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and James A. Blumenthal4
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Background: Heart rate variability (HRV) and heart rate (HR) dynamics are used to
predict the survival probability of patients after acute myocardial infarction (AMI), but the
association has been established in patients with mixed levels of left ventricular ejection
fraction (LVEF).

Objective: We investigated whether the survival predictors of HRV and HR dynamics
depend on LVEF after AMI.

Methods: We studied 687 post-AMI patients including 147 with LVEF ≤35% and 540
with LVEF >35%, of which 23 (16%) and 22 (4%) died during the 25 month follow-
up period, respectively. None had an implanted cardioverter-defibrillator. From baseline
24 h ECG, the standard deviation (SDNN), root mean square of successive difference
(rMSSD), percentage of successive difference >50 ms (pNN50) of normal-to-normal
R-R interval, ultra-low (ULF), very-low (VLF), low (LF), and high (HF) frequency power,
deceleration capacity (DC), short-term scaling exponent (α1), non-Gaussianity index
(λ25s), and the amplitude of cyclic variation of HR (Acv) were calculated.

Results: The predictors were categorized into three clusters; DC, SDNN, α1, ULF, VLF,
LF, and Acv as Cluster 1, λ25s independently as Cluster 2, and rMSSD, pNN50, and HF
as Cluster 3. In univariate analyses, mortality was best predicted by indices belonging
to Cluster 1 regardless of LVEF. In multivariate analyses, however, mortality in patients
with low LVEF was best predicted by the combinations of Cluster 1 predictors or Cluster
1 and 3 predictors, whereas in patients without low LVEF, it was best predicted by the
combinations of Cluster 1 and 2 predictors.

Conclusion: The mortality risk in post-AMI patients with low LVEF is predicted by
indices reflecting decreased HRV or HR responsiveness and cardiac parasympathetic
dysfunction, whereas in patients without low LVEF, the risk is predicted by a combination
of indices that reflect decreased HRV or HR responsiveness and indicator that reflects
abrupt large HR changes suggesting sympathetic involvement.

Keywords: heart rate dynamics, heart rate variability, myocardial Infarction, mortality, redundancy, risk
stratification, survival, left ventricular ejection fraction
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INTRODUCTION

Despite significant achievements in its clinical management
(Antman et al., 2004), acute myocardial infarction (AMI) remains
a leading cause of death (Virani et al., 2020). AMIs occur in
the United States at a rate of 1 person every 40 s, with an
associated mortality of approximately 110,000 per year (Virani
et al., 2020). Sudden cardiac death (SCD) is the most common
cause of death after AMI (Zaman and Kovoor, 2014), and patients
with a low left ventricular ejection fraction (LVEF) are at the
highest risk of SCD during the early months to years after
AMI (Solomon et al., 2005; Adabag et al., 2008). To prevent
SCD, prophylactic implantation of cardioverter-defibrillators has
been recommended for post-AMI patients with LVEF ≤35%
(Moss et al., 2002; Goldberger and Lampert, 2006). However,
the generalization of reperfusion therapy early after AMI onset
(Aversano et al., 2002) has reduced the proportion of post-
AMI patients with low LVEF, and consequently, the majority of
SCDs occur in patients with LVEF >35%. It has become more
important to find clinical markers to predict an increased risk
of death in patients without low LVEF (Arevalo et al., 2016). In
this study, we analyzed heart rate variability (HRV) and heart
rate (HR) dynamics in post-AMI patients to determine the useful
markers and combinations to predict mortality risk separately
between patients with LVEF ≤35% and those with LVEF >35%.

The analysis of HRV and HR dynamics are widely used
for survival risk stratification in cardiovascular diseases (Camm
et al., 1996), particularly after AMI (Kleiger et al., 1987;
Bigger et al., 1992; Peng et al., 1995; La Rovere et al., 1998;
Huikuri et al., 2000; Bauer et al., 2006; Kantelhardt et al.,
2007; Kiyono et al., 2007, 2008; Hayano et al., 2011a, 2017;
Watanabe et al., 2016). The R-R interval time series data
obtained from the 24 h Holter ECG are mainly used for
these analyses and many indices have been proposed. The
HRV indices are classified into time-domain and frequency-
domain indices (Camm et al., 1996). The time-domain indices
include the statistical measures of normal-to-normal (N-N)
interval (R-R interval of consecutive sinus rhythms) variation,
such as the standard deviation of 24 h N-N interval (SDNN)
(Kleiger et al., 1987), root mean square of successive N-N
interval difference (rMSSD), percentage of successive N-N
intervals differing >50 ms (pNN50), deceleration capacity (DC)
(Kantelhardt et al., 2007), and the amplitude of cyclic variation
of HR (Acv) (Hayano et al., 2011b). Among these, rMSSD and
pNN50 that quantify high-frequency N-N interval fluctuations
reflect the tonic or sustained level of cardiac parasympathetic
control (Berntson et al., 1997; Laborde et al., 2017). Due to
a low-pass filter-like-transfer function, the sympathetic HR
control cannot involve the modulation of these high-frequency
fluctuations (Berger et al., 1989), and thus, these fluctuations
are mediated purely by the vagus. In contrast, Acv reflects the

Abbreviations: Acv, amplitude of cyclic variation of heart rate; ALLSTAR,
Allostatic State Mapping by Ambulatory ECG Repository; AMI, acute myocardial
infarction; DC, deceleration capacity; ENRICHD, Enhancing Recovery in
Coronary Heart Disease; Fcv, frequency of cyclic variation of heart rate; HR, heart
rate; HRF, heart rate fragmentation; HRV, heart rate variability; SDNN, standard
deviation of normal-to-normal R-R interval; VLF, very low frequency.

HR responsiveness to apneic episodes during sleep. It quantifies
the shortening in cardiac cycles caused by sleep-apnea-induced
transient arousals. Because this HR response is abolished by
atropine (Zwillich et al., 1982; Guilleminault et al., 1984), Acv is
thought to reflect a reflex parasympathetic function. The tonic
and reflex parasympathetic dysfunction is believed to be a risk
for post-AMI mortality (Camm et al., 1996; Bauer et al., 2006;
Hayano et al., 2017) because parasympathetic antagonism against
sympathetic activation is important to maintain ventricular
myocardial electric stability and to prevent the development
of fatal ventricular arrhythmias (Hull et al., 1990, 1994;
La Rovere et al., 1998).

The frequency-domain indices of HRV are calculated by the
power spectral analysis of N-N interval time series and are
quantified as the power of frequency components. Among such
components, ultra-low frequency (<0.0033 Hz; ULF) and very-
low-frequency (0.0033–0.04 Hz; VLF) components reflect fractal-
like HR fluctuation that accounts for most of the power of 24 h
HRV (Saul et al., 1988). A reduction in the VLF power is one
of the most powerful predictors of post-AMI mortality (Bigger
et al., 1992). In contrast, a reduction in the high-frequency
component (HF, 0.15–0.40 Hz), which is thought to reflect
cardiac parasympathetic dysfunction, paradoxically shows the
lowest predictive power (Bigger et al., 1992). This paradox may be
explained at least partly by the contamination of non-autonomic
high-frequency R-R interval fluctuations caused by heart rate
fragmentation (Costa et al., 2017; Hayano et al., 2020), which is a
type of pacemaker dysfunction more likely to appear in high-risk
patients (Costa et al., 2018).

