# Supplemental information for

### Microbial Enzymes Induce Colitis by Reactivating Triclosan in the Mouse Gastrointestinal Tract

Jianan Zhang <sup>1,\*</sup>, Morgan E. Walker <sup>2,\*</sup>, Katherine Z. Sanidad <sup>1,\*</sup>, Hongna Zhang <sup>3,4\*</sup>, Yanshan Liang <sup>3</sup>, Ermin Zhao <sup>1</sup>, Katherine Chacon-Vargas <sup>1</sup>, Vladimir Yeliseyev <sup>5</sup>, Julie Parsonnet <sup>6</sup>, Thomas D. Haggerty <sup>6</sup>, Guangqiang Wang <sup>1,7</sup>, Joshua B. Simpson <sup>2</sup>, Parth B. Jariwala <sup>2</sup>, Violet V. Beaty <sup>2</sup>, Jun Yang <sup>8</sup>, Haixia Yang <sup>1</sup>, Anand Panigrahy <sup>1</sup>, Lisa M. Minter <sup>9</sup>, Daeyoung Kim <sup>10</sup>, John G. Gibbons <sup>1</sup>, LinShu Liu <sup>11</sup>, Zhengze Li <sup>1</sup>, Hang Xiao <sup>1</sup>, Valentina Borlandelli <sup>12</sup>, Hermen S. Overkleeft <sup>12</sup>, Erica W. Cloer <sup>13</sup>, Michael B. Major <sup>14</sup>, Dennis Goldfarb <sup>15</sup>, Zongwei Cai <sup>3,#</sup>, Matthew R. Redinbo <sup>2,#</sup>, and Guodong Zhang <sup>1,16,#</sup>

<sup>1</sup> Department of Food Science, University of Massachusetts, Amherst, MA, USA.

<sup>2</sup> Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

<sup>3</sup> State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, SAR, China.

<sup>4</sup> Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.

<sup>5</sup> Massachusetts Host-Microbiota Center, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.

<sup>6</sup> Department of Medicine and Department of Health Research and Policy, Stanford University, Stanford, CA, USA.

<sup>7</sup> School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.

<sup>8</sup> Department of Entomology and Nematology, University of California, Davis, CA, USA.

<sup>9</sup> Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA.

<sup>10</sup> Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA, USA.
 <sup>11</sup> Eastern Regional Research Center, Agricultural Research Service, United States

Department of Agriculture, Wyndmoor, PA, USA.

<sup>12</sup> Department of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.

<sup>13</sup> Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

<sup>14</sup> Department of Cell Biology and Physiology, and Department of Otolaryngology, Washington University, St. Louis, MO, USA.

<sup>15</sup> Department of Cell Biology and Physiology, Institute for Informatics, Washington University, St. Louis, MO, USA.

<sup>16</sup> Department of Food Science and Technology, National University of Singapore, Singapore.

| Human     | Treatment | Treatment<br>time | TCS metabolites (pmol/ g stool) |         |             |  |  |  |
|-----------|-----------|-------------------|---------------------------------|---------|-------------|--|--|--|
| subject # | rreatment | (months)          | TCS                             | TCS-G   | TCS-Sulfate |  |  |  |
| 2         | no TCS    | 0                 | 14.93                           | < LOD * | < LOD       |  |  |  |
| 5         | no TCS    | 0                 | 13.15                           | 5.21    | < LOD       |  |  |  |
| 6         | no TCS    | 0                 | 10.10                           | < LOD   | < LOD       |  |  |  |
| 7         | no TCS    | 0                 | 23.67                           | < LOD   | < LOD       |  |  |  |
| 9         | no TCS    | 0                 | 540.07                          | < LOD   | < LOD       |  |  |  |
| 11        | no TCS    | 0                 | 19.95                           | < LOD   | < LOD       |  |  |  |
| 14        | no TCS    | 0                 | 10.11                           | < LOD   | < LOD       |  |  |  |
| 2         | no TCS    | 1                 | 22.49                           | < LOD   | < LOD       |  |  |  |
| 5         | no TCS    | 1                 | 13.96                           | < LOD   | < LOD       |  |  |  |
| 6         | no TCS    | 1                 | 18.83                           | < LOD   | < LOD       |  |  |  |
| 7         | no TCS    | 1                 | 9.65                            | 4.99    | < LOD       |  |  |  |
| 9         | no TCS    | 1                 | 25.43                           | 21.75   | < LOD       |  |  |  |
| 11        | no TCS    | 1                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 14        | no TCS    | 1                 | 14.00                           | < LOD   | < LOD       |  |  |  |
| 5         | no TCS    | 2                 | 22.69                           | < LOD   | < LOD       |  |  |  |
| 6         | no TCS    | 2                 | 29.34                           | < LOD   | < LOD       |  |  |  |
| 7         | no TCS    | 2                 | 19.95                           | < LOD   | < LOD       |  |  |  |
| 9         | no TCS    | 2                 | 14.40                           | < LOD   | < LOD       |  |  |  |
| 11        | no TCS    | 2                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 14        | no TCS    | 2                 | 56.73                           | < LOD   | < LOD       |  |  |  |
| 2         | no TCS    | 3                 | 11.79                           | 17.62   | < LOD       |  |  |  |
| 5         | no TCS    | 3                 | 7.44                            | < LOD   | < LOD       |  |  |  |
| 6         | no TCS    | 3                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 7         | no TCS    | 3                 | 5.90                            | < LOD   | < LOD       |  |  |  |
| 9         | no TCS    | 3                 | 7.60                            | < LOD   | < LOD       |  |  |  |
| 11        | no TCS    | 3                 | 7.75                            | < LOD   | < LOD       |  |  |  |
| 14        | no TCS    | 3                 | 11.01                           | 16.46   | < LOD       |  |  |  |
| 2         | no TCS    | 4                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 5         | no TCS    | 4                 | 20.54                           | < LOD   | < LOD       |  |  |  |
| 6         | no TCS    | 4                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 7         | no TCS    | 4                 | 8.75                            | < LOD   | < LOD       |  |  |  |
| 9         | no TCS    | 4                 | 7.48                            | 14.59   | < LOD       |  |  |  |
| 11        | no TCS    | 4                 | < LOD                           | < LOD   | < LOD       |  |  |  |
| 14        | no TCS    | 4                 | 6.77                            | < LOD   | < LOD       |  |  |  |
| 3         | TCS       | 0                 | < LOD                           | 10.69   | 0.311       |  |  |  |
| 4         | TCS       | 0                 | 12.62                           | 5.96    | < LOD       |  |  |  |
| 8         | TCS       | 0                 | 10.84                           | < LOD   | < LOD       |  |  |  |
| 12        | TCS       | 0                 | < LOD                           | < LOD   | < LOD       |  |  |  |

