subcurve

V (y) := 〈(0, 0), (3, 0), (3, y), (6, y), (6, 0)〉

to then define the usual gadgets

0A := V (0), 1A := V (2), 0B := V (1), 1B := V (−1).

Now, given a OneSidedSparseOV(k) instance A,B, we create the input set P and query set Q
of a (3− ε)-ANN with distance threshold δ = 1 as follows. For each vector a ∈ A, we add the curve
Qa to Q which is defined as

Qa :=
d−1
©
i=0

V i
a with V i

a := a[i]A + (6i, 0),

where a[i]A is either 0A or 1A, depending on the value of a[i], and the “+(6i, 0)” is a translation of
each point of the curve by (6i, 0). For each vector b ∈ B, we add the curve Pb to P which is defined
as

Pb :=
d−1
©
i=0

V i
b with V i

b := b[i]B + (6i, 0),

where b[i]B is either 0B or 1B, depending on the value of b[i]. It is crucial that we make the
resulting curves non-degenerate by removing all degenerate vertices. In particular, any sequence of
consecutive gadgets 0A will be turned into a single line segment. Thus, the curves in Q will have
complexity O(k). See Figure 6 for an example of the construction.

We now prove correctness of the reduction. Consider the case of two orthogonal vectors a ∈ A
and b ∈ B such that there is an i ∈ {0, . . . , d−1} with a[i] = b[i] = 1. Note that for dF(Qa, Pb) < 3,
there has to be a point in the traversal where we are in some point (xa, 2) in Qa and in some point
(xb,−1) in Pb as otherwise the distance of the x-coordinate would be at least 3. However, the
y-distance of these points is 3 and thus dF(Qa, Pb) ≥ 3. On the other hand, if a ∈ A and b ∈ B are
orthogonal, then we can traverse the two curves with the same speed in x-direction — i.e., staying
at the same x-coordinate at every point in time — and obtain a Fréchet distance at most 1 as
dF(0A, 0B) = dF(0A, 1B) = dF(1A, 0B) = 1, where the described traversal realizes these distances.

The remainder of the proof, i.e., the derivation of the claimed lower bound, is the same as in
the proof of Theorem 51 and we thus omit it for brevity.

9 Conclusions and Open Problems

In this work we largely resolve the α-ANN problem under the continuous Fréchet distance for one-
dimensional curves from a fine-grained perspective for 1 < α < 3. We show that, in general, most of
the running times presented in this work cannot be improved significantly, however, other tradeoffs
between preprocessing time and query time are still possible, and other parameter regimes might
be shown hard or more tractable, e.g., for k ∈ O(1). Indeed, there is a line of work on related
data structure problems using the continuous Fréchet distance for the specific value of k = 2, which
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Figure 6: Visualization of the 3− ε lower bound in 2D.

corresponds to queries with line segments, see [dBIG13, GvRSW21]. It also remains a fundamental
problem to show fine-grained lower bounds for approximation factor larger than 3 for a metric
problem, which seems to require fundamentally different techniques, cf. [Rub18].

As for the continuous Fréchet distance, our new upper and lower bounds show that the case of
one-dimensional curves provides a kaleidoscopic view into the computational complexity and the
underlying challenges posed by the general problem for polygonal curves in Rd. The obvious way
forward in this line of research is to show upper and lower bounds for dimension 2 and higher.
Some of our ideas might translate directly, such as the idea to generate candidate curves at query
time in order to achieve a tradeoff between preprocessing and query time. While our lower bounds
also hold in higher dimension, it is conceivable that higher lower bounds can be shown already in
the plane. In fact, we already initiate this line of work by showing an equally high lower bound for
(3−ε)-ANN in the plane as we have for (2−ε)-ANN for one-dimensional curves. This lower bound
already hints at techniques that can potentially achieve a matching upper bound. We leave this
as an open problem. Our notions of straightenings and signatures, which capture the approximate
shape of one-dimensional curves in a best-possible way, currently do not exist in dimension 2 or
higher. Extending these notions to the plane by itself would be very interesting.

References

[AD18] Peyman Afshani and Anne Driemel. On the complexity of range searching among
curves. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
898–917, 2018.

[AG95] Helmut Alt and Michael Godau. Computing the Fréchet distance between two polyg-
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