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ARTICLE

Total energy expenditure is repeatable in adults but
not associated with short-term changes in body
composition

Low total energy expenditure (TEE, MJ/d) has been a hypothesized risk factor for weight

gain, but repeatability of TEE, a critical variable in longitudinal studies of energy balance, is

understudied. We examine repeated doubly labeled water (DLW) measurements of TEE in

348 adults and 47 children from the IAEA DLW Database (mean ± SD time interval:

1.9 ± 2.9 y) to assess repeatability of TEE, and to examine if TEE adjusted for age, sex, fat-free

mass, and fat mass is associated with changes in weight or body composition. Here, we

report that repeatability of TEE is high for adults, but not children. Bivariate Bayesian mixed

models show no among or within-individual correlation between body composition (fat mass

or percentage) and unadjusted TEE in adults. For adults aged 20–60 y (N= 267; time interval:

7.4 ± 12.2 weeks), increases in adjusted TEE are associated with weight gain but not with

changes in body composition; results are similar for subjects with intervals >4 weeks (N= 53;

29.1 ± 12.8 weeks). This suggests low TEE is not a risk factor for, and high TEE is not

protective against, weight or body fat gain over the time intervals tested.

https://doi.org/10.1038/s41467-021-27246-z OPEN

A full list of authors and their affiliations appears at the end of the paper.
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Obesity is a highly prevalent health condition associated
with increased morbidity and mortality1. The social and
environmental factors behind the global obesity pan-

demic remain largely unresolved despite decades of research2.
Nonetheless, the proximate cause of weight gain is an imbalance
between energy intake and expenditure, making reliable mea-
surements of total energy expenditure (TEE) an essential tool in
medical and nutritional research. TEE is a critical variable in
assessing energy balance and weight change, as TEE reflects the
sum of energy expenditure on basal metabolic processes, ther-
moregulation, digestion, physical activity, and all other physio-
logical tasks.

Low TEE has long been hypothesized to be a risk factor for
obesity3,4. However, research in this area has produced mixed
results. Early work using doubly labeled water (DLW) to measure
TEE in free-living subjects found that women with obesity
exhibited a similar body weight- and body composition-adjusted
TEE compared to age-matched normal weight subjects5. None-
theless, studies have reported that infants and children with low
TEE gained more body fat than individuals with a higher TEE4,6,
but conversely that high TEE predicted a high rate of body fat
gain in preadolescent girls7. Two studies reported that adults with
a low 24-h energy expenditure (measured in a whole-room
indirect calorimeter) were more likely to gain body mass over the
subsequent 2.0–6.7 years than individuals with a high energy
expenditure3,8. In contrast, several longitudinal studies have
shown that TEE is not predictive of subsequent changes in body
fat percentage in infants and children9–12 or in adult women13,14.
Energy expenditure measured with heart rate monitoring was
found to be inversely associated with changes in fat mass (FM),
but not in body weight, in participants younger than 54 years, and
was positively associated with weight gain in participants older
than 54 years15.

One methodological consideration that may contribute to the
conflicting nature of these findings is limited sample size.
Changes in weight and adiposity under normal conditions (i.e.,
absent a dietary or other lifestyle intervention) are often slow, at
the limits of detectability over short timescales. For example,
average weight gain for U.S. adults aged 40–69 years is <1 kg/y16.
Large samples are therefore needed to detect factors related to
weight gain under normal conditions.

A second methodological factor that may adversely affect
assessments of TEE and weight change is the reliability of TEE
measurements. If TEE measurements fluctuate over time, due to
physiological or behavioral changes or to measurement error,
then a measurement at any given time point might not be
reflective of average TEE over the period observed for weight
change. Similarly, if TEE measurements are highly variable, dif-
ferences between two time-points might not reflect durable,
lasting changes in TEE but rather transient variation or mea-
surement error. A combination of noisy data with small sample
size may produce spurious results.