Table S1. Concentrations of TCS, TCS-G, and TCS-Sulfate in human stool samples

| 13 | TCS | 0 | 388.08  | 10.80         | < LOD |
|----|-----|---|---------|---------------|-------|
| 16 | TCS | 0 | 57.90   | < LOD         | < LOD |
| 3  | TCS | 1 | 1094.80 | 1094.80 10.24 |       |
| 4  | TCS | 1 | 225.14  | 13.69         | < LOD |
| 8  | TCS | 1 | 1049.03 | < LOD         | < LOD |
| 12 | TCS | 1 | 626.33  | 2.81          | 0.342 |
| 13 | TCS | 1 | 215.36  | < LOD         | 0.381 |
| 16 | TCS | 1 | 317.47  | < LOD         | < LOD |
| 3  | TCS | 2 | 905.85  | 4.42          | 0.999 |
| 4  | TCS | 2 | 372.82  | 3.18          | < LOD |
| 12 | TCS | 2 | 713.18  | 2.97          | < LOD |
| 13 | TCS | 2 | 245.09  | < LOD         | < LOD |
| 16 | TCS | 2 | 96.24   | < LOD         | < LOD |
| 3  | TCS | 3 | 515.81  | 7.01          | 0.987 |
| 4  | TCS | 3 | 334.49  | 5.96          | < LOD |
| 8  | TCS | 3 | 515.22  | < LOD         | < LOD |
| 12 | TCS | 3 | 400.99  | < LOD         | < LOD |
| 13 | TCS | 3 | 445.98  | 6.49          | < LOD |
| 16 | TCS | 3 | 105.82  | < LOD         | < LOD |
| 3  | TCS | 4 | 633.76  | 7.57          | 0.971 |
| 4  | TCS | 4 | 67.29   | < LOD         | < LOD |
| 8  | TCS | 4 | 968.25  | < LOD         | < LOD |
| 12 | TCS | 4 | 633.96  | 3.12          | 0.236 |
| 13 | TCS | 4 | 135.75  | 4.69          | < LOD |
| 16 | TCS | 4 | 295.56  | < LOD         | < LOD |

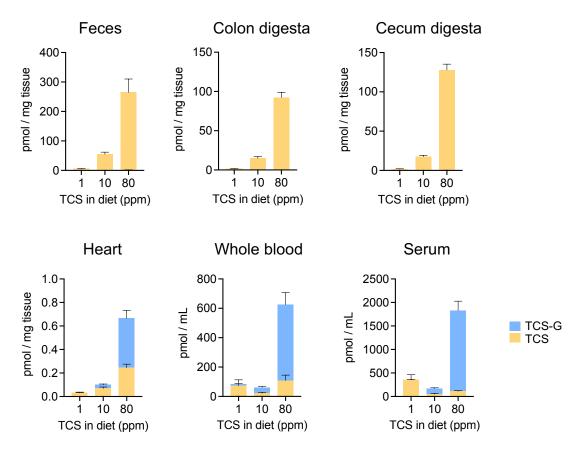
\* LOD: limit of detection.

| Human     | Treatment   | Treatment<br>time | TCS metabolites (nM urine) |             |             |  |  |  |
|-----------|-------------|-------------------|----------------------------|-------------|-------------|--|--|--|
| subject # | ricutilient | (months)          | TCS                        | TCS-G       | TCS-Sulfate |  |  |  |
| 5         | no TCS      | 0                 | < LOD                      | < LOD < LOD |             |  |  |  |
| 9         | no TCS      | 0                 | < LOD                      | 552         | 0.155       |  |  |  |
| 16        | no TCS      | 0                 | < LOD                      | 3.52        | < LOD       |  |  |  |
| 14        | no TCS      | 1                 | < LOD                      | 40.9        | < LOD       |  |  |  |
| 7         | no TCS      | 3                 | < LOD                      | 2.43        | < LOD       |  |  |  |
| 5         | no TCS      | 4                 | < LOD                      | < LOD       | < LOD       |  |  |  |
| 6         | no TCS      | 4                 | < LOD                      | < LOD       | < LOD       |  |  |  |
| 7         | no TCS      | 4                 | < LOD                      | < LOD       | < LOD       |  |  |  |
| 9         | no TCS      | 4                 | < LOD                      | < LOD       | < LOD       |  |  |  |
| 3         | TCS         | 0                 | < LOD                      | 18.4        | 0.071       |  |  |  |
| 4         | TCS         | 0                 | < LOD                      | 3.47        | < LOD       |  |  |  |
| 8         | TCS         | 0                 | < LOD                      | < LOD       | < LOD       |  |  |  |
| 12        | TCS         | 0                 | < LOD                      | 12.5        | < LOD       |  |  |  |
| 12        | TCS         | 1                 | < LOD                      | 626         | 0.470       |  |  |  |
| 12        | TCS         | 2                 | 8.55                       | 953         | 0.522       |  |  |  |
| 13        | TCS         | 3                 | < LOD                      | 771         | 0.157       |  |  |  |
| 3         | TCS         | 4                 | 11.23                      | 1373        | 0.689       |  |  |  |
| 4         | TCS         | 4                 | 5.52                       | 775         | 0.388       |  |  |  |
| 13        | TCS         | 4                 | 3.06                       | 1037        | 0.257       |  |  |  |
| 16        | TCS         | 4                 | 6.42                       | 70.9        | < LOD       |  |  |  |

