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Nonmicrobial Activation of TLRs
Controls Intestinal Growth, Wound
Repair, and Radioprotection
William F. Stenson* and Matthew A. Ciorba

Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, United States

TLRs, key components of the innate immune system, recognize microbial molecules.
However, TLRs also recognize some nonmicrobial molecules. In particular, TLR2 and
TLR4 recognize hyaluronic acid, a glycosaminoglycan in the extracellular matrix. In
neonatal mice endogenous hyaluronic acid binding to TLR4 drives normal intestinal
growth. Hyaluronic acid binding to TLR4 in pericryptal macrophages results in
cyclooxygenase2- dependent PGE2 production, which transactivates EGFR in LGR5+
crypt epithelial stem cells leading to increased proliferation. The expanded population of
LGR5+ stem cells leads to crypt fission and lengthening of the intestine and colon.
Blocking this pathway at any point (TLR4 activation, PGE2 production, EGFR
transactivation) results in diminished intestinal and colonic growth. A similar pathway
leads to epithelial proliferation in wound repair. The repair phase of dextran sodium sulfate
colitis is marked by increased epithelial proliferation. In this model, TLR2 and TLR4 in
pericryptal macrophages are activated by microbial products or by host hyaluronic acid,
resulting in production of CXCL12, a chemokine. CXCL12 induces the migration of
cyclooxygenase2-expressing mesenchymal stem cells from the lamina propria of the
upper colonic crypts to a site adjacent to LGR5+ epithelial stem cells. PGE2 released by
these mesenchymal stem cells transactivates EGFR in LGR5+ epithelial stem cells leading
to increased proliferation. Several TLR2 and TLR4 agonists, including hyaluronic acid, are
radioprotective in the intestine through the inhibition of radiation-induced apoptosis in
LGR5+ epithelial stem cells. Administration of exogenous TLR2 or TLR4 agonists
activates TLR2/TLR4 on pericryptal macrophages inducing CXCL12 production with
migration of cyclooxygenase2-expressing mesenchymal stem cells from the lamina
propria of the villi to a site adjacent to LGR5+ epithelial stem cells. PGE2 produced by
these mesenchymal stem cells, blocks radiation-induced apoptosis in LGR5+ epithelial
stem cells by an EGFR mediated pathway.
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INTRODUCTION

Toll family receptors were initially described as regulating
development in Drosophila (1). Toll protein promotes dorsal-
ventral polarity. The Toll pathway also mediates innate
immunity in Drosophila. The interleukin-1-receptor (IL-1R)
was the first identified mammalian homolog for Toll (2). Both
Toll and IL-1R are transmembrane spanning receptors that
signal through NF-kB. A directed search for other mammalian
Toll homologs revealed a series of TLRs which play key roles in
the innate immunity (3). TLRs bind specific structurally
conserved microbial molecules termed pathogen associated
molecular patterns (PAMPs), although they are produced by
commensal organisms as well as pathogens. Among the PAMPs
are lipoteichoic acid (LTA), a component of gram positive
bacteria that binds TLR2, and LPS, a component of gram
negative bacteria that binds TLR4 (4). Although the Toll
family receptors are developmental proteins in Drosophila
there has been no suggestion that TLRs are involved in
mammalian growth and development (3). TLRs respond to
PAMPs which are components of microbial agents; however,
in stress states TLRs also respond to host molecules. Matzinger
proposed a “danger model” in which TLRs respond to host
molecules that are released or exposed during tissue injury (5).
These TLR activating host molecules are characterized as
“danger associated molecular patterns” or DAMPs. For
example, ischemic reperfusion injury, which is common in
solid organ transplantation, exposes host TLR agonists
including heat shock proteins 60 and 70, high mobility group
box 1(HMGP1) and hyaluronic acid (HA) (6–8). TLR activation
by these DAMPs induces a sterile inflammatory response (8).

This review addresses two novel related intercellular
pathways in which a host molecule, HA, binding to TLR2 and

TLR4 drives physiologic processes in the intestine and colon. In
the first pathway (Figure 1), intestinal and colonic growth is
regulated by endogenous HA activating TLR4 on pericryptal
macrophages resulting in the release of PGE₂ which promotes
LGR5+ stem cell proliferation, crypt fission and intestinal
elongation. In the second pathway (Figure 2), wound repair
and intestinal radioprotection are initiated by TLR2/4 activation
in pericryptal macrophages resulting in the production of the
chemokine CXCL12 which, in turn, binds to CXCR4 on
cyclooxygenase 2 (COX-2)-expressing mesenchymal stem cells
(MSCs) in the lamina propria of intestinal villi. The MSCs
migrate to an area adjacent to the intestinal crypts and release
PGE₂ which, in wound repair, promotes LGR5+ stem cell
proliferation and, in radioprotection, blocks radiation- induced
apoptosis in LGR5+ stem cells.

