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Supplementary Note 1: Semantic map generation 

Semantic segmentation maps were generated in MATLAB with a customized script. First, for 

each NucBlue and NucGreen image pair, an adaptive thresholding was applied to separate the cell 

nucleus and background, where the segmented cell nuclei were obtained by computing the union 

of the binarized fluorescent image pair. We removed the segmentation artifacts by filtering out the 

tiny objects below the size of a typical nucleus. Next, using on the segmentation masks, we 

calculated the ratio between the NucGreen and NucBlue fluorescence signal. A histogram of the 

average ratio within the cell nucleus is plotted in Fig. S1, where three distinctive peaks were 

observed corresponding to the live, injured and dead cells. Because NucGreen/NucBlue reagent is 

only designed for live and dead classification, the histogram of injured cells is partially overlapped 

with the live cells. By selecting a threshold value that gives the lowest histogram count between 

dead and injured cells, we assigned label “live” to all live and injured cells, while the remaining 

cells as “dead”. 



 

Figure S1. Histogram of fluorescence signal ratio.  

 

Supplementary Note 2: EfficientNet 

The MBConvX is the principal module in an EfficientNet. It approximately factorizes a 

standard convolutional layer into a sequence of separable layers to shrink the number of parameters 

needed in a convolution operation while maintaining a comparable ability of feature extraction. 

The separable layers in a MBConvX module are shown in Fig. 2c. Here, MBConv1(X=1) and 

MBConv6 (X=6) indicate that a ReLU layer and ReLU6 layer are employed in this module, 

respectively. ReLU6 is a modification of the rectified linear unit, where the activation is limited to 

a maximum size of 6. A MBConvX module in Fig. 2b may include a down-sampling layer, which 

can be inferred by the indicated feature map dimensions. The first MBConvX in each layer block 

does not contain a skip connection between its input and output (indicated as a dash line in Fig. 

2c), since the input and output of that module have different sizes.  

 

Supplementary Note 3: PICS evaluation at a cellular level 



We implemented a U-Net based EfficientNet (E-U-Net) to extract markers associated with 

viable state of cells measured by SLIM. In Table S1, we show the conventional confusion matrix 

and corresponding F1 score evaluated on pixels in testing images. Figure S2a shows a represented 

raw E-U-Net output image. As indicated by the yellow arrow, there exist cases where a segmented 

cell may have multiple semantic labels. The conventional deep learning evaluation method only 

focuses on assessing pixel-wise segmentation accuracy, which overlooks some biologically 

relevant instances (the viable state of the entire cell) [1]. And this motives us to adopt an object-

based evaluation that estimates the E-U-Net accuracy for individual cell.  

 

 

Table S1. Pixel-wise evaluation of the trained E-U-Net. Due to the fact that the E-U-Net 

prediction assigns multiple labels to one cell nucleus, we converted the pixel-wise classification 

into cell-wise classification, which is more relevant biologically (Table 1 in the main text). 

 

First, we use dominant semantic label across a cellular region to denote the viable state for 

this cell (Figure S2b). And we compare this semantic label with the same cell in ground truth 

image, repeat this step across all testing images, and obtain the cell-wise evaluation as shown in 

the article Table 1.  



 

Figure S2. a. Output of E-U-Net on a representative testing image.  The network assigns semantic 

labels to each pixel, and thus for some cells, more than one semantic label can be observed within 

the cell body. b. we use the dominant semantic label to indicate the viability state of a cell, and 

then the performance of training is evaluated at a cellular level, referred to the cell-wise evaluation. 

The images are randomly selected from a combined dataset across 4 imaging experiments. Scale 

bars: 50 μm in space.   

 

Supplementary Note 4: PICS on CHO cells   

Evaluate the effect of lytic cell death  

Before performing experiments on CHO cells, a preliminary study was conducted, as follows. 

We prepared live cell cultures and split them into the two groups. 1 µM of staurosporine was added 

into the medium of the experimental group, whereas the others were kept intact as control. Both 

control and experimental cells were measured with SLIM for 10 hours under regular incubation 

condition (37 °C and 5% concentration of CO2).  Figure S3a and S3b show the QPI images of 

experimental and control cells measured at t = 0.5, 6.5, 7 and 10 hours, respectively. Throughout 

the time-course, the untreated cells remained attached to the petri-dish. Moreover, as indicated by 

the yellow arrows, the control cells divided at t = 6.5 hr. In contrast, cells treated with staurosporine 



presented drastically different characteristics, where the cell volume decreased, and membrane 

ruptured or became detached. This preliminary result suggests that, under our regular incubation 

condition, the cells did not suffer from lytic cell death.  

