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Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are
proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for
prostate cancer. These fluids contain an abundant number of glycoproteins and
extracellular vesicles secreted by the prostate gland, and the ability to detect changes
in their N-glycans composition as a reflection of disease state represents potential new
biomarker candidates. Methods to characterize these N-glycan constituents directly from
clinical samples in a timely manner and with minimal sample processing requirements are
not currently available. In this report, an approach is described to directly profile the
N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass
spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins
from a few microliters of spotted samples, followed by peptide N-glycosidase digestion.
Over 100 N-glycan compositions can be detected with this method, and it works with
urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A
comparison of the N-glycans detected from the fluids with tissue N-glycans from
prostate cancer tissues was done, indicating a subset of N-glycans present in fluids
derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of
larger clinical cohorts and adaptable to other biofluids.

Keywords: glycosylation, N-glycan, prostate, urine, MALDI

INTRODUCTION

In the search and characterization of disease biomarkers for use in liquid biopsy applications,
proximal fluids like blood and urine are commonly used. Proximal fluids are found adjacent to a
given tissue or organ and represent a repertoire of secreted proteins and shed cells reflective of the
physiological state of that tissue. For prostate cancer and other genitourinary diseases, proximal
fluids are represented by seminal plasma and expressed-prostatic secretion in urine (EPSu) (Drake
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and Kislinger, 2014; Nawaz et al., 2014). EPSu, also termed post-
digital rectal exam (DRE) urine, represents the fluid being
secreted by the prostate following a digital rectal prostate
massage, which in turn can be collected in voided urine post-
exam (Drake et al., 2009; Drake and Kislinger, 2014). The prostate
gland secretes many proteins and other biomolecules in a
prostatic fluid that combines with seminal fluid and sperm
from the seminal vesicles during ejaculation. Many of these
prostatic proteins are glycoproteins, like prostate specific
antigen (PSA), that perform functions to activate sperm and
suppress the vaginal immune micro-environment. Our group has
previously characterized the proteomic composition of EPSu and
prostatic secretions, identifying hundreds of different prostate-
derived glycoproteins (Drake et al., 2009; Drake et al., 2010; Kim
et al., 2012; Principe et al., 2012). Development and evaluation of
extensive targeted proteomic assays to these proteins in EPSu are
in progress for use in prostate cancer diagnosis (Kim et al., 2016;
Otto et al., 2020). The prostatic fluids, EPSu and urine are also
rich in extracellular vesicles (EV), which are a source for many
ongoing non-coding RNA and related oligonucleotide-targeted
diagnostic assays for prostate cancer and multiple diseases (Van
Gils et al., 2007; Laxman et al., 2008; Linxweiler and Junker,
2020). EV obtained from urine and EPSu continues to be a highly
active area for diagnostic assay development (Wang et al., 2020;
Erdbrügger et al., 2021).

The majority of proteins in EPSu, urine, and associated EVs
are glycosylated (Drake et al., 2009; Drake et al., 2010; Kim et al.,
2012; Principe et al., 2012), either on asparagine residues, termed
N-linked glycosylation, or on serine or threonine residues, termed
O-glycosylation. Changes in glycosylation have been well
documented in prostate cancer associated tissues, cells and
biofluids (Drake et al., 2015; Scott and Munkley, 2019; Tkac
et al., 2019). Extensive glycoproteomic approaches,
i.e., characterization of the glycan structures at the peptide
sites of modification, have been reported for urine and EPSu
glycoprotein targets (Leymarie et al., 2013; Saraswat et al., 2015;
Brown et al., 2020). One of the most highly characterized
glycoproteins is PSA (White et al., 2009; Leymarie et al., 2013;
Nyalwidhe et al., 2013; Jia et al., 2017; Kammeijer et al., 2018;
Hatakeyama et al., 2021), due to its known role in prostate cancer
diagnosis and relatively simple glycosylation pattern of having a
single N-linked glycosylation site. Although changes in
glycosylation of PSA and many other prostatic glycoproteins
have diagnostic potential, assays to efficiently characterize
N-glycans in urine can be lengthy and require multiple
processing steps, precluding large scale clinical utility (Song
et al., 2019; Hanzawa et al., 2021). Lectin arrays have been
effectively used to profile glycan motifs in large cohorts of
clinical urine samples (Kawakita et al., 2021; Mise et al., 2021),
however this approach cannot determine full glycan
compositions or distinguish N-linked or O-linked origins.
Based on an adaptation of a recently published workflow for
rapid characterization of serum and plasma N-glycans (Blaschke
et al., 2020), we report herein a more efficient slide-based
approach combined with MALDI imaging mass spectrometry
(IMS) workflows to detect total N-glycan profiles of urine, EPSu
and prostatic fluid samples. Comparative results with N-glycans