TLR4 SIGNALING REGULATES
EPITHELIAL PROLIFERATION IN
INTESTINAL AND COLONIC GROWTH
AND IN COLONIC WOUND REPAIR

In neonatal life intestinal and colonic elongation occurs through
crypt fission (Figure 1). In crypt fission LGR5+ epithelial stem
cells proliferate increasing the size of the crypt (9). The crypt
then divides forming two crypts (10). Neonatal mice deficient in
TLR4 have markedly diminished LGR5+ stem cell proliferation
and diminished crypt fission (11). As a consequence of
diminished crypt fission, adult mice deficient in TLR4 have
shorter intestines and colons than wild type mice (11).

TLR signaling also regulates epithelial proliferation in the
repair phase of the dextran sodium sulfate

FIGURE 1 | HA binding to TLR4 drives intestinal growth. HA binding to TLR4 on pericryptal macrophages results in COX-2 mediated release of PGE2 which binds
to EP2 on LGR5+ epithelial stem cells. This transactivates EGFR promoting LGR5+ stem cell proliferation and blocking apoptosis. LGR5+ stem cell proliferation
leads to crypt fission and intestinal elongation. Inhibition of COX-2 (NS-398) or EGFR (tyrphostin) decreases LGR5+ stem cell proliferation and crypt fission.
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(DSS) model of ulcerative colitis (12–14). Administration of DSS in
the drinking water kills epithelial cells resulting in bacterial
invasion and inflammation. Withdrawal of DSS from the
drinking water initiates wound repair marked by rapid epithelial
proliferation. Withdrawal of DSS from the drinking water in mice
deficient in MyD88, a TLR adaptor protein, or TLR2 or TLR4,
results in an impaired repair response marked by diminished
epithelial proliferation, increased weight loss, and increased
mortality compared to wild type mice (12). Broad-spectrum
antibiotics given to wild type mice prior to DSS also decrease
epithelial proliferation in the repair phase (12). Administration of
either LTA or LPS reverses the negative effects of broad-spectrum
antibiotics. This suggests that TLR2 and TLR4 signaling driven by
PAMPs from commensal bacteria promotes epithelial proliferation
during wound repair in the colon.

The demonstration that TLR4 signaling regulates epithelial
proliferation in growth and wound repair raises two questions.
What is the cellular location of the TLR4 signaling that drives
growth and wound repair? What is the relevant endogenous
TLR4 agonist in growth and wound repair?

TLR SIGNALING IN PERICRYPTAL
MACROPHAGES DRIVES GROWTH
AND WOUND REPAIR

TLR4 is expressed in intestinal epithelial cells, stromal cells and
macrophages (15). Intestinal epithelial cells express low levels of
TLR4 and are relatively unresponsive to LPS (15). TLR4 is also

FIGURE 2 | Activation of TLR2/TLR4 on pericryptal macrophages drives wound healing and radioprotection. Pericryptal macrophages express TLR2 and TLR4.
TLR2/TLR4 agonists, including LTA, LPS and HA, drive epithelial proliferation as part of wound healing. Exogenous TLR2/TLR4 agonists, including LTA, LPS, and
HA, induce radioprotection by blocking radiation-induced apoptosis. Activation of TLR2 by LTA or activation of TLR4 by LPS or HA results in the release of the
chemokine CXCL12, which binds to CXCR4 on COX-2 expressing MSCs. Activation of CXCR4 results in the migration of the MSCs to a site adjacent to the
pericryptal macrophages and also adjacent to LGR5+ epithelial stem cells. PGE2 released by MSCs binds to EP2 on the LGR5+ epithelial stem cells transactivating
EGFR, promoting proliferation and blocking radiation-induced apoptosis. Inhibition of CXCR-4 (AMD3100) blocks radioprotection induced by TLR activation.
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expressed in macrophages which are a component of the
epithelial stem cell niche in the intestine and colon (16). TLR4
signaling in macrophages is required for normal growth in the
intestine and colon (17).Under homeostatic conditions mice
with selective deletion of TLR4 in myeloid cells have the same
level of diminished crypt fission and LGR5+ stem cell
proliferation as do mice globally deficient in TLR4 (17). In
neonatal mice depletion of macrophages with clodronate
liposomes decreases crypt fission and LGR5+ stem cell
proliferation to the same levels seen in mice with selective
deletion of TLR4 in myeloid cells. Colony-stimulating factor
(CSF)-1 is required for macrophage development and survival.
Depletion of macrophages with an antibody to CSF-1 receptor
results in a marked reduction in LGR5+ epithelial stem cell
proliferation (18).

TLR4 signaling in myeloid cells, particularly in pericryptal
macrophages, is also required for the epithelial proliferative
response in the repair phase of DSS colitis. Wild type mice
transplanted with bone marrow fromMyD88 deficient mice have
diminished epithelial proliferation after withdrawal of DSS (14).
In contrast to the markedly reduced epithelial proliferative
response to DSS seen in mice globally deficient in MyD88,
mice expressing MyD88 only in myeloid cells have an
epithelial proliferative response to DSS withdrawal similar to
wild type mice (19).

