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Abstract

Multi-Camera Multi-Object Tracking is currently draw-
ing attention in the computer vision field due to its supe-
rior performance in real-world applications such as video
surveillance with crowded scenes or in wide spaces. In this
work, we propose a mathematically elegant multi-camera
multiple object tracking approach based on a spatial-
temporal lifted multicut formulation. Our model utilizes
state-of-the-art tracklets produced by single-camera track-
ers as proposals. As these tracklets may contain ID-Switch
errors, we refine them through a novel pre-clustering ob-
tained from 3D geometry projections. As a result, we
derive a better tracking graph without ID switches and
more precise affinity costs for the data association phase.
Tracklets are then matched to multi-camera trajectories by
solving a global lifted multicut formulation that incorpo-
rates short and long-range temporal interactions on track-
lets located in the same camera as well as inter-camera
ones. Experimental results on the WildTrack dataset yield
near-perfect performance, outperforming state-of-the-art
trackers on Campus while being on par on the PETS-09
dataset. We will release our implementations at this link
https://github.com/nhmduy/LMGP.

1. Introduction
Multiple object tracking (MOT), i.e., extracting motions

of objects moving through a scene, is a fundamental prim-
itive for high-level understanding information in videos.
The most common approach to MOT is the tracking-by-
assignment paradigm, in which first detection boxes are
computed for the objects of interest in each timeframe, and
second, a data association is performed by linking detec-
tions of the same objects to each other. In the most popular
setting, a single camera faces a scene and the data associ-
ation links detections in different timeframes to each other
[1, 3, 9, 43]. However, even though a large body of research
has been devoted to MOT with a single camera, large and

Figure 1. Multi-camera tracking with four overlapping cameras.
A target object (red rectangle) is occluded at Cam 3 but is still ob-
served at Cam 1, Cam 2, and Cam 4. Taking this correspondence
into account (red arrow), we can recover a missing bounding box
at Cam 3 (red dashed arrow).

crowded scenes still cannot be tracked faithfully, and errors
occur mainly in the data association step. These errors most
often are caused by partial visibility (or even occlusion) and
indistinguishability of objects.

One possibility of improving performance has been to
use multiple cameras facing the same scene but from dif-
ferent angles (Figure 1). In this setting, partial visibility
and indistinguishability are less severe since an object may
be occluded in a single camera but may still be fully ob-
served by another camera. Leveraging this property, recent
papers have pursued two principal approaches: single view-
based and centralized representation methods. In the first
strategy [16, 28, 33, 45], a two-step procedure is followed:
1) generating local tracklets of all the targets within each
camera; 2) matching local tracklets that belong to the same
target across cameras through computing affinity costs and
using a global optimization framework. While this frame-
work brings benefits via a reduced hypothesis space and al-
lows to design motion-based features, its main drawbacks
lie in ID-Switch errors contained inside local tracklets, i.e.,
detections of distinct objects are grouped into the same tra-
jectory (Figure 3a). As a result, these errors will propa-
gate throughout the tracking graph, affecting the total per-
formance. The centralized representation approach [47, 49]
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on the other hand, is not plagued by such obstacles since
each node in the tracking graph is an occupancy map (not
a tracklet), which is estimated from all detections at each
timeframe. Unfortunately, the cost of the data association
step is increased due to a huge state space of variables and
integrating advances from single-camera methods is more
complicated.

In this work, we propose a method that follows the sin-
gle view-based approach but integrates concepts from the
centralized representation paradigm. Our motivation for
this design choice is to harness the great progress made in
single-camera tracking while at the same time effectively
addressing limitations encountered in prior studies such as
ID-Switch errors by exploiting centralized representation
ideas through our novel pre-clustering step. Specifically,
the corresponding images from the pre-clustering step (i.e.
our occupancy map) allow us to break up initial tracklets
generated by single-camera trackers at ID-Switch errors and
establish precise affinity costs for both temporal and spatial
affinities (Subsection 4.5). On top of that, a novel spatial-
temporal optimization model for the data association is em-
ployed, which takes into account both short- and long-range
temporal interactions of objects detected by a single camera
as well as spatial interactions between cameras in a single
framework (Table 4). The experimental findings show that,
given the right conditions, with a multiple-camera environ-
ment and precise boundary detections, our method leads to
a nearly optimal solution for multiple object tracking using
multiple cameras (Table 1).

Contributions Our main contributions can be summarized
as follows. First, we introduce a new pre-clustering algo-
rithm driven by 3D geometry projections to group detec-
tions at each timestep across cameras. This effectively elim-
inates tracklet errors from single-camera trackers and pro-
vides highly accurate affinity costs for the data association
step. Second, we propose a novel spatial-temporal lifted
multicut formulation for the multi-camera setting, jointly
optimizing both intra- and inter-camera as well as short-
and long-range interaction in a single global formulation.
Finally, we obtain nearly perfect performance on the large-
scale WILDTRACK [7] dataset, outperform state-of-the-
art on Campus [44] and are on par with the PETS-09 [12]
dataset.