detected and histologically mapped in prostate cancer tissues by
MALDI IMS are also included.

MATERIALS AND METHODS

Materials
Amicon Ultra 10 k centrifugal filters were obtained from Merk
Millipore (Carrigtwohill, IRL). Hydrogel coated slides
(Nexterion® Slide H) were obtained from Applied Microarrays
(Tempe, AZ). The rotary tool was a Dremel 200 series. The well
slide module (ProPlate Multi-Array Slide System, 64-well) was
obtained from Grace Bio-Laboratories (Bend, OR). Sodium
bicarbonate, trifluoroacetic acid (TFA), and α-cyano-4-
hydroxycinnamic acid (CHCA) were obtained from Sigma-
Aldrich (St. Louis, MO). HPLC grade water, 1X phosphate
buffered saline (PBS), acetonitrile, citraconic anhydride, glacial
acetic acid, methanol, xylene, and chloroformwere obtained from
Fisher Scientific (Hampton, NH). Ethanol was obtained from
Decon Labs (King of Prussia, PA). Peptide-N-glycosidase F
(PNGase F) PRIMETM was from N-Zyme Scientifics
(Doylestown, PA). H&E stains were obtained from Cancer
Diagnostics (Durham, NC).

Expressed Prostatic Secretion Urine
Samples, Extracellular Vesicles, and Tissue
All samples were collected from patients and utilized after
informed consent following Institutional Review Board-
approved protocols at Urology of Virginia, Sentara Medical
School, and the Eastern Virginia Medical School. All personal
information or identifiers beyond diagnosis and lab results were
not available to the laboratory investigators. EPS-urine samples
were collected performing a gentle massage of the prostate gland
during DRE prior to biopsy, as previously described (Drake et al.,
2009). The massage consisted of three strokes on each side of the
median sulcus of the prostate and the expressed fluid from the
glandular network of the prostate was subsequently voided in
urine. Pools (25–50 ml/sample) of EPSu were derived from 10
patients classified as having high grade, Gleason 8–10 tumors and
10 patients with low grade, Gleason 6, organ-confined prostate
cancer as described previously (Nyalwidhe et al., 2013). For
isolation of EPS-derived extracellular vesicles (EPSev), the two
EPSu pools (45 ml) were centrifuged at 25,000 × g for 30 min, and
the supernatant centrifuged at 100,000 × g for 4 h. The pelleted
exosomes were washed twice with PBS and resuspended in 0.5 ml
PBS, as previously described (Nyalwidhe et al., 2013). Direct EPS
fluids (EPSd) were obtained under anesthesia prior to
prostatectomy as previously described (Drake et al., 2010). A
subset of 10 pairs of patient samples who provided both EPSu and
EPSd were selected. Prior to glycomic analysis, 0.125 ml aliquots
of each EPSu and EPSd sample were concentrated in a
10,000 MW filter cut-off 0.5 ml Amicon tube by centrifugation
at 11,000 rpm in a Sorvall Legend Micro 21 benchtop
microcentrifuge for 25 min. To each filtration tube was added
0.125 ml of 1X PBS, and centrifugation was repeated for 25 min.
The remaining concentrated fluid, approximately
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15–20 microliters, was removed to a separate vial. Each tube was
rinsed with 20 microliters of PBS, and added to the concentrated
sample vial (final volume 35–40 microliters). A de-identified
prostate tumor tissue pair of Gleason grade 8 (4 + 4)/stage
pT3b and patient-matched distal non-tumor tissue was
obtained from the Hollings Cancer Center Tissue and Analysis
Biorepository at the Medical University of South Carolina. A
serial section of each tissue was H&E-stained according to a
standardized protocol.

