



## Figures and figure supplements

Intrinsic mechanisms in the gating of resurgent Na<sup>+</sup> currents

Joseph L Ransdell et al



**Figure 1.** Mouse cerebellar Purkinje neurons express three voltage-gated sodium (Nav) current components. (A) Representative recording of the transient ( $I_{NaT}$ ), persistent ( $I_{NaP}$ ), and resurgent ( $I_{NaP}$ ) components of the Nav currents in an isolated neonatal mouse cerebellar Purkinje neuron. The voltage-clamp paradigm is displayed above the current record, and the labelled arrows indicate the three Nav current components. (B)  $I_{NaP}$  waveforms, recorded during hyperpolarizing voltage steps to various potentials ranging from -70 to -10 mV, following 5 ms depolarizing voltage steps to 0 mV from a holding potential (HP) of -80 mV; the voltage-clamp paradigm is shown below the current records. The current record highlighted in red was recorded during the -45 mV hyperpolarizing voltage step laso indicated in *red* in the illustrated voltage-clamp paradigm). (C) Mean  $\pm$  SEM (n = 15) peak  $I_{NaR}$  amplitudes are plotted as a function of the hyperpolarizing test potential; the peak  $I_{NaR}$  is recorded at approximately -45 mV.



Figure 2. The amplitude of resurgent voltage-gated sodium current (I<sub>NaR</sub>) is determined by the duration of the prior membrane depolarization. (A) In a neonatal mouse cerebellar Purkinje neuron, I<sub>NaR</sub> was revealed on membrane hyperpolarizations following depolarizing voltage steps to +20 mV of varying durations; the voltage-clamp paradigm is shown below the current records. (B) Peak I<sub>NaR</sub> amplitudes, evoked at -45 mV following each depolarizing voltage step to +20 mV, were measured and normalized to the maximal peak I<sub>NaR</sub> (measured in the same cell). The mean ± SEM (n = 12) normalized peak I<sub>NaR</sub> amplitudes are plotted as a function of the duration of the depolarizing voltage step. The attenuation of peak I<sub>NaR</sub> as a function of the duration of the depolarizing voltage step was well described by a single exponential with a mean  $\pm$  SEM time constant of 15.5  $\pm$  0.5 ms (n = 12). (C) The dependence of I<sub>NaR</sub> on the duration of the depolarizing voltage step was also measured with reduced (50 mM) extracellular and increased intracellular (15 mM) sodium, resulting in a Na $^+$  reversal potential of +30 mV. Under these conditions, depolarizing voltage steps to +46 mV evoked outward I<sub>NaT</sub>. Peak I<sub>NaR</sub> amplitudes, revealed during hyperpolarizing voltage steps to -45 mV, however, were also found to vary as a function of the duration of the depolarizing voltage step, revealing that I<sub>NaR</sub> and the time-dependent attenuation of I<sub>NaR</sub> are not affected by the direction (inward versus outward) of Na<sup>+</sup> flux during the depolarizing voltage step. The peak amplitudes of I<sub>NaR</sub>, evoked at –45 mV following each depolarizing voltage step, were measured in each cell and normalized to the maximal I<sub>NaR</sub> amplitude (in the same cell). As is evident from the representative records and the plot of normalized peak I<sub>NaR</sub> amplitudes (on the right), the attenuation of I<sub>NaR</sub> as a function of the duration of the depolarizing voltage steps to +46 mV is also well described by a single exponential with a mean  $\pm$  SEM time constant of 13.8  $\pm$  1.1 ms (n = 6), a value similar to that observed when I<sub>NAT</sub> was inward (B). (D) Representative INAR waveforms, recorded directly on repolarizations to -45 my following 5 ms depolarizations to various membrane potentials from a –90 mV HP, are shown; the voltage-clamp protocol is shown below the current records. (E) The mean  $\pm$  SEM (n = 6) normalized peak  $I_{NaR}$ amplitudes are plotted as a function of potential of the depolarizing voltage step. (F) Representative voltage-clamp recordings of Nav currents evoked (in the same cell) on direct depolarization to -40 mV from an HP of -90 mV (red) and on hyperpolarization to -40 mV following a 5 ms depolarizing voltage step to +10 mV (black) from the same HP; the voltage-clamp protocols are shown above the current records and the currents are shown on an expanded scale on the right. In panels A, C, D, and F, the currents in red were recorded during the voltage-clamp paradigms (shown below or above) depicted in red.