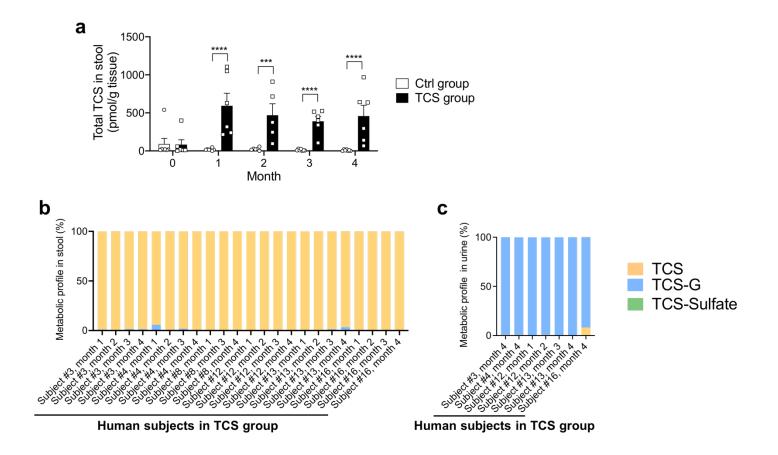
Table S2. Concentrations of TCS, TCS-G, and TCS-Sulfate in human urine samples

|                                                  | R. hominis 3 (Rh3) GUS       | <i>F. prausnitzii</i> 2-L1 (Fp2-L1) GUS<br>+ GUSi-glucuronic acid |
|--------------------------------------------------|------------------------------|-------------------------------------------------------------------|
| Wavelength                                       | 1.00                         | 1.00                                                              |
| Resolution range, Å (highest shell)              | 38 - 2.4 (2.49 - 2.4)        | 42 - 2.2 (2.28 - 2.2)                                             |
| Space group                                      | P 21                         | P 21 21 21                                                        |
| Unit cell (a, b, c, a, b, g; Å, deg)             | 54.4, 161, 86.9, 90, 107, 90 | 114, 128, 177, 90, 90, 90                                         |
| Total reflections                                | 190,354 (19,013)             | 746,484 (75,240)                                                  |
| Unique reflections                               | 55,112 (5470)                | 132,718 (13,115)                                                  |
| Multiplicity                                     | 3.5 (3.5)                    | 5.6 (5.7)                                                         |
| Completeness, %                                  | 98.9 (98.4)                  | 99.9 (99.9)                                                       |
| Mean I/sigma(I)                                  | 18.7 (8.4)                   | 12.7 (3.8)                                                        |
| Wilson B-factor, Ų                               | 23                           | 23                                                                |
| R-merge                                          | 0.050 (0.124)                | 0.103 (0.447)                                                     |
| R-meas                                           | 0.056 (0.147)                | 0.114 (0.492)                                                     |
| R-pim                                            | 0.0319 (0.078)               | 0.0477 (0.204)                                                    |
| CC1/2                                            | 0.997 (0.981)                | 0.997 (0.912)                                                     |
| CC*                                              | 0.999 (0.995)                | 0.999 (0.977)                                                     |
| Reflections used in refinement                   | 55,063 (5469)                | 132,686 (13,115)                                                  |
| Reflections used for R-free                      | 2013 (202)                   | 1999 (198)                                                        |
| Rwork                                            | 0.146 (0.168)                | 0.150 (0.173)                                                     |
| R <sub>free</sub>                                | 0.187 (0.232)                | 0.199 (0.243)                                                     |
| CCwork                                           | 0.969 (0.946)                | 0.970 (0.944)                                                     |
| CCfree                                           | 0.946 (0.839)                | 0.950 (0.908)                                                     |
| Number of non-hydrogen atoms                     | 11,018                       | 20,834                                                            |
| Number of macromolecular atoms                   | 10,112                       | 19,055                                                            |
| Number of ligand atoms                           | 76                           | 164                                                               |
| Number of solvent atoms                          | 830                          | 1615                                                              |
| Number of protein residues                       | 1268                         | 2370                                                              |
| RMS <sub>bonds</sub> Å                           | 0.007                        | 0.008                                                             |
| RMS <sub>angles</sub> deg.                       | 1.2                          | 0.95                                                              |
| Ramachandran favored, %                          | 97.2                         | 96.9                                                              |
| Ramachandran allowed, %                          | 2.77                         | 2.98                                                              |
| Ramachandran outliers, %                         | 0                            | 0.04                                                              |
| Rotamer outliers, %                              | 0.09                         | 0                                                                 |
| Clashscore                                       | 6.01                         | 4.62                                                              |
| Average B-factor, all atoms, Å <sup>2</sup>      | 25.2                         | 20.7                                                              |
| Average B-factor, macromolecules, Å <sup>2</sup> | 24.8                         | 20.1                                                              |
| Average B-factor, ligands, Å <sup>2</sup>        | 30.1                         | 35.5                                                              |
| Average B-factor, solvent, Å <sup>2</sup>        | 29.5                         | 26.0                                                              |

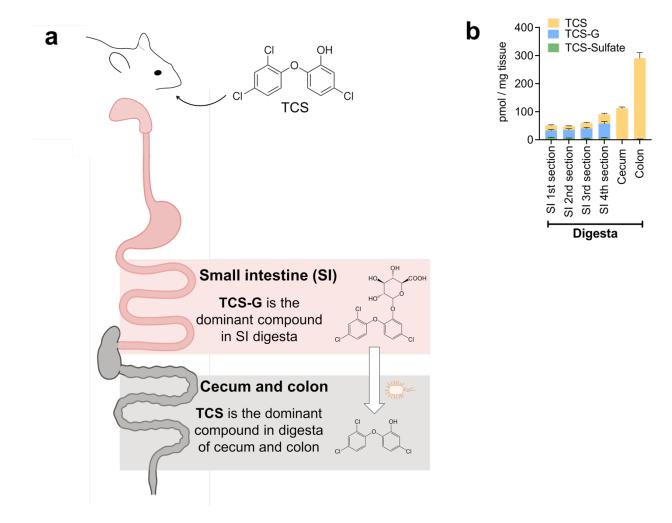
## Table S4. Instrumental method for the quantification of TCS, TCS-G, and TCS-Sulfate