The HR dynamics reflect the non-linear properties of HR
fluctuation. Detrended fluctuation analysis (Peng et al., 1995)
quantifies the scaling exponents of fractal-like HR dynamics and
a reduction in the short-term (4–11 beats) scaling exponent (α1)
is increased risk for post-AMI mortality (Huikuri et al., 2000).
The non-Gaussianity index (λ) quantifies the probability density
function for abrupt large HR changes suggesting sympathetic
involvement (Kiyono et al., 2007). The λ is increased in patients
with heart failure, known as the state of increased sympathetic
activity, while other HRV indices are decreased (Kiyono et al.,
2007). Additionally, λ is lower in these patients taking beta-
blocker than in those without taking beta-blocker (Kiyono et al.,
2007). An increase in λ calculated at a time scale of 25 s
(λ25s) predicts increased risk for post-AMI cardiac mortality
(Hayano et al., 2011a).

In the present study, we hypothesized that the HRV and
HR dynamics indices and their combinations to predict post-
AMI mortality risk differ between patients with and without
low LVEF (≤35%). Most of earlier studies reporting predictive
power of HRV and HR dynamics were conducted in post-
AMI patients with mixed levels of LVEF (Kleiger et al., 1987;
Bigger et al., 1992; Zuanetti et al., 1996; Lanza et al., 1998;
Huikuri et al., 2000; Hayano et al., 2011a). The risk stratification
models developed by the earlier studies may need to be
reappraised separately depending on LVEF. The prophylactic
ICD in post-AMI patients with low LVEF could also modify
the risk structures. Considering these factors, we chose 24 h
ECG data from the post-AMI cohort collected before ICD
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became clinically widespread and we compared the HRV and
HR dynamics indices associated with mortality risk between
patients with and without low LVEF. Furthermore, considering
the possible redundancy existing among the indices of HRV and
HR dynamics (Yuda et al., 2020), we categorized the indices into
classes by cluster analysis and analyzed the class-relationships
with mortality risk.

MATERIALS AND METHODS

Study Cohort
We examined retrospective cohort data from a subset of the
Enhancing Recovery in Coronary Heart Disease (ENRICHD)
study (Berkman et al., 2003) consisting of 687 patients who
had an AMI and were admitted to the coronary care units of 4
of the 8 ENRICHD clinical trial sites (Washington University,
St. Louis, Missouri; Duke University, Durham, North Carolina;
Harvard University, Boston, Massachusetts; Yale University,
New Haven, Connecticut) between October 1997 and January
2000. The sample included 327 participants of the ENRICHD
clinical trial who scored 10 or higher on the Beck Depression
Inventory (Beck, 1972) and 360 AMI control participants who
were not randomized in the ENRICHD trial because they
were not depressed, but were otherwise medically eligible
for the trial. Patients were included if they had analyzable
Holter ECG data >20.4 h (85% of 24 h) including >3 h of
sleep period (time in bed). Patients were excluded if they:
(1) had other life-threatening illnesses; (2) were too ill or
logistically unable to participate; (3) had ECG data in sinus
rhythm <80% of total recorded beats, or (4) had atrial fibrillation,
atrial flutter, or an implanted pacemaker or defibrillator.
The collection and analysis of Holter ECG recordings were
approved by the ethics committees of the corresponding clinical
sites. All participants provided written informed consent to
participate in the study.

The end-point of the present study was all-cause mortality.
Patients underwent follow-up assessments 6 months after study
enrollment and annually thereafter for up to 30 months. The
end-points were identified from follow-up visits, telephone
calls, routine hospital surveillance, and contacts with patients’
physicians. The records of every identified hospitalization were
obtained for review and confirmation by a panel of physicians.
Death certificates were obtained for all reported deaths. The
mortality endpoints used for the present study were either cardiac
deaths (AMI, cardiac failure, and sudden cardiac death) or non-
cardiac deaths.

Measurements
Holter ECGs were recorded for 24 h within 28 [median (IQR),
13 (6–19)] days after the index AMI. The ECG recordings
were scanned at the Heart Rate Variability Core laboratory
at Washington University on a Marquette SXP Laser scanner
with software version 5.8 (Marquette Electronics) using standard
procedures. The annotated beat file was exported to a workstation
for analysis of HRV and HR dynamics indices.

Data Analysis
The time-domain and frequency-domain indices of HRV and
the non-linear indices of HR dynamics that are known as
major predictors of post-AMI mortality were calculated by the
methods according to the recommended standard (Camm et al.,
1996) and to previously published studies (Peng et al., 1995;
Iyengar et al., 1996; Kantelhardt et al., 2007; Kiyono et al., 2007;
Hayano et al., 2017).

Briefly, the time series of N-N intervals were derived from
24 h ECG data. For the time domain HRV indices, SDNN was
computed as the 24 h standard deviation of N-N intervals, rMSSD
was calculated as the square root of the mean square of 24 h
successive N-N interval differences, pNN50 was obtained as the
percentage of successive N-N intervals differing >50 ms, and DC
was computed by the phase rectified signal averaging of the 24
h N-N interval time series (Kantelhardt et al., 2007). Acv was
calculated by signal-averaging the amplitude of cyclic variation
of HR detected by the method of auto-correlated wave detection
with adaptive threshold algorithm (Hayano et al., 2011b).

For the frequency domain index, the N-N interval power
spectrum was computed by a Fast Fourier transform with a
Hanning window after interpolating with a horizontal step
function and resampling at 2 Hz. The power spectral density
was integrated for the power within the ULF (<0.0033 Hz),
VLF (0.0033–0.04 Hz), LF (0.04–0.15 Hz), and HF (0.15–
0.4 Hz) bands, respectively, and transformed into natural
logarithmic values.

For the non-linear indices, the fractal correlation properties
of HR dynamics were computed using the detrended fluctuation
analysis and measured as the short-term (4–11 beat) scaling
exponents (α1) (Peng et al., 1995; Iyengar et al., 1996). Also,
the non-Gaussianity index of λ was calculated at a time scale
of 25 s (λ25s) according to our previous work (Hayano et al.,
2011a). This analysis detects the intermittency of HR increment.
The intermittent behavior of HRV is related to non-Gaussian
probability distribution with marked fat tails and a peak around
the mean value, indicative of a higher probability of the
interspersed appearance of large and small increments than the
Gaussian fluctuations. The λ quantifies the fatness of the tails
of the non-Gaussian probability distribution. The mathematical
description of the non-Gaussianity index has been reported
elsewhere (Kiyono et al., 2004, 2007).

