
Washington University School of Medicine Washington University School of Medicine 

Digital Commons@Becker Digital Commons@Becker 

Open Access Publications 

1-1-2020 

Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of 

Vascular Professional Interest Area (PIA): Cerebrovascular Vascular Professional Interest Area (PIA): Cerebrovascular 

disease and the failure of elimination of Amyloid-β from the brain disease and the failure of elimination of Amyloid-  from the brain 

and retina with age and Alzheimer's disease-Opportunities for and retina with age and Alzheimer's disease-Opportunities for 

Therapy Therapy 

Roxana O Carare 

David Holtzman 

et al 

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs 

https://digitalcommons.wustl.edu/
https://digitalcommons.wustl.edu/open_access_pubs
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F11400&utm_medium=PDF&utm_campaign=PDFCoverPages


Received: 22May 2020 Accepted: 26May 2020 Published online: 28 July 2020

DOI: 10.1002/dad2.12053

C E R E B RO S P I N A L F L U I D B I OMARK E R S

Clearance of interstitial fluid (ISF) and CSF (CLIC) group—part
of Vascular Professional Interest Area (PIA)
Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and
retina with age and Alzheimer’s disease-Opportunities for Therapy

RoxanaO. Carare1 Roxana Aldea2 Nivedita Agarwal3 Brian J. Bacskai4

Ingo Bechman5 Delphine Boche1 Guojun Bu6 Diederik Bulters1,7

Alt Clemens4 Scott E. Counts8 Mony de Leon9 Per K. Eide10 Silvia Fossati11

StevenM. Greenberg4 Edith Hamel12 Cheryl A. Hawkes13

Maya Koronyo-Hamaoui14 Atticus H. Hainsworth15 David Holtzman16

Masafumi Ihara17 Angela Jefferson18 Raj N. Kalaria19 ChristopherM. Kipps1,7

KatjaM. Kanninen20 Ville Leinonen20 JoAnneMcLaurin21 ScottMiners22

TarjaMalm20 James A. R. Nicoll1,6 Fabrizio Piazza23 Gesine Paul24

StevenM. Rich25 Satoshi Saito17 Andy Shih26 Henrieta Scholtzova27

Heather Snyder28 Peter Snyder29 Finnbogi Rutur Thormodsson30 Susanne J. van

Veluw4 RoyO.Weller1 David J.Werring31 DonnaWilcock32

Mark R.Wilson33 Berislav V. Zlokovic34 Ajay Verma35

1 University of Southampton, Southampton, UK

2 Roche Innovation Center Basel, Basel, Switzerland

3 Hospital SantaMaria del Carmine, Rovereto, Italy

4 Harvard University, Cambridge, Massachusetts, USA

5 University of Leipzig, Leipzig, Germany

6Mayo Clinic, Jacksonville, Florida, USA

7 University Hospital SouthamptonNHS Trust, Southampton, UK

8Michigan State University, East Lansing, Michigan, USA

9Weill Cornell Medicine, New York, USA

10 University of Oslo, Oslo, Norway

11 Temple University, Philadelphia, Pennsylvania, USA

12 McGill University, Montreal, Canada

13 University of Lancaster, Lancashire, UK

14 Cedars-SinaiMedical Center, Los Angeles, California, USA

15 St George’s University of London, London, UK

16Washington University St Louis, St. Louis, Missouri, USA

17 National Cerebral and Cardiovascular Center, Osaka, Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2020 The Authors. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring published byWiley Periodicals, Inc. on behalf of Alzheimer’s Association

Alzheimer’s Dement. 2020;12:e12053. wileyonlinelibrary.com/journal/dad2 1 of 7

https://doi.org/10.1002/dad2.12053

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12053


2 of 7 CARARE ET AL.