Basal metabolic rates and 24-h expenditures measured in
calorimetry chambers have been reported to be repeatable in
humans17 and other animals18–21, but in animals their repeat-
ability declines as the interval between measurements
increases19,22–24. Further, the condition under which animals live
influences the repeatability of metabolic rate, which is lower for
animals living under field versus laboratory conditions23. Less is
known about the repeatability of TEE measurements. TEE was
found to be repeatable when determined in the same five parti-
cipants with a 3-day break between measurements25. Wong and
colleagues26 demonstrated repeatability of TEE measurements for
20–50-year-old adults (N= 50) for durations up to 2.5 years
(Bland-Altman pair-wise comparison showed a lower and upper
limit of agreement between −148 and 137 kcal/d and a paired

t test showed no difference between repeated measures of TEE
P ≥ 0.3). In that study, the time that elapsed between both TEE
measurements ranged from 12 days to 2.5 years, and almost 68%
of those measurements were repeated within 1 year26. To date it is
unclear if repeatability of TEE is related to the duration between
TEE measurements, or whether repeatability differs for children
or for adults older than 50 years.

This study had the following aims: (1) Determine whether
subject age affects repeatability of TEE, and (2) examine if TEE is
associated with changes in weight or body composition. We used
The International Atomic Energy Agency (IAEA) DLW database
(https://doubly-labelled-water-database.iaea.org/home, database
version 3.1.2) which pools DLW data across multiple studies27.
The database contains 6,787 measures of TEE spanning indivi-
duals from 23 countries. All measures of TEE were estimated
using a common calculation method28 removing variation
introduced by choice of equation. We included all individuals that
were at least 1 year old and for which repeated TEE measure-
ments were available (N= 696 TEE measurements of 348 adults
and 114 TEE measurements of 47 children). We estimated
repeatability ‘R’, also referred to as the intra-class correlation
coefficient (ICC), using a mixed effects model framework, where
R describes the relative partitioning of variance into within-group
and between-group sources of variance29–31.

We used two approaches to examine if TEE is associated with
changes in weight or body composition of adults. Firstly, we used
a multi-response model to decompose the covariance between
TEE and FM on a between (rind) and within-individual (re) level,
where rind indicates whether individual mean values of traits
correlate, and where re indicates when the change in one trait
between two time points is correlated with the change in another
trait over the same period within an individual32,33 (see Methods
section). Thus, re represents combined, reversible changes in
traits that occur within an individual, and rind reflects genetic and
permanent environmental effects that are responsible for the
association between the traits32,33. Secondly, we calculated a body
size- and composition-adjusted TEE (see Methods section). We
used linear models to test whether adjusted TEE is associated with
changes in body weight and body fat percentage in all adults
20–60 y (N= 267 adults; time interval: 7.4 ± 12.2 weeks) and in a
subset of individuals (N= 53 adults; 29.1 ± 12.8 weeks) for which
the time between TEE measurements exceeded 4 weeks.

Results
Repeatability estimate R (ICC). We calculated repeatability of
adjusted TEE, which controls for body composition variables
(FFM, FM), sex, and age (see Methods section). For adults and
children together, adjusted TEE was repeatable (R= 0.54, SE=
0.035; CI= 0.472–0.608; PLRT < 0.0001, PPermutation < 0.001;
Fig. 1a). However, repeatability differed markedly between adults
and children. Adjusted TEE was repeatable for adults (R= 0.64,
SE= 0.033; CI= 0.578–0.703; PLRT < 0.0001, PPermutation < 0.001;
Fig. 1b) but not for children (R= 0.00, SE= 0.077; CI= 0.000–
0.262; PLRT= 1.0, PPermutation= 1.0; Fig. 1c).

We calculated repeatabilities of body mass adjusted for the
fixed effects of sex and age. Body mass was more repeatable than
TEE for both adults and children. For adults and children
together, body mass was highly repeatable (R= 0.96, SE= 0.004;
CI= 0.952–0.967; PLRT < 0.0001, PPermutation < 0.001, Fig. 1d).
Body mass was also repeatable for adults (R= 0.94, SE= 0.006;
CI= 0.929–0.952; PLRT < 0.0001, PPermutation < 0.001; Fig. 1e) and
children (R= 0.38, SE= 0.107; CI= 0.166–0.583; PLRT < 0.0001,
PPermutation= 0.012; Fig. 1f) when analyzed separately.