Control Urine Standards
Commercial urine samples representing pooled samples from
four healthy males and four females were purchased from Lee
BioSolutions (Maryland Heights, MO). Prior to glycomic
analysis, the control urine samples were filtered and rinsed as
described for the EPS samples, except 4 ml starting volume was
used with larger Amicon tubes.

Expressed Prostatic Secretions Fluids and
Urine Preparation for MALDI-IMS
The sample preparation and analysis of the EPS fluids (EPSu,
EPSd, and EPSev) and urine samples were adapted from a
workflow established for the glycomic analysis of serum and
plasma (Blaschke et al., 2020). After a 30-min temperature
equilibration in a moisture resistant pouch, an amine-reactive
hydrogel coated slide was ground down with a rotary tool until if
could fit into a Bruker MTP Slide Adapter II. A 64 well module
was attached and outlined on to the back of the slide. Then the
well module was unattached. Two microliters of sodium
bicarbonate (100 mM, pH 8.0) was mixed with 1 microliter of
the sample and briefly mixed. Within the outline of a well,
1 microliter was spotted onto the slide. EPSu, EPSd, and
EPSev samples were spotted in technical triplicates, and the
control urine samples were spotted in technical quadruplicates.
The slide was placed in a humidity chamber, made from a culture
dish with a Wypall × 60 paper towel lining the bottom and two
rolled KimWipes saturated with distilled water on opposite sides,
for 1 h on the benchtop to immobilize the samples to the slide.
The slide was then dried in a desiccator for 15 min. The well
module was reattached to the slide, matching the wells with the
outlines drawn on previously. The samples were washed with
Carnoy’s solution (10% glacial acetic acid, 30% chloroform, and
60% 200 proof ethanol) three times for 3 min each, and
subsequently washed with HPLC-grade water once for 1 min.
For the washing and rinsing steps, 50 microliters of solution was
added to each well and dumped out of the well by inverting the
slide. Following the water wash, the slide was dried in a desiccator
for 30 min with the slide module attached. After detaching the
slide module, a M5 TM-Sprayer (HTX Technologies) was used to
spray a 0.1 mg/ml PNGase F PRIME solution in water on to the
slide for 15 passes at 25 microliters/min, 1,200 mm/min, 45°C,
and 3 mm spacing between passes with 10 psi nitrogen gas. The
slide was then incubated in a preheated humidity chamber at 37°C
for 2 h. A M5 TM-Sprayer was also used to apply the MALDI
matrix solution (7 mg/ml of CHCA in 50% acetonitrile/0.1%
TFA) on the slide for 10 passes at 100 microliters/min,

1,200 mm/min, 79°C, and 2.5 mm spacing between passes with
10 psi nitrogen gas.

Prostate Tissue Preparation for MALDI-IMS
The tissues were prepared as described previously (Drake et al.,
2018a). Briefly, the tissues were dewaxed by 1 h in 60°C and
xylene washes, rehydrated with a gradation of ethanol and water
washes, and underwent antigen retrieval in citraconic anhydride
buffer (25-μL citraconic anhydride, 2-μL 12 M HCl, 50-ml
HPLC-grade water, pH 3.0 ± 0.5) in a decloaking chamber at
95°C for 30 min. A M5 TM-Sprayer (HTX Technologies) was
used to spray a 0.1 mg/ml PNGase F PRIME solution in water on
to the slide for 15 passes at 25 microliters/min, 1,200 mm/min,
45°C, and 3 mm spacing between passes with 10 psi nitrogen gas.
The slide was then incubated in a preheated humidity chamber at
37°C for 2 h. A M5 TM-Sprayer was also used to apply the
MALDI matrix solution (7 mg/ml of CHCA in 50% acetonitrile/
0.1% TFA) on the slide for 10 passes at 100 microliters/min,
1,200 mm/min, 79°C, and 2.5 mm spacing between passes with 10
psi nitrogen gas.