2. Related Work

There has been a large body of research on single-camera
MOT. These methods focus on the data association step, for
which the (lifted) multicut problem [38, 39, 40], the lifted
disjoint paths problem [21, 22], maximum clique [10, 48],
multigraph-matching [23], and binary quadratic optimiza-
tion [17, 18, 19, 41] was used. Another area is building
end-to-end differentiable frameworks for both detector and

data association [1, 9, 43, 50, 53]. For an exhaustive survey
of MOT we refer to [11].

Multi-camera MOT has recently received increasing at-
tention. The related work can be categorized into two dif-
ferent approaches:

Single View-Based Methods [44] propose a Hierarchi-
cal Composition of Tracklet (HCT) framework to match lo-
cal tracklets by utilizing multiple cues of objects such as
appearances and their 3D positions. In [45] the match-
ing problem is solved using a Bayesian formulation with
a Spatio-Temporal Parsing (STP)-based tracking graph to
prune matching candidates by exploiting semantic attribute
targets. Similarly, [42] formulate a dense sub-hypergraph
search (SVTH) on the space-time-view graph using a
sampling-based approach. Recent approaches include a
semi-online Multi-Label Markov Random Field (MLMRF)
method [28], where the ensuing optimization problem over
single detections is solved through alpha-expansion [4] and
a non-negative matrix factorization approach (TRACTA)
for grouping tracklets across cameras [16]. In another di-
rection, DyGLIP [33] formulates the data association prob-
lem for multi-camera as a link prediction on a graph whose
nodes are tracklets. While these methods have demon-
strated promising performance in some datasets, they are
affected by ID-switch errors in the tracklet proposal gener-
ation, especially in cluttered or crowded scenes such as [7].

Centralized Representation-Based Methods To estimate
the occupancy map (2D) or occupancy volume (3D), oc-
clusion relationships among different detections have been
explicitly modeled. The works in [14, 31] construct oc-
cupancy maps by using the foreground map after a back-
ground subtraction step. Ground plane homographs are an-
other technique introduced in [26], that generates a vot-
ing map from the foreground pixels in each view for occu-
pancy map construction. Toward the probabilistic approach
[13], GMLP [32] jointly uses CNNs and Conditional Ran-
dom Fields to model explicitly an occupancy volume map
given detections estimated from multiple cameras. More
recently [47] (DMCT) propose deep learning to directly
compute the occupancy volume by fusing feature maps ex-
tracted from CNNs at multi-camera views.

Differences w.r.t. Previous Work Our work, denoted
as LMGP, is at the intersection of single-view-based and
centralized representation methods. We use single-camera
tracklets but improve them by eliminating ID-switch er-
rors using centralized representation concepts with multi-
camera information derived from a novel 3D geometry-
based occupancy map. This factor sets us apart from com-
peting approaches (Table 5 Appendix). Moreover, we are
the first to formulate a global lifted multicut method for
multi-camera settings. So far, lifted multicut was only ap-
plied to the single-camera setting [38, 39, 40]. We argue
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that our model is an elegant abstraction capturing the full
range of interactions in multi-camera MOT.

3. Method
Our tracking pipeline is illustrated in Figure 2. Below we

describe each of its steps in detail, i.e., pre-clustering for
removing ID-switch errors and improving the subsequent
affinity cost computation that is utilized in the global lifted
multicut problem for computing multi-camera trajectories.
Notation Before describing each part of our approach
in detail, we introduce notation used throughout the pa-
per. Let B be the set of detections and B

t,j the detec-
tions at timestep t observed by camera j. Each detec-
tion b 2 B is observed by camera cam(b) and in time-
frame time(b). Each single camera tracklet ⌧ consists of
a set of bounding boxes at specific timepoints, i.e. ⌧ =
(b⌧1 , b

⌧
2 , ..., b

⌧

|⌧ |), where b
⌧

l
is the l-th detection of trajectory

⌧ . Tracklets only contain detections from a single cam-
era, i.e. cam(b⌧1) = ... = cam(b⌧|⌧ |). We extend the func-
tions cam and time to tracklets by cam(⌧) = cam(b1) and
time(⌧) = {time(b1), time(b2), . . . , time(b|⌧ |)}. Detec-
tions of two tracklets that cover the same timepoint are de-
noted as

O(⌧, ⌧ 0) = {(b, b0) 2 ⌧ ⇥ ⌧
0 : time(b) = time(b0)} . (1)

We denote by f a feature extractor that, given a bounding
box b, produces an embedding vector f(b) representing its
appearance features. h denotes a map that takes a bound-
ing box and computes the 3D coordinates of the foot point
(center of bottom edge) on the ground plane (z = 0) [15]
(Section B Appendix).

