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Rectal Cancer Treatment
Management: Deep-Learning
Neural Network Based on
Photoacoustic Microscopy Image
Outperforms Histogram-Feature-
Based Classification
Xiandong Leng1†, Eghbal Amidi1†, Sitai Kou1, Hassam Cheema2, Ebunoluwa Otegbeye3,
William Jr Chapman3, Matthew Mutch3 and Quing Zhu1,4*

1 Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States, 2 Department of
Pathology, Washington University in St. Louis, St. Louis, MO, United States, 3 Division of Colorectal Surgery, Department of
Surgery, Washington University School of Medicine, St. Louis, MO, United States, 4 Department of Radiology, Washington
University School of Medicine, St. Louis, MO, United States

We have developed a novel photoacoustic microscopy/ultrasound (PAM/US) endoscope
to image post-treatment rectal cancer for surgical management of residual tumor after
radiation and chemotherapy. Paired with a deep-learning convolutional neural network
(CNN), the PAM images accurately differentiated pathological complete responders (pCR)
from incomplete responders. However, the role of CNNs compared with traditional
histogram-feature based classifiers needs further exploration. In this work, we compare
the performance of the CNN models to generalized linear models (GLM) across 24 ex vivo
specimens and 10 in vivo patient examinations. First order statistical features were
extracted from histograms of PAM and US images to train, validate and test GLM
models, while PAM and US images were directly used to train, validate, and test CNN
models. The PAM-CNN model performed superiorly with an AUC of 0.96 (95% CI: 0.95-
0.98) compared to the best PAM-GLMmodel using kurtosis with an AUC of 0.82 (95% CI:
0.82-0.83). We also found that both CNN and GLMs derived from photoacoustic data
outperformed those utilizing ultrasound alone. We conclude that deep-learning neural
networks paired with photoacoustic images is the optimal analysis framework for
determining presence of residual cancer in the treated human rectum.

Keywords: rectal cancer, ultrasound imaging, photoacoustic imaging of rectal cancer, machine learning,
regression analysis

INTRODUCTION

Colorectal cancer is the third most common cancer diagnosed in both men and women in the United
States (1). While treatment often involves radiation, chemotherapy, and surgical resection, recent
advances in neoadjuvant (preoperative) treatment of locally advanced rectal cancers (LARC) have
enabled 20-30% of patients to safely avoid surgery altogether (2–5). However, this “watch and wait”

Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 7153321

Edited by:
Lei Xi,

Southern University of Science and
Technology, China

Reviewed by:
Chengbo Liu,

Shenzhen Institutes of Advanced
Technology (CAS), China

Hao Yang,
University of South Florida,

United States

*Correspondence:
Quing Zhu

zhu.q@wustl.edu

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 26 May 2021
Accepted: 20 August 2021

Published: 23 September 2021

Citation:
Leng X, Amidi E, Kou S, Cheema H,

Otegbeye E, Chapman W Jr, Mutch M
and Zhu Q (2021) Rectal Cancer
Treatment Management: Deep-

Learning Neural Network Based on
Photoacoustic Microscopy Image
Outperforms Histogram-Feature-

Based Classification.
Front. Oncol. 11:715332.

doi: 10.3389/fonc.2021.715332

ORIGINAL RESEARCH
published: 23 September 2021
doi: 10.3389/fonc.2021.715332

https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.715332/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhu.q@wustl.edu
https://doi.org/10.3389/fonc.2021.715332
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.715332
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.715332&domain=pdf&date_stamp=2021-09-23


approachdepends onaccurate assessments of tumor regression and
high-resolution and high-sensitivity surveillance imaging for
tumor recurrence.

Standard surveillance modalities include physical exam,
endoscopy with biopsy, and MRI; however, each of these
modalities have distinct weaknesses in the post-treatment
setting (6–12). Current technology is not able to definitively
identify pathological complete responders (pCRs), who may
benefit from “watch and wait”, from those with residual
disease, who need surgical resection (non-responders).