Taken together these studies suggest that TLR4 activation in
pericryptal macrophages drives LGR5+ stem cell proliferation
and crypt fission in intestinal and colonic growth and drives
epithelial proliferation in wound repair.

HA: FRAGMENT SIZE, RECEPTORS,
AND BIOLOGIC EFFECTS

HA, a glycosaminoglycan, is a polymer made up of repeating
disaccharides of N-acetylglucosamine and glucuronic acid (7,
20). HA is synthesized by many cell types including fibroblasts
and smooth muscle cells (20). HA is synthesized by three HA
synthases (HAS1, HAS2, and HAS3) in the plasma membrane
and secreted into the extracellular space (21). HA polymers,
reaching up to 10,000 kDa, form a component of the extracellular
matrix. In the intestine and colon HA is found in the
extracellular space in a band adjacent to crypt epithelial cells
and pericryptal macrophages (22).

In the face of injury and inflammation the synthesis of HA
increases and the distribution of HA in the extracellular space
expands. In inflammatory diseases of the GI tract such as
Crohn’s disease and DSS colitis, the distribution HA expands
from a narrow band around the crypt base to extend further up
the crypt and eventually to fill much of the lamina propria (22).
In DSS colitis increased HA deposition induces increased HA
synthesis resulting in a feed-forward loop (23).

Under homeostatic conditions most of the HA in the
extracellular matrix is in the high molecular weight (HMW)
form (>500 kDa) (24). In injury states HMW-HA is broken
down to low MW (LMW) forms by hyaluronidases released by

dying cells (5). In infectious states HMW-HAmay be catabolized
by microbial hyaluronidases. As inflammation is cleared and the
wound heals, LMW-HA is cleared and HMW-HA once again
becomes the dominant form (24). In chronic inflammation
LMW-HA persists.

The biologic effects of HA are mediated primarily through
receptor binding (25). HA binds to CD44, TLR2, TLR4, the
receptor for HA-mediated motility (RHAMM), layilin,
lymphatic vessel endothelial HA receptor- 1(LYVE-1), and HA
receptor for endocytosis (26). Here we will focus on CD44, TLR2
and TLR4. HA fragments of different sizes bind to different
receptors and thus have different biologic effects (27). HMW-HA
is associated with health and diminished inflammation (24, 28).
HMW-HA has anti-inflammatory effects in lung injury (29) and
collagen-induced arthritis (30). These anti-inflammatory effects
are largely mediated by HMW-HA binding to CD44. CD44
activation by HMW-HA promotes cell adhesion, lymphocytic
migration and gastric epithelial cell proliferation (31, 32).
Crosslinking CD44 promotes the production of the anti-
inflammatory cytokines IL-2, IL-10, and TGF-b (24).

LMW-HA includes fragment sizes that are primarily
protective (20–75 kDA) and smaller sizes that are
proinflammatory. TLR2 and TLR4 preferentially bind to
LMW-HA. TLR2 and TLR4 binding to LMW-HA promotes
the production of proinflammatory cytokines including TNFa,
MIP, IL-1b, IL-6, and IL-12 (24, 33–35). Binding by
nonmicrobial DAMPs, including LMW-HA, results in TLR4
activation in sterile environments such as joints affected with
osteoarthritis (36).

Although both LMW-HA and LPS bind to TLR4, the results
of TLR4 activation by LMW-HA and LPS are not identical. TLR4
activation by LPS and LMW-HA require different accessory
molecules. TLR4 activation by LPS requires a TLR4-MD2
complex, LPS binding protein, and CD14 which delivers LPS
to the TLR4-MD2 complex (33, 34). In contrast, TLR4 activation
by LMW-HA requires a TLR4-MD2 complex but is independent
of CD14 and LPS binding protein. The presence of CD44 also
enhances the effects of HA binding to TLR4 although the
presence of CD44 is not required for HA activation of TLR4.
Lamina propria macrophages express TLR4 and MD2 but lack
CD14 and thus should be responsive to HA but not to LPS (37).
Incubation of cultured monocytes with LPS and LMW-HA (4-,
6-, and 8-mer) resulted in different patterns of gene induction
reflecting the differences in the accessory molecules involved in
TLR4 activation (34). MH-S cells, a mouse alveolar macrophage
cell line, were incubated with LPS or HA (MW not specified).
LPS induced CXCR-6, and defensin-b15 to a greater extent than
did HA. In contrast, HA induced SOCS3, MMP3, MMP13, TGF-
b, G-CSF, GM-CSF, IL-1a, and TNF-a to a greater extent than
did LPS. IL-6, iNOS, and IL-1b responded similarly to LPS
and HA.

Although most studies suggest that HMW-HA binds CD44
and LMW-HA binds TLR2 and TLR4. There is evidence that
LMW-HA binds both CD44 and TLR4. LMW-HA (6-mer)
incubated with human chondrocytes induced the release of the
proinflammatory cytokines TNFa, IL-1b, and IL-6 (31).
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Addition of antibodies to either CD44 or TLR4 reduced cytokine
production partially, whereas addition of both antibodies
reduced cytokine production further (31).