3.1. 3D Geometry Based Pre-Clustering
The pre-clustering step aims at bringing into correspon-

dence detections of the same object observed by different
cameras at each timeframe (Figure 2-b). This enables us
to overcome occlusions observed by a single camera. In
particular, if some object is occluded, we will be able to
continue tracking the same object at different views (Fig-
ure 1). Unlike prior works [14, 31, 47] that applied fore-
ground subtraction or fusing image features from multiple
cameras, our algorithm exploits 3D geometry constraints of
detection projections of the same object. In particular, we
project the bottom edge center of each bounding box to ob-
tain its 3D coordinates (ground point) via map h. Two de-
tections observed by different cameras potentially belong
to the same person if, after transformation to 3D, the Eu-
clidean distance of the two ground points is less than the
diameter of a typical person, which is approximately the
human width average (Figure 6-a Appendix).

The pre-clustering works as follows: for each detection
b, we consider the set of nearby detections Bt,j(b) = {b0 2

B
t,j : dist(h(b), h(b0))  r} observed by the same cam-

era j = cam(b) at the same timepoint t = time(b) with
dist(, ) and r being Euclidean distance and radius to scan
respectively. Likewise for camera j

0 6= cam(b), we con-
sider the set of detections B

t,j
0
(b) observed by camera j

0

close to the 3D-position h(b). We next compute a match-
ing between detections of Bt,j(b) and B

t,j
0
(b) via a linear

assignment problem [6] with costs being the Euclidean dis-
tance. If b is matched to a detection b

0 2 B
t,j

0
(b) through

the matching between B
t,j(b) and B

t,j
0
(b), and vice versa,

if b0 is matched to b 2 B
t,j(b0) through another matching

between B
t,j

0
(b0) and B

t,j(b0), we record that match as it
represents a confident connection. We denote the resulting
cluster for each detection b as Cb. The whole algorithm is
detailed in Algorithm 1 in the Appendix.
Visible Detection Clustering Let b 2 B be a detection
and Cb be its cluster obtained after pre-clustering. Since
our algorithm uses only geometric coordinates of bounding
boxes, the cluster Cb can include both visible and occluded
detections (Figure 3-b). Let hj be the 3D camera position
of camera j (Equation (19) in Section B Appendix). First,
given the detection b, we compute a detection visible(b)
nearest to the camera by

visible(b) =

(
argminb0 dist(h(b

0), hj)

s.t. b0 2 B
time(b),cam(b) : IoU(b0, b) � 0.6

(2)
and then use it to refine the pre-cluster to contain only visi-
ble detections by

C
0
b
= {b0 2 Cb : b

0 = visible(b0)} . (3)

3.2. Spatial-Temporal Tracking Graph
We formulate a global spatial-temporal tracking graph

G = (V,E), where each node v 2 V corresponds to a
tracklet ⌧ in a single camera and edges represent data asso-
ciations between tracklets across space and time (Figure 2-
c). A trajectory output will correspond to a cluster of nodes
in the tracking graph G. To benefit from current advances
in single-camera MOT, each node (tracklet) at each camera
is derived from a state-of-the-art tracker. We use Center-
Track [53] in our experiments, but it can be replaced by
other trackers.

While recent works [16, 28, 45] directly compute affin-
ity costs and solve the data association on the graph with
nodes generated by single-camera trackers, we further cor-
rect ID-Switch errors in tracklet proposals (Figure 3-a). The
ID switches in the original tracklets severely harm the total
performance, especially in crowded or cluttered scenes. To
this end, we leverage bounding box correspondences from
the pre-clustering and conduct the following steps.
Feature Extension on Detection Clusters Given a pair
of detections b, b

0 2 B at different timepoints of poten-
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Figure 2. Illustration of our LMGP framework. (a) Input bounding boxes are given at each camera and each timepoint. (b) Bounding
boxes observed from different cameras at the same time point are preliminary brought into correspondence through our 3D geometry based
pre-clustering step. (c) A spatial-temporal tracking graph is constructed. Nodes in the graph correspond to tracklets generated by a single-
camera tracker that are split up at likely ID-switch positions based on features estimated from (b) step via an ID-Error predictor fsplit. Edges
correspond to possibly associations between tracklets with temporal edges et (base and lifted for short and long range interaction in the
same camera), spatial edges es (different cameras, overlapping timeframes), and trajectory constraint edges ec (same camera, overlapping
timeframes). (d) Association costs between nodes are computed between pre-processed tracklets using two networks ftemporal, fspatial for
intra- and inter-camera edges in the tracking graph. (e) Tracklets in the tracking graph (c) are clustered together into trajectories via our
lifted multicut optimization problem using affinity costs in (d). (f) 3D coordinates of trajectories from (e) are generated.

tially the same object and an embedding feature f (we
use DG-Net [52]), we aim to obtain robust association fea-
tures by considering relations between detections in the vis-
ible cluster C