Similarly, alternative analyses using body composition-adjusted
TEE also found repeatability of TEE in adults but not in children

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27246-z

2 NATURE COMMUNICATIONS |           (2022) 13:99 | https://doi.org/10.1038/s41467-021-27246-z | www.nature.com/naturecommunications

https://doubly-labelled-water-database.iaea.org/home
www.nature.com/naturecommunications


(Supplementary Note 1 and Supplementary Fig. 1). Moreover,
repeatability of TEE adjusted for FFM, FM, sex and age did not
change with increasing time between both TEE measurements
(Supplementary Fig. 1a–c).

Is TEE associated with subsequent changes in weight or body
composition? In a first approach, we estimated the decomposi-
tion of covariances between unadjusted TEE and body fat (FM
and body fat percentage) on a between (rind) and within-
individual (re) level by multi-response mixed models (see Meth-
ods section). This analysis allowed us to differentiate between
combined, reversible changes in traits that occur within an
individual (re) and genetic and permanent environmental effects
that are responsible for the association between the traits (rind).
We used two datasets: the entire dataset of adults 20–60 y
(N= 267 subjects; Models 1+ 2) and a subset of individuals
(N= 53 subjects) for which the time between measurements
exceeded 4 weeks (Model 3+ 4; Table 1). These models showed
the same result: there is no within-individual (re), among-

individual (rind), or phenotypic (rp) correlation between TEE and
body fat (both as FM and body fat percentage; Table 1).

In a second approach, we calculated an adjusted TEE, accounting
for the covariation of TEE with FFM, FM, age and sex (see
Methods). Adjusted TEE was not correlated with short-term
changes in body composition, and was correlated with change in
body weight in only one analysis. Adjusted TEE1 (the first time
point) was not associated with change in body weight (estimate ±
SE: −0.001 ± 0.002, t=−0.612, df= 265, P= 0.541, adjusted
R2=−0.002; Fig. 2a) or body fat percentage (estimate ± SE:
0.020 ± 0.017, t= 1.206, df= 265, P= 0.229, adjusted R2= 0.001;
Fig. 2b). The difference in adjusted TEE between measurements was
positively associated with changes in body weight, as subjects with
greater adjusted TEE2 measures tended to weigh more (estimate ±
SE: 0.009 ± 0.003, t= 2.563, df= 265, P= 0.01, adjusted
R2= 0.020; Fig. 2c). Average adjusted TEE was not associated with
changes in body weight (estimate ± SE: 0.001 ± 0.003, t= 0.396,
df= 265, P= 0.692, adjusted R2=−0.003). Neither average
adjusted TEE nor the difference in adjusted TEE between

Fig. 1 Repeatability estimates of total energy expenditure (TEE) and body mass. Repeatability estimates of a–c TEE and d–f body mass at the individual
level. Shown are distributions of the parametric bootstrap samples along with the point estimate of the repeatability estimate R (blue point) and the limits
of the confidence interval (gray lines). a, d show all individuals together (N= 395 subjects), b, e show adults (N= 348 subjects) and c, f show children
(N= 47 subjects) separately.

Table 1 Phenotypic (rp), among-individual (rind), and within-individual (re) correlations between unadjusted TEE and FM (Models
1+ 3) and unadjusted TEE and body fat percentage (Models 2+ 4).

Model Traits rp (95% CI) rind (95% CI) re (95% CI)

A Model 1 TEE × FM −0.07 (−0.16–0.04) −0.09 (−0.21–0.05) 0.04 (−0.10–0.16)
Model 2 TEE ×% FM −0.04 (−0.14–0.07) −0.01 (−0.15–0.12) −0.05 (−0.19–0.06)

B Model 3 TEE × FM 0.09 (−0.16–0.31) 0.07 (−0.29–0.40) 0.29 (−0.02–0.47)
Model 4 TEE ×% FM 0.19 (−0.06–0.38) −0.23 (−0.14–0.50) 0.18 (−0.09–0.40)

A shows result using the entire dataset (N= 267 subjects) and B shows the results using a subset (N= 53 subjects) for which the time between measurements exceeded 4 weeks. Correlations are
presented with 95% credible intervals (CIs).
TEE total energy expenditure, FM fat mass, % FM body fat percentage.
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measurements were associated with body fat percentage (avg.
adjusted TEE: estimate ± SE: 0.017 ± 0.019, t= 0.906, df= 265,
P= 0.336, adjusted R2=−0.0006; difference in adjusted TEE:
estimate ± SE: −0.023 ± 0.022, t=−1.042, df= 265, P= 0.298,
adjusted R2= 0.0003; Fig. 2d).