 

Figure S3. Time-lapse SLIM recording of CHO cells with (a) and without (b) staurosporine that 

introduces cell apoptosis, under regular incubation condition. For the control group, the cells 

continued growing and dividing without signs of cell death, which ruled out the existence of lytic 

cell death. The images are selected from 1 experiments, and the results are consistent across 27 

measured field of views (FOV). Scale bar: 50 μm in space   

 

 

PICS training and testing on CHO cell images  

After validation the efficacy of staurosporine on introducing apoptotic cell death, we acquired 

images on CHO cells and generated the dataset for PICS training. The training was conducted on 

E-U-Net (EfficientNet-B7), whose network architecture, and its training/validation loss are shown 

in Figure. S4. 



 

Figure S4. CHO cells viability training with EfficientNet-B7. a. The network architecture of 

EfficientNet-B7. b. Training and validation focal losses vs number of epochs plotted in the log 

scale. 

 

We visually inspected the difference between the ground truth and machine learning 

prediction in the testing dataset. First, we saw prediction errors due to cells located at the boundary 

of the FOV, as explained in the previous comments. In addition, we found rare cases where live 

CHO cells were mistakenly labeled as dead (see Fig. S5 below for an illustration of CHO cells 

with staurosporine administration at t = 0.5 hour). In SLIM, these cells present features of 

abnormal cell shapes and decreased phase values, but severe membrane rupture was not observed. 

Previous studies suggested that these morphological features are early indicators of cell death [2-

4], but it was identified as live using traditional fluorometric evaluation.   



 

Figure S5. Cells with irregular shapes but no severe membrane rupture are subjected to erroneous 

classification. a. Input SLIM image. b. Ground truth. c. PICS output based on input in a.  The 

images are randomly selected from a combined dataset across 4 imaging experiments. Scale bar: 

50 μm in space   

 

 

PICS performance on cells under different confluence  

As discussed in the manuscript, live CHO cell culture was prepared in a 6-well plate at three 

confluence levels, staurosporine solution was added into the culture medium to introduce 

apoptosis. Figure. S6 show SLIM image of high, intermediate, and low confluence CHO cells 

measured at t = 0. Although, aggregating into clusters, the cell shape and boundary can be easily 

identified. All SLIM images were combined for training and validation. In testing, we estimated 

the PICS performance vs. cell confluence, and the results are summarized in Table. S2a-c.  



 

Figure S6. SLIM images of high (a), intermediate (b), and low (c) confluence CHO cells. The 

images are randomly selected from a combined dataset across 4 imaging experiments. Scale bar: 

50 μm in space   

 

 

Table S2. PICS performance vs. CHO cell confluence  

 

Training on unlabeled cell SLIM images 

  During the data acquisition, we added FL viability reagents at the beginning, and this 

allows us to monitor the viable state changes of the individual cells over time. However, such data 



acquisition strategy can, in principle, introduce bias when optimizing the E-U-Net. This effect can 

be ruled out by collecting label-free images first, followed by exogenous staining and fluorescent 

imaging to obtain the ground truth, at the cost of increased efforts in staining, selecting FOV and 

re-focusing.  

To study this potential effect, we performed a control experiment described as follows. 

Live CHO cells were prepared and passaged onto two glass-bottom 6-well plates. 1 μM of 

staurosporine was added into each well to introduce apoptosis. At t = 0, cells in one well were 

imaged by SLIM, followed by reagents staining and fluorescence imaging. After 60 minutes, we 

repeated this step, but measuring the cells in the other well. Throughout the experiment, the cells 

were maintained in 37 °C and 5% concentration of CO2. In this way, cells in each well were only 

measured once, and we obtained a dataset of unlabeled QPI images that resemble the structure of 

a testing dataset used in this study.  The experiment was repeated 4 times, resulting in a total of 

2400 SLIM and fluorescent pairs, on which PICS training and testing were performed. Table S3 

shows the PICS performance on this new dataset, where live and dead cells were classified with 

99% and 97% sensitivity, respectively.  Thus, we can conclude that PICS optimization on cells 

without fluorescent stains does not compromise the prediction accuracy, which makes the 

proposed live-dead assay method robust for a variety of experiment settings.  



 

 

Table S3. Evaluation of the PICS performance on truly unlabeled CHO cells with apoptosis 

reagents. 

 

Supplementary Note 5: Comparison of PICS performance under various training strategies 

We have attempted to compare cell viability prediction performance under various network 

architecture settings. We compared three network settings: 1) an E-U-net trained by use of a pre-

trained EfficientNet; 2) an E-U-net trained from scratch; and 3) a standard U-net [5] trained from 

scratch. In these additional experiments, the U-net architecture employed was a standard U-net 

[5], with the exception that batch normalization layers were placed after each convolutional layer 

to facilitate the network training. EfficientNet-B0 was employed in the E-U-nets to make sure that 

the network size of E-U-net (7.8 million of parameters) approximately matched that of a standard 

U-net (7.85 million of parameters). A combined loss that comprised focal and dice losses (denoted 

as dice+focal loss) was used for network training. Other training settings were consistent with how 

the E-U-net was trained, as described in the manuscript. After the networks were trained with 

training and validation data from HeLa cell datasets and CHO cell datasets, they were tested on 



the testing data from the two datasets, respectively. The average pixel-wise F1 scores over the live, 

dead and background classes were computed to evaluate the performance of the trained networks, 

as reported in Table S4. It can be observed from the table that, on both the two testing datasets, the 

average F1 scores corresponding to an E-U-net are much higher than those corresponding to a 

standard U-net when both of them were trained from scratch. Furthermore, as expected, an E-U-

net trained with a pre-trained EfficientNet achieves a better performance than the one trained from 

scratch. These results demonstrate the effectiveness of the E-U-net architecture and the transfer 

learning techniques in training a deep neural network for pixel-wise cell viability prediction.  