MALDI Imaging Mass Spectrometry
A dual source timsTOF fleX MALDI-QTOF mass spectrometer
(Bruker) was used to image the slides as previously described
(McDowell et al., 2021). Images were collected with a SmartBeam
3D laser operating at 10,000 Hz with a 20 µm laser spot size at a
150 µm raster with 300 laser shots per pixel. Samples were
analyzed in positive ionmode spanning a m/z range of 700–4,000.

Data Processing and Analysis
Mass spectra were imported in to SCiLS Lab software 2021a
(Bruker), normalized to total ion current, and manually peak
selected for N-glycans based on theoretical mass values. SCiLS
was also used for individual peak visualization and quantification.
Maximum mean values for each peak were exported for each
sample region. Each N-glycan measurement for each sample was
subtracted by the background signal in the blank well to find the
absolute intensity. To account for differences in protein
concentrations that could lead to higher signal intensities and
detection of more low-abundance N-glycan species, N-glycan
relative intensities were calculated as the absolute intensity
divided by the sum of all the absolute intensities of the
N-glycans found in each of the samples being compared.
Comparisons of the number of N-glycans detected in each
sample is also discussed, and the presence/absence of a
N-glycan in each sample is noted in Supplementary Table S1.
N-glycan structures were labelled with a N-glycan class or classes
depending on their putative structures. Quantifications of the
N-glycan classes were calculated by summing the relative
intensities of the individual N-glycans belonging to each class.
N-glycan profiles were also examined by grouping each N-glycan
into a group depending on the presence and/or absence of
mannose, fucose, sialic acid, and sulphate and comparing the
summed relative intensities of the classes. When comparing
individual N-glycan intensities across samples, the multiply
sodiated species of sialylated and sulfated N-glycans were
added together.
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RESULTS

To complement previous proteomic studies of proximal prostatic
fluids obtained in the urology clinic as related to prostate cancers
(Drake et al., 2009; Drake et al., 2010; Kim et al., 2012; Principe
et al., 2012) a series of different EPSu, EPSd and EPSev samples
were used to develop a MALDI-based N-glycan profiling method.
The goal was to have a workflow that required minimal sample
processing and could be completed in a 6–8 h timeline, in
contrast to current glycomic analysis workflows for urine and
prostatic fluids that require multiple processing, derivatization
and purification steps prior to analysis. A previous slide-based
approach used for serum and plasma N-glycan profiling
(Blaschke et al., 2020) was the starting point, and a workflow
summarized in Figure 1 was developed for EPSu. A key feature is
use of an amine reactive slide chemistry that covalently binds
target glycoproteins, facilitating washing steps to remove lipid
and salts prior to spraying of a molecular coating of PNGase F
PRIME to release N-glycans. An additional concentration and
buffer exchange step was added for EPSu and EPSd, using a
10,000 MW cut-off spin cartridge to concentrate and allow buffer
exchange of the sample prior to addition to the amine-reactive
slide. This step results in a three to four fold increase in

concentration of glycoproteins in the biofluid. An SDS-
polyacrylamide gel image showing protein loading examples
for the EPSu, EPSd and EPSev samples are provided in
Supplementary Figure S1.

Initial experiments focused on optimizing detection of
N-glycans in EPSu and EPSd sample pairs obtained from the
same donors, as well as existing EPSev pool samples. Similar to
what was previously determined for serum or plasma
preparation on the amine-reactive hydrogel slides, the key for
optimal N-glycan detection was inclusion of the Carnoy’s
solution wash after spotting, which serves to remove lipids
and salts, as well as denature the bound glycoproteins
facilitating access for PNGase F. Thus far, a total of 35 EPSu,
10 EPSd and 8 EPSev samples have been analyzed with the
workflow shown in Figure 1. Cumulatively, the resulting
N-glycans detected in each sample type are summarized in
Supplementary Table S1, and structural class groupings are
shown in Figure 2. Broadly, the EPSu samples had the most
N-glycan species detected (n � 182) versus EPSd (n � 135).
These numbers include multiple versions of the same N-glycan
compositions for sialylated and sulfates species, which can vary
in mass due to varying numbers of sodium ions associating with
the charged groups. These glycoforms were included in

FIGURE 1 | Workflow of the EPS fluid and urine N-glycan analysis.
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Supplementary Table S1, but were generally detected at lower
intensity values.