| la staran sa t    | Thermo Scientific Dionex Ultimate 3000 UHPLC system coupled with |                             |                       |  |  |  |  |  |
|-------------------|------------------------------------------------------------------|-----------------------------|-----------------------|--|--|--|--|--|
| Instrument        | a TSQ Quantiva Triple Quadrupole Mass Spectrometer               |                             |                       |  |  |  |  |  |
| Analytical column | ACQUITY UPLC C18 column (1.7 µm particles, 2.1 mm × 100 mm,      |                             |                       |  |  |  |  |  |
| and temperature   | Waters), 30 °C                                                   |                             |                       |  |  |  |  |  |
| Mobile phases     | A. Acetonitrile B. Ammonium acetate (2 mM) in water              |                             |                       |  |  |  |  |  |
|                   | Time (min)                                                       | Percentage A (%)            | Flow rate (mL/min)    |  |  |  |  |  |
|                   | 0.0                                                              | 15                          | 0.30                  |  |  |  |  |  |
|                   | 1.0                                                              | 15                          | 0.30                  |  |  |  |  |  |
|                   | 2.5                                                              | 80                          | 0.30                  |  |  |  |  |  |
| Gradient profile  | 5.0                                                              | 80                          | 0.30                  |  |  |  |  |  |
|                   | 5.5                                                              | 100                         | 0.30                  |  |  |  |  |  |
|                   | 6.5                                                              | 100                         | 0.30                  |  |  |  |  |  |
|                   | 7.0                                                              | 15                          | 0.30                  |  |  |  |  |  |
|                   | 9.0                                                              | 15                          | 0.30                  |  |  |  |  |  |
| Injection volume  | 10 µL                                                            |                             |                       |  |  |  |  |  |
| MS scan mode      | Multiple reaction monitoring (MRM)                               |                             |                       |  |  |  |  |  |
|                   | Analytes                                                         | MRM transition (m/z)        | Collision Energy (eV) |  |  |  |  |  |
|                   | TCS                                                              | $286.89 \rightarrow 35.22$  | 16                    |  |  |  |  |  |
|                   | 100                                                              | $288.89 \rightarrow 35.22$  | 16                    |  |  |  |  |  |
| Monitored MRM     | <sup>13</sup> C <sub>12</sub> -TCS                               | $299.00 \rightarrow 35.22$  | 16                    |  |  |  |  |  |
| transitions       | 012-100                                                          | $301.00 \rightarrow 35.22$  | 16                    |  |  |  |  |  |
|                   | TCS-G                                                            | 463.00 → 287.00             | 15                    |  |  |  |  |  |
|                   | 100-0                                                            | 465.00 → 289.00             | 15                    |  |  |  |  |  |
|                   | TCS-Sulfate                                                      | $366.89 \rightarrow 286.89$ | 15                    |  |  |  |  |  |
|                   |                                                                  | $368.89 \rightarrow 288.89$ | 15                    |  |  |  |  |  |
|                   | Electrospray ionization (ESI): negative ionization mode;         |                             |                       |  |  |  |  |  |
|                   | Capillary voltage (kV) = 2.5;                                    |                             |                       |  |  |  |  |  |
| MS/MS parameters  | Sheath gas (arbitrary units) = 40;                               |                             |                       |  |  |  |  |  |
|                   | •••                                                              | rbitrary units) = 10;       |                       |  |  |  |  |  |
|                   | Ion transfer tube temperature (°C) = 350;                        |                             |                       |  |  |  |  |  |
|                   | Vaporizer temperature (°C) = 300.                                |                             |                       |  |  |  |  |  |

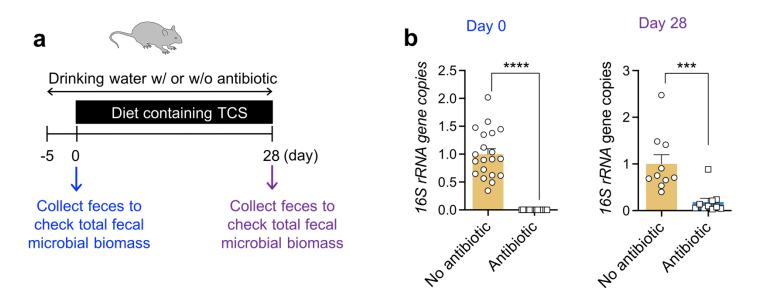
### Table S5. Site-directed mutagenesis


| GUS and Residue<br>Mutation | Forward Primer                               | Reverse Primer                               |
|-----------------------------|----------------------------------------------|----------------------------------------------|
| FpL2-1 M362A                | GAAGTGCCTGCTGTCGGTTTTGCG<br>GAATCTACCATGAACT | AGTTCATGGTAGATTCCGCAAAAC<br>CGACAGCAGGCACTTC |
| FpL2-1 M454A                | CTACGCGGTTGTGGCGATGAGCCT<br>GCCGAACAAC       | GTTGTTCGGCAGGCTCATCGCCAC<br>AACCGCGTAG       |
| FpL2-1 M455A                | CTACGCGGTTGTGATGGCGAGCCT<br>GCCGAACAAC       | GTTGTTCGGCAGGCTCGCCATCAC<br>AACCGCGTAG       |
| FpL2-1 Y479A                | AACCGTTACTATGGTTGGGCCGTTA<br>TGGGTGGCATGGG   | CCCATGCCACCCATAACGGCCCAA<br>CCATAGTAACGGTT   |
| Rh3 F406A                   | CGTGATGGCGGACGTGGCCATGCT<br>GGAAACGGAT       | ATCCGTTTCCAGCATGGCCACGTC<br>CGCCATCACG       |
| Rh3 Y430A                   | CAACCTGTACTTCGGTTGGGCCATC<br>GGTGAACTGGATCAG | CTGATCCAGTTCACCGATGGCCCA<br>ACCGAAGTACAGGTTG |
| Rh3 L635STOP                | CCCGGATTACATTTTCAACTAACAG<br>GGTGACGTTG      | CAACGTCACCCTGTTAGTTGAAAA<br>TGTAATCCGGG      |

### Table S6. Sequences of primers


| Primers for<br>qRT-PCR | Forward primer          | Reverse primer          |
|------------------------|-------------------------|-------------------------|
| Gapdh                  | AGGTCGGTGTGAACGGATTTG   | TGTAGACCATGTAGTTGAGGTCA |
| Tnf-α                  | CCCTCACACTCAGATCATCTTCT | GCTACGACGTGGGCTACAG     |
| <i>II-6</i>            | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC   |
| Мср-1                  | TTAAAAACCTGGATCGGAACCAA | GCATTAGCTTCAGATTTACGGGT |
| <i>II-17</i>           | TCAGCGTGTCCAAACACTGAG   | CGCCAAGGGAGTTAAAGACTT   |
| <i>II-23</i>           | GGTGGCTCAGGGAAATGT      | GACAGAGCAGGCAGGTACAG    |
| ΙΙ-1β                  | GCAACTGTTCCTGAACTCAACT  | ATCTTTTGGGGTCCGTCAACT   |
| II-10                  | GCTCTTACTGACTGGCATGAG   | CGCAGCTCTAGGAGCATGTG    |
| TIr-4                  | ATGGCATGGCTTACACCACC    | GAGGCCAATTTTGTCTCCACA   |
| lfn-γ                  | ATGAACGCTACACACTGCATC   | CCATCCTTTTGCCAGTTCCTC   |
| 16S rRNA               | CCTACGGGTGGCTGCAG       | GACTACTAGGGTATCTAATCC   |
| Primers for sequencing | Forward primer (341F)   | Reverse primer (806R)   |
| 16S rRNA               | CCTAYGGGRBGCASCAG       | GGACTACNNGGGTATCTAAT    |