To overcome these challenges, we developed a co-registered
endorectal photoacoustic microscopy and ultrasound (PAM/US)
system to assess rectal cancer treatment response (13, 14).
Photoacoustic imaging (PAI) is a hybrid imaging technology that
uses a short laser pulses to excite hemoglobin molecules
endogenous to the human body. The resulting acoustic waves are
then acquired by US transducers and analyzed for vascular bed
quantification. This process has been utilized in many different
areas such as breast cancer (15, 16), lung cancer (17, 18), ovarian
cancer (19), skin cancer (20), and colorectal cancer (13, 14). In two
recent studies, Cong and colleagues and Liu and colleagues have
developed co-registered photoacoustic and ultrasound imaging
systems for potential transrectal evaluation of prostate (21, 22).

A convolutional neural network (CNN) is an artificial
intelligence algorithm with remarkable capabilities for
automated image analysis (23). To quantitatively interpret the
large volumes of data acquired by the PAM/US system, we
designed and incorporated deep-learning CNN models in the
PAM system (PAM-CNN) (14). While our deep-learning PAM-
CNN model can accurately assess rectal cancer treatment
response, it requires a large training and validation data set.
The key question remains if the PAM-CNN outperforms
traditional histogram-feature based models. In this study, using
24 ex vivo and 10 in vivo data sets, we compare the performances
of the PAM-CNN and the traditional histogram-parameter-
based classifiers in rectal cancer treatment evaluation. Unlike
CNN models, a generalized logistic regression (GLM) classifier
does not require a large dataset for training and validation,
however, imaging features must be extracted and evaluated on
their diagnostic accuracy. We have computed five PAM image
histogram features and used them to train, validate and test GLM
classifiers. The performance of deep learning based CNN models
is compared with GLM classifiers. To the best of our knowledge,
this study is the first to establish the role of our new deep-
learning PAM-CNN approach in rectal cancer evaluation.

MATERIALS AND METHODS

Patients, Specimens, and PAM Imaging
Briefly, 10 participants (mean age, 58 years; range 42 – 68 years; 2
women and 8 men) completed radiation and chemotherapy from
September 2019 to September 2020 and were imaged with the
PAM/US system prior to surgery. In the in vivo study, patients
who had previously undergone preoperative treatment with
radiation and chemotherapy were imaged in vivo before resection.

Colorectal specimens from another group of 24 patients who
had undergone surgery were studied ex vivo (Table 1). All studies
were approved by the institutional review board of the
Washington University School of Medicine, and all patients
provided written informed consent. In the ex vivo study, each
specimen was evaluated within one hour of surgical resection
and prior to formalin fixation.

PAM/US Endoscope
The PAM endoscope consists three parts: a handle, a water
channel (the main body), and an imaging head, as shown in
Figure 1A (14). Briefly, the water inlet which allows water
injected from a syringe to inflate a water balloon covering the
image head for ultrasound coupling. A stepper motor in
the handle turns a hollow shaft in the water channel to rotate
the image head 360° for full circle imaging. An optical fiber
inside the hollow shaft delivers laser pulses to the imaging head.
An ultrasonic transducer (20 MHz, 75% bandwidth) fixed on the
imaging head both transmits and receives ultrasound signals, and
also receives PA signals. An Nd: YAG laser working at 1064 nm
with a 1000 Hz pulse repetition rate is the light source. A 0.15
cm2 tissue area is illuminated by 3.6 mJ laser pulses from the
probe tip, resulting in a surface optical fluence of 24 mJ/cm2,
which is well within the ANSI safety threshold (100 mJ/cm2) at
1064 nm (24). This fluence is further reduced by energy diffusion
caused by the balloon.

During imaging, the PAM endoscope is inserted transanally
through a proctoscope, (Figure 1C). Ruled scales on the water
channel (Figure 1B) show how deeply the endoscope is inserted
into the rectum where the images are obtained. This endoscopy is
the first device incorporating PAM into the rectum examination.

PAM and US Data Selection for Training/
Validation and Testing of Models
For training and validation, three to five regions of interest
(ROIs) were selected at uniformly spaced locations on each
PAM or US B-scan image acquired from normal regions or a
tumor bed (Figure 2). For example, the red ring in Figure 2
represents mucosa vasculature, which is continuous in the
normal image of Figure 2B. The blue rectangles indicating
ROIs are uniformly spaced along the perimeter of the image.