There was a range of protein concentrations across the
samples in each sample type examined. While this created
differences in the total intensity of the N-glycan profile and

number of N-glycans that could be detected, these differences
were accounted for by only comparing relative intensities, i.e. an
individual N-glycan’s intensity relative to the total intensity of the
N-glycans in that sample that were also seen in all sample types
being compared. Representative samples with the most N-glycans

FIGURE 2 | N-glycan profile of prostatic fluids (EPSu, EPSd, and EPSev) analyzed by MALDI-IMS. (A) Glycan class abundances of representative samples
determined by summing the relative intensities of the N-glycans assigned to that class. Samples were analyzed in technical triplicate. Error bars represent the standard
deviation. (B) Distributions of representative samples’ N-glycans assigned into groups based on composition. (C) Distribution of total N-glycan intensity by individual
N-glycan, with N-glycans comprising at least 1% of the total intensity displayed and annotated. The N-glycan compositions are represented by blue squares for
N-acetylglucosamine, green circles for mannose, yellow circles for galactose, purple diamonds for sialic acid, red triangles for fucose, and an “S” for sulfate.
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detected were selected and compared from each sample type to
display the breadth the N-glycan profiles.

The intensity of the N-glycan classes varied across the
prostatic fluid samples (Figure 2A). EPSd and EPSev N-glycan
classes had similar intensities, except for the higher amount of
high-mannose N-glycans in EPSev. For all samples, the majority
of the N-glycans were biantennary and/or fucosylated. EPSu had
approximately 15 and 20% less sialylation than the EPSd and
EPSev, respectively, but had an increased amount of
tetraantennary and sulfated N-glycans. Many of these findings
were replicated when grouping the N-glycans detected in each
sample based on composition (Figure 2B). About half of the
N-glycans in EPSu were fucosylated with no sialic acid compared

to approximately 30% in the EPSd and EPSev samples. The EPSd
and EPSev samples had higher levels of N-glycans with sialic acids
and no fucose. When examining the intensity of individual
N-glycans in the prostatic fluid samples, the most abundant
N-glycans were typically biantennary with two galactoses
(Figure 2C). In concordance with the N-glycan class
comparison, EPSev had more high abundance high-mannose
N-glycans than the other samples, and m/z 1419.4755
(Hex6HexNAc2 + 1Na) was the second most abundant
N-glycan. The sulfated N-glycan m/z 2056.6156
(Hex5HexNAc4NeuAc1 + 1SO4 + 2Na) had a relative
intensity of 6.3% in the EPSu, compared to 1.2% in EPSd and
less than 1% in EPSev.

FIGURE 3 |Mass spectra of representative EPSu (A) and EPSd (B) samples with annotations for a set of putative N-glycan structures. The N-glycan compositions
are represented by blue squares forN-acetylglucosamine, green circles for mannose, yellow circles for galactose, purple diamonds for sialic acid, red triangles for fucose,
and an “S” for sulfate.
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FIGURE 4 |N-glycan profile of pooled healthy male and female urine analyzed myMALDI-IMS. (A)Glycan class abundances of representative samples determined
by summing the relative intensities of the N-glycans assigned to that class. Sample were analyzed in technical quadruplicate. Error bars represent the standard deviation.
(B) Distributions of representative samples’ N-glycans assigned into groups based on composition. (C) Distribution of total glycan intensity by individual N-glycan, with
N-glycans comprising at least 1% of the total intensity displayed and annotated. The N-glycan compositions are represented by blue squares for
N-acetylglucosamine, green circles for mannose, yellow circles for galactose, purple diamonds for sialic acid, red triangles for fucose, and an “S” for sulfate.
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In order to compare mass spectra and absolute intensity values
of N-glycan peaks, an EPSu and EPSd sample with similar protein
levels from the same cohort were prepped together and imaged in
the same run (Figure 3). Substantial differences were seen inmost
of the high-intensity N-glycan peaks, except for m/z 1809.6393
(Hex5dHex1HexNAc4 + 1Na), m/z 2465.8669
(Hex6dHex1HexNAc5NeuAc1 + 1Na), and m/z 2800.9263
(Hex6dHex1HexNAc5NeuAc2 + 3Na). The increased levels of
sialylated N-glycans in the EPSd sample and increased
fucosylated species in the EPSu sample is also evident.