**Fig. S1. TCS exposure in mice leads to accumulation of free TCS in the colon.** After the mice were treated with 1, 10, and 80 ppm TCS via diet for 4 weeks, the gut tissues (feces, colon digesta, and cecum digesta) are dominated by free TCS while a mixture of TCS and its metabolite (we focused on its major metabolite TCS-G) is observed elsewhere (n = 7-8 mice per group). Part of the figure is modified from Fig. 1b. The data are mean ± SEM. Abbreviation: TCS: triclosan, TCS-G: triclosan-glucuronide.



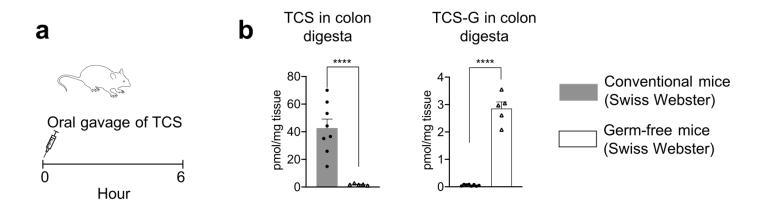
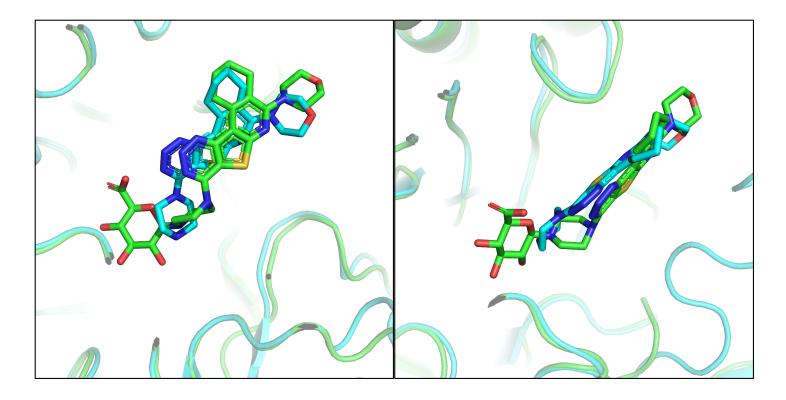
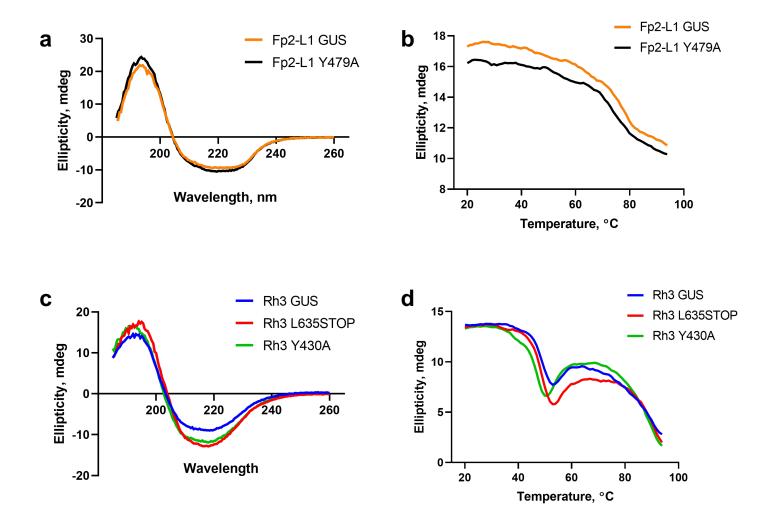
**Fig. S2. TCS exposure in humans leads to accumulation of free TCS in the colon. a.** Concentrations of total TCS (a combination of TCS, TCS-G, and TCS-Sulfate) in human stool samples (n=6-7). **b.** The dominant compound in the stool samples of TCS-exposed human subjects was free TCS (n = 23). The Y-axis is expressed as % metabolic profile; absolute concentrations of TCS and its metabolites are in Table S1. **c.** The dominant compound in the urine samples of TCS-exposed subjects was TCS-G (n = 7). See absolute concentrations of TCS and its metabolites in urine samples in Table S2. The data are mean  $\pm$  SEM, \*\*\**P* < 0.001, \*\*\*\**P* < 0.0001.

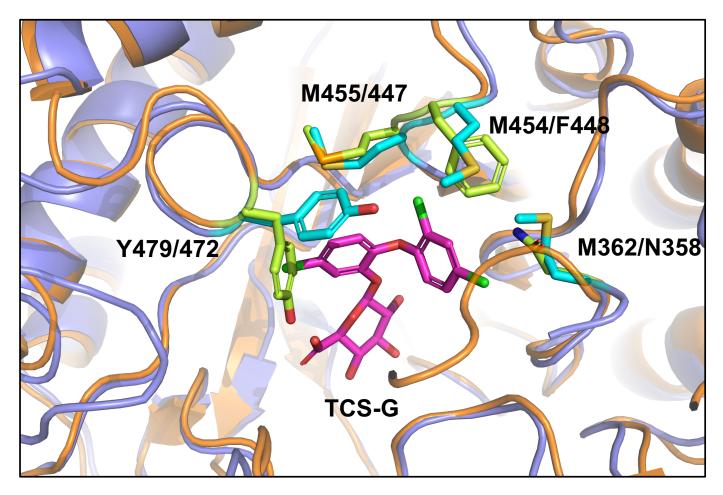


**Fig. S3. Schematic of Core Hypothesis. a.** Hypothesis: gut microbiota participates in the conversion of triclosan-glucuronide (TCS-G), which is derived from host metabolism, to triclosan (TCS), contributing to the accumulation of free TCS in the lower gastrointestinal tract. **b.** In support of this hypothesis, after the mice were exposed to 80 ppm TCS via diet, TCS-G was the dominant compound and free TCS was a minor compound in small intestinal digesta, while free TCS was the most abundant compound in the digesta of cecum and colon (modified from Fig. 1a, n = 10 mice per group). Part of the picture was created with BioRender.com. The data are mean ± SEM.