We obtained similar results in the analysis restricted to subjects
with more than 4 weeks between TEE measurements. Adjusted TEE1
was not associated with change in body weight (estimate ± SE:
−0.004 ± 0.002, t=−1.704, df= 51, P= 0.094, adjusted R2= 0.035;
Supplementary Fig. 2a) or body fat percentage (estimate ± SE:
−0.0005 ± 0.006, t=−0.076, df= 51, P= 0.940, adjusted
R2=−0.019; Supplementary Fig. 2b) in these subjects. As in the
full dataset, the difference in adjusted TEE between measurements
was positively associated with changes in body weight (estimate ± SE:
0.010 ± 0.002, t= 4.278, df= 51, P < 0.0001, adjusted R2= 0.249;
Supplementary Fig. 2c). Average adjusted TEE was not associated
with changes in body weight (estimate ± SE: 0.0003 ± 0.003,
t= 0.100, df= 51, P= 0.921, adjusted R2=−0.019). Neither average
adjusted TEE nor the difference in adjusted TEE between
measurements were associated with body fat percentage (avg.
adjusted TEE: estimate ± SE: 0.0006 ± 0.007, t= 0.085, df= 51,
P= 0.933, adjusted R2=−0.019; difference in adjusted TEE:
estimate ± SE: 0.002 ± 0.007, t= 0.312, df= 51, P= 0.756, adjusted
R2=−0.017; Supplementary Fig. 2d).

Change in adjusted TEE was negatively correlated with change
in FM and positively with change in FFM within an individual
(Supplementary Note 2 and Supplementary Fig. 3a–d), when
using the change in FFM (kg/week), FM (kg/week), and TEE (MJ/

week) between the two repeated TEE measurements in alternative
analyses. We found the same results when restricting the analyses
to a subset of individuals (N= 53) for which the interval between
repeated TEE measurements was longer than 4 weeks, (Supple-
mentary Note 2 and Supplementary Fig. 3e–g).

Discussion
Our findings show that TEE measurements are repeatable in
adults, also in adults older than 50 y, and over extended periods of
time. The stability in adjusted TEE among adults is remarkable
given the degree to which body weight and composition changed
among subjects in our sample.

The repeatability estimate R (also ICC) for TEE adjusted for
FFM, FM, sex, and age was high for adults (0.64), and in the range
of previously reported estimates for mass-adjusted metabolic rates
(range: 0.5–0.7) of small mammals19–21,24,34,35. Within adult
humans, some individuals exhibit consistently high TEE for their
body size and composition, while others are consistently low. These
metabolic profiles are durable over 8+ y (Supplementary Fig. 1a-c)
and, as far as can be determined here, throughout adulthood.

The environmental, genetic, and behavioral contributions to
maintaining high or low adjusted TEE remain unclear. While we
lack independent measures of physical activity for subjects in this
dataset, changes in FFM suggest exercise has a relatively modest
effect on the magnitude or maintenance of adjusted TEE. For
adults 20–60 y, changes in FFM, an indirect proxy for strenuous
physical activity, were positively associated with changes in
adjusted TEE. However, there are numerous forms of physical
activity that do not lead to changes in FFM and thus, objective
measures of physical activity are needed to further examine the
effects of behavior on the maintenance and repeatability of
adjusted TEE.

Typically, repeatability sets an upper limit to heritability36,37,
and thus the high repeatability of adult TEE may indicate some
degree of heritability and genetic influence. A sibling study in
humans (37 siblings aged 5–9 y) reported a low heritability
(h2= 0.11) of TEE adjusted for resting metabolic rate38. Alter-
natively, TEE could exhibit considerable developmental plasticity,
but remain stable in adulthood after the closure of some critical
developmental window. For example, Pontzer39,40 has argued
that adjusted TEE is largely constrained and under homeostatic
control, and that adjusted TEE develops during childhood and
adolescence in response to environmental cues regarding activity
demands and food availability. Plasticity in TEE through child-
hood would be in line with the low degree of repeatability for
children in this study. More work is needed to investigate the
ontogeny of metabolic physiology, variability in adjusted TEE
throughout childhood, and the establishment of high versus low
adjusted TEE in adults.