TABLE 1 | Lesion characteristics (24 ex vivo colorectal specimens and 10 patients).

Lesion characteristics

Ex vivo colorectal cancer (63 years)* Adenocarcinoma,T1-T3, n=15
Ex vivo treated rectal cancer (63 years) Residual adenocarcinoma, n=3
Ex vivo treated rectal cancer (52 years) pCR, n=3
Ex vivo normal colorectal tissue 18 normal areas from cancer patients

and five patients with only normal
colorectal tissue available

In vivo treated rectal cancer (61 years) Recurrence tumor, residual tumor, n=6
In vivo treated rectal cancer (53 years) pCR, n=1
In vivo normal colorectal tissue 10 normal areas from 7 cancer

patients and three patients with only
normal rectal tissue available

*Average age of each group.
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In the cancer image, the dark zones and discontinuities in the red
ring from approximately 9:00 to 1:00 o’clock indicate tumor, so
the ROIs are uniformly spaced in that segment. A total of 2600
US ROIs (1262 normal and 1496 cancerous) and 2004 PA ROIs
(1207 normal and 797 cancerous) were compiled from 24
patients’ ex vivo images and 10 patients’ in vivo images
(Table 1). Two ex vivo samples showed a low signal-to-noise
ratio (SNR) on PAM images due to a laser energy problem. We
excluded those two samples in training PAM-CNN and PAM-
GLMmodels. For the US-CNN and US-GLMmodels, we used all
24 ex vivo and all 10 in vivo patient data.

We divided the total of 2004 PA ROIs and total of 2600 US
ROIs into two discrete data sets – one for model training and
validation and another for testing, respectively. The training set
included all ex vivo cases (see Table 1) and half of the in vivo

patient data. Of the training set ROIs, 80% were used for training
with the remainder for internal validation. The testing set
contained the other half of the in vivo patient data.

GLM Models
We used selected image features of ROIs to develop PAM-GLM
and US-GLM models. To calculate the histogram of each ROI,
we divided the ROI into 32 bins. The bar height of each bin was
then computed by dividing the number of pixels with a given
value in an associated range by the size of the image. From the
histogram of each ROI, we then extracted five features: mean,
standard deviation, skewness, kurtosis, and energy.

All the PAM and US features showed significant differences
between malignant and normal colorectal tissues (p<0.05)
(Appendix Figures 1S and 2S). Therefore, all these features

FIGURE 1 | PAM endoscope (A), scales on water channel (B) and endoscope in a proctoscope, with a balloon on the tip (C).

FIGURE 2 | Example co-registered PAM and US images showing ROIs of (A) residual cancer tissue, area in green dashed line boxes, and (B) normal tissue, area in
blue boxes. PAM ROIs are cropped from PAM images, and US ROIs are cropped from US images.
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were considered as potential candidates when building PAM-
GLM and US-GLM models. To prevent model overfitting, the
Spearman’s correlation coefficient between each of the histogram
features were calculated (Appendix, Table 1S). We developed
PAM-GLM classifiers using each histogram feature separately, as
well as using combinations of features with low correlation
values. The mean AUCs of the training/validation and testing
data sets as well as their 95% confidence of interval were
computed for each classifier. The same process was followed to
construct US-GLM classifiers.

To remove bias in selecting in vivo data for training and
validation, we trained the classifiers 10 times. The training/
validation and testing data sets are the same as those used for
CNN models described in next section.

Figure 3 (PAM-GLM) and Figure 4 (US-GLM) show
examples of the first order statistical features calculated from
malignant rectal tissue ROIs (shown in Figure 2A) and normal
rectal tissue ROIs (shown in Figure 2B). As shown in Figure 3,
in PAM ROIs, the malignant tissue has a lower mean and
standard deviation, while the other three features are higher. In
Figure 4, malignant US ROIs show a lower mean and standard
deviation than that of the normal US ROIs.