It is possible that HMW-HA blocks TLR4 activation by LPS
(24). In a lung inflammation model HMW-HA is anti-
inflammatory and its effects are thought to be through
immobilization of LPS (29). In a colon cancer model HMW-
HA binding to TLR4 on cancer cells blocks TLR4 activation by
LPS (38).This raises a question as to whether endogenous HA
binding to TLR4 on the basolateral surface of LGR5+ crypt
epithelial cells blocks TLR4 activation by LPS.

HA IS THE RELEVANT TLR4 AGONIST
IN INTESTINAL GROWTH AND
WOUND REPAIR

TLR4 activation by HA drives LGR5+ epithelial stem cell
proliferation and crypt fission in normal growth in the
intestine and colon (11, 17). The size of HA fragments in the
lamina propria of the intestine and colon under homeostatic
conditions has not been addressed, but studies in other systems
suggest that the HMW form predominates (24). PEP-1 is a
synthetic 12-mer peptide that binds to HA and prevents its
binding to its receptors (39). Intraperitoneal injection of PEP-1
from 3 to 8 weeks of age results in a 30% shortening of the
intestine and colon compared with untreated mice (40). The
intestine and colon of PEP-1-treated mice show an atrophic
appearance with shortened crypts and villi and fewer BrdU
positive epithelial cells. This suggests that endogenous HA,
distributed near the crypt base, drives epithelial proliferation
and normal intestinal growth. Intraperitoneal injection of
exogenous HA, with a broad range of MWs up to 750 kDa,
from 3 to 8 weeks of age results in a hyperplastic intestine and
colon with longer crypts and villi and an increase in BrdU
positive epithelial cells, but does not increase elongation (40).

In neonatal mice, administration of PEP-1 from 7 to 14 days of
age decreases LGR5+ stem cell proliferation and crypt fission by
30%. Neonatal mice deficient in TLR4 have decreased LGR5+ stem
cell proliferation and crypt fission compared to wild type mice (11).
In mice deficient in TLR4, PEP-1 does not further reduce LGR5+
stem cell proliferation or crypt fission suggesting that TLR4
activation by endogenous HA drives LGR5+ stem cell
proliferation and crypt fission. HA appears to be the only TLR4
ligand involved in promoting intestinal growth. This is in contrast
to wound repair where both HA and PAMPs from commensal
organisms drive epithelial proliferation through TLR2/TLR4
signaling (12). Mice deficient in CD44 have reduced LGR5+
stem cell proliferation and crypt fission compared to wild type
mice but the reductions are not as great as those seen in mice
deficient in TLR4 (11). This suggests that endogenous HA binding
to both CD44 and TLR4 promotes intestinal growth. This may be
the product of endogenous HAs of different molecular weights
binding separately to CD44 and TLR4 or it may be the product of
HA binding to a CD44-TLR4 complex (33, 34). Treatment of
neonatal mice with PEP-1 reduces crypt fission by 30% and

treatment of mice with PEP-1 from 3 to 8 weeks of age decreases
intestinal and colonic length by 30% suggesting that the HA/TLR4
pathway drives 30% of intestinal and colonic growth (11, 17, 40).

It is difficult to establish the role of the MW of HA in driving
intestinal growth through TLR4 activation. Under homeostatic
conditions most of the HA in the extracellular matrix should be
in the high MW form (35). There are suggestions that TLR4 is
preferentially activated by the low MW form of HA (35, 41).
Despite these suggestions there is good evidence that endogenous
HA activates TLR4 and promotes growth even though most of
the endogenous HA is in the high MW form (11, 17, 40).
Although some studies have used defined MW preparations of
HA (35kDa) (42, 43), most studies of the effects of exogenous HA
on growth, wound repair and radioprotection have used an HA
preparation with a broad range of MWs up to 750kDa (17, 22, 40,
44). Repeating these studies with defined MW preparations of
HA would give some insight into the role of MW in these
biologic effects of HA.

TLR4 activation by HA also plays a role in wound repair (22).
Exogenous HA, in a preparation with a broad range of MWs up to
750 kDa, is protective against DSS colitis in wild type mice but not
in mice deficient in MyD88, TLR4, or COX-2 (22). In wild type
mice exogenous HA is also therapeutic in established DSS colitis.
The severity of DSS colitis is assessed by weight loss, disease
severity score, and histologic index. Using these criteria DSS colitis
is more severe in TLR4 deficient mice than in wild type mice.
Coadministration of PEP-1 and DSS to wild type mice results in a
worse disease severity score and a worse histology score compared
to DSS alone. However PEP-1 does not further worsen the scores
in mice deficient in TLR4. This suggests that TLR4 activation by
endogenous HA promotes healing in DSS colitis. However,
previously referenced studies demonstrated that broad spectrum
antibiotics worsen DSS colitis and that these effects are rescued by
LTA and LPS suggesting that PAMPs from commensal organisms
also promote healing in DSS colitis (12).