**Fig. S4. Antibiotic cocktail reduces gut microbial abundance in mice. a.** Mouse feces were collected on day 0 and day 28 and were analyzed using *16S rRNA* gene as a proxy marker for microbial abundance. **b.** *16S rRNA* gene copies in mouse feces showed that antibiotic cocktail treatment caused a significant reduction in fecal microbial biomass on day 0 (n = 20 mice per group) and day 28 (n = 10 mice per group). The data are mean  $\pm$  SEM, \*\*\**P* < 0.001, \*\*\*\**P* < 0.0001.



Fig. S5. TCS is reduced and TCS-G is increased in the colon digesta of germ-free Swiss Webster mice relative to conventional Swiss Webster mice. a. Conventional or germ-free Swiss Webster mice were treated with a one-time oral gavage of 8 mg/kg TCS; after 6 h, the mice were sacrificed and the levels of TCS and TCS-G in colon digesta were analyzed by LC-MS/MS. b. Compared with conventional animals, germ-free Swiss Webster mice had reduced TCS and increased TCS-G in colon digesta. n = 8 mice per group for conventional mice, and n = 5 mice per group for germ-free mice. The data are mean  $\pm$  SEM, \*\*\*\**P* < 0.0001.



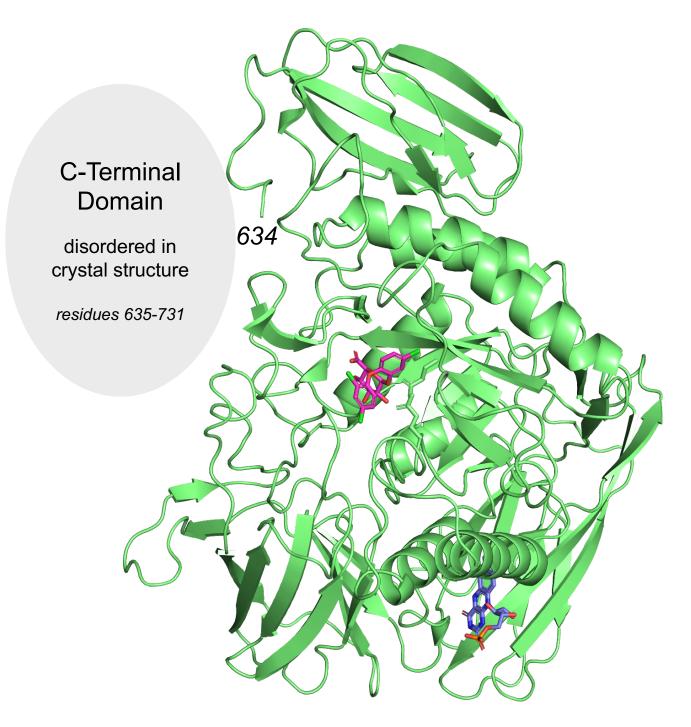
**Fig. S6**. **Comparison of GUSi binding modes between Fp2-L1 GUS and** *C. perfringens* **GUS (PDB 6CXS)**. *C. perfringens* GUS (cyan) was crystallized in the presence of GUSi alone and reveals the ligand bound at the enzyme's active site. Fp2-L1 GUS (green) was crystallized in the presence of GUSi and *p*-nitrophenyl-glucuronide and reveals a covalent GUSi-glucuronic acid conjugate bound at the enyzme's active site that occupies a position akin to that adopted by GUSi alone.



**Fig. S7**. **Circular dichroism analysis of wild-type and mutant GUS proteins. a.** Circular dichroism scan at 20°C of Fp2-L1 GUS wild-type and the Y479A mutant that showed no TCS-G processing activity. **b.** Circular dichroism melting profile from 20 to 94°C at 193 nm of Fp2-L1 GUS wild-type and the Y479A mutant that showed no TCS-G processing activity. **c.** Circular dichroism scan of Rh3 GUS wild-type and the mutants with no activity at 20°C. **d.** Circular dichroism melting profile of Rh3 GUS wild-type and the mutants with no activity at 20°C at 193 nm.



**Fig. S8. Active site of Fp2-L1 GUS (purple) with TCS-G (magenta) docked superimposed on the active site of** *E. coli* **GUS (orange, PDB 3LPF).** *E. coli* GUS, which is also a Loop 1 GUS but a poor processor of TCS-G, exhibits distinct residues (A358, F448; lime) at positions equivalent to residues in Fp2-L1 GUS shown to be critical for TCS-G processing (M362, M455; cyan). Residue labels are "Fp2-L1 GUS / *E. coli* GUS".


LOOP 1 GUS ALIGNMENT - LOOP 1 REGION

| Lactobacillus rhamnosus             | 361 | GFKMAAAAFLGGLNQSFFKG-PW      | 382 |
|-------------------------------------|-----|------------------------------|-----|
| Ruminococcus gnavus                 | 361 | GMMRSTRNFVAAGSGNYTYFFEA-LT   | 385 |
| Faecalibacterium prausnitzii 2-Loop | 360 | GFMESTMNFLAANQGNGKKVGWFEK-ET | 386 |
| Faecalibacterium prausnitzii        | 359 | GFMQSTANFLAANQGNGRQQGFFEK-ET | 385 |
| Escherichia_coli                    | 356 | GFNLSLGIGFEAGN-KPKELYSEEAV   | 380 |
| Streptococcus_agalactiae            | 355 | GLFQNFNASLDLSPKDNGT-WN       | 375 |
| Eubacterium_eligens                 | 369 | GVNLQFGGGANFGG-ERIGTFDK-EH   | 392 |
| Clostridium perfringens             | 358 | GLHLNFMAT-GFGG-DAP-KRDT-WK   | 379 |
| —                                   |     | *•                           |     |