Figure 1S in Appendix show the boxplots of the histogram
features of the PAM ROIs. The p-value for each feature,

calculated from a two-sided statistical t-test, is indicated on
each plot. All features are statistically significant (p<0.05),
however, they are not equally important. To assess the
importance of each feature, we first fit a regression model to
each feature separately, using all the available data (ex vivo and
in vivo patients), and then we found the AUC of the fitted model.
As shown in Table 2, Std, Mean, and Kurtosis respectively
provide the highest AUC values among all the features of PAM
images. While Std and Mean are highly correlated, the
correlation value between Mean and Kurtosis is less than 0.5
(Table S1). Therefore, these two features are used together to
develop PAM-GLM classifiers.

Similarly, boxplots of the five features from US ROIs are given
Figure 2S, and the AUC feature values of the fitted model are
shown in Table 2. Based on this table, Std, Energy, and Mean are
respectively the most important features of the US images.
However, they all are highly correlated with each other
(Table S2).

CNN Models
The PAM-CNN (or US-CNN) architecture (Figure 5) contained
two sequential feature extraction layers and two fully connected
layers (14). Briefly, each extraction layer had a convolutional
layer followed by a pooling layer. Each convolutional layer uses a

A B

FIGURE 4 | First order statistical features calculated from malignant rectal tissue US ROIs (A) and normal rectal tissue US ROIS (B).

A B

FIGURE 3 | First order statistical features calculated from malignant rectal tissue PAM ROIs (A) and normal rectal tissue PAM ROIs (B).
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3 × 3 kernel, and each pooling layer has a 4 × 4 kernel with max-
pooling (25). These kernel sizes were selected based on the
optimal validation results. The first fully connected layer was a
512-node hidden layer, and the second fully connected layer
(output layer) generated two output classifications – normal or
cancerous. “Normal” described a layer-like vascular distribution
in a PAM image or a layer structure in a US image, and
“cancerous” described an absence of the normal vasculature
pattern in PAM images, or an absence of the layer structure in
US images. A “softmax” activation function in the output layer
generated the probabilities of each of the two possible
classifications (cancer or normal) for an input image; for each
input ROI of a PAM or US image, the CNN model outputted the
probability of a normal classification compared to the threshold
(e.g. >50% is normal). In all the other layers, a “ReLU” activation
function immediately sets all negative values to zero. The ReLU
activation function with a gradient of 1 for positive inputs and 0
for negative inputs ensures no exploding or vanishing gradient
problem occurs (26).

To avoid biased selection, we trained and validated 10 PAM-
CNN and US-CNN models each using all the ex vivo data and a
randomly selected half of the in vivo patient data, while reserving
the other half for testing. The maximum number of epochs was
20, with early stopping (a tolerance of 2 epochs) monitored by
validation accuracy. If there was no increase in validation for two
successive epochs, training was stopped. Stochastic gradient
descent was used with a batch size of 20, and the RMSprop
optimizer function was used to optimize the neural net weights.
The learning rate was set to 10-3 with a decay of 10-5. In each
model, 80% of the ROIs from the training & validation set were
used to train the model, the remaining 20% were used for
validation, and 20× cross validation was performed.

The ROIs of each in vivo normal or tumor bed patient images
were either all used in training or all used in testing. Each of the
10 CNN models was tested on a randomly selected half of the in
vivo data and generated an ROC. The overall performance of the
classifier was measured by the mean AUC of the 10 models.

The method calculating PAM-CNN’s AUC is different from
that of our previous report (14), which leads to a slightly different
AUC value. In previous work, the training and validation data set
was fixed, which was consisted of 22 ex vivo and five in vivo data
set. The PAM-CNN’s AUC obtained from another five in vivo
data set unseen by PAM-CNN for testing is 0.98. In this study,
we have done a more thorough investigation. The ex vivo data set
is still fixed for training and validation, but the five in vivo data
set for training and validation and the five in vivo data set for
testing were interchanged randomly for 10 times, and the 10
AUC was used to generate the mean value of AUC.