18 Vanderbilt University, Nashville, Tennessee, USA

19 Newcastle University, Tyne, UK

20 University of Eastern Finland, Kuopio, Finland

21 Sunnybrook Research Institute, Toronto, Ontario, Canada

22 Bristol University, Bristol, UK

23 University ofMilano - Bicocca, Monza, Italy

24 Lund University, Lund, Sweden

25 QAAMPharmaceuticals LLC, Canandaigua, New York, USA

26 Seattle Children’s HospitalSeattle,Washington, USA

27 NewYork University, New York, NewYork, USA

28 Alzheimer’s Association, Chicago, Illinois, USA

29 University of Rhode Island, South Kingstown, Rhode Island, USA

30 University of Akureyri, Akureyri, Iceland

31 Stroke Research Centre, UCLQueen Square Institute of Neurology, University College London, London, UK

32 University of Kentucky, Lexington, Kentucky, USA

33 University ofWollongong,Wollongong, Australia

34 University of Southern California, Los Angeles, California, USA

35 CODIAK Biosciences, Cambridge, Massachusetts, USA

Correspondence

RoxanaO.Carare,University of Southampton,

Southampton,UK.

E-mail: rcn@soton.ac.uk

Abstract

Two of the key functions of arteries in the brain are (1) the well-recognized supply of

blood via the vascular lumen and (2) the emerging role for the arterial walls as routes

for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid

beta (Aβ), from the brain and retina. As the brain and retina possess no conventional

lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via trans-

port along basement membranes in the walls of capillaries and arteries that form the

intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but

the mechanisms underlying the failure are unclear. In some people this is reflected in

the accumulation of Aβ plaques in the brain in Alzheimer’s disease (AD) and deposi-

tion of Aβwithin artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the

dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests

for the early stages of the disease and for devising therapies that promote the clear-

ance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended

to introduce the rationale that has led to the establishment of the Clearance of Inter-

stitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area

of the Alzheimer’s Association International Society to Advance Alzheimer’s Research

and Treatment.

KEYWORDS

cerebrospinal fluid, clearance, interstitial fluid, IPAD, ISTAART

1 FOCUS OF CLIC

Why is there a need for the CLIC Group within ISTAART’s Vascular PIA? For

20years, the focusof treatments to relieve theburdenof amyloid in the

Alzheimer’s disease (AD) brain has been on immunotherapy, but this

has not been a complete success. Although amyloid beta (Aβ) deposits
are removed from the cerebral cortex, there is a significant increase in

cerebral amyloid angiopathy (CAA) after Aβ immunotherapy; this indi-

cates that Aβ removed from the cortex is deposited in artery walls due

to blockage of the intramural peri-arterial drainage (IPAD) system.1,2

mailto:rcn@soton.ac.uk
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Shifting the focus from the brain tissue to IPAD may allow us to free

a bottleneck and to increase the effectiveness of immunotherapy. A

similar strategy for improving IPADwill help to prevent the initial age-

related accumulation of Aβ in the brain, thus preventing the develop-

ment of AD.

What are the structure and aims of the group? This is an interdisci-

plinary assembly of scientists, clinicians, and drug developerswho have

already contributed significantly to themechanisms of central nervous

system (CNS) fluidbalanceandexchange, pathologyof cerebrovascular

disease, pathogenesis of Aβ accumulation in AD and cerebral amyloid

angiopathy (CAA), development of AD therapeutics, and delivery of

therapeutics to the brain via intrathecal dosing into the cerebrospinal

fluid (CSF). The role of each member of CLIC will become apparent in

the brief account below of the anatomy, physiology, and pathology of

IPAD and CSF related to AD.

2 MISSION OF THE CLIC GROUP

In the short term, members of the group will establish contacts

and familiarize themselves with the spectrum of research in

IPAD and related fields. Virtual meetings hosting seminars for

greater mutual understanding of respective research focuses are

envisioned.

In the longer term, members of CLIC will form multidisciplinary

groups to gain a greater understanding of the dynamics of IPAD and

CSF circulation in AD and CAA. Each group will establish funding

streams to facilitate collaborativemultidisciplinary research.

The overarching objectives of the CLIC are to:

1. Understand the changes with age in the peripheral physiology that

underly impaired IPAD.

2. Understand the cellular and molecular mechanisms underlying

IPAD physiology in the brain.

3. Establish novel diagnostic tests for AD, CAA, and vasomotion based

on our knowledge of IPAD and the fluid dynamics of CSF.

4. Establish novel therapies that facilitate IPAD for the elimination of

Aβ from the aging brain to prevent or reduce established AD (and

CAA?) pathology.