0

b
(Equation 3). To this end, we first com-

pute for all pairs of detections in (b̄, b̄0) 2 C
0
b
⇥ C

0
b0

their cosine similarity w.r.t. features extracted by f , that
is Db̄,b̄0 = hf(b̄), f(b̄0)i. Next, we solve a linear assign-
ment problem between C

0
b

and C
0
b0 with costs Db̄,b̄0 for

each pair (b̄, b̄0) 2 C
0
b
⇥ C

0
b0 . Let the set of matches be

M = {(b̄, b̄0) 2 C
0
b
⇥ C

0
b0 : b̄ and b̄

0 are matched}. On the
matches we estimate the following statistical similarities:

c
best
b,b0 = min

(b̄,b̄0)2C0
b⇥C0

b0

Db̄,b̄0 , c
min
b,b0 = min

(b̄,b̄0)2M

Db̄,b̄0 ,

c
max
b,b0 = max

(b̄,b̄0)2M

Db̄,b̄0 , c
mean
b,b0 =

P
(b̄,b̄0)2M

Db̄,b̄0

|M | ,

c
var
b,b0 =

X

(b̄,b̄0)2M

(Db̄,b̄0 � c
mean
b,b0 )2 . (4)

Splitting Tracklets We now construct a network fsplit

(see Appendix D.2 for the architecture details) for correct-
ing ID-Switch errors. Specifically, for each tracklet ⌧ , fsplit
scans over all consecutive detections (b, b0) ⇢ ⌧ (Figure 3-
a), takes their respective similarity values from Equations 4
using the visible detections C

0

b
, C

0

b0 (Figure 3-b) and returns

a probability score indicating whether or not they belong to
the same tracklet. ⌧ is split into sub-tracklets at the pre-
dicted ID-switch error positions that become new nodes in
our spatial-temporal tracking graph (Figure 3-c).

Figure 3. (a) A tracklet (node) ⌧ with ID-Switch error (two red
dashed rectangles) in an initial tracking graph, (b) Using visible
clusters of detections at two consecutive frames, we can cut at the
error positions, (c) Two new sub-tracklets ⌧ 0, ⌧ 00 of distinct objects
are generated.

3.3. Learning Affinities with Multi-Camera Setting
Given the tracking graph G = (V,E) after pre-

processing for ID-Switch error removal, we compute for
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pairs of tracklets ⌧ = (b1, . . . , b|⌧ |) and ⌧
0 = (b01, . . . , b

0
|⌧ 0|)

affinities representing the probability that both ⌧ and ⌧
0

track the same object. To this end, we consider standard
cues based on motion information as in [32, 42, 45]. We ad-
ditionally propose novel appearance and 3D position-based
similarity costs which harness image correspondences from
our 3D pre-clustering step.

3.3.1 Temporal Affinites

Let ⌧ and ⌧
0 be two tracklets, observed by the same camera

and with time(b|⌧ |) < time(b01), i.e. following each other
temporally. We compute their similarity based on motion
and appearance.
Forward/Backward Motion Affinities Motion extrapo-
lation of ⌧ to subsequent or extrapolation of ⌧

0 to previ-
ous timeframes can provide evidence of whether the two
tracklets belong to the same object. We adopt features
from [42, 45] for our settings by using the first/last m

frames from each tracklet to estimate an average velocity
and then predict the forward velocity ~v⌧ of ⌧ and the back-
ward velocity  �v ⌧ 0 of ⌧ 0. The forward c

fw,t and backward
c
bw,t affinity are computed by:

c
fw,t(⌧, ⌧ 0) = kh(b|⌧ |) + disp(⌧, ⌧ 0)� h(b01)k .

c
bw,t(⌧, ⌧ 0) = kh(b01)� disp(⌧, ⌧ 0)� h(b|⌧ |)k .

(5)

where disp(⌧, ⌧ 0) = ~v⌧ · t(⌧, ⌧ 0); t(⌧, ⌧ 0) = (time(b01) �
time(b|⌧ |)).
Multi-view Appearance Affinities Tracklets belonging to
the same object should share a similar appearance across
time and cameras. We measure this by computing

c
app
index(⌧, ⌧

0) =
X

b2⌧

X

b02⌧ 0

c
b,b

0

index

|⌧ ||⌧ 0| , (6)

where index 2 {best,min,max,mean, std} and each
score cindex(b, b0) is computed as in Equation 4. Note that
we associate each detection with its visible image corre-
spondences derived from the pre-clustering step in Equa-
tions 2, which sets us apart from prior works [28, 32, 42] as
both intra- and inter-camera information can be associated
simultaneously. An ablation study showing the benefit of
this new cost can be found in Table 6 Appendix.