Percent Identity Matrix - LOOP 1 REGION

| 1: Lactobacillus_rhamnosus             | 100.00 | 18.18  | 22.73  | 36.36  | 15.79  | 26.32  | 18.75  | 11.76  |
|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| 2: Ruminococcus_gnavus                 | 18.18  | 100.00 | 52.00  | 56.00  | 4.55   | 13.64  | 21.05  | 30.00  |
| 3: Faecalibacterium_prausnitzii_2-Loop | 22.73  | 52.00  | 100.00 | 77.78  | 12.50  | 29.17  | 28.57  | 27.27  |
| 4: Faecalibacterium_prausnitzii        | 36.36  | 56.00  | 77.78  | 100.00 | 8.33   | 29.17  | 23.81  | 27.27  |
| 5: Escherichia coli                    | 15.79  | 4.55   | 12.50  | 8.33   | 100.00 | 25.00  | 9.52   | 22.73  |
| 6: Eubacterium eligens                 | 26.32  | 13.64  | 29.17  | 29.17  | 25.00  | 100.00 | 19.05  | 22.73  |
| 7: Streptococcus_agalactiae            | 18.75  | 21.05  | 28.57  | 23.81  | 9.52   | 19.05  | 100.00 | 28.57  |
| 8: Clostridium_perfringens             | 11.76  | 30.00  | 27.27  | 27.27  | 22.73  | 22.73  | 28.57  | 100.00 |

Fig. S9. Alignment and percent identity matrix of the Loop 1 region from Loop 1 GUS enzymes. Alignments were performed using the ClustalOmega Multiple Sequence Alignment tool.



**Fig. S10.** The unresolved C-terminal domain of Rh3 GUS (residues 635-731) would be expected to occupy the space indicated adjacent to the Rh3 GUS monomer crystal structure (green) with docked TCS-G in magenta and bound FMN (blue).

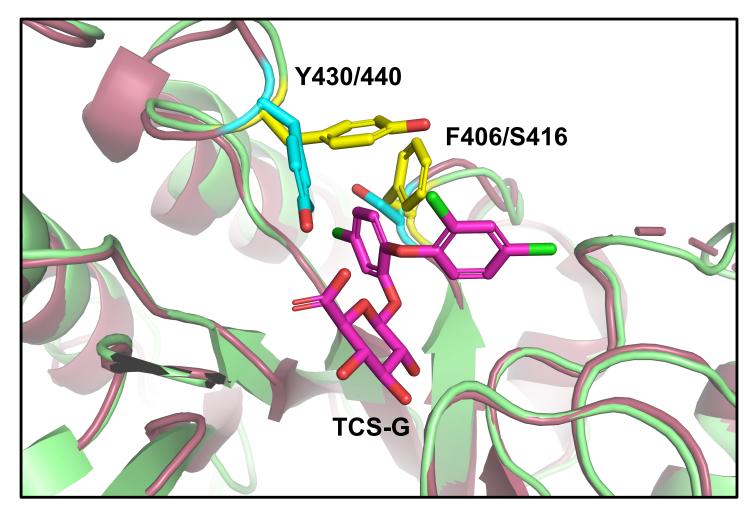



Fig. S11. Active site of Rh3 GUS (green) with TCS-G (magenta) docked superimposed on the active site of Rh2 GUS (maroon, PDB 6MVH). Rh2 GUS, which is also an FMN-binder but a poor processor of TCS-G, contains S416 (cyan) in place of F406 (yellow) in Rh3, a residue that has been shown to be critical for TCS-G processing. Residue labels are "Rh3 GUS / Rh2 GUS".

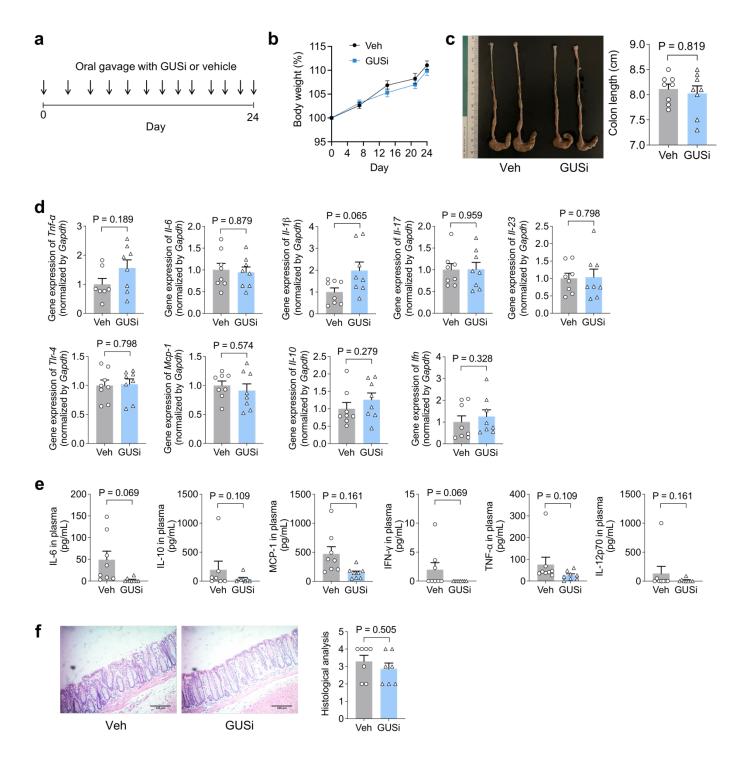
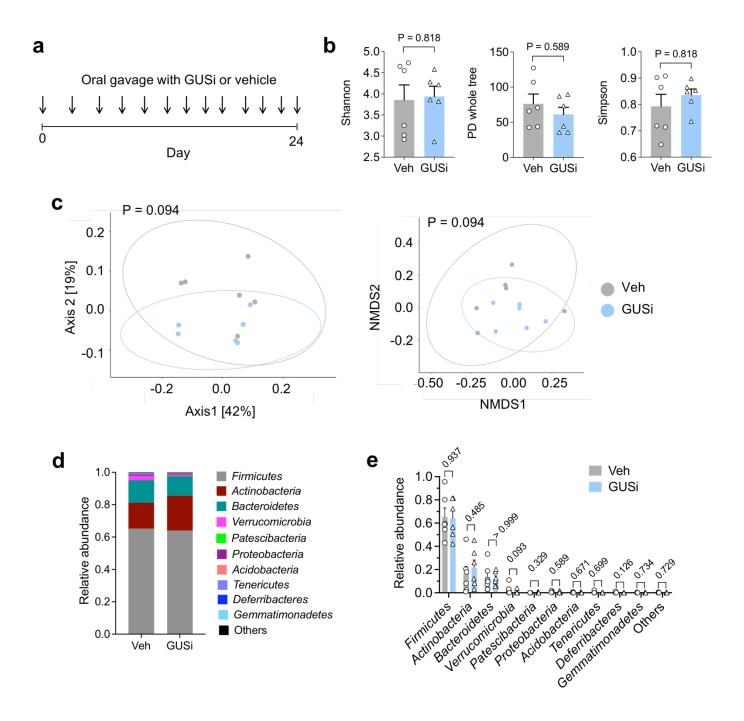