The multi-response models showed that TEE and body fat
(both FM and body fat percentage) were not correlated at the
within- or among-individual level. Models using the entire dataset
of adults 20–60 y (N= 267 subjects) and those using a subset of
individuals (N= 53 subjects) for which the time between mea-
surements exceeded 4 weeks showed the same results. These
results are further strengthened by our analyses of the relation-
ship between changes in body composition and weight and TEE,
after accounting for its covariation with FFM, FM, age, and sex. If
greater TEE was protective against gaining fat, then subjects with
greater adjusted TEE, or positive changes in adjusted TEE, should
have experienced less weight and fat gain. Instead, we found a
positive relationship between the difference in adjusted TEE
between measurements and change in body weight (in both
datasets), and no relationship between any measure of adjusted
TEE (time 1, difference between measures, or average) and

Fig. 2 Relationship between adjusted total energy expenditure (TEE), the
difference in adjusted TEE between measurements and changes in body
weight and body fat percentage. Relationship between adjusted TEE (MJ/
d; adjusted for FFM, FM, age, and sex) at the first measurement and
a changes in body weight and b changes in body fat percentage until the
second TEE measurement, and the relationship between the difference in
adjusted TEE between measurements (i.e., adjusted TEE2 – adjusted TEE1),
and c changes in body weight (linear regression line is shown and shaded
area indicates 95% confidence interval) and d changes in body fat
percentage until the second TEE measurement (N= 267 subjects aged
20–60 years; yellow circles present females and gray triangles present
males).
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change in body fat percentage (in both datasets) among adults in
our sample. The similarity between the results in both datasets
indicates that these findings are not an artefact of measurement
error or short time intervals. It is noteworthy that there was a
trend towards a negative relationship between adjusted TEE1 and
change in body weight (P= 0.094) in the subset of individuals for
which the period between repeated TEE measurements was
longer than 4 weeks, but none of the other relationships indicated
that TEE is associated with changes in body weight or compo-
sition in this subset. Therefore, we cannot rule out the possibility
that TEE would be associated with small changes in body weight
over much longer timeframes. But the results of the current study
are consistent with those of previous work conducted on
adults13,14 and children9–12 which reported no relationship
between TEE and change in body fat percentage.

Our analyses of weight change with TEE change (Fig. 2c) are
particularly informative regarding the relationship between
expenditure and weight change. In a simple model in which
changes in TEE resulted directly in equivalent changes in weight,
we would expect to observe a ratio of ~7MJ per kg41; every
additional ~7MJ burned would reduce weight by 1 kg. Adult TEE
is ~10MJ/d, and thus every 10% change represents 1 MJ/d or
7MJ/week. This simple model would predict a negative slope of
−0.1 for Fig. 2c: subjects who increase TEE by 10% should
experience weight loss at ~1 kg/week, while those who decrease
TEE by 10% should experience a ~1 kg/week weight gain. This
modeling approach is a limited first-approximation because we
do not know the time course of TEE change between measure-
ments and the ratio of MJ/kg will vary with different tissues.
Nonetheless, the observed relationship between TEE and weight
changes, which is positive in our sample, clearly challenges the
expectation that decreased TEE is associated with weight gain.

This study is limited by the lack of additional physiological or
behavioral measures. Objective measures of physical activity would
enable us to examine the contribution of changes in daily activity to
observed changes in TEE and body composition. Similarly, mea-
sures of organ size or resting expenditure would enable us to
investigate whether age-related changes in organ size and activity
affect repeatability in TEE, particularly among children. As the
DLW database expands, the addition of more associated variables
such as organ size and activity will strengthen its utility.

Humans, like other species, exhibit a substantial degree of var-
iation in TEE. Even after accounting for the effects of physical
activity and anthropometric variables such as FFM, individuals can
still vary by 20% or more42. Our analyses here show that having a
“fast” or “slow” metabolism is a repeatable, durable trait for adults
that is consistent over years. However, we find no evidence that
subjects with lower adjusted TEE are at increased risk of gaining
body fat, nor that higher adjusted TEE protects against weight gain.
The causes and consequences of metabolic variation in humans
remain a critical focus for future investigation.