Taken together these studies addressing the cellular location
of the TLR4 signaling that drives growth and wound repair and
the nature of the relevant TLR4 ligand suggest that HA activation
of myeloid TLR4 mediates intestinal and colonic growth and
wound repair.

Exogenous HA has effects on the GI tract beyond growth,
wound repair and radioprotection. Low MW (35kDa) increases
the expression of zonula occludens-1 (ZO-1), a tight junction
protein (43). HA in human milk induces defensin-2, an
antimicrobial protein (45). Oral HA is protective in a mouse
model of necrotizing enterocolitis (42). Exogenous HA reduces
proinflammatory signaling in Kuppfer cells and protects mice
from alcoholic liver disease (46). Whether these additional effects
of HA on the GI tract are mediated through TLR activation and
PGE₂ has not been addressed.

Mediation of wound repair by HA activation of TLRs is not
unique to the GI tract. A study of pulmonary injury induced by
intratracheal bleomycin demonstrates the role of HA activation
of TLR4 in sterile injury (29). Bleomycin induces oxide injury
resulting in the generation of low LMW-HA. Bleomycin injury
also induces the migration of neutrophils into the lungs,
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thickening of the interstitium and epithelial cell apoptosis. In
mice deficient in TLR2 and TLR4 bleomycin induces less
neutrophil migration but greater thickening of the interstitium
and enhanced apoptosis and mortality compared with wild type
mice. Treatment of wild type mice with PEP-1 prior to
bleomycin results in enhanced bleomycin-induced apoptosis
similar to that seen in the mice deficient in TLR2 and TLR4.
This suggests that endogenous HA binding to TLR2 and TLR4
blocks bleomycin-induced apoptosis. In contrast to DSS colitis,
where commensal organisms drive the immune response,
bleomycin injury is a sterile process. Thus, it is easier to make
the case that HA is the only relevant TLR2/4 agonist in
bleomycin injury.

PGE₂ PRODUCED DOWNSTREAM
FROM TLR4 ACTIVATION MEDIATES
INTESTINAL GROWTH AND
WOUND REPAIR

In the intestine PGE₂ promotes epithelial proliferation and
blocks epithelial cell apoptosis (47, 48). PGE₂ upregulates
LGR5 in colon cancer (49). PGE₂ is also radioprotective in the
intestine (50). PGE₂ has its biologic effects through binding four
receptors: EP1, EP2, EP3, and EP4 (51). In many cases the rate
limiting step in PGE₂ production is the release of arachidonic
acid from cellular phospholipids by the activation of
phospholipase A2 (PLA2) (52, 53). Arachidonic acid is
metabolized to PGE₂ and other prostanoids through COX-1
and COX-2. COX-1 is expressed constitutively in many cells and
produces prostanoids under homeostatic conditions. COX-2
expression is induced in macrophages and other cell types in
response to cytokine activation during stress states. Although
COX-2 expression is typically induced in stress states, in
neonatal mice there is a population of pericryptal macrophages
that express COX-2 constitutively (17). In adult mice there is a
population of MSCs in the intestine and colon that expresses
COX-2 constitutively (54). These COX-2 expressing MSCs are
not seen in neonatal mice (17).

Endogenous PGE₂ produced through COX-2 mediates crypt
fission and LGR5+ stem cell proliferation during neonatal
growth in the intestine (11, 17). In COX-2 deficient mice,
crypt fission and LGR5+ stem cell proliferation are decreased
(17). Similarly, blocking endogenous PGE₂ production with NS-
398, a selective COX-2 inhibitor, decreases crypt fission and
LGR5+ stem cell proliferation. In neonatal mice exogenous PGE₂
promotes epithelial proliferation. Intraperitoneal administration
of dimethylPGE₂ (dmPGE₂), a stable PGE₂ analog, increases
crypt fission and LGR5+ stem cell proliferation to levels far above
those seen at baseline. Butaprost, a selective EP2 agonist,
promotes crypt fission as effectively as dmPGE₂ suggesting that
these effects of PGE₂ are mediated through EP2 signaling. Thus,
under homeostatic conditions, endogenous PGE₂, produced
through COX2, binds to EP2 promoting crypt fission and
LGR5+ stem cell proliferation. However, the levels of

endogenous PGE₂ produced at baseline are not sufficient to
achieve the maximal crypt fission and LGR5+ stem cell
proliferation achieved with intraperitoneal dmPGE₂. PGE₂
produced through COX-2 also promotes epithelial proliferation
in the repair phase of DSS colitis (22, 55). COX-2 deficient mice
have diminished epithelial proliferation in the repair phase of DSS
colitis. The impaired proliferative response seen in mice deficient
in either TLR4 or COX-2 is rescued by intraperitoneal dmPGE₂.