The advantage of developing the assay using EPSu samples are
the inherently higher protein concentrations present from the
prostatic fluid mixture in these samples relative to normal urine.
Therefore, for comparison, control urine samples from pools of

four healthy male and four healthy female donors were processed
and analyzed using this workflow. This required 4 ml of starting
fluid for concentration and desalting using larger filtration tubes,
but was otherwise the same workflow as described for EPSu/d
samples. Overall, N-glycan class intensities were similar for both
samples (Figure 4A). There were high levels of biantennary,
fucosylated, and sialylated N-glycans and low levels of hybrid
N-glycans. The rest of the N-glycan classes had approximately
10% intensity. The biggest difference between the male and
female samples was the slightly lower level of fucosylation in
the female sample. The distribution of N-glycans based on
composition displayed very similar profiles (Figure 4B). The
biggest difference was a 3.2% increase in high-mannose
N-glycans in the female sample. Accordingly, m/z 1419.4755

FIGURE 5 |N-glycan imaging of FFPE prostate cancer and non-cancer tissues. (A)H&E stain of the two tissues from the same donor, non-cancer tissue on the left
side and tumor on the right side. The tumor region, a Gleason grade 8/stage p3Tb, is highlighted with red outline and a red T. (B) An overlay MALDI image of three
N-glycans, two stroma-associated ones, Hex5HexNAc4NeuAc1 in blue and Hex5HexNAc4Fuc1NeuAc1, and a tumor glycan Hex7HexNAc6Fuc2 (in red). (C) Six
representative individual N-glycan images representative of different structural classes are shown, and glycan structure: a paucimannose (Hex3HecNAc2), high
mannose (Hex5-Hex9HexNAc2), sialylated biantennary no fucose (Hex5HexNAc4NeuAc1), sialylated biantennary with fucose (Hex5HexNAc4Fuc1NeuAc1), bisecting
GlcNAc biantennary (Hex4HexNAc4Fuc1) and branched fucosylated species (Hex7HexNAc6Fuc2). (D) Segmentation analysis, using Manhattan and k-bisecting
classifications, was applied to the 73 N-glycans detected in the tissues. Spectra groupings are shown in the adjacent data tree. The N-glycan compositions are
represented by blue squares for N-acetylglucosamine, green circles for mannose, yellow circles for galactose, purple diamonds for sialic acid, red triangles for fucose,
and an “S” for sulfate.
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(Hex6HexNAc2 + 1Na) was the sixth most abundant N-glycan in
males and the second most abundant in females (Figure 4C).
Similar to the EPSu samples, the most abundant N-glycans are
primarily biantennary with two galactoses.

As the glycoprotein constituents of the EPSu and EPSd
samples are secreted by prostate glands, a comparative
N-glycan comparison of prostate tissues was done using
previously reported N-glycan MALDI IMS approaches (Drake
et al., 2017, 2018b; McDowell et al., 2021). In the example shown
in Figure 5A, a pair of non-tumor and tumor tissues from the
same donor were evaluated. Use of the non-tumor tissue from the
same donor is done to demonstrate the specificity of tumor
specific N-glycans detected in the tumor containing tissue [a
Gleason grade 8 (4 + 4), stage pT3b]. The tumor region is quite
distinct, localized to the bottom left corner of the tissue.
Additional H&E images of both tissues with increasing
magnification are provided in Supplementary Figure S2. In
Figures 5B,C are shown representative N-glycan classes and
their tissue distributions, from a total of 73 N-glycans
detected. These structures include tumor-associated
paucimannose (Hex3HecNAc2), high mannose (Hex5-
Hex9HexNAc2), and branched fucosylated species
(Hex7HexNAc6Fuc2) (Figure 5C), consistent with previous
reports (Drake et al., 2018b). Two of the most abundant
sialylated biantennary N-glycans detected are stroma-
associated, as shown in the overlay image with a tumor
N-glycan (in red), Hex5HexNAc4NeuAc1 in blue and
Hex5HexNAc4Fuc1NeuAc1 in green (Figure 5B, and
individually in Figure 5C). A segmentation analysis of the
73 N-glycans is shown in Figure 5D, illustrating how different
N-glycan classes are associated with different histopathology
features. This representative tissue was selected for another