Methods
Criteria for inclusion of individuals from the IAEA DLW database. We included
all individuals in the IAEA DLW database (https://doubly-labelled-water-
database.iaea.org/ home) which had their TEE measured at least twice and that
were at least 1 year old. Only healthy individuals and those not involved in athletic
competition or training were included. This resulted in 696 TEE measurements of
348 healthy adults and 114 TEE measurements of 47 children (22 girls and 25
boys). These repeated TEE measurements were collected from 225 women (age
range at the first TEE measurement: 21–81) and 123 men (age range at the first
TEE measurement: 22–82). No repeated TEE measurements were available
between the ages of 7–20 years. For children, 32 measurements were collected at
age 2, 41 measurements at age 4, and 41 measurements at age 6). For 20 children,
three repeated measurements were available. We excluded TEE measurements
from children younger than 1 year because the relationship between TEE and FFM
in this age group appears to differ from that for older children11. Mean time
interval between two TEE measurements of the same individual was 1.9 ± 2.88 y

(range: 0.04–8.2 y). 66.0% were repeated TEE within 1 y, 14.2% were repeated 2–4 y
after initial TEE measurement, and 19.8% were repeated 5–8 y after initial TEE
measurement. All measurements (body weight, TEE, FFM, and FM) were obtained
directly from the IAEA DLW database. Dilution space (a measure of the total body
water pool) and FFM hydration (water content of FFM) are an integral part of the
determination of body composition and TEE, and we corrected measurements for
age- and body weight-related variation in dilution space and FFM hydration. FFM
measurements included in this study were estimated via the isotope dilution
method, and FM and body fat percentage were determined by subtracting FFM
from body weight.

All of the studies that provided data into the IAEA DLW database were locally
ethically reviewed and approved. The present paper is based on a secondary
analysis of these compiled data and such analyses do not require ethical
permission.

Repeatability estimate ‘R’. We estimated repeatability R as R= VG/(VG+ VR),
where VG= inter-individual variance and VR= intra-individual variance30. The
estimate R is more generally also referred to as the intra-class correlation (ICC).
This estimate has previously been used to estimate the reproducibility of metabolic
rate measurements in animals18,34,43,44.

Statistical analysis
Repeatability estimate R. All analyses were conducted using R version 3.6.245.
Repeatabilities are tested at the boundary and tests are therefore typically one-
tailed, and all other tests were two-tailed. We estimated repeatability R using a
mixed effects model framework in the R package rptR30. We included FFM, FM,
sex, and age as fixed factors. Controlling for these fixed effects removes the
influence of their variance from the estimate R30. Thus, we estimated the adjusted
repeatability of TEE, after controlling for the body composition variables, age, and
sex as sources of variation in the dataset. We ln-transformed the response variable
TEE and the fixed factors FFM and FM, and used individual ID as random factor.
In a first step, we estimated R of TEE for all individuals older > 1 y (N= 395
individuals) together. But because the relationship between FFM and TEE may
change in children as their levels of physical activity and the relative size of
metabolically active organs change during development, we predicted R of TEE of
children would be lower than that of adults. Thus, we estimated R of TEE also for
children (2–6 y; N= 47 individuals) and adults (21–89 y; N= 348 individuals)
separately. We also assessed whether body mass, after controlling for age and sex,
was repeatable for all individuals together, and adults and children separately.

We estimated confidence intervals for repeatabilities by parametric
bootstrapping. We used likelihood ratio tests (LRT) and permutation tests to test
for statistical significance against the null hypothesis that TEE is not repeatable.
LRTs compare the fit of the model including the grouping factor of interest (here
individual ID) and one excluding that factor, which constrains the group-level
variance to zero. Permutation of residuals randomizes the grouping factor against
the response variable, followed by refitting the model to the randomized data. R
varies from 0 to 1 and we considered TEE to be repeatable if the 95% confidence
interval around R did not include zero.

Is TEE associated with short-term changes in weight or body composition? We
restricted this analysis to a subset of individuals aged 20–60 y (N= 267). We
excluded children from this analysis due to their continued somatic growth and
expected increase in TEE during aging11, and we excluded subjects older than 60 y
because TEE, FFM and FM are all known to decrease at this age46,47. We used two
approaches to address this question.

