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Abstract
Wepropose amethod to study the thermodynamic behaviour of small systems beyond theweak
coupling andMarkovian approximation, which is different in spirit from conventional approaches.
The idea is to redefine the system and environment such that the effective, redefined system is again
coupledweakly toMarkovian residual baths and thus, allows to derive a consistent thermodynamic
framework for this new system–environment partition. To achieve this goal wemake use of the
reaction coordinate (RC)mapping, which is a generalmethod in the sense that it can be applied to an
arbitrary (quantumor classical and even time-dependent) system coupled linearly to an arbitrary
number of harmonic oscillator reservoirs. The core of themethod relies on an appropriate
identification of a part of the environment (the RC), which is subsequently included as a part of the
system.We demonstrate the power of this concept by showing that non-Markovian effects can
significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime
ofweak system–bath coupling. Furthermore, we show for a single electron transistor coupled to
vibrations that ourmethod allows one to justifymaster equations derived in a polaron transformed
reference frame.

1. Introduction

Classical thermodynamics is a weak coupling theory in the sense that boundary or surface terms of the system are
negligible compared to its bulk or volume properties. This becomes particularly apparent inMaxwell’s
colloquial description of the zeroth law of thermodynamics: ‘all heat is of the same kind’[1]. By this statement he
meant that the laws governing the transformation of heat are independent of howwe put two different systems
into contact—a conclusionwhich obviously holds only if the influence of this contact can be neglected. Other
implications of theweak coupling approximation are, for instance, the extensiveness of internal energy or
entropy if we scale the volume of a system [2].

While theweak coupling approximation can bewell justified formacroscopic systems due to simple
geometric arguments (the surface to volume ratio usually decreases with increasing volume), it is harder to
justify in the opposite limit when the volume of the systembecomes very small. This, however, is the regime
where quantumand stochastic effects dominate. Then, in order to linkmicroscopic theorywith
thermodynamics, one usually starts with aHamiltonian of the form

( )= + +H H H H , 1S E I

whereHS (HE) is theHamiltonian of the system (environment) andHI describes their interaction (the ‘contact’).
Assuming that the couplingHI is small, one then performs a perturbative expansion up to second order inHI

which (under the additional assumption that the environment ismemory-less) yields a closed andMarkovian
evolution equation for the systemdensitymatrix rS, known as a (quantum)master equation (ME).We note that
similar assumptions are needed to derive (classical) Fokker–Planck or Langevin equations.MEs derived this way
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can then be shown to have a transparent thermodynamic interpretation [3–5] and they provide thework horse
for thefield of quantumand stochastic thermodynamics, see [6–10] for recent reviews.

However,many interesting physical effects cannot be captured with such aME approach and thus,
quantum and stochastic thermodynamics is still restricted to a small regime of applicability. Consequently,
many groups have started to look at thermodynamics in the strong coupling and non-Markovian regime
[11–37]. Though these works present important theoretical cornerstones, they are still far away from
providing a satisfactory extension of thermodynamics