Cluster Analysis of HRV and HR
Dynamics Indices
To categorize HRV and HR dynamics indices, a cluster analysis
was performed based on the correlation matrix between the
indices. We used a divisive type cluster analysis. The analysis
started with the assumption that all indices belong to a single
cluster and continued to divide clusters until the eigenvalue
of the second principal component of all clusters becomes
less than 1. The cluster to which the index belongs was
determined from the factor structure of the oblique principal
component so that the index was classified into the clusters
where the first principal component gives the highest correlation
coefficient with the index.
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Evaluation of Predictive Performance
The predictive performance of the discriminant models,
including those consisting of a single index and those of
the combinations of multiple indices, was analyzed by logistic
regression and evaluated by Somers’ D and c-statistic. The logistic
regression model provided prediction scores for individual
participants and compared the scores between all possible pairs
of survivors and non-survivors. Pairs with a survivor score higher
than non-survivors were considered concordant, otherwise, they
were considered discordant. Somers’ D was calculated as the
difference between the number of concordant and discordant
pairs divided by the number of all possible pairs, taking a value
from -1 (all pairs disagree) to 1 (all pairs agree). The c-statistic
reflected the area under the receiver-operating characteristic
curve for the predictive performance of the regression models.

Statistical Analysis
We used SAS version 9.4 programs (SAS Institute, Cary, NC).
Differences between survivors and non-survivors were evaluated
by the Chi-square test for categorical data and by Wilcoxon two-
sample test for continuous data. The SAS VARCLUS procedure
with an oblique principal component cluster analysis was used
to categorize the HRV and HR dynamics indices. The SAS
LOGISTIC procedure was used for the logistic regression analysis
for mortality risk stratification by HRV and HR dynamics
indices and their combinations. All models included age as an
independent predictor. For all statistical analyses, P < 0.05 was
considered significant.

RESULTS

Patients’ Characteristics
Patient characteristics are presented in Table 1. With baseline
LVEF, the participants were divided into 147 patients with
LVEF ≤35% (low LVEF) and 540 patients with LVEF >35%.
During the follow-up period, 23 (16%) patients with low LVEF
and 22 (4%) patients without low LVEF died from all-causes.
Among patients with low LVEF, non-survivors were more often
diabetic and mentally depressed, had lower LVEF, and had higher
serum creatinine. Survivors were more likely to have had more
frequent coronary angioplasty. Among patients without low
LVEF, non-survivors were older and more often diabetic and
smoker, had more frequent histories of coronary bypass surgery,
had lower LVEF, had higher serum creatinine, and were more
often Killip class III-IV after the index AMI. Survivors were more
likely to have had an index AMI of the inferior wall and had more
frequent acute reperfusion after the AMI.

Cluster Analysis of HRV and HR
Dynamics Indices
Figure 1 shows the tree diagram of the hierarchical cluster based
on the principal component of the correlation matrix. The cluster
analysis was performed in all 687 patients without separating
with LVEF. The predictors were found to be categorized into
three clusters; DC, SDNN, α1, ULF, VLF, LF, and Acv as Cluster

1, λ25s independently as Cluster 2, and rMSSD, pNN50, and
HF as Cluster 3.

Univariate Associations of HRV and HR
Dynamics With Post-AMI Mortality
Table 2 shows the difference in HRV and HR dynamic indices
between survivors and non-survivors. Regardless of LVEF, non-
survivors had lower values for all indices in Cluster 1. Among
patients with low LVEF, non-survivor has lower HF in Cluster 3,
but λ25s (Cluster 2) did not differ significantly between survivors
and non-survivors. Among patients without low LVEF, non-
survivors had greater λ25s(Cluster 2), and lower values for all
indices in Cluster 3.

Table 3 shows the results of the univariate logistic regression
analysis. Regardless of LVEF, the top five predictors based on the
c-statistic belonged to Cluster 1.

Multivariate Associations of HRV and HR
Dynamics With Post-AMI Mortality
Table 4 shows the results of logistic regression analyses for
all combinations between two predictors. Among patients with
low LVEF, the top five performances were observed with
the combinations between two predictors both in Cluster 1
and the combination between Cluster 1 and 3 predictors.
In contrast, among patients without low LVEF, the top five
performances were observed with the combinations between
Cluster 1 and 2 predictors.

These features were also observed for the prediction models
consisting of three predictors (Table 5). The mortality in patients
with low LVEF was best predicted by the combinations of Cluster
1 and 3 predictors. In patients without low LVEF, the top four
performances were observed with the combinations between
Cluster 1 and 2, although the combinations of Cluster 1, 2, and
3 predictors also showed the 4th best performance.

DISCUSSION

In this study, we sought to determine if HRV and HR dynamics
indices that predict mortality risk after AMI differ between
patients with and without low LVEF (≤35%). Considering the
possible redundancy existing among HRV and HR dynamics
indices (Yuda et al., 2020), we first categorized the predictors
into classes. The cluster analysis revealed that the predictors can
be classified into 3 clusters thought to reflect the magnitude
of HRV or HR responsiveness (Cluster 1: DC, SDNN, α1,
ULF, VLF, LF, and Acv), the frequency of abrupt large HR
changes (Cluster 2: λ25s), and cardiac parasympathetic function
(Cluster 3: rMSSD, pNN50, and HF), respectively. Then, we
examined the associations between clustered predictors and
mortality risk in patients with and without low LVEF, separately.
Univariate analyses showed that mortality was best predicted
by indices belonging to Cluster 1 regardless of LVEF, but
multivariate analyses showed that mortality in patients with low
LVEF was best predicted by the combinations of two Cluster
1 predictors or Cluster 1 and 3 predictors, while in patients
without low LVEF, it was best predicted by the combinations
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TABLE 1 | Patients’ characteristics.

LVEF ≤35% LVEF >35%

Survivor Non-survivor P* Survivor Non-survivor P*

Number of patients, n 124 (84%) 23 (16%) 518 (96%) 22 (4%)

Outcome

Follow-up (days), median (IQR) 778 (590–1,024) 499 (175–657) <0.0001 769 (574–974) 373 (203–696) <0.0001

Cardiac death 0 (0%) 18 (78%) 0 (0%) 14 (64%)

Demographic and clinical

Age (years), median (IQR) 62 (53–71) 63 (53–75) 0.3 58 (49–67) 69 (59–71) 0.001

Women 37 (30%) 10 (43%) 0.1 215 (42%) 10 (45%) 0.7

Body mass index (kg/m2), median (IQR) 27.6 (24.5–31.2) 28.3 (24.0–35.0) 0.6 28.5 (25.4–32.1) 28.4 (26.2–32.4) 0.6

Hypertension 21 (17%) 4 (17%) 0.9 107 (21%) 8 (36%) 0.05

Diabetes mellitus 32 (26%) 15 (65%) 0.0002 128 (25%) 17 (77%) <0.0001

Current smoker 38 (31%) 4 (17%) 0.2 189 (36%) 3 (14%) 0.03

BDI score ≥10 52 (42%) 18 (78%) 0.001 243 (47%) 14 (64%) 0.1

History of myocardial infarction 39 (31%) 11 (48%) 0.1 90 (17%) 7 (32%) 0.1

History of coronary bypass surgery 22 (18%) 7 (30%) 0.1 42 (8%) 7 (32%) <0.0001

LVEF (%), median (IQR) 30 (26–35) 25 (20–30) 0.0007 52 (45–55) 45 (40–52) 0.01

Creatinine (mg/dL), median (IQR) 1.0 (0.8–1.2) 1.3 (1.1–2.3) <0.0001 1.0(0.8–1.1) 1.2 (0.9–2.1) 0.01