Fig. S12. GUSi treatment has little effect on colonic inflammation in mice. a. C57BL/6 mice were treated with 1 mg/kg GUSi or vehicle by oral gavage. At end of the experiment, the mice were sacrificed and subjected to biochemical analysis. b. body weight. c. colon length. d. qRT-PCR analysis of inflammatory gene expression in colon. e. ELISA measurement of cytokines in plasma. f. histology of colon tissues (scar bar =100  $\mu$ m). The data are mean ± SEM, n = 8 mice per group.



**Fig. S13. GUSi treatment has little effect on the diversity or composition of gut microbiota in mice. a.** C57BL/6 mice were treated with 1 mg/kg GUSi or vehicle by oral gavage. At end of the experiment, fecal material was collected and subjected to *16S rRNA* sequencing. **b.** GUSi has little effect on alpha diversity of the microbiota, as assessed using multiple diversity parameters including Shannon, PD whole tree, and Simpson. **c.** GUSi has little effect on beta diversity of the microbiota, as assessed using (NMDS) analysis. **d-e.** GUSi has little effect on composition of the microbiota at phylum levels. The data are mean ± SEM, n = 6 mice per group.

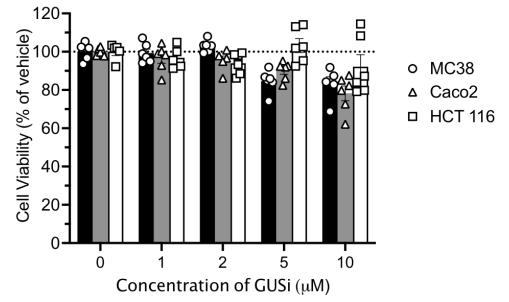
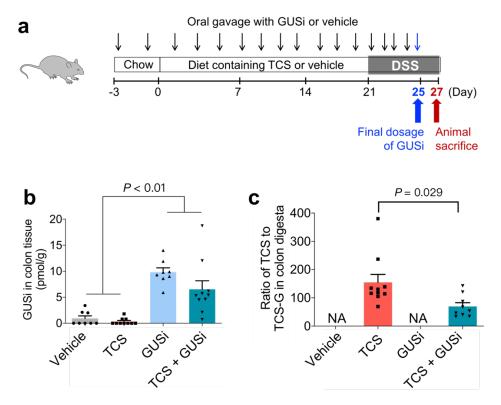




Fig. S14. GUSi treatment has little effect on the proliferation of mouse or human intestinal cells *in vitro*. Mouse (MC38) or human (Caco2 and HCT-116) intestinal cells were treated with GUSi or vehicle (0.2% v/v DMSO) for 24 h, then cell viability was analyzed using a MTT assay. The data are mean ± SEM, n = 5-6 per group.



**Fig. S15. Orally dosed GUSi reaches the mouse colon and suppresses conversion of TCS-G to TCS. a.** C57BL/6 mice were treated with TCS or vehicle via diet, with or without co-administration of GUSi, and then mice were stimulated with DSS to induce colitis. The final GUSi was dosed on day 25 and mice were sacrificed for analysis on day 27. **b.** GUSi is detected in the mouse colon 2 days after the final dose of the inhibitor. **c.** GUSi treatment reduces the ratio of TCS to TCS-G in colon digesta. The data are mean ± SEM, n = 6-10 mice per group. NA: no TCS or TCS-G detected.

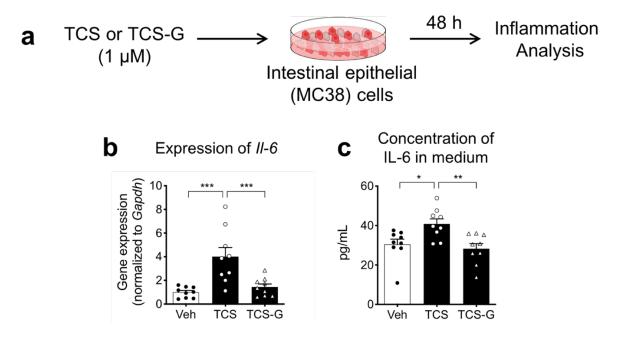



Fig. S16. TCS induces inflammatory responses in mouse intestinal epithelial cells but TCS-G does not. a. Cultured murine intestinal epithelial MC38 cells were treated with 1  $\mu$ M of TCS or TCS-G for 48 h prior to studying inflammatory responses. b. TCS increases the expression of *II*-6, which encodes the pro-inflammatory cytokine interleukin 6 (IL-6), in MC38 cells but TCS-G does not. c. ELISA analysis shows that TCS increases the concentration of IL-6 in cell culture medium of MC38 cells but TCS-G does not. The data are mean ± SEM, n = 3 per group from three independent experiments, \* *P* < 0.05, \*\* *P* < 0.01, \*\*\* *P* < 0.001.

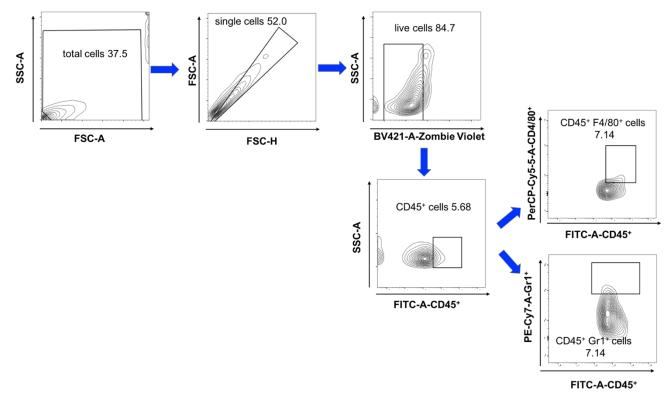



Fig. S17. Gating strategies used for the identification of major immune cell populations. The gating panel corresponds to the FACS data in Fig. 5d.