3.3.2 Spatial Affinities

For each pair of tracklets ⌧ and ⌧
0 observed by differ-

ent cameras and overlapping in time, we compute affini-
ties based on similarity of motion and average 3D dis-
tance of their projected detections as in [42, 45]. We ad-
ditionally propose novel pre-clustering agreement based-
similarity scores for each timestep on which they overlap.
Forward/Backward Motion Affinities Similar to tempo-
ral forward resp. backward affinities, we will also exploit

motion information in the spatial setting. If, for example
max{time(⌧)} < max{time(⌧ 0)}, we let ~v⌧ be the for-
ward velocity of ⌧ . The spatial forward affinity is defined
as

c
fw,s(⌧, ⌧ 0) = kh(b|⌧ |) + ~v⌧ � h(b0|⌧ |+1)k . (7)

The spatial backward affinity c
bw,t is defined analoguously.

Average 3D Distance Affinity Given two tracklets of the
same object, the bounding boxes at timepoints covered by
both should have a small distance w.r.t. 3D projections. We
capture this property by defining the average 3D distance
affinity as

c
avg3D(⌧, ⌧ 0) =

X

(b,b0)2O(⌧,⌧ 0)

kh(b)� h(b0)k
|O(⌧, ⌧ 0)| . (8)

Pre-clustering Agreement Affinity The pre-clustering of
two tracklets of the same object on shared timesteps should
coincide. We define a novel metric to quantify this by

c
pc(⌧, ⌧ 0) =

X

(b,b0)2O(⌧,⌧ 0)

p · [Cb=Cb0 ] + (1� p) [Cb 6=Cb0 ]

|O(⌧, ⌧ 0)|
(9)

for some prior probability p (we choose 0.8). The contribu-
tions of Equation (9) in capturing similarity among spatial
tracklets can be seen in Table 7 Appendix.

3.4. Lifted Multicut for Multi-Camera Tracking
We first recapitulate the lifted multicut problem and use

it to formulate the multi-camera MOT problem. Our formu-
lation extends the (lifted-) multicut works for single-camera
MOT [38, 39, 40] to multiple cameras.
Lifted Multicut The multicut optimization problem [8]
is to partition nodes of a given graph G = (V,E) with
edge weights c : E ! R into a number of clusters
⇧ = (⇧1, . . . ,⇧k), where the number of clusters k is de-
termined as part of the optimization problem. The clus-
ters form a partition of V , i.e. ⇧i \ ⇧j = ? 8 i 6= j and
⇧1 [ . . .[⇧k = V where each component ⇧i 2 ⇧ implies
a connected subgraph of G. A multicut is an edge indicator
vector y : E ! {0, 1} defined by ye = 0 iff the endpoints
of e are in the same component. The multicut problem can
be written as an integer linear program:

min
y2{0, 1}E

X

e2E

ce ye (10)

s.t. 8C 2 cycles(G), 8e 2 C : ye 
X

ē2C\{e}

yē. (11)

The lifted multicut problem [25] augments the origi-
nal multicut problem by introducting a second set of lifted
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edges E0 together with lifted edge costs c0 : E0 ! R. For
any edge e

0 = (i, j) 2 E
0 and clusters (⇧1, . . . ,⇧k), a

lifted edge indicator vector is defined as

ye0 = 0, 9l and a path P 2 ij-paths(G) s.t. P 2 ⇧l. (12)

In words, the label of lifted edge is 0 iff there exists a
path connecting its endpoints through base edges in E and
through nodes that all are in a single cluster.
Spatial-Temporal Lifted Tracking Graph We now pro-
pose our lifted multicut for multiple object tracking given
a spatial-temporal graph. Specifically, three types of edges
are employed: temporal, spatial, and constraint edges (Fig-
ure 2-c). The temporal edges Et

tmax
connect tracklet nodes

observed by the same camera at different timesteps up to
some maximal time threshold tmax (10 seconds in our ex-
periments), spatial edges Es connect tracklets observed by
different cameras at overlapping timeframes, and tracklet
nodes that are observed by the same camera and have over-
lapping timeframes are forbidden to end up in the same tra-
jectory through constraint edges E

c. The formulations for
these edge sets are:

E
t

tmax
=

⇢
(⌧, ⌧ 0) :

cam(⌧) = cam(⌧ 0),
max{time(⌧ 0)}�min{time(⌧)} 2 (0, tmax]

�

E
s =

⇢
(⌧, ⌧ 0) :

cam(⌧) 6= cam(⌧ 0),
time(⌧) \ time(⌧ 0) 6= ?

�

E
c =

⇢
(⌧, ⌧ 0) 2 V ⇥ V :

cam(⌧) = cam(⌧ 0),
time(⌧) \ time(⌧ 0) 6= ?

�
.

(13)
Given the above edges, we divide them into base edges E

and lifted edges E0:

E = E
t

5sec [ E
c [ E

s;E0 = E
t

10sec\Et

5sec . (14)

That is, all edges such that tracklets have temporal distance
less than 5 seconds are base edges (etbase), while temporal
edges with larger time distance tmax are lifted ones (etlift).
The lifted edges are used here to incorporate long-range in-
teractions of objects, i.e. handling the case when an object
disappears due to occlusion and reappears again.