Index AMI

Killip class III-IV 15 (12%) 5 (22%) 0.2 15 (3%) 3 (14%) 0.003

Anterior wall AMI 68 (55%) 9 (39%) 0.2 141 (27%) 4 (18%) 0.4

Inferior wall AMI 42 (34%) 5 (22%) 0.3 258 (50%) 5 (23%) 0.01

Treatment

β-Blockers 101 (81%) 17 (74%) 0.3 424 (82%) 20 (91%) 0.2

Angiotensin converting enzyme inhibitors 90 (73%) 16 (70%) 0.7 222 (43%) 11 (50%) 0.5

Aspirin 110 (89%) 17 (74%) 0.05 476 (92%) 17 (77%) 0.01

Calcium channel blockers 12 (10%) 3 (13%) 0.6 74 (14%) 7 (32%) 0.02

Thrombolytic therapy after AMI 38 (31%) 6 (26%) 0.7 173 (33%) 2 (9%) 0.02

Coronary bypass after AMI 27 (22%) 1 (4%) 0.05 73 (14%) 2 (9%) 0.5

Coronary angioplasty<24 h after AMI 66 (53%) 4 (17%) 0.004 334 (64%) 12 (55%) 0.2

Acute reperfusion < = 12 h after AMI 55 (44%) 6 (26%) 0.1 250 (48%) 5 (23%) 0.02

*Significance of difference by Wilcoxon two sample test for continuous variables and by chi-square test for categorical variables. AMI, acute myocardial infarction; LVEF, left
ventricular ejection fraction.

of Cluster 1 and 2 predictors. Our findings indicate that
the mortality risk in post-AMI patients with low LVEF is
predicted by decreased HRV or HR responsiveness and cardiac
parasympathetic dysfunction, whereas in patients without low
LVEF, the risk is predicted by a combination of decreased HRV
or HR responsiveness and increased abrupt large HR changes
suggesting sympathetic involvement.

To our knowledge, this is the first study to compare HRV
and HR dynamics indices that predict mortality between post-
AMI patients with and without low LVEF. Most of earlier studies
reporting predictive power of HRV and HR dynamics were
conducted in post-AMI patients with mixed levels of LVEF,
although they reported the independence of the predictive power
of the indices from LVEF (Kleiger et al., 1987; Bigger et al.,
1992; Zuanetti et al., 1996; Lanza et al., 1998; Hayano et al.,
2011a). Also, Huikuri et al. (2000) examined the predictive
value of HRV and HR dynamics in post-AMI patients with
LVEF ≤35% and reported that a decrease in α1 had greater
predictive power of post-AMI mortality than conventional HRV
indices. Bauer et al. (2006) demonstrated that a decrease in

DC had greater predictive power than SDNN and LVEF and
reported that the risk stratification by DC was more useful in
patients with LVEF >30% than in those with LVEF ≤30%. Liu
et al. (2020) recently reported that decreased SDNN, VLF, and
DC were independently associated with increased risk of sudden
arrhythmic death in post-AMI patients with LVEF ≤35% and
that combination of SDNN, VLF, and DC may help identify
a high-risk patient group. Lombardi et al. (1996) compared
HRV and HR dynamics indices between post-AMI patients
with and without low LVEF and they observed reduced HRV
power in the entire frequency range in patients with low
LVEF, suggesting diminished responsiveness of sinus node to
autonomic modulatory inputs in these patients. None of these
studies, however, reported the difference in predictors between
post-AMI patients with and without low LVEF.

In this study, we used retrospective cohort data of the
ENRICHD study. The patients of this cohort had an AMI and
admitted hospital between October 1977 and January 2000.
Therefore, the fraction of patients who received a primary
percutaneous coronary intervention was low and none of them

Frontiers in Neuroscience | www.frontiersin.org 5 January 2021 | Volume 15 | Article 610955

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-610955 January 22, 2021 Time: 16:7 # 6

Hayano et al. HRV and Post-AMI Mortality

FIGURE 1 | Cluster analysis of HRV and HR dynamics indices in post-AMI patients. DC, deceleration capacity; SDNN, standard deviation of normal-to-normal R-R
interval during 24 h; ULF, power of ultra-low-frequency (<0.0033 Hz) component; VLF, power of very-low-frequency (0.0033–0.04 Hz) component; LF, power of
low-frequency (0.04–0.15 Hz) component; Acv, amplitude of the cyclic variation of heart rate; λ25s, non-Gaussianity index for a segment length of 25 s; Fcv,
frequency of the cyclic variation of heart rate; rMSSD, root mean square of successive R-R interval differences; pNN50, percentage of successive R-R intervals
differing >50 ms, and HF, power of high-frequency (0.15–0.40 Hz) component.

had an ICD. We chose this cohort to allow comparison of post-
AMI patients without low LVEF with a sufficiently sized group
of patients with low LVEF whose survival risk is not affected
by a prophylactic ICD. Additionally, the sample of this study
included a subset of patients enrolled in the ENRICHD trial
who had elevated symptoms of depression, which could affect
the generalizability of our results. However, the proportion of
the depressed patients with BDI scores ≥10 was 47.5%, which is
comparable to the reported prevalence of depression (45–47%) in
general post-AMI populations (Schleifer et al., 1989; Steeds et al.,
2004).

We performed a cluster analysis of HRV and HR dynamics
indices in the entire cohort of post-AMI patients. The indices
were classified into three clusters and we observed that the
associations between the HRV and HR dynamics indices
and mortality risk were well explained as class-dependent
relationships. These findings provide several insights into the
underlying mechanisms.

First, the formation of clusters indicates that there are
significant inter-correlations between these indices by the
eigenvalue criteria of principal component analysis, supporting
our previous finding of a big-data study reporting the
substantial redundancy among HRV and HR dynamics indices
(Yuda et al., 2020).

Second, the observation that all of the top five univariate
predictors of post-AMI mortality belonged to Cluster 1 regardless
of LVEF indicates the prognostic significance of the feature(s)
common to the indices of this cluster. Although Cluster
1 includes a variety of indices, they commonly reflect the
magnitude of HRV, such as SDNN, ULF, VLF, and LF, which
are thought to be mediated by interactions between sympathetic
and parasympathetic nerve activities, although parasympathetic
dysfunction has been thought to be a primary cause of decreased
HRV at rest and during sleep (Camm et al., 1996). Earlier
studies reported that 92% of VLF power was suppressed by high
dose atropine (0.04 mg/kg) (Taylor et al., 1998). DC has been
developed to measure the rapid increase in R-R intervals caused
only by parasympathetic control (Kantelhardt et al., 2007). The
α1 increases with atropine and decreases with parasympathetic
activation (Tulppo et al., 2001, 2005), although it decreases with
increased levels of circulating noradrenaline in healthy men
(Tulppo et al., 2001) and increases with β-blocker therapy in
patients with heart failure (Lin et al., 2001; Ridha et al., 2002).
Acv is thought to reflect a reflex parasympathetic function and
its decrease indicates blunted parasympathetic responses to sleep
apnea episodes (transient hypoxia, arousal, etc.) (Hayano et al.,
2017). Acv is almost completely abolished by 2 mg of intravenous
atropine but is unchanged by 5 mg of intravenous propranolol
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TABLE 2 | Comparisons of baseline heart rate variability (HRV) and heart rate (HR) dynamics indices between survivors and non-survivors.