COX-2-EXPRESSING PERICRYPTAL
MACROPHAGES AND COX-2-
EXPRESSING MSCs ARE THE SITES OF
THE PGE₂ PRODUCTION THAT DRIVES
INTESTINAL GROWTH, WOUND REPAIR,
AND RADIOPROTECTION

In neonatal mice, COX-2 expressing pericryptal macrophages
produce PGE₂ that drives crypt fission and LGR5+ stem cell
proliferation (Figure 1) (17). Macrophage depletion with
clodronate in wild type neonatal mice decreases crypt fission
and LGR5+ stem cell proliferation to the same degree as is seen
in mice deficient in COX-2. Intraperitoneal administration of
dmPGE₂ reverses the effects of both macrophage depletion and
COX-2 deficiency on crypt fission and LGR5+ stem cell
proliferation (17).

In contrast to neonatal mice, where growth is driven by PGE₂
produced by pericryptal macrophages, in adult mice wound
repair and radioprotection are driven by PGE₂ produced by
COX-2 expressing MSCs (Figure 2) (22, 56–58). There are COX-
2 expressing MSCs in adult mice but not neonatal mice (14, 17).
Under homeostatic conditions COX-2 expressing MSCs reside in
the lamina propria in the villi in the intestine and in the lamina
propria in the upper crypts in the colon. In response to injury or
the administration of a radioprotective agent these MSCs migrate
to positions adjacent to the LGR5+ crypt epithelial stem cells.
The positioning of the COX-2 expressing MSCs is important in
that PGE₂ has a very short half-life in tissue such that PGE₂ acts
only on cells in close proximity to the PGE₂ producing cells
(59, 60).

Repositioning of COX-2 expressing MSCs mediates the
radioprotective effects of the probiotic lactobacillus rhamnosus
GG (LGG). LGG releases LTA, a TLR2 agonist (57).
Administration of LGG or LTA to mice results in the release of
the chemokine CXCL12 by TLR2- expressing pericryptal
macrophages (57). CXCL12 is a chemokine produced in response
to TLR activation (61). CXCL12 binding to CXCR4 on COX-2
expressingMSCs causes themtomigrate fromthe laminapropria in
the villi to a site adjacent to the LGR5+ epithelial stem cells in the
crypt base (57) (Figure 2). Both LGG induced radioprotection and
themigration of the COX-2 expressingMSCs are TLR2 dependent.
Release of PGE₂ from COX-2 expressing MSCs blocks radiation-
induced apoptosis. Administration of AMD3100, an inhibitor of
CXCR4 activation, abrogates both MSC migration and the
radioprotective effects of LGG and LTA (57).
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The migration of COX-2 expressing MSCs is also involved in
wound repair. In response to DSS-induced injury in the colon,
COX-2 expressing MSCs migrate from the lamina propria in the
upper crypt to the lamina propria in the lower crypt (14). Both
MSC migration and epithelial proliferation in response to DSS
are MyD88 dependent. The chemokine that induces the
migration of the COX-2 expressing MSCs in DSS colitis has
not been identified but it is reasonable to think that it is CXCL12,
the chemokine that induces the migration of COX-2 expressing
MSCs in response to LGG and LTA (57). Although there is
strong evidence that MSCs are the source of the PGE₂ that drives
wound repair and radioprotection, colonic myofibroblasts also
produce PGE₂ in response to TLR activation (62).

Although PGE₂ produced through COX-2 mediates LGR5+
stem cell proliferation in both normal growth and
radioprotection/wound repair, the intercellular pathways are
different. Under homeostatic conditions in neonatal mice
activation of TLR4 on pericryptal macrophages by endogenous
HA results in the production of PGE₂ which drives LGR5+ cell
proliferation. In contrast, in adult mice TLR2/TLR4 activation on
pericryptal macrophages by exogenous HA or other TLR2/TLR4
agonists results in CXCL12 production resulting in the migration
of COX-2 expressing MSCs. What is the basis of the apparent
differences in response to TLR activation? One possibility is that
CXCL12 is produced under both circumstances but in neonatal
mice there are no COX-2 expressing MSCs to migrate in
response to CXCL12. A possible explanation for the differential
response to HA in the two circumstances may relate to the much
higher dose of exogenous HA compared to endogenous HA or
differences in the MW distributions of endogenous and
exogenous HA. It is also possible that the involvement of
different accessory molecules in TLR4 activation results in
different patterns of gene expression (33, 34). Low dose, high
MW endogenous HA binding to TLR4 may preferentially
promote PGE₂ production, whereas high dose low MW
exogenous HA or LPS or LTA binding to TLR4 may
preferentially promote CXCL12 production.