3 BACKGROUND TO IPAD AND ITS FAILURE
WITH AGE, AD, AND CAA

Aβ and other soluble peptides such as cystatin C are present in the

interstitial fluid (ISF) of the brain. Aβ is normally cleared from the brain

by several mechanisms: it is eliminated across the vascular endothe-

lium via a lipoprotein receptor LRP-1,3 or taken up by microglia, astro-

cytes, and perivascular macrophages.4-6 Another major pathway for

the elimination of Aβ is via ISF drainage. As there are no conventional

lymphatic vessels in the brain, ISF is eliminated along the walls of

cerebral blood vessels. Several anatomical routes have been proposed

for elimination of ISF, including alongside venules (glymphatic system)

and along basement membranes in the walls of capillaries and arter-

ies (IPAD pathways;7,8 Figure 1A,B). Although the exact roles of the

observed drainage pathways have not been fully elucidated, the IPAD

pathway corresponds more closely to neuropathological observations

of vascular Aβ deposits in CAA, which are mainly found in the walls of

capillaries and arteries. IPAD becomes less effective with age, in the

presenceof the apolipoproteinE (APOE)4genotype, andwith apparent

transient overloading after immunotherapy for Aβ7 and CAA-related

inflammation (CAA-ri),8,9 all leading to increased CAA.10-14 IPAD is

not a passive process and the motive force for IPAD is derived from

vascular pulsations. Recently it has been suggested that the sponta-

neous low-frequency contraction and relaxation of vascular smooth

muscle cells (ie, vasomotion), and possibly pericytes, may be impor-

tant drivers for IPAD.15-17 The diversity of the vascular mural cells and

their relative vulnerability during aging is likely to impact the efficiency

of IPAD from different regions of the brain.18,19 Components of the

extracellular matrix within the IPAD pathways, in particular perlecan,

appear to impede the clearance of Aβ.20 Finally, the complex interac-

tions betweenAPOEandAβ, althoughnot fully understood, likely influ-
ence clearance of ISF and Aβ as well.21,22

4 AMYLOID ANGIOPATHY IN RETINAL
ARTERIES

Deposits of Aβ have recently been identified in the tunicamedia of reti-

nal arteries in post-mortem retinae of patients with AD.23,24 Accumu-

lation of Aβ in the retina has been closely linked to an early loss of

retinal vascular smooth muscle cells (vSMC) and pericytes expressing

platelet-derived growth factor receptor (PDGFR)β.25 Furthermore, the

extent of loss of vascular PDGFRβ predicted retinal amyloid angiopa-

thy scores.25 Levels of amyloid angiopathy in the retinal vessels may

prove to be a readily accessible and potentially valuable index of sever-

ity of CAA in the brain.