Index, median (IQR) LVEF ≤35% LVEF >35%

Survivor Non-survivor P* Survivor Non-survivor P*

DC (ms) 4.2 (3.1− 6.2) 2.9 (2.3− 3.6) 0.0002 5.3 (3.7− 6.7) 2.7 (2.2− 3.8) <0.0001

SDNN (ms) 87 (63− 109) 56 (47− 73) 0.0004 90 (69− 118) 65 (54− 78) 0.0008

α1 1.2 (0.9− 1.3) 0.8 (0.6− 1.1) 0.002 1.2 (1− 1.3) 0.8 (0.7− 1.2) 0.001

ULF [ln(ms2)] 8.6 (7.9− 9.1) 7.7 (7.3− 8.3) 0.0005 8.7 (8− 9.2) 8 (7.6− 8.4) 0.001

VLF [ln(ms2)] 6.7 (6− 7.3) 5.7 (4.9− 6.1) 0.0002 6.8 (6− 7.5) 5.4 (4.6− 6.3) <0.0001

LF[ln(ms2)] 5.4 (4.3− 6.4) 4.1 (3.5− 4.8) 0.0005 5.6 (4.6− 6.3) 4.7 (2.8− 5.3) 0.0003

Acv [ln(ms)] 3.9 (3.5− 4.3) 3.3 (3− 3.6) <0.0001 4.2 (3.7− 4.5) 3.2 (2.9− 3.7) <0.0001

λ25s 0.5 (0.5− 0.7) 0.6 (0.4− 0.7) 0.7 0.5 (0.5− 0.6) 0.6 (0.5− 0.6) 0.002

rMSSD (ms) 20 (14− 34) 16 (12− 24) 0.1 23 (16− 33) 15 (11− 29) 0.01

pNN50 (%) 2.6 (0.4− 10.7) 0.8 (0.1− 4.8) 0.09 3.1 (0.8− 10.2) 0.5 (0.1− 6.8) 0.01

HF [ln(ms2)] 4.4 (3.5− 5.5) 3.6 (2.9− 4.5) 0.03 4.6 (3.9− 5.5) 3.5 (3− 5.2) 0.009

*Significance of difference by Wilcoxon two sample test. Abbreviations are explained in the legend of Figure 1.

TABLE 3 | Predictive power of HRV and HR dynamics indices for post-AMI mortality (logistic regression analysis).

Predictor LVEF ≤35% LVEF >35%

Concordant,% Discordant,% Somers’ D c-Statistic Concordant,% Discordant,% Somers’ D c-Statistic

DC 74.4 25.6 0.489 0.744 82.7 17.3 0.655 0.827

SDNN 75.6 24.4 0.512 0.756 77.1 22.9 0.542 0.771

α1 70.0 30.0 0.399 0.700 74.7 25.3 0.493 0.747

ULF 74.1 25.9 0.481 0.741 77.7 22.3 0.553 0.777

VLF 75.4 24.6 0.508 0.754 80.9 19.1 0.618 0.809

LF 74.5 25.5 0.490 0.745 79.1 20.9 0.582 0.791

Acv 80.7 19.3 0.614 0.807 82.5 17.5 0.649 0.825

λ25s 53.5 46.5 0.070 0.535 74.9 25.1 0.497 0.749

rMSSD 56.5 43.5 0.130 0.565 73.3 26.7 0.465 0.733

pNN50 56.6 43.4 0.133 0.566 73.0 27.0 0.461 0.730

HF 65.4 34.6 0.309 0.654 76.8 23.2 0.536 0.768

All classification models are adjusted for the effect of age. Boldface indicates the top five largest c-statistic values for LVEF ≥35% and LVEF >35%, respectively.
Abbreviations are explained in the legend of Figure 1.

TABLE 4 | Predictive performance (c-statistics) of combinations of two predictors among post-AMI patients grouped by LVEF.

DC SDNN α1 ULF VLF LF Acv λ25s rMSSD pNN50 HF

DC – 0.824 0.823 0.825 0.824 0.823 0.830 0.840 0.828 0.830 0.824 LVEF > 35%

SDNN 0.773 – 0.775 0.778 0.808 0.792 0.824 0.803 0.771 0.772 0.780

α1 0.768 0.773 – 0.782 0.802 0.789 0.816 0.769 0.791 0.792 0.791

ULF 0.743 0.745 0.726 – 0.810 0.800 0.830 0.815 0.782 0.781 0.792

VLF 0.758 0.762 0.751 0.754 – 0.809 0.826 0.832 0.808 0.808 0.808

LF 0.765 0.767 0.766 0.742 0.733 – 0.825 0.832 0.790 0.791 0.790

Acv 0.806 0.810 0.811 0.806 0.807 0.816 – 0.836 0.824 0.823 0.826

λ25s 0.728 0.728 0.672 0.739 0.746 0.740 0.807 – 0.801 0.787 0.8327

rMSSD 0.738 0.769 0.730 0.732 0.761 0.773 0.816 0.551 – 0.728 0.769

pNN50 0.740 0.759 0.737 0.741 0.760 0.765 0.817 0.581 0.556 – 0.769

HF 0.738 0.744 0.768 0.732 0.759 0.751 0.808 0.684 0.717 0.699 –

LVEF ≤ 35%

Data are c-statistics calculated by logistic regression analysis. Values in lower left half and upper right half represent those for patients with LVEF ≤35% and those with
LVEF > 35%, respectively. Boldface indicates the top five largest values for LVEF ≤35% and LVEF >35%, respectively. All classification models are adjusted for the effect
of age. Abbreviations are explained in the legend of Figure 1.
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TABLE 5 | Combinations of three predictors with the top five predictive performance.

Best combination Concordant,% Discordant,% Somers’ D c-Statistic

LVEF ≤35%

α1 + Acv + rMSSD 82.1 17.9 0.641 0.821

Acv + rMSSD + HF 81.8 18.2 0.636 0.818

Acv + rMSSD + pNN50 81.5 18.5 0.629 0.815

SDNN + Acv + rMSSD 81.5 18.5 0.63 0.815

ULF + Acv + rMSSD 81.5 18.5 0.63 0.815

LVEF >35%

ULF + Acv + λ25s 84.4 15.6 0.689 0.844

VLF + Acv + λ25s 83.7 16.3 0.674 0.837

ULF + VLF + λ25s 83.2 16.8 0.665 0.832

SDNN + VLF + λ25s 83.1 16.9 0.661 0.831

VLF + λ25s + pNN50 83.1 16.9 0.663 0.831

All prediction models are adjusted for the effect of age. Abbreviations are explained in the footnote in Table 2.

(Guilleminault et al., 1984). These indicate that decreased HRV
or HR responsiveness mediated primarily by parasympathetic
dysfunction is the most important single feature associated with
mortality risk in post-AMI patients with and without low LVEF.

Third, the observation that mortality risk in patients with low
LVEF was best predicted by the combinations of indices both in
Cluster 1 or those in Cluster 1 and 3 indicates an increased risk
of the coexistence of tonic/sustained and reflex parasympathetic
disfunction. All of the top five combinations included Acv that
reflects a reflex parasympathetic function. The other indices
including those in Cluster 3 are thought to reflect the tonic or
sustained level of parasympathetic function.