PGE₂ PROMOTES INTESTINAL AND
COLONIC GROWTH AND WOUND REPAIR
THROUGH EGFR ACTIVATION

LGR5+ stem cell proliferation is mediated through both b-catenin
and EGFR activation (63–66). PGE₂ can act through both b-
catenin and EGFR activation (67–70). PGE₂ binding to EP2 on
epithelial cells transactivates EGFR through a src family kinase
mediated mechanism (48). Transactivation of EGFR by PGE₂
promotes proliferation in colon cancer cell lines (70). In human
biliary carcinoma cells in vitro, addition of LPS initiates a positive
feedback loop of TLR4 activation, PGE₂ production through
COX-2 and EGFR activation (71). Both PGE₂ mediated
inhibition of radiation-induced apoptosis and PGE₂ mediated
promotion of crypt fission are mediated through EP2 (11, 48).
Neonatal mice deficient in intestinal epithelial cell EGFR have
markedly diminished LGR5+ stem cell proliferation and crypt

fission under homeostatic conditions (11). Similarly, inhibition of
EGFR activation with tyrphostin diminishes LGR5+ cell
proliferation and crypt fission. Moreover, dmPGE₂ fails to
rescue the decreases in LGR5+ cell proliferation and crypt
fission associated with epithelial cell EGFR deficiency and with
tyrphostin. In addition to promoting LGR5+ cell proliferation
through EGFR activation, PGE₂ blocks radiation induced
apoptosis in the intestine through the same mechanism (48).
Although the evidence suggests that PGE₂ promotes LGR5+
proliferation in the intestine through EGFR activation it is also
possible that PGE₂ works in part through the Wnt/b-catenin
pathway, which is known to be important in promoting LGR5+
cell proliferation (63). PGE₂ prevents b-catenin degradation by
inhibiting both the GSK-3b and Axin-2 functions thereby
activating Wnt signaling (69). There are points of convergence
of EGFR signaling and theWnt/b-catenin pathway (65, 72). EGFR
can activate b-catenin via the receptor tyrosine kinase-PI3K-Akt
pathway (71).The regulation of b-catenin is downstream of Akt
activation which is downstream of EGRF (73, 74). Although the
evidence suggests that EGFR activation in response to TLR4
signaling is mediated by PGE₂, it is also possible that TLR4
signaling promotes EGFR activation through the production of
amphiregulin, epiregulin or other EGFR ligands (75).

RADIOPROTECTION

We have focused on nonmicrobial TLR activation as an early
step in growth and wound repair but TLR activation also plays a
role in radioprotection. In intestinal growth and wound repair
the primary biologic event is LGR5+ stem cell proliferation;
whereas, in radioprotection the primary biologic event is the
prevention of radiation-induced apoptosis in LGR5+ stem cells.
Both microbial and nonmicrobial TLR2 and TLR4 agonists
induce radioprotection (76). As discussed earlier, orally
administered LGG is radioprotective through release of the
TLR2 agonist LTA (57). The synthetic TLR2 agonist PAM3-
CSK4 is also radioprotective (57). LPS, a microbial agent, and
HA, a nonmicrobial agent, are both radioprotective through a
TLR4 mediated mechanism (44, 58). Each of these TLR2 and
TLR4 agonists double the number of surviving small intestinal
crypts after radiation suggesting that TLR2 and TLR4 activation
are equally effective in promoting radioprotection.

The first step in the radioprotection induced by LGG, LTA orHA
is TLR activation in pericryptal macrophages resulting in CXCL12
production and the migration of COX2-expressing MSCs from the
lamina propria in the villi to a site near the epithelial cells in the base
of the crypt (44, 56, 57). The first step in wound repair in DSS colitis
is TLR4 activation in pericryptal macrophages resulting in the
migration of COX-2 expressing MSCs from the lamina propria
near the upper crypts to sites adjacent to epithelial cells in the lower
crypts. Thus, the first step in radioprotection recapitulates the first
step in wound repair. Administration of a radioprotective agent
jump starts the wound repair process by inducing the first step in
wound repair, the migration of PGE₂ producing MSCs to a site
adjacent to LGR5+ stem cells. In radioprotection, PGE₂ blocks
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radiation-induced apoptosis in LGR5+ stem cells through
transactivation of EGFR (48).

CONCLUSIONS

The HA/macrophage TLR4/PGE₂/EGRF pathway mediates
intestinal and colonic growth through LGR5+ stem cell
proliferation and crypt fission (Figure 1). In this pathway,
TLR4, which is usually associated with innate immunity, is
activated not by the microbial product LPS, but by HA, a host
molecule. Moreover, the TLR4 activation occurs not in the face
of injury or “danger” but under homeostatic conditions. This
pathway accounts for about 30% of intestinal and colonic growth
(17, 40). It appears to be specific to the intestine and colon in that
diminished elongation of the intestine and colon is the only
observed growth defect in mice treated with PEP-1 from 3 to 8
weeks of age (40). It is not clear why this pathway is specific to
the intestine and colon in that both HA and TLR4 are widely
distributed. It is possible that the positioning of COX-2
expressing macrophages adjacent to epithelial stem cells is
unique to the intestine and colon but this has not been
addressed systematically.

In contrast to wound repair, where inflammation
accompanies enhanced epithelial proliferation driven by TLR2/
TLR4 activation (11, 12), in intestinal growth TLR4 activation
promotes epithelial proliferation in the absence of inflammation
(17). Moreover, in contrast to wound repair where activation of
TLRs by both microbial PAMPs and non-microbial agents, such
as HA, play a role (11, 12), intestinal growth is driven only by
TLR4 activation by the nonmicrobial agent, HA (17).