Neuroscience



**Figure 3.** Novel Markov kinetic state model of voltage-gated sodium (Nav) channel gating in cerebellar Purkinje neurons. A novel Markov kinetic state model was developed with parallel fast inactivating (IF1, IF2) and slow inactivating (IS) gating pathways (**A**). The model was numerically optimized (see Materials and methods) by simulating the data generated using voltage-clamp protocols identical to those used in the experiments to *Figure 3 continued on next page* 

Ransdell, Moreno, et al. eLife 2022;11:e70173. DOI: https://doi.org/10.7554/eLife.70173

## Figure 3 continued

determine the detailed time- and voltage-dependent properties of the Nav currents in cerebellar Purkinje neurons. The various rate constants in the model were numerically optimized to recapitulate the measured properties of  $I_{NaT}$ ,  $I_{NaP}$ , and  $I_{NaR}$  including the voltage dependences of steady-state inactivation (**B**) and activation (**C**) of  $I_{NaT}$ , and the kinetics of  $I_{NaT}$  recovery from inactivation (**D**). The model also reproduces the measured properties of  $I_{NaR}$ , including the magnitude of  $I_{NaR}$  relative to  $I_{NaT}$  (**E**), the attenuation of the peak  $I_{NaR}$  amplitude as a function of the duration of the depolarizing voltage steps (**F**), and the kinetics of the decay (inactivation) of peak  $I_{NaR}$  amplitudes (**G**). Filled circles represent the mean experimental data and the lines represent the results of the simulation. The model successfully reproduces the observed, time-dependent attenuation of peak  $I_{NaR}$  amplitudes that is evident experimentally on membrane hyperpolarizations following depolarizing voltage steps of varying durations (**H**), and the finding that the peak amplitude of  $I_{NaR}$  is not affected by the potential of the depolarizing voltage step (**I**).



**Figure 4.** Kinetic state transitions during voltage-clamp simulations that evoke voltage-gated sodium current ( $I_{NaR}$ ). There are two parallel pathways of voltage-gated sodium (Nav) channel inactivation (IF1/IF2 and IS) in the novel Markov kinetic state model developed here (*Figure 3*). The occupancies of these states and of the other (i.e., closed, open, etc.) channel gating states during a simulated voltage-clamp protocol, in which  $I_{NaR}$  is revealed on membrane hyperpolarization to -45 mV following a brief (5 ms) depolarizing voltage step to 0 mV from a holding potential of -90 mV, are plotted as a function of time in (A). The simulated voltage-clamp records and the experimental paradigm are illustrated below the gating state occupancy plot. Expanded (in time) views of the gating state occupancies and the simulated Nav currents are presented in (B). In the gating state occupancy plots, *black* represents the closed state, *blue* represents the open state, *green* represents the IC1+ IC2 states, *aqua* represents the IF2 state, *orange* represents the IF1 state, and *purple* represents the IS state.







**Figure 5.**  $I_{NaR}$  and  $I_{NaT}$  display distinct rates of recovery from inactivation. (**A**) Representative voltage-gated sodium (Nav) currents recorded in a mouse cerebellar Purkinje neuron during a voltage-clamp paradigm designed to determine if the relative rates of recovery from inactivation of  $I_{NaT}$  and  $I_{NaR}$  are distinct. Inward Nav currents were recorded during sequential and identical voltage-clamp steps (to 0 mV for 5 ms and to -45 mV for 100 ms), separated by a brief (20 ms) hyperpolarizing step to -90 mV; the voltage-clamp paradigm is shown below the current records. As is evident, the amplitude of  $I_{NaR}$  (at -45 mV) during the second voltage-clamp step to -45 mV was attenuated more than  $I_{NaT}$  (during the second step to 0 mV). Similar results were obtained in five additional Purkinje neurons using the voltage-clamp paradigm shown. (**B**) Plot of the relative peak  $I_{NaT}$  (circles) and peak  $I_{NaR}$  (squares) amplitudes measured during the second voltage-clamp steps (to 0 and -45 mV), compared with the first. As is evident, the relative amplitude of  $I_{NaR}$  is reduced (0.63 ± .05; n = 6) to a greater extent (paired Student's t-test; p = .00039) than  $I_{NaT}$  (0.95 ± 0.01; n = 6). The mean ± SEM (n = 6) relative  $I_{NaT}$  and  $I_{NaR}$  amplitudes are also indicated.