 

Table S4. Average F1 scores related to E-U-nets trained with a pre-trained EfficientNet-B0, E-U-

nets trained from scratch, and standard U-nets trained from scratch, respectively. 

 

In addition, we compared the average pixel-wise F1 scores corresponding to E-U-nets 

trained with various loss functions, including a dice+focal loss, a standard focal loss, a standard 

dice loss, and a weighted cross entropy (WCE) loss. To be consistent with the network settings in 

the manuscript, a pre-trained EfficientNet-B3 and a pre-trained EfficientNet-B7 were employed 

for training the E-U-nets on the HeLa cell dataset and CHO cell datasets, respectively. The class 

weights related to live, dead, and background classes in the weighted cross entropy loss were set 

to [0.17, 2.82, 0.012] and [2.32, 0.654, 0.027] for the network training on the HeLa cell dataset 

and CHO cell datasets, respectively. In each of the weight cross entropy losses, the average of 

weights over the three classes is 1, and the weights related to each class were inversely proportional 



to the percentages of pixels from each class in the HeLa cell and CHO cell training datasets: [6.7%, 

0.4%, 92.9%] and [1.1%, 3.9%, 95%], respectively. Other network training settings were 

consistent with how the E-U-net was trained as described in the manuscript. The trained networks 

were then evaluated on the testing HeLa cell dataset containing 100 images and testing CHO cell 

dataset containing 288 images, respectively. The average pixel-wise F1 scores were computed over 

all pixels in the two testing sets as shown in Table S5. It can be observed in the table that, on both 

the two datasets, E-U-nets trained with a dice+focal loss produced higher average pixel-wise F1 

scores than those trained with a dice loss or a WCE loss. 

 

 

Table S5. Average F1 scores related to E-U-nets trained with various loss functions. 

 

We further compared E-U-nets trained with a dice+focal loss to those trained with a dice 

loss or a WCE loss by investigating their agreements on the dice coefficients of each class related 

to the predictions for each image sample in the two testing datasets. Here, let us denote Ddice+focal, 

Ddice, and DWCE as the dice coefficients produced by E-U-nets trained with a dice+focal loss, a dice 

loss and a weighted cross entropy loss, respectively. Bland-Altman plots were employed to analyze 

the agreement between Ddice+focal and Ddice and that between Ddice+focal and DWCE on testing dataset 

of HeLa and that of CHO, respectively. Here, a Bland-Altman plot of two paired dice coefficients 

(i.e. Ddice+focal vs. Ddice) produces a scatter plot x-y, in which the y axis (vertical axis) represents the 

difference between the two paired dice coefficients (i.e. Ddice+focal - Ddice) and the x axis (horizontal 



axis) shows the average of the two dice coefficients (i.e. (Ddice+focal + Ddice)/2). 𝜇𝑑 and 𝜎𝑑 represent 

the mean and standard deviation of the differences of the paired dice coefficients over the image 

samples in a specific testing dataset. The results corresponding to Ddice+focal vs. Ddice and Ddice+focal 

vs. DWCE are reported in Figure S7 and Figure S8, respectively. In each figure, the subplots from 

left to right show the Bland-Altman plots related to the predictions for live, dead, and background 

classes, respectively. It can be observed from Figures S7-8 that, for predicting live and dead pixels, 

both the Ddice+focal > Ddice (or Ddice+focal - Ddice > 0) and Ddice+focal > DWCE (or Ddice+focal – DWCE > 0) 

hold at the majority of the image samples in the two datasets, though for the background prediction, 

Ddice+focal is comparable to Ddice and DWCE. These results suggest that compared to a dice or WCE 

loss, a focal+dice loss can improve the performance of predicting live and dead pixels for the 

majority of testing images from both the two datasets. 

 

Figure S7. Ddice+focal  vs. Ddice on testing dataset of HeLa (a) and CHO (b), where 𝜇𝑑 and 𝜎𝑑 

represent the mean and standard deviation of Ddice+focal - Ddice .   



 

 

Figure S8. Ddice+focal  vs. DWCE on testing dataset of HeLa (a) and CHO (b), where 𝜇𝑑 and 𝜎𝑑 

represent the mean and standard deviation of Ddice+focal - DWCE .   
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