Fourth, the observation that mortality risk in patients without
low LVEF was best predicted by the combinations of indices in
Cluster 1 and 2 indicates an increased risk of the coexistence of
decreased HRV or HR responsiveness and increased abrupt large
HR changes. The λ25s reflects the fatness of tails of the probability
density function of the magnitude of abrupt large HR changes. Its
increase can occur when the relative frequency of large abrupt
HR changes to smaller HR changes increases, suggesting the
involvement of transient strong sympathetic activations (Kiyono
et al., 2008, 2012). The λ is increased in patients with heart
failure and the level of increase is associated with mortality
risk, while no other HRV or HR dynamics indices predict it
(Kiyono et al., 2007). The λ reflects the relative frequency of
large abrupt HR changes but does not depend on the magnitude
of HR change itself. Thus, this index could detect relative
sympathetic overactivity even under the situation of reduces
autonomic responsiveness.

Finally, the different predictive values of Cluster 2 predictor
(λ25s) between patients with and without low LVEF may be
explained by the presence of overt or subclinical heart failure.
In patients with low LVEF, the prognostic value of the indices
of sympathetic overactivity could be less because sympathetic
nerve activity is increased by heart failure, which most of these
patients may have. In patients without low LVEF, the indices
of sympathetic overactivity could have greater predictive value
because it may reflect the presence or development of heart
failure in a part of these patients.

Limitations
Among Cluster 1 predictors, Acv was the best univariate
predictor of post-AMI mortality, but this measure requires a
cyclic variation of HR associated with sleep apnea episodes.
Nevertheless, Acv was able to be calculated in all post-AMI
patients. This is because the Holter ECG data having sleep period
(time in bed) <3 h were not included in this study and because
Acv can be calculated even in patients with subclinical sleep
apnea if at least one episode of cyclic variation of HR is detected
during sleep. Assuming cases in which Acv cannot be calculated,
we examined logistic regression models excluding Acv, but the
results for the relationships between clusters and mortality risk
did not change (data not shown). Additionally, although study
participants were recruited from four different clinical sites in
diverse regions of the US, this study was performed using only
one cohort of post-AMI patients. To confirm the present findings,
future studies using different cohorts should be performed.

CONCLUSION

We investigated whether the survival predictors of HRV and
HR dynamics depend on LVEF after AMI. The mortality risk
in post-AMI patients with low LVEF is predicted by indices
that reflect decreased HRV or HR responsiveness and cardiac
parasympathetic dysfunction, whereas in patients without low
LVEF, the risk is predicted by a combination of predictors
reflecting decreased HRV or HR responsiveness and increased
abrupt large HR changes suggesting sympathetic involvement.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: The data from this study are available
upon request to the corresponding author. As the data contain
potentially identifying or sensitive patient information, the use
of the data is limited to the purpose and method of research
approved by the ethics committees of the corresponding clinical

Frontiers in Neuroscience | www.frontiersin.org 8 January 2021 | Volume 15 | Article 610955

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-610955 January 22, 2021 Time: 16:7 # 9

Hayano et al. HRV and Post-AMI Mortality

sites. Requests to access these datasets should be directed to
Junichiro Hayano, hayano@acm.org.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the research ethics committees of Washington
University, St. Louis, Missouri; Duke University, Durham,
North Carolina; Harvard University, Boston, Massachusetts;
and Yale University, New Haven, Connecticut. The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

JH and EY: conceptualization. JH: methodology, software,
and writing—original draft preparation and visualization. EY,
NU, and MK: validation. EY: formal analysis. MK and NU:

investigation. RC and JB: resources, supervision, and funding
acquisition. NU: data curation. EY and JB: writing—review and
editing. JH and JB: project administration. All authors have read
and agreed to the published version of the manuscript.

FUNDING

This research was supported by the Grants HL 093374,
HL080664, and HL58946 from the National Heart,
Lung and Blood Institute, National Institutes of Health,
Bethesda, Maryland.

ACKNOWLEDGMENTS

We thank Dr. Lisa Berkman at the Harvard T. H. Chan School of
Public Health for providing data from the Yale University clinical
site for our analysis.

REFERENCES
Adabag, A. S., Therneau, T. M., Gersh, B. J., Weston, S. A., and Roger, V. L.

(2008). Sudden death after myocardial infarction. JAMA 300, 2022–2029. doi:
10.1001/jama.2008.553

Antman, E. M., Anbe, D. T., Armstrong, P. W., Bates, E. R., Green, L. A.,
Hand, M., et al. (2004). ACC/AHA guidelines for the management of patients
with ST-elevation myocardial infarction–executive summary. A report of the
American College of Cardiology/American Heart Association Task Force on
Practice Guidelines (Writing Committee to revise the 1999 guidelines for the
management of patients with acute myocardial infarction). J. Am. Coll. Cardiol.
44, 671–719. doi: 10.1016/j.jacc.2004.07.002

Arevalo, H. J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu,
K. C., et al. (2016). Arrhythmia risk stratification of patients after myocardial
infarction using personalized heart models. Nat. Commun. 7:11437. doi: 10.
1038/ncomms11437

Aversano, T., Aversano, L. T., Passamani, E., Knatterud, G. L., Terrin, M. L.,
Williams, D. O., et al. (2002). Thrombolytic therapy vs primary percutaneous
coronary intervention for myocardial infarction in patients presenting to
hospitals without on-site cardiac surgery: a randomized controlled trial. JAMA
287, 1943–1951. doi: 10.1001/jama.287.15.1943

Bauer, A., Kantelhardt, J. W., Barthel, P., Schneider, R., Makikallio, T., Ulm, K.,
et al. (2006). Deceleration capacity of heart rate as a predictor of mortality after
myocardial infarction: cohort study. Lancet 367, 1674–1681.

Beck, A. T. (1972). Depression: Causes and Treatment. Philadelphia, PA: University
of Pennsylvania Press.

Berger, R. D., Saul, J. P., and Cohen, R. J. (1989). Transfer function analysis
of autonomic regulation. I. Canine atrial rate response. Am. J. Physiol. 256,
H142–H152.

Berkman, L. F., Blumenthal, J., Burg, M., Carney, R. M., Catellier, D., Cowan, M. J.,
et al. (2003). Effects of treating depression and low perceived social support on
clinical events after myocardial infarction: the Enhancing Recovery in Coronary
Heart Disease Patients (ENRICHD) Randomized Trial. JAMA 289, 3106–3116.
doi: 10.1001/jama.289.23.3106

Berntson, G. G., Bigger, J. T. Jr., Eckberg, D. L., Grossman, P., Kaufmann, P. G.,
Malik, M., et al. (1997). Heart rate variability: Origins, methods, and interpretive
caveats. Psychophysiology 34, 623–648.

Bigger, J. T. Jr., Fleiss, J. L., Steinman, R. C., Rolnitzky, L. M., Kleiger, R. E., and
Rottman, J. N. (1992). Frequency domain measures of heart period variability
and mortality after myocardial infarction. Circulation 85, 164–171.