5 MODELS OF CAA OR SMALL VESSEL DISEASE

While CAA due to accumulation of Aβ in the IPAD pathway is a com-

mon feature of cerebral small vessel disease, CAA is also seen in rarer

disorders involving IPADsuchasFamilial Britishdementia due tomuta-

tions in the BRI gene and Icelandic CAA due to mutations in the gene

encoding the cystatin protein.26,27 It is important to identify appropri-

ate models to study therapeutic targets for CAA or other small vessel

diseases.Different transgenicmousemodels such asAPP/PS1, TgSwDI,

or Tg2576 are used to test individual hypotheses related toCAA, albeit

with limitations.28 Rodent models for the study of vascular dysfunc-

tion include hyperhomocysteinemia and hypoperfusion due to occlu-

sion of a carotid artery.29-32 In addition, non-human primate models

are known to develop extensive CAA thus offering potential preclini-

cal avenues for investigation, especially in the context of white matter

lesions.33,34 Intramural accumulation of cystatin amyloid aggregates in

Icelandic CAA are also observed in skin vessels, suggesting that in vitro
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F IGURE 1 A, Intramural peri-arterial drainage (IPAD) pathways for the lymphatic drainage of interstitial fluid (ISF) and soluble amyloid beta
(Aβ) from the brain. Right side of diagram: ISF and Aβ (green line and arrows) pass from the extracellular spaces of the brain to drain along the walls
of capillaries and arteries ultimately to the cervical lymph nodes adjacent to arteries under the base of the skull. Details of the IPAD pathway are
shown in (B). Left side shows how cerebrospinal fluid (CSF) enters the brain along the outer aspects of penetrating arteries and passes into the ISF
of the brain parenchyma (details in [C]) and then flows out of the brain along IPAD pathways (green line and arrows). B) Details of the IPAD
pathway, cerebral amyloid angiopathy (CAA) and LRP-1-related absorption for Aβ. Soluble Aβ (light blue arrow), produced by cells in the brain, is
absorbed into the blood involving LRP-1 as one of the pathways for elimination of Aβ. Another major pathway is by IPAD (green line and arrows).
Aβ in the ISF enters the basementmembranes of endothelial cells in the walls of capillaries. Contractile pericytes surround capillaries andmay
supply themotive force for IPAD in capillaries. Aβ then rapidly passes into basementmembranes (100 to 150 nm thick) surrounding smooth
muscle cells (SMC)s in the tunicamedia of cerebral arteries. Changes occur in the walls of arteries as they age and IPAD is impaired resulting in the
deposition of fibrillar Aβ in the IPAD pathways as CAA (green asterisks). As more Aβ is deposited and the severity of CAA increases, the wall of the
artery is disrupted, SMCs are replaced by Aβ and IPAD is further impaired. The yellow line passing along the IPAD pathway shows howCSF that
has entered the ISF of the brain also drains from the brain along IPAD pathways in artery walls. SMCs in the tunica media of arteries supply the
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models of this disorder could provide convenient platforms to study

mechanistic properties of affected vessels.35

6 DEVELOPING NOVEL THERAPEUTIC
STRATEGIES

New therapeutic avenues for CAA (and AD) that act via IPAD

include interventions modulating vasomotion, the postulated motive

force of IPAD. This could potentially be accomplished by enhanc-

ing low-frequency oscillations of the vascular smooth muscle cells

through neurovascular coupling or during sleep,36 or by noradrener-

gic innervation of cortical vSMCs.37 Other potential therapeutic tar-

gets are intracellular mitochondrial systems,38 chaperone molecules

such as clusterin,39,40 or combination therapies.41 Pharmaceuti-

cal approaches may include vasoactive drugs that promote IPAD,

resulting in maintenance of vascular integrity and reduction of Aβ
deposits.42

Other proposed mechanisms for vascular dysfunction in the brain

include mitochondrial dysfunction, metabolic failure, autoimmunity,

initiation of mechanisms of cell death and inflammation (with involve-

ment of the neurovascular unit, including endothelial cells, vSMCs, per-

icytes, as well as glial cells). Each of these processes may contribute to

impaired clearance of fluids, including soluble Aβ and hyperphosphory-
lated tau from the brain.43,44 Multiple studies are currently evaluating

strategies to ameliorate these pathways.

7 CEREBROSPINAL FLUID

CSF is produced by the choroid plexus and while some CSF may pass

into venous blood via arachnoid villi and granulations in humans, CSF

also drains along lymphatics located in the dural meninges and in cra-

nial and spinal nerve sheaths en route to regional head, neck, and

perispinal lymph nodes.45-47 The route along channels that are adja-

cent to olfactory nerves entering the nasal mucosa is emerging as an

important pathway for the diagnosis of AD.48

The relative contribution of these drainage pathways to overall

clearance of CSF and solutes as well as a specific point of anatomi-

cal confluence between vascular wall and lymphatic routes remains to

be further elucidated. Measures of overall clearance of molecules via

the CSF to the periphery or along each of these specific routes could

emerge as important biomarkers for diagnosing failure of clearance of

fluid from the CNS in diseases such as AD.48-51

8 INTERCONNECTIONS BETWEEN CSF AND ISF
IN THE BRAIN

In vivo imaging data from human studies show that molecules within

the CSF are in direct communication with the ISF.52,53 In vivo imag-

ing studies showed that tracers administered into CSF enter the

brain along the periarterial pial-glial basement membranes between

pia mater coating the arteries and the glia limitans of the cerebral

cortex.54,55 These boundaries give rise to a periarterial compartment

filled with extracellular matrix around arteries (observed as “perivas-

cular spaces” on in vivo imaging56), facilitating the transport of CSF

into the brain.8 After tracers have entered the parenchyma from the

CSF they mix with ISF,55 prior to leaving the brain by IPAD55 (Fig-

ure 1a-c). As suggested by the glymphatic system, an alternative clear-

ance route for ISFmaybe alongside thewalls of venules. Further exper-

imental studies are needed to fully elucidate the relative contribution

of venules and arteries to the clearance of ISF from the parenchyma.