feature, as it was noted that there was a distinct intra-lumen
glandular N-glycan signature that could be detected. As shown in
Figure 6A, the two sialylated biantennary N-glycans
(Hex5HexNAc4NeuAc1 in blue and
Hex5HexNAc4Fuc1NeuAc1 in green) provide a stromal
scaffold image. This was used to detect which N-glycan species
were present in the lumen regions, as illustrated in Figure 6B for
Hex7HexNAc6 in red, and in Figure 6C for a highlighted gland
region. Doing this, 38 N-glycans were detected in the lumen of
glands. Many of these same N-glycans are also tumor associated,
but the histopathology differences are significant between tumor
and lumen.

Using the lists of 73 tissue N-glycans and the subset of 38
lumen N-glycans, these were compared to the N-glycans detected
in EPSu and EPSd samples. As shown in the Venn diagram in
Figure 7, 44 N-glycans were present in the tissues and both EPS
samples (Figure 7A), and 18 N-glycans were shared in the lumen
and EPS samples (Figure 7B). Structurally, these shared
N-glycans were the high mannose and the most abundant
branched fucosylated N-glycans.

DISCUSSION

The goal of our study was to develop and optimize a more
efficient and rapid method to evaluate N-linked glycosylation
by MALDI-MS in urine and EPSu samples. The workflow is
similar to what was developed for serum and plasma (Blaschke
et al., 2020), utilizing an amine reactive slide to capture
glycoproteins on a solid surface. An additional 1 h step of
sample processing by molecular weight filtration and
centrifugation for urine was included in order to concentrate

FIGURE 6 | Detection of intralumenal glycans in non-tumor prostate glands. (A) Two distinct stroma-associated glycans, Hex5HexNAc4NeuAc1 in blue and
Hex5HexNAc4Fuc1NeuAc1 in green, were chosen to highlight the locations of the prostate glands. (B) An example of a lumenal glycan is shown in red (Hex7HexNAc6),
overlayed with the stroma glycans. (C) Highlighted region of the tumor tissue, bottom right corner, to illustrate the glycan distributions inside the glands. The analogous
region in the H&E stained slide is also shown. Structures are bordered with the color that matches their tissue localizations.
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and solvent exchange. Spotting only 1 ul, the urine glycoprotein
spots are sprayed with a molecular coating of PNGase F, followed
by analysis on a MALDI-FTICR or MALDI-QTOF mass
spectrometer. The method is applicable to urine, EPSu and
EPSd samples. An EPSev prep was spotted directly onto the
amine reactive slides without any pre-processing. Routinely, 100
or more N-glycans can be detected depending on the sample type.

The N-glycan profiling of the prostatic fluid samples displayed
more high-mannose N-glycans in the EPSev compared to the
EPSu and EPSd, reflected in the intensities of the N-glycan classes
and the most abundant individual N-glycans (Figure 1).
Relatively high intensities of high-mannose N-glycans have
been noted in non-EPS urinary exosomes as well (Zou et al.,
2017). The similarity of the EPSd and EPSev N-glycan profiles
suggests that a significant portion of the EPS glycoproteins may
be within exosomes. In conjunction with these findings, direct
comparison of mass spectra from EPSu and EPSd with similar
protein levels displayed distinct N-glycan profiles for EPSu and
EPSd (Figure 2). While male and female urine N-glycan profiles
and individual N-glycan abundances displayed few differences,
there was a slightly higher amount of fucosylation in the male
sample. This trend has previously been identified in male and
female plasma samples (Dotz andWuhrer, 2019). Similar levels of
sulfation were detected in the urine controls and EPSu, which was
higher than the EPSd and EPSev, indicating that the sulfated
N-glycans in EPSu may be originating from urine glycoproteins.