RESULTS

GML Models
Table 3 shows the mean AUCs and 95% confident of interval for
PAM-GLM classifiers developed using single features, as well as
feature pairs that are weakly correlated (based on Table S1). As
can be seen, the “Mean-Kurtosis” combination results in a better
testing performance than “Mean” alone, and a better training
performance than “Kurtosis” alone. In the case of US-GLM
(Table 4), the classifier which is built using “Std” alone
performs best on both training and testing data sets (mean
AUCs of 0.86 and 0.66 for training and testing data
sets, respectively).

Figures 6A, B respectively show the mean training and
testing ROCs of three of the best performing (based on both
training and testing AUCs) classifiers developed using PAM
histogram features. As shown in these plots, “Kurtosis” alone
results in a slightly better performance on the testing data set
than the other feature combinations (see the 95% CI values in the
table). It is worth noting that although adding “Mean” to the
features set negligibly lowers the AUC of the testing data set, it
increases the AUC of the training data set by 0.01. Finally, the
reason for the slightly poor training performance than testing for

TABLE 2 | AUCs of the fitted regression model developed using features of
PAM and US images.

Feature AUC (PAM) AUC (US)

Mean 0.76 0.81
Std 0.79 0.86
Skewness 0.71 0.57
Kurtosis 0.73 0.62
Energy 0.70 0.85

FIGURE 5 | Architecture of the CNN model.
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different combinations of features is that the training data set
includes both in vivo and ex vivo ROIs while the testing data set
contains only in vivo ROIs. Overall, our in vivo data have
demonstrated slightly better classification between malignant
and normal colorectal tissue than the ex vivo data.

In the case of US-GLM, using the “Std” histogram feature
demonstrates the best prediction AUC of 0.68, as seen in
Figure 7B. Adding any other uncorrelated features does not
improve the AUCs of the training or testing data sets as shown in
Figure 7A, B).

CNN Models
The mean ROC and AUC of the CNN models were computed
from 10 CNN models, using the same shuffle method as in GLM.
PAM-CNN demonstrated high performance in training and
testing, with a 0.96 AUC for both (Figure 8). For US-CNN
(Figure 9), the average AUC was 0.71 in testing.

DISCUSSION

The general architecture of the normal colon and rectal tissue
consists of the mucosa (a thin layer of epithelial cells, a layer of
connective tissue, a thin layer of muscle), submucosa (mucous
glands, blood vessels, lymph vessels), muscularis propria (a thick
layer of muscle), and serosa (an outer layer of the colon). In
malignancy, the individual cell types are similar, but the
architecture is distorted because cancerous cells of mucosal
origin penetrate into the deeper layers of the organ. As these
cells invade, the organized structure and vascular network are
lost. We have observed uniform, layer-like vasculature with
intense photoacoustic signals within normal rectal submucosa
and in the tumor beds where complete tumor destruction has
occurred. In contrast, heterogeneous and often microvascular-
deficient regions have been found consistently in tumor beds
with residual cancer at treatment completion (13, 14). The return
of a “normal” vascular pattern to the tumor bed appears to signal
complete tumor destruction, though this mechanism is not well-
understood. As demonstrated, PAM-CNN captures this unique
pattern and predicts pCR with a high diagnostic accuracy. PAM-
GLM uses first order statistical features extracted from PAM
histograms and these features do not contain spatial micro-
features that can be learned by deep-learning neural networks.
Thus, the performance of PAM-GLM is significantly poorer than
PAM-CNNs.

In summary, we have shown in this manuscript that the
performance of deep-learning based PAM-CNN models was
significantly better than that of the PAM-GLM classifier with

TABLE 3 | Training and testing mean AUC values for PAM-GLM classifiers
developed using different combinations of weakly correlated features.

Feature combinations Training AUC (95% CI) Testing AUC (95% CI)

Mean 0.77 (0.767-0.777) 0.80 (0.793-0.807)
Std 0.79 (0.788-0.793) 0.76 (0.746-0.770)
Skewness 0.71 (0.708-0.719) 0.82 (0.815-0.825)
Kurtosis 0.73 (0.724-0.734) 0.82 (0.817-0.827)
Energy 0.72 (0.712-0.727) 0.74 (0.724-0.758)
Mean, Kurtosis 0.74 (0.732-0.743) 0.82 (0.808-0.820)
Std, Energy 0.80 (0.799-0.807) 0.76 (0.750-0.773)
Kurtosis, Energy 0.75 (0.744-0.750) 0.81 (0.805-0.817)

The 95% confidence of interval values are also shown in front of each mean AUC value.