There is an increased incidence of AD pathology, including CAA, in

patients with idiopathic normal pressure hydrocephalus (iNPH), most

likely as a result of disturbances in the dynamics of CSF-ISF.57 Patients

with iNPH could therefore be a valuablemodel for the study of interac-

tions CSF–ISF.

As CSF enters the brain along basement membranes surrounding

the walls of cortical arteries, this represents an important pathway

for drug delivery, including novel antisense oligonucleotides.49 Drugs

injected into the CSF may also have unique access to influence the

dynamics of ISF clearance along IPAD pathways.

There are meningeal lymphatics in the dural lining of the skull, but

their role in clearing ISF is unclear.58 Tracers injected into the CSF

drain into parasaggital lymphatics in the dura and reach cervical lymph

nodes.53

9 CAA-RI AND ARIA: CLINICAL–RADIOLOGICAL
ABNORMALITIES POTENTIALLY RELATED TO THE
FAILURE OF DRAINAGE OF FLUID FROM THE
BRAIN

It is widely accepted that amyloid-related imaging abnormalities

(ARIA) represent a major unwanted effect of Aβ immunotherapy for

AD. The features of both ARIA-E, in which there is evidence of vaso-

genic edema and inflammation, and ARIA-H, in which there is evi-

dence of hemosiderin deposits, microhemorrhages, and cortical super-

ficial siderosis suggest the disruption of the normal interactions among

motive force for IPAD and have both adrenergic and cholinergic innervations. C, Entry of CSF into the brain along periarterial pial–glial basement
membranes. As arteries enter the surface of the cerebral cortex they are coated by a layer of pia mater that is firmly associated with the basement
membranes of the glia limitans on the surface of the brain. There are no perivascular spaces around cortical arterioles so tracers injected into the
CSF enter the brain along the periarterial pial–glial basementmembranes andmix with the ISF in the brain parenchyma. CSF tracers are then
eliminated from the brain along IPAD pathways. This route could be used to deliver drugs to increase the efficiency of elimination of Aβ along aging
IPAD pathways. PVM, perivascular macophage; SAS, subarachnoid space
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ISF, CSF, and walls of blood vessels.7,59 Both ARIA-E and ARIA-

H phenomena have been demonstrated spontaneously in CAA-ri, a

rare autoimmune encephalopathymediated by autoantibody targeting

cerebrovascular Aβ.8

Like immunotherapy-induced ARIA, it is hypothesized that

increased anti-Aβ auto antibodies in the CSF promote the clear-

ance of Aβ plaques from the CNS as evidenced by the increased

amount of soluble Aβ40 and Aβ42 and reduced Aβ-PET uptake.

According to the “ARIA Paradox” pathogenic model9 the initiating

factors and immune-mediated mechanisms of CAA-ri and ARIA are

thought to be a complicated mixture of genetic, vascular, and immuno-

logical risk factors closely related to the Aβ burden and the dose- and

time-related effects of anti-Aβ antibodies.59 It is thus likely that the

severity of CAA and the CAA-related impairment of neurovascular

coupling functions, including the complex interplay among microglia,

astrocytes, endothelial, and vSMC are the game-changers in deter-

mining vascular dysfunction and impairment of clearance of Aβ and

hyperphosphorylated tau from the brain.60,61

To this end, anti-Aβ autoantibodies and CAA-ri could offer a unique
possibility to explore the relationships between pathways of Aβ clear-
ance and enable development of innovative therapies, representing a

human spontaneousmodel of Aβ immunotherapy.

10 CONCLUSION

Our interdisciplinary group aims to further the understanding of how

ISF and CSF are involved in the pathology of AD and related demen-

tias and how ISF andCSFmay be harnessed for diagnostic tests and for

disease-modifying therapies.
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