The edge costs cet and ces for temporal et 2 E
t
tmax

and
spatial edges e

s 2 E
s in our framework are produced by

two neural networks ftemporal and fspatial, which take in-
put features described in Section 3.3 and return a similarity
score (Subsection G.2 Appendix). We also assign a large
negative value cec = M ⌧ 0 for each e

c 2 E
c to guarantee

that clusters are trajectories.
Lifted Multicut Formulation We state our lifted multicut
optimization for the multi-camera tracking as:

min
y2{0,1}E[E0

X

et2Et
tmax

cet yet +
X

es2Es

ces yes +
X

ec2Ec

M yec

s.t. y obeys Equations (11) and (12).
(15)

Since this formulation is NP-Hard [25], we resort to effi-
cient heuristic solvers presented in Section E Appendix.

In summary, our formulation has the following advan-
tages. First, we optimize intra-camera (temporal edges) and
inter-camera (spatial edges) simultaneously. Additionally,
long-range interactions are also incorporated through lifted-
edges in E

0. This results in a solution informed by cues
from all cameras at once. Second, the optimal number of
trajectories is determined during the optimization. Third,
our nodes in the spatial-temporal graph are tracklets, result-
ing in decreased execution time as the hypothesis space is
significantly reduced.

4. Experimental Analysis
Below we detail our experimental setup and results, in-

cluding implementation details of our approach, considered
datasets and baselines, quality metrics, and ablations.

4.1. Implemention Details

Tracking Graph We use CenterTrack [53], one of cur-
rent state-of-the-art single-camera trackers, to create track-
lets for each camera. These tracklets will be aligned again
with the provided public detections to eliminate duplicated
ones and retain detections that were not tracked, e.g. due
to occlusion. We apply DG-Net [52] for extracting embed-
ding vectors for detections and train it on visible detections
(Eq. 2) obtained by running the proposed pre-clustering al-
gorithm over training video sequences. Finally, we train
three basic multi-layer deep networks for the three networks
fsplit, fspatial, and ftemporal which handle splitting up ini-
tial tracklets, generating affinity costs for spatial and tem-
poral edges respectively.
Lifted Multicut Solver For solving the proposed lifted
multicut problem (Eq. 15), we use the efficient GAEC+KLj
heuristic solver from [25]. We adapt a two-stage optimiza-
tion approach. First, the initial tracklets are used as nodes
in the tracking graph and compute trajectories through the
lifted multicut. Second, we initialize the computed trajec-
tories again as nodes in the tracking graph and recompute
costs to obtain the final trajectories. The second step im-
proves the trajectories computed in the first pass by allowing
to compute costs on longer trajectories and joining trajecto-
ries together where a connection was not initially detected.
For a long-time video, this process can be iterated until con-
verged. More details of our implementations are described
in Subsection G.1 Appendix.

4.2. Datasets & Metrics
We perform experiments on three datasets with a wide

range of different camera configurations, densities, and
video/bounding box qualities. For all datasets, we use the
provided detections for a fair comparison.
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- WILDTRACK [7]: The largest-scale dataset for the multi-
camera setting is currently with a dense group of 313 pedes-
trians standing and walking. There is a total of 400 frames
observed from seven cameras that are annotated with 3D
positions. The first 360 of those frames is used for training
and the rest for testing.
- Campus [44]: We have chosen the two sequences Gar-
den 1 and Parking Lot which had camera calibration pa-
rameters and a ground plane for 3D-projection. There are
15 - 25 pedestrians in each video observed by four cameras
captured at a 30fps rate. For each video, we use the first
10% for training and the remaining frames for testing.
- PETS-09 [12]: Contains three sequences with increasing
level of difficulty: low density (S2.L1) - 19 objects in 795
frames, medium density (S2.L2) - 43 pedestrians spread-
ing in 436 frames and high density (S2.L3) - 44 pedestrians
moving together in 240 frames. While PETS-09 is not as
dense as WILDTRACK, its main challenge lies in its poor
video acquisition conditions with cameras far away from
targets and low-quality bounding boxes.
We report results for the following metrics:

- MOTA [2]: the multiple objects tracking accuracy mea-
suring a number of false negatives (FN), false positives
(FP), and identity switches (IDs) focusing on the coverage
of detections.
- MOTP [2]: the multiple object tracking precision penal-
izes the overall dissimilarity between true positives and the
ground truth objects.
- IDF1 [35]: measure through the F1 score agreement be-
tween computed and ground truth trajectories.
- MT [30]: number of mostly tracked objects for at least
80% of its life span.
- ML [30]: number of mostly lost objects for at most 20%
of its life span.

4.3. Algorithms
We compare against state-of-the-art baselines for each

respective dataset. To study the effectiveness of our ap-
proach and judge the effectiveness of each proposed com-
ponent, we run experiments on multiple configurations. All
algorithms are listed below.