**Figure 6.** Voltage dependences of activation of I<sub>NaR</sub> and I<sub>NaP</sub> are indistinguishable. (**A**) To test the hypothesis that non-inactivating voltage-gated sodium (Nav) channels underlie I<sub>NaR</sub>, a depolarizing voltage ramp (*blue*) protocol (from –100 to 0 mV at 0.12 mV/ms) and a steady-state voltage step (*green*) protocol (with depolarizations from a holding potential of –100 mV to test potentials ranging from –75 to 10 mV in 5 mV increments) were used to reveal the magnitude and voltage-dependent properties of the non-inactivating (persistent) component of the Nav current, I<sub>NaP</sub>. In addition, a hyperpolarizing voltage ramp (from 0 to –100 mV at 0.12 mV/ms or dV/dt) was used to reveal both I<sub>NaR</sub> and I<sub>NaP</sub>. Note that as I<sub>NaR</sub> decays (see *Figure 2B*) during the hyperpolarizing voltage-ramp, the relative amplitudes of I<sub>NaR</sub> and I<sub>NaP</sub> vary during the ramp; the sum of the two current components, not the amplitudes of the individual components, therefore, are measured. The three representative records shown were obtained from the same Purkinje neuron. (**B**) The current-voltage relationships, derived from the records presented in (**A**) are plotted (in the corresponding color). From the records shown in the lowest panel of (**A**), the amplitudes of the steady-state inward currents at 25 ms at each test potential are plotted as points (green); the current amplitudes determined (at 2 ms intervals) from the ramp protocols (*red* and *blue* traces) are also plotted. As is evident, the current-voltage relations of the Nav currents are also indistinguishable. Similar results were obtained in four additional Purkinje neurons.

eLife Research article

## Neuroscience



**Figure 7.** Simulations using the Raman-Bean model of voltage-gated sodium (Nav) channel gating do not recapitulate the acquired voltage-clamp data. (**A**) The previously described Markov kinetic state model of Nav channel gating in mouse cerebellar Purkinje neurons (*Rama and Bean, 2001*) is illustrated. (**B**) Representative simulated inward Nav current waveforms, produced by this (**A**) model using the voltage-clamp paradigm shown below the current records, are presented. The time-matched normalized occupancies of the combined closed (C1–C5, shown in *black*), open (O, shown in *blue*), open-blocked (OB, shown in *red*), and combined inactivated (I1–I6, shown in *green*) gating states are plotted below the voltage protocol. (**C-E**) Comparisons of the time- and voltage-dependent properties of I<sub>NaT</sub> derived from simulations using the model in (**A**) with (our) experimental data obtained in recordings from mouse cerebellar Purkinje neurons (the same data as were used to generate the results in *Figure 3*); filled circles represent the mean experimental data and the lines represent the results of the simulations. (**F**) Relative I<sub>NaR</sub> amplitudes (normalized to peak I<sub>NaT</sub> at 0 mV) are plotted as a function of the hyperpolarizing test potential. (**G**) Simulated I<sub>NaR</sub> waveforms, produced on membrane hyperpolarizations to –45 mV following depolarizing voltage steps to +20 mV of varying durations, are shown. (**H**) Peak normalized I<sub>NaR</sub> amplitudes (at –45 mV), derived from the simulations in (**G**), are plotted as a function of the duration of the prior +20 mV depolarizing voltage step (solid line), together with the mean experimental data (filled circles) obtained in recordings from mouse cerebellar Purkinje neurons (the same data as used to generate the results in *Figure 3*). (**I**) The kinetics of I<sub>NaR</sub> decay, derived from single exponential fits to the decay phases of the currents recorded at various membrane potentials, are presented in (**I**); the solid

Figure 7 continued on next page



## Figure 7 continued

lines indicate the results of the simulations, and the filled circles are the mean experimental data obtained in recordings from mouse cerebellar Purkinje neurons (the same data as used to generate the results in *Figure 3*).