A comprehensive MS analysis of the N-glycans present in
adult and pediatric urine samples has been published (Li et al.,
2020). In this study, PNGase F released N-glycans were isolated,
labeled with aminobenzoic acid, and methylamidated prior to
analysis by LC-MS/MS. The authors reported 116 N-glycan
compositions could be detected, and a subset of 46 N-glycans
that were reproducibly detected and further quantified (Li et al.,

2020). This study provides an optimal benchmark for our current
study to evaluate howmany of the 46 N-glycans could be detected
by our solid-phase and single day MALDI MS workflow.
Comparing the MALDI data from the male and female urine
standards, the majority of N-glycans are detected, especially the
biantennary, highmannose and fucosylated species. TheMALDI-
based assay is not as effective for detection of larger tri- and tetra-
sialylated N-glycans, and for N-glycans with molecular masses
above 3,700 m/z.

One observation noted from our data was that the intensity
levels of N-glycans detected were variable, even when protein
concentrations were comparable. There was also not a large
variation in the types of N-glycan structures detected in the
samples, especially for the most abundant species. These
variations could reflect significantly different protein levels of
individual glycoprotein species, or variations in the amount of the
most abundant protein in human urine, uromodulin.
Uromodulin, also called Tamm−Horsfall protein, has eight
N-glycosylation sites and has been comprehensively studied
for N-glycosylation content and composition (Li et al., 2021).
Interestingly in this study, N-glycan analysis comparisons of a
uromodulin depleted urine versus non-depleted sample indicated
little difference in the N-glycan compositions detected in both
samples (Li et al., 2021). Our study only represents a few sample
numbers, so no conclusions can be reached until statistically
relevant sample numbers are analyzed. The rapidity and
efficiency of the slide-based MALDI assay will facilitate
evaluation of larger cohorts. Possibly pairing the N-glycan
data with the quantitative MRM proteomic assay developed
for EPSu proteins could address both the changes in N-glycan
levels and protein concentrations in the same sample (Kim et al.,
2016; Otto et al., 2020). It also does not preclude direct targeting
of specific glycoproteins present for N-glycan content analysis, as

FIGURE 7 | Comparison of detected N-glycans across sample sets. (A) The number of unique and common N-glycans detected in EPSu, EPSd, and across the
entire prostate tissues. (B) The number of unique and common N-glycans detected in EPSu, EPSd, and within the lumen of the prostate tissues.
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is done so often for PSA. We have already reported a solid-phase
antibody array approach to N-glycan profile individual serum
glycoproteins captured by their specific antibodies (Black et al.,
2019a; 2019b). A similar approach targeting the abundant urine
and EV glycoproteins like PSA is in progress.

The N-glycans obtained from a representative FFPE prostate
cancer tissue were also included to illustrate the N-glycans that
can be detected in the lumen of the prostate glands, representing
prostatic fluid still present during tissue fixation. Based on
hundreds of prostate cancer tissues analyzed by N-glycan IMS,
to be reported separately, detection of luminal N-glycans in these
tissues is highly variable. Fluid remnants can be seen in the H&E
stains, but not all gland lumens contain this, and can be
completely absent in many tissues. Presumably this variation
reflects how much fluid was present at the time of prostatectomy,
but could also reflect differences in FFPE tissue preparation and
processing. While this is a variable that may lack clinical
diagnostic significance, the selected tissue in Figure 5
highlights the tumor-associated and secreted N-glycans (n �
38) in tissue that can potentially be detected in the EPSu,
EPSd and EPSev samples. These are primarily paucimannose,
high mannose and branched multi-fucosylated N-glycans.

In summary, we present an initial N-glycan profiling workflow
applicable to urine and prostatic fluids. It also represents a scalable
framework, depending on the application and intent of the assay.
There is already demonstrable sensitivity for detecting N-glycans
efficiently in low concentrations of starting material, hence analysis
of larger clinical cohorts is feasible. If time of preparation is less of a
concern, an increased amount of starting fluid can be concentrated
to increase protein concentrations prior to spotting. Additionally,
the use of the concentration and solvent/buffer exchange step in the
workflow can be adapted to other biofluids with protein
concentrations similar to urine, i.e., saliva, cerebrospinal fluid,
bronchial lavage. The method can also be used with other
enzymes besides PNGase F, like endoglycosidase F3 specific to
core fucoses (West et al., 2020), or other glycosidases specific to
other N-glycan structural classes.
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