Baselines: For each dataset, we compare against the
most recent approaches for which we found experimental
results. In particular, we compare against KPS-DO, KSP-
DO-ptrack [7], GLMB-YOLOv3, GLMB-DO [32], DMCT,
DMCT Stack [47], HJMV [20], STVH [42], MLMRF [28],
HCT [44], STP [45], TRACTA [16] and DyGLIP [33]. All
baseline performances are taken from the respective origi-
nal papers.
Our configurations are:
- LMGP w/o Pre-Clustering: see Section 3.1.

- LMGP w/o Tracklet Split: no tracklet splitting
using information from pre-clustering (Section 3.2, Split-
ting Tracklets).
- LMGP w/o Enhanced Affinities: do not use
pre-clustering in affinity cost computation (Eq. 6, 9).
- LMGP: our approach with everything enabled. For
the Campus dataset we also provide as comparison
LMGP-DeepSort using DeepSort [43] for generating
tracklets. Note that CenterTrack outperforms DeepSort on
single camera benchmarks.

4.4. Results
Method IDF1 " MOTA " MT " ML # FP # FN # IDs #

KSP-DO [7] 73.2 69.6 28.7 25.1 1095 7503 85
KSP-DO-ptrack [7] 78.4 72.2 42.1 14.6 2007 5830 103

GLMB-YOLOv3 [32] 74.3 69.7 79.5 21.6 424 1333 104
GLMB-DO [32] 72.5 70.1 93.6 22.8 960 990 107

DMCT [47] 77.8 72.8 61.0 4.9 91 126 42
DMCT Stack [47] 81.9 74.6 65.9 4.9 114 107 21

LMGP w/o Pre-Clustering 79.4 73.6 76.4 24.3 570 506 76
LMGP w/o Tracklet Split 92.4 89.7 92.6 8.3 285 119 45

LMGP w/o Enhanced Affinities 95.1 94.8 95.5 5.7 95 103 27
LMGP 98.2 97.1 97.6 1.3 71 7 12

Table 1. Our LMGP performance compared to state-of-the-art
baselines on WILDTRACK.

Sequence Method MOTA " MOTP " MT " ML # IDs #

S2-L1

HJMV [20] 91.7 79.4 94.7 0.0 45
STVH [42] 95.1 79.8 100.0 0.0 13

MLMRF [28] 96.8 79.9 100.0 0.0 2
LMGP w/o Pre-Clustering 97.5 79.6 96.3 0.0 6
LMGP w/o Tracklet Split 97.3 82.1 97.2 0.0 6

LMGP w/o Enhanced Affinities 97.6 82.1 98.1 0.0 4
LMGP 97.8 82.4 100.0 0.0 2

S2-L2

HJMV [20] 58.9 66.0 30.2 2.3 388
STVH [42] 65.2 61.8 44.2 0.0 249

MLMRF [28] 72.1 58.3 72.1 2.3 142
LMGP w/o Pre-Clustering 66.8 64.3 67.4 2.1 158
LMGP w/o Tracklet Split 70.1 68.5 67.2 2.1 97

LMGP w/o Enhanced Affinities 71.6 73.2 68.2 2.0 81
LMGP 70.4 73.2 69.6 1.7 75

S2-L3

HJMV [20] 40.2 49.5 29.6 25.0 123
STVH [42] 49.8 63.0 29.6 20.5 92

MLMRF [28] 54.4 54.9 36.4 6.8 82
LMGP w/o Pre-Clustering 49.1 55.7 33.2 13.6 92
LMGP w/o Tracklet Split 52.7 63.6 33.4 11.2 86

LMGP w/o Enhanced Affinities 53.5 64.7 31.8 8.7 82
LMGP 54.4 66.5 40.2 5.3 78

Table 2. Our LMGP performance compared to other baselines in
PETS-09.

Sequence Method MOTA " MOTP " MT " ML #

Garden 1

HCT [44] 49.0 71.9 31.3 6.3
STP [45] 57 75 - -

TRACTA [16] 58.5 74.3 30.6 1.6
DyGLIP [33] 71.2 91.6 31.3 0.0

LMGP-DeepSort 75.6 93.4 46.7 1.6
LMGP 76.9 95.9 62.9 1.6

Parking Lot

HCT [44] 24.1 66.2 6.7 26.6
STP [45] 28 68 - -

TRACTA [16] 39.4 74.9 15.5 10.3
DyGLIP [33] 72.8 98.6 26.7 0.0

LMGP-DeepSort 76.7 98.0 51.7 5.1
LMGP 78.1 97.3 62.1 0.0

Table 3. Our LMGP performance compared to other baselines on
Campus.