The macrophage TLR4/CXCL12/MSC/PGE₂/EGFR pathway
mediates colonic wound repair by promoting epithelial cell
proliferation (Figure 2). In the repair phase of DSS colitis
endogenous HA drives epithelial proliferation through TLR4
activation (22). Studies with antibiotics suggest that PAMPs
released by commensal organisms also activate TLR2/TLR4 in
DSS colitis (12). Irrespective of the agonist, macrophage TLR
activation results in the migration of COX-2 expressing MSCs to
sites near LGR5+ stem cells. Although MSCs are widely
distributed, MSCs expressing COX-2 appear to be unique to
the intestine and colon (77). FGF-10 released by intestinal and
colonic epithelial cells induces COX-2 in MSCs (77). Intestinal
MSCs express more than ten times as much COX-2 as
macrophages. CXCL-12 produced by pericryptal macrophages
mediates the migration of COX-2 expressing MSCs in LGG
induced radioprotection (57). This is likely to also be the
mechanism for the migration of COX-2 expressing MSCs in
the repair phase of DSS colitis. LGR5+ stem cell proliferation is a
key step in both growth and wound repair. In growth EGFR
activation by PGE₂ accounts for about 30% of LGR5+ cell
proliferation. The enhanced epithelial proliferation in the
repair phase of DSS colitis is driven by PGE₂. Based on the
growth studies, it is likely that EGFR activation by PGE₂ is also
the mechanism of the increased epithelial proliferation in the
repair phase of DSS colitis.

Wound repair mediated by HA activation of TLR2/TLR4 is
also seen in the lung. TLR2/TLR4 activation by HA mediates
wound repair in the bleomycin model of lung injury (29). This is
a sterile inflammation demonstrating that inflammation driven
by TLR activation can be part of the wound repair process even
in the absence of microbial invasion. Whether PGE₂ is
downstream from TLR activation in the bleomycin model has
not been addressed; however PGE₂ is known to be therapeutic in
this model (78). TLR4 activation by HA also affects the immune
response in ischemia- reperfusion injury in the kidney and in
acute allograft rejection in a skin transplant model (8).

TLR4 activation and inflammation promote wound repair. In
sterile injury, as in bleomycin injury in the lung, TLR2/TLR4
activation is driven by non-microbial DAMPs, including LMW-
HA (29). In non-sterile injury, as in DSS colitis, TLR2/TLR4
activation is driven both by PAMPs from commensal organisms
and by LMW-HA released or exposed during injury (12, 22). In
DSS colitis, TLR activation by PAMPs and TLR activation by HA
are not mutually exclusive but rather are integrated components
of wound healing. Although there are differences in the accessory
molecules involved in TLR4 activation by LPS and LMW- HA,
TLR4 activation by either one promotes wound healing (12, 27,
28, 33).

The macrophage TLR2-TLR4/CXCL12/MSC/PGE₂/EGFR
pathway mediates radioprotection by exogenous TLR2/TLR4
agonists through inhibition of radiation induced apoptosis in
LGR5+ stem cells (Figure 2). TLR2 agonists (LTA and PAM3-
CSK4) and TLR4 agonists (LPS and HA) are radioprotective in
the intestine (42, 57, 58). The radioprotective effects of LTA and
HA depend on the migration of COX-2 expressing MSCs (57).
PGE₂mediates the final step in this radioprotection pathway, the
inhibition of radiation-induced apoptosis in LGR5+ stem cells.
PGE₂ binding to EP2 blocks radiation-induced apoptosis by an
AKT-EGFR mechanism (48). Therefore it is likely that the
intestinal radioprotection induced by TLR2 agonists and TLR4
agonists is mediated by EGFR activation, just as the enhanced
LGR5+ stem cell proliferation in growth and wound repair goes
through EGFR activation. PGE₂ is also radioprotective in the
bone marrow (50). Several TLR agonists, including LPS, are
radioprotective in the bone marrow (76). It is possible that bone
marrow radioprotection induced by TLR agonist is also mediated
by PGE₂ production but this question has not been addressed.

In mouse studies exogenous HA has effects on the GI tract
that suggest potential therapies for human diseases. The
pathways described here (Figures 1 and 2) provide multiple
targets for pharmacologic interventions. Manipulation of these
pathways by inhibitors of COX-2, CXCR4, and EGFR activation
have been reviewed (17, 57). Exogenous HA induces intestinal
hyperplasia through TLR4 activation (40). Thus, HA or other
TLR4 agonists may be useful in short bowel syndrome.
Exogenous HA acting through TLR2/TLR4 promotes wound
repair in DSS colitis (22). HA, or other TLR2/TLR4 agonists,
could promote wound repair in patients with GI injury from
chemotherapy or radiation therapy. Exogenous HA has positive
effects in infections with C. rodentium, raising the potential for
use in GI infections in humans (43).
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