Camm, A. J., Malik, M., Bigger, J. T. Jr., Breithardt, G., Cerutti, S., Cohen, R. J., et al.
(1996). Task Force of the european society of cardiology and the north american
society of pacing and electrophysiology. heart rate variability: standards of

measurement, physiological interpretation and clinical use. Circulation 93,
1043–1065.

Costa, M. D., Davis, R. B., and Goldberger, A. L. (2017). Heart rate fragmentation:
a new approach to the analysis of cardiac interbeat interval dynamics. Front.
Physiol. 8:255. doi: 10.3389/fphys.2017.00255

Costa, M. D., Redline, S., Davis, R. B., Heckbert, S. R., Soliman, E. Z., and
Goldberger, A. L. (2018). Heart rate fragmentation as a novel biomarker of
adverse cardiovascular events: the multi-ethnic study of atherosclerosis. Front.
Physiol. 9:1117. doi: 10.3389/fphys.2018.01117

Goldberger, Z., and Lampert, R. (2006). Implantable cardioverter-defibrillators:
expanding indications and technologies. JAMA 295, 809–818. doi: 10.1001/
jama.295.7.809

Guilleminault, C., Connolly, S., Winkle, R., Melvin, K., and Tilkian, A. (1984).
Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms,
and usefulness of 24 h electrocardiography as a screening technique. Lancet 1,
126–131.

Hayano, J., Kisohara, M., Ueda, N., and Yuda, E. (2020). Impact of Heart Rate
Fragmentation on the Assessment of Heart Rate Variability. Appl. Sci. 10:3314.

Hayano, J., Kiyono, K., Struzik, Z. R., Yamamoto, Y., Watanabe, E., Stein, P. K.,
et al. (2011a). Increased non-gaussianity of heart rate variability predicts cardiac
mortality after an acute myocardial infarction. Front. Physiol. 2:65. doi: 10.3389/
fphys.2011.00065

Hayano, J., Watanabe, E., Saito, Y., Sasaki, F., Fujimoto, K., Nomiyama, T., et al.
(2011b). Screening for obstructive sleep apnea by cyclic variation of heart rate.
Circ. Arrhythm. Electrophysiol. 4, 64–72. doi: 10.1161/CIRCEP.110.958009

Hayano, J., Yasuma, F., Watanabe, E., Carney, R. M., Stein, P. K., Blumenthal, J. A.,
et al. (2017). Blunted cyclic variation of heart rate predicts mortality risk in
post-myocardial infarction, end-stage renal disease, and chronic heart failure
patients. Europace 19, 1392–1400. doi: 10.1093/europace/euw222

Huikuri, H. V., Makikallio, T. H., Peng, C. K., Goldberger, A. L., Hintze, U., and
Moller, M. (2000). Fractal correlation properties of R-R interval dynamics and
mortality in patients with depressed left ventricular function after an acute
myocardial infarction. Circulation 101, 47–53.

Hull, S. S. Jr., Evans, A. R., Vanoli, E., Adamson, P. B., Stramba-Badiale, M., Albert,
D. E., et al. (1990). Heart rate variability before and after myocardial infarction
in conscious dogs at high and low risk of sudden death. J. Am. Coll. Cardiol. 16,
978–985.

Hull, S. S. Jr., Vanoli, E., Adamson, P. B., Verrier, R. L., Foreman, R. D., and
Schwartz, P. J. (1994). Exercise training confers anticipatory protection from
sudden death during acute myocardial ischemia. Circulation 89, 548–552.

Iyengar, N., Peng, C. K., Morin, R., Goldberger, A. L., and Lipsitz, L. A. (1996). Age-
related alterations in the fractal scaling of cardiac interbeat interval dynamics.
Am. J. Physiol. 271, R1078–R1084.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2021 | Volume 15 | Article 610955

https://doi.org/10.1001/jama.2008.553
https://doi.org/10.1001/jama.2008.553
https://doi.org/10.1016/j.jacc.2004.07.002
https://doi.org/10.1038/ncomms11437
https://doi.org/10.1038/ncomms11437
https://doi.org/10.1001/jama.287.15.1943
https://doi.org/10.1001/jama.289.23.3106
https://doi.org/10.3389/fphys.2017.00255
https://doi.org/10.3389/fphys.2018.01117
https://doi.org/10.1001/jama.295.7.809
https://doi.org/10.1001/jama.295.7.809
https://doi.org/10.3389/fphys.2011.00065
https://doi.org/10.3389/fphys.2011.00065
https://doi.org/10.1161/CIRCEP.110.958009
https://doi.org/10.1093/europace/euw222
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-610955 January 22, 2021 Time: 16:7 # 10

Hayano et al. HRV and Post-AMI Mortality

Kantelhardt, J. W., Bauer, A., Schumann, A. Y., Barthel, P., Schneider, R., Malik,
M., et al. (2007). Phase-rectified signal averaging for the detection of quasi-
periodicities and the prediction of cardiovascular risk. CHAOS 17:015112. doi:
10.1063/1.2430636

Kiyono, K., Hayano, J., Kwak, S., Watanabe, E., and Yamamoto, Y. (2012). Non-
gaussianity of low frequency heart rate variability and sympathetic activation:
lack of increases in multiple system atrophy and Parkinson disease. Front.
Physiol. 3:34. doi: 10.3389/fphys.2012.00034

Kiyono, K., Hayano, J., Watanabe, E., Struzik, Z. R., and Yamamoto, Y. (2008).
Non-Gaussian heart rate as an independent predictor of mortality in patients
with chronic heart failure. Heart Rhythm. 5, 261–268.

Kiyono, K., Struzik, Z. R., Aoyagi, N., Sakata, S., Hayano, J., and Yamamoto, Y.
(2004). Critical scale invariance in a healthy human heart rate. Phys. Rev. Lett.
93:178103.

Kiyono, K., Struzik, Z. R., and Yamamoto, Y. (2007). Estimator of a non-Gaussian
parameter in multiplicative log-normal models. Phys. Rev. E. 76:041113.

Kleiger, R. E., Miller, J. P., Bigger, J. T. Jr., and Moss, A. J. (1987). Decreased
heart rate variability and its association with increased mortality after acute
myocardial infarction. Am. J. Cardiol. 59, 256–262.

La Rovere, M. T., Bigger, J. T. Jr., Marcus, F. I., Mortara, A., and Schwartz, P. J.
(1998). Baroreflex sensitivity and heart-rate variability in prediction of total
cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and
Reflexes After Myocardial Infarction) Investigators. Lancet 351, 478–484.

Laborde, S., Mosley, E., and Thayer, J. F. (2017). Heart rate variability and cardiac
vagal tone in psychophysiological research – recommendations for experiment
planning, data analysis, and data reporting. Frontiers in psychology. 8:213. doi:
10.3389/fpsyg.2017.00213

Lanza, G. A., Guido, V., Galeazzi, M. M., Mustilli, M., Natali, R., Ierardi, C.,
et al. (1998). Prognostic role of heart rate variability in patients with a recent
acute myocardial infarction. Am. J. Cardiol. 82, 1323–1328. doi: 10.1016/s0002-
9149(98)00635-3

Lin, L. Y., Lin, J. L., Du, C. C., Lai, L. P., Tseng, Y. Z., and Huang, S. K. (2001).
Reversal of deteriorated fractal behavior of heart rate variability by beta-blocker
therapy in patients with advanced congestive heart failure. J. Cardiovasc.
Electrophysiol. 12, 26–32.