Neuroscience



**Figure 8.** The time course and amplitude of I<sub>NaR</sub> are recapitulated during repetitive brief depolarizing steps. To determine if two competing inactivation states underlie the observed differences in I<sub>NaT</sub> and I<sub>NaR</sub> recovery from inactivation (illustrated in *Figure 5*), a protocol was developed to allow direct comparison of I<sub>NaR</sub> recorded during a single (80 ms) hyperpolarizing voltage step to -45 mV (*red*), presented following a brief (5 ms) depolarization to 0 mV, with I<sub>NaR</sub> recorded (in the same cell) at -45 mV during successive brief (2 ms) hyperpolarizing voltage steps interspersed with brief (5 ms) depolarizations to 0 mV (*black*). Representative records are shown in (**A**); the voltage-clamp paradigms are illustrated below the current records. Similar results were obtained in four additional Purkinje neurons. As is evident (**A**), the envelope of the current generated using these two protocols superimpose, suggesting that the inactivation pathway responsible for I<sub>NaR</sub> decay does not compete with fast inactivation. (**B**) Simulated current waveforms, generated using the same two voltage-clamp protocols illustrated in (**A**) with the novel kinetic state model presented in *Figure 3A*, are shown. (**C**) Gating state occupancies for simulated current traces are shown with *black* representing the closed state, *blue* representing the open state, *green* representing the IS state. For direct comparison of the results of the simulations using the voltage-clamp protocols illustrated in (**A**) with the Raman-Bean gating model (2001), see *Figure 8—figure supplement 1*.



**Figure 8—figure supplement 1.** Gating state occupancies/transitions produced in the Raman-Bean model (with the voltage-clamp protocols used in *Figure 8*). The Raman-Bean model (presented in *Figure 7A*) does not reproduce the Nav currents recorded from a Purkinje neuron that is depolarized (to 0 mV) and repolarized (to -45 mV) repeatedly (see *Figure 8A*); the voltage-clamp protocol and the simulated currents produced are shown in (**A**) as solid *black* lines. Nav current waveforms, simulated using the Raman-Bean model, in response to a sustained hyperpolarization to -45 mV following a brief (5 ms) depolarizing voltage step to 0 mV are also shown; the voltage-clamp protocol and the simulated currents are shown in (**A**) as dashed *red* lines. The gating state occupancy plot (**B**), presented on the same time scale as the voltage-clamp records, is shown; colors denote the various kinetic states with *black* representing the closed state, *blue* representing the open state, *red* representing the open-blocked (OB) state, and *green* representing the inactivated (**I1-I6**) states. The dashed lines are the gating state transitions associated with the solid (*black*) current records in (**A**).



Figure 9. Promoting entry into the slow-inactivated state reduces voltage-gated sodium current (I<sub>NaR</sub>) amplitudes. (A) Mean  $\pm$  SEM peak I<sub>NaR</sub> amplitudes, measured on membrane hyperpolarizations following brief depolarizing voltage steps to +10 mV, in wild type (black) and Scn4b<sup>-/-</sup> (red) mouse cerebellar Purkinje neurons are plotted as a function of membrane voltage are shown (data were reproduced with permission from **Ransdell et al., 2017**). Peak I<sub>NaR</sub> amplitudes in individual wild type and Scn4b<sup>-/-</sup> cells were also normalized to peak  $I_{\mbox{\scriptsize NaT}}$  measured (at 0 mV) in the same cell, and the mean  $I_{\text{NaR}}$  as a percentage of peak  $I_{\text{NaT}}$  in wild type (black) and Scn4b<sup>-/-</sup> (red) cells are plotted (as points) in (B); the solid line is the normalized relative  $I_{NaR}/I_{NaT}$  generated by the Scn4b<sup>-/-</sup> model. (C) Consistent with the experimental data, the kinetics of  $I_{\mbox{\tiny NaR}}$  are not affected measurably by the loss of Scn4b (Nav $\beta$ 4) in the model, whereas  $I_{\mbox{\tiny NaR}}$  amplitudes are reduced to ~50% of wild type  $I_{NaR}$  levels (**C**). A time-locked plot of the gating state transitions (D) indicates that I<sub>NaR</sub> amplitudes are reduced in the Scn4b<sup>-/-</sup> model (dashed lines) due to a decrease in IF2 occupancy and an increase in IS occupancy. In this gating state occupancy plot, black represents the closed state, *blue* represents the open state, green represents the IC1+ IC2 states, aqua represents the IF2 state, orange represents the IF1 state, and purple represents the IS state.