TABLE 4 | Training and testing AUC values for US-GLM classifiers developed
using different combinations of weakly correlated features.

Feature combinations Training AUC (95% CI) Testing AUC (95% CI)

Mean 0.82 (0.818-0.820) 0.64 (0.629-0.657)
std 0.86 (0.860-0.862) 0.66 (0.650-0.674)
skewness 0.59 (0.587-0.591) 0.42 (0.405-0.443)
Kurtosis 0.64 (0.635-0.639) 0.34 (0.326-0.344)
energy 0.85 (0.851-0.854) 0.61 (0.600-0.621)
Mean, kurtosis 0.82 (0.819-0.822) 0.60 (0.581-0.618)
Std, skew 0.86 (0.860-0.862) 0.65 (0.643-0.664)
Std, kurtosis 0.86 (0.858-0.860) 0.65 (0.642-0.666)
Kurtosis, energy 0.86 (0.856-0.858) 0.63 (0.617-0.638)

The 95% confidence of interval values are also shown in front of each mean AUC value.

A B

FIGURE 6 | The average ROC of the training (A) and testing (B) data sets for different combinations of features set. The features were extracted from PAM images.
The 95% CIs are indicated in parentheses.
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A B

FIGURE 7 | The average ROC of the training (A) and testing (B) data sets for different combinations of features set. The features were extracted from US images.
The 95% CIs are indicated in parentheses.

A B

FIGURE 8 | Average ROCs of PAM-CNN model. (A) training and validation results, (B) testing results. The 95% CIs are indicated in parentheses.

A B

FIGURE 9 | Average ROCs of US-CNN model. (A) training and validation, (B) testing results. The 95% CIs are indicated in parentheses.
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AUC of 0.96 (95% CI: 0.95 - 0.98) vs. 0.82 (95% CI: 0.81-0.83)
using PAM Kurtosis. Both ultrasound-derived models (US-CNN
and US-GLM) performed poorly with AUCs of 0.71 (95% CI:
0.63 – 0.78) and 0.66 (95% CI: 0.65 – 0.67), respectively. While
easier to train and validate and requiring smaller data sets, GLM
diagnostic performance is inferior to CNN models. While the
photoacoustic endoscopy system and deep-learning based PAM-
CNN models have reported in reference 14, this manuscript is
the first to establish the superior role of deep-learning PAM-
CNN models in rectal cancer treatment assessment.

Our study has a significant impact in rectal cancer treatment
management. The PAM/US endoscopy paired with CNNs has a
great potential to improve curent standard of care imaging in
accurately predicting complete pathological response (pCR) of
rectal cancer post-treatment. For those who have achieved a
pCR, unnecessary surgery can be avoided without compromising
cancer-related outcomes, and thereby lowering morbidity and
health care cost.

Our study has limitations. First, the patient data is limited.
With more patient data available, the diagnostic performance of
PAM-CNNmodels can be further improved. For example, in our
current study, 1-D ROIs from PAM and US B-scans were used as
input images to CNNs. Misclassifications can occur in ROIs’
when SNRs are low. 2-D ROIs from a small number of sequential
B-scans can be trained together to reduce the dependence of
CNNs on the SNR of individual 1-D ROIs and further improve
the performance of CNNs. Second, the quality of ex vivo data was
not as good as in vivo data which can be seen from slightly lower
training/validation PAM-GLM data compared with testing
results of PAM-GLM. Future studies will be focused on
recruiting more patients to the study to further validate the
initial results reported in this manuscript.
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APPENDIX

Using highly correlated features to develop a classifier increases
the chance of overfitting. To prevent this issue, we calculated the
Spearman’s correlation between each two histogram features.

Tables S1 and S2 show the Spearman’s correlation between each
pair of histogram features of the PAM and US images,
respectively. These tables are used to select an optimized
feature set before developing GLM classifiers.t
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