We report quantitative results for WILDTRACK in Ta-
ble 1, for PETS-09 in Table 2 and for Campus in Table 3.
Some qualitative results are presented in Figures 8, 9 Ap-
pendix.
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On WILDTRACK we obtain almost perfect metric scores
with LMGP. Our results on Campus significantly outper-
form the state-of-the-art on both sequences even when using
weak tracklets (DeepSort). On PETS-09 we achieve com-
parable results. We argue that the differing performance of
our algorithms is mostly due to poor bounding boxes and
camera calibration for PETS-09 and, to a lesser extent, for
Campus.

4.5. Efficacy of Individual Components & Ablations
To assess the performance of individual parts in our ap-

proach and their contribution to our overall performance,
we give more experimental details.
Ablations w.r.t. Pre-Clustering/Enhanced Affini-
ties/Tracklet Splitting In Tables 1 and 2 we report results
of the ablated versions LMGP w/o Pre-Clustering,
LMGP w/o Tracklet Split and LMGP w/o
Enhanced Affinities of our solver. In most cases
(except for S2-L1 of PETS-09, where nearly perfect results
can be obtained with any baseline), we see significant
improvements w.r.t. all ablated versions of our solvers, val-
idating the efficacy of all steps. The greatest performance
drop can be observed by turning of the pre-clustering,
showing its important role for obtaining improved results.
More fine-grained ablations for the enhanced affinity costs
can be found in Table 6 and 7 Appendix.
Pre-Clustering Accuracy In Figure 4, we report perfor-
mance of our Pre-Clustering (Section 3.1) for all considered
datasets. Since our Pre-Clustering is purely based on ge-
ometry, we also see experimentally that its performance is
dependent upon the accuracy of bounding box coordinates.
In the high-quality WILDTRACK dataset, we obtain almost
perfect results. For Campus and PETS-09 we achieve preci-
sion higher than 80%. We argue that the confident connec-
tion in our pre-clustering helps in these more challenging
and noisy settings. More details on the reduction of ID-
switch errors can be found in Table 8 Appendix.

Figure 4. Our pre-clustering performance measured by accuracy,
precision and recall w.r.t. correctly estimated correspondences be-
tween detections across cameras. On the top we give the total
detections of objects in each dataset.
Joint Optimization Model In order to assess the per-
formance of our joint spatio-temporal optimization model

(Eq.15) as compared to a stage-wise optimization, we pro-
vide an experiment in Table 4. The variant LMGP w/o
spatial edges first solves an ordinary single view
MOT problem. After obtaining computed single-camera
trajectories, they are linked across cameras in a second
step. To validate the effect of lifted long-range edges vs.
a simpler model without them, we also provide an ablation
LMGP w/o lifted edges. These ablations are tested
on WILDTRACK and S2-L1 of PETS-09. The results indi-
cate that significant improvement can be gained by optimiz-
ing jointly over temporal and camera affinities, especially
in dense scenes like WILDTRACK. Also, the long-range
edges contribute to better performance in both cases.

Dataset Method MOTA " IDF1 " MT " ML # IDs #

WILDTRACK
LMGP full 97.1 98.2 97.6 1.3 12

LMGP w/o lifted edges 95.4 96.4 93.6 2.7 41
LMGP w/o spatial edges 93.2 94.1 91.7 6.9 85

S2-L1
LMGP full 97.8 82.4 100.0 0.0 2

LMGP w/o lifted edges 96.2 81.1 98.7 1.3 5
LMGP w/o spatial edges 95.6 80.2 98.7 1.3 8

Table 4. An ablation study of different edge types

4.6. Discussion
We have demonstrated that nearly perfect multiple object

tracking results can be obtained in crowded scenes given the
right conditions (as for WILDTRACK), i.e. high bounding
box quality and a large enough number of well-calibrated
cameras observing the same scene. Even when these condi-
tions are not met, as in Campus and PETS-09 which use old
detectors, our LMGP still delivers better results than com-
petitors in most cases. Specifically, the pre-clustering is
crucial in our framework because it allows exploiting multi-
camera information through repairing efficiently trajecto-
ries computed by single-camera trackers and can be used
to enhance affinity costs. Also, our lifted multicut model
jointly optimizing over inter- and intra-camera affinities,
short- and long-range interactions is essential and can effec-
tively correct erroneous associations and continue trajecto-
ries which would be lost when only a single camera is used
and severe occlusions are present.

5. Conclusion
We have shown that integrating single view-based ap-

proaches and centralized representation-based methods for
multi-camera tracking can lead to improvements w.r.t.
strategies that fall into only one of these paradigms. Given a
good enough input data, this strategy can deliver almost op-
timal results even in crowded scenes. We conjecture that in
noisier settings, significantly better results can be achieved
by making our 3D pre-clustering more robust, e.g., by em-
ploying it in an end-to-end training framework [5, 46].
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ral solver for multiple object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6247–6257, 2020.

[6] Rainer E Burkard and Eranda Cela. Linear assignment prob-
lems and extensions. In Handbook of combinatorial opti-
mization, pages 75–149. Springer, 1999.

[7] Tatjana Chavdarova, Pierre Baqué, Stéphane Bouquet, An-
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