Liu, X., Xiang, L., and Tong, G. (2020). Predictive values of heart rate variability,
deceleration and acceleration capacity of heart rate in post-infarction patients
with LVEF >/=35. Ann. Nonin. Electrocardiol. 25:e12771. doi: 10.1111/anec.
12771

Lombardi, F., Sandrone, G., Mortara, A., Torzillo, D., La Rovere, M. T., Signorini,
M. G., et al. (1996). Linear and nonlinear dynamics of heart rate variability after
acute myocardial infarction with normal and reduced left ventricular ejection
fraction. Am. J. Cardiol. 77, 1283–1288. doi: 10.1016/s0002-9149(96)00193-2

Moss, A. J., Zareba, W., Hall, W. J., Klein, H., Wilber, D. J., Cannom, D. S., et al.
(2002). Prophylactic implantation of a defibrillator in patients with myocardial
infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883. doi:
10.1056/NEJMoa013474

Peng, C. K., Havlin, S., Stanley, H. E., and Goldberger, A. L. (1995). Quantification
of scaling exponents and crossover phenomena in nonstationary heartbeat time
series. CHAOS 5, 82–87. doi: 10.1063/1.166141

Ridha, M., Makikallio, T. H., Lopera, G., Pastor, J., de Marchena, E., Chakko,
S., et al. (2002). Effects of carvedilol on heart rate dynamics in patients with
congestive heart failure. Ann. Nonin. Electrocardiol. 7, 133–138.

Saul, J. P., Albrecht, P., Berger, R. D., and Cohen, R. J. (1988). Analysis of long term
heart rate variability: methods, 1/f scaling and implications. Comput. Cardiol.
14, 419–422.

Schleifer, S. J., Macari-Hinson, M. M., Coyle, D. A., Slater, W. R., Kahn, M., Gorlin,
R., et al. (1989). The nature and course of depression following myocardial
infarction. Arch. Intern. Med. 149, 1785–1789.

Solomon, S. D., Zelenkofske, S., McMurray, J. J., Finn, P. V., Velazquez, E., Ertl,
G., et al. (2005). Sudden death in patients with myocardial infarction and left
ventricular dysfunction, heart failure, or both. N. Engl. J. Med. 352, 2581–2588.
doi: 10.1056/NEJMoa043938

Steeds, R. P., Bickerton, D., Smith, M. J., and Muthusamy, R. (2004). Assessment
of depression following acute myocardial infarction using the Beck depression
inventory. Heart 90, 217–218.

Taylor, J. A., Carr, D. L., Myers, C. W., and Eckberg, D. L. (1998). Mechanisms
underlying very-low-frequency RR-interval oscillations in humans. Circulation
98, 547–555. doi: 10.1161/01.cir.98.6.547

Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppanen, T., Makikallio,
T. H., et al. (2005). Physiological background of the loss of fractal heart rate
dynamics. Circulation 112, 314–319. doi: 10.1161/CIRCULATIONAHA.104.
523712

Tulppo, M. P., Makikallio, T. H., Seppanen, T., Shoemaker, K., Tutungi,
E., Hughson, R. L., et al. (2001). Effects of pharmacological adrenergic
and vagal modulation on fractal heart rate dynamics. Clin. Physiol. 21,
515–523.

Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W.,
Carson, A. P., et al. (2020). Heart Disease and stroke statistics-2020 update: a
report from the american heart association. Circulation 141, e139–e596. doi:
10.1161/CIR.0000000000000757

Watanabe, E., Kiyono, K., Yamamoto, Y., and Hayano, J. (2016). “Heart rate
variability and cardiac diseases,” in Clinical Assessment of the Autonomic
Nervous System, eds S. Iwase, J. Hayano, and S. Orimo (Berlin: Springer),
163–178.

Yuda, E., Ueda, N., Kisohara, M., and Hayano, J. (2020). Redundancy among
risk predictors derived from heart rate variability and dynamics: ALLSTAR
big data analysis. Ann. Nonin. Electrocardiol. 2:e12790. doi: 10.1111/anec.
12790

Zaman, S., and Kovoor, P. (2014). Sudden cardiac death early after myocardial
infarction: pathogenesis, risk stratification, and primary prevention. Circulation
129, 2426–2435. doi: 10.1161/CIRCULATIONAHA.113.007497

Zuanetti, G., Neilson, J. M., Latini, R., Santoro, E., Maggioni, A. P., and Ewing,
D. J. (1996). Prognostic significance of heart rate variability in post-myocardial
infarction patients in the fibrinolytic era. The GISSI-2 results. Gruppo Italiano
per lo Studio della Sopravvivenza nell’. Infarto Miocardico. Circulat. 94, 432–
436. doi: 10.1161/01.cir.94.3.432

Zwillich, C., Devlin, T., White, D., Douglas, N., Weil, J., and Martin, R. (1982).
Bradycardia during sleep apnea. Characteristics and mechanism. J. Clin. Invest.
69, 1286–1292.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Hayano, Ueda, Kisohara, Yuda, Carney and Blumenthal. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2021 | Volume 15 | Article 610955

https://doi.org/10.1063/1.2430636
https://doi.org/10.1063/1.2430636
https://doi.org/10.3389/fphys.2012.00034
https://doi.org/10.3389/fpsyg.2017.00213
https://doi.org/10.3389/fpsyg.2017.00213
https://doi.org/10.1016/s0002-9149(98)00635-3
https://doi.org/10.1016/s0002-9149(98)00635-3
https://doi.org/10.1111/anec.12771
https://doi.org/10.1111/anec.12771
https://doi.org/10.1016/s0002-9149(96)00193-2
https://doi.org/10.1056/NEJMoa013474
https://doi.org/10.1056/NEJMoa013474
https://doi.org/10.1063/1.166141
https://doi.org/10.1056/NEJMoa043938
https://doi.org/10.1161/01.cir.98.6.547
https://doi.org/10.1161/CIRCULATIONAHA.104.523712
https://doi.org/10.1161/CIRCULATIONAHA.104.523712
https://doi.org/10.1161/CIR.0000000000000757
https://doi.org/10.1161/CIR.0000000000000757
https://doi.org/10.1111/anec.12790
https://doi.org/10.1111/anec.12790
https://doi.org/10.1161/CIRCULATIONAHA.113.007497
https://doi.org/10.1161/01.cir.94.3.432
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Survival predictors of heart rate variability after myocardial infarction with and without low left ventricular ejection fraction
	Authors

	Survival Predictors of Heart Rate Variability After Myocardial Infarction With and Without Low Left Ventricular Ejection Fraction
	Introduction
	Materials and Methods
	Study Cohort
	Measurements
	Data Analysis
	Cluster Analysis of HRV and HR Dynamics Indices
	Evaluation of Predictive Performance
	Statistical Analysis

	Results
	Patients' Characteristics
	Cluster Analysis of HRV and HR Dynamics Indices
	Univariate Associations of HRV and HR Dynamics With Post-AMI Mortality
	Multivariate Associations of HRV and HR Dynamics With Post-AMI Mortality

	Discussion
	Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