In a first approach, we evaluated covariations among TEE and FM (Model 1)
and among TEE and body fat percentage (Model 2) by fitting two multivariate
Bayesian mixed models using the package MCMCglmm48, including individual ID
as random factor. We included sex, age and FFM as fixed factors. We fitted the
fixed effect FFM only for the trait TEE because FFM is the main predictor of TEE
(see Supplementary Table 1b) and also known to account for a large proportion of
between-individual variation in TEE49–51. We repeated this analysis using a subset
of subjects for which the time between measurements exceeded 4 week (N= 53) to
evaluate covariations among TEE and FM (Model 3) and among TEE and body fat
percentage (Model 4). We partitioned phenotypic variances and covariances into
within- and between-individual components32 using an unstructured
variance–covariance matrix48. We calculated correlations between traits at the
phenotypic (rp), among-individual (rind), and within-individual (re) level. All
continuous variables were standardized to a mean of 0 and a variance of 1. We
estimated the correlation between both traits by comparing the
variance–covariance divided by the square root of the product of variances52. We
used inverse gamma priors, and MCMC sampling scheme of 900,000 total
iterations with a 30,000 iteration burn-in and sampling (thinning) interval of 250.
This yielded Monte Carlo Markov Chains with a sample size of 3480. We estimated
the level of non-independence between successive samples in the chain using the
‘autocorr’ function in the coda package53. For all models, we ran three independent
chains and assessed MCMC convergence and mixing visually by plotting the traces
and densities of sampled values across iterations, and confirmed convergence using
the Gelman-Rubin convergence criterion (all < 1.1) using the coda package53.
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In a second approach, we calculated a body size- and composition-adjusted
TEE, which accounts for the covariation of TEE with body size and composition.
We calculated an adjusted TEE for each subject at each time point based on a
multiple regression model with TEE as the dependent variable and FFM, FM, age,
and sex as independent variables (Supplementary Table 1). We ln-transformed
TEE, FFM, and FM for these models. Using the predicted TEE and observed TEE
for each measurement, we calculated adjusted TEE as

adjusted TEE ¼ ðObserved TEE=predicted TEEÞ ´ 100

An adjusted TEE of 120% indicates a measured TEE that is 20% greater than
predicted from body composition variables; an adjusted TEE of 80% is 20% less
than predicted, and so on. We tested whether adjusted TEE1, the mean of adjusted
TEE1 and adjusted TEE2, or the difference between adjusted TEE1 and adjusted
TEE2 (i.e., adjusted TEE2 – adjusted TEE1) were associated with changes in body
weight and body fat percentage using linear models. Moreover, we tested whether
the change in adjusted TEE per week was associated with future changes in body
weight and body fat percentage using linear models.

We analyzed the full 20–60 y dataset (N= 267) as well as the subset of subjects
for which the time between measurements exceeded 4 week (N= 53). The latter
analysis of longer-duration measurements reduces the potential effect of
measurement error on the calculated rate of FFM and FM change. Short-term
variations in body weight are mainly due to changes in FFM and to a smaller extent
due to changes in FM54. Small errors in the determination of FFM, either due to
measurement imprecision, variation in the hydration of FFM (used to calculate
FFM from isotope dilution), will lead to errors when determining the rate of
change (kg/wk) for both FFM and FM. Short time intervals between repeated TEE
measurements will inflate these errors, exaggerating the calculated rate of change.
Restricting our analysis to subjects for which the interval between repeated TEE
measurements was longer than 4 weeks reduces this effect.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data supporting the analyses and results in this paper are available from the Doubly
Labeled Water Database (https://doubly-labelled-water-database.iaea.org/home, https://
www.dlwdatabase.org/) upon reasonable request. Because of human study participant
confidentiality the database is not open access. However, access to components of the
data is freely available to perform novel and approved analyses. Details of the
application process are available at https://doubly-labelled-water-database.iaea.org/
dataAnalysisInstructions. Data published in this paper will be provided normally within
3 weeks of receipt of the request. Such data has unrestricted use except we ask users not
to share the data with others or post it on social media or other internet sites. If users
wish to publish analyses of such provided data, we ask that they adhere to the
procedures established to ensure fair credit for those contributing the data into the DLW
database.

Code availability
We provide the source code used to perform analysis and output files through the OSF
repository (https://osf.io/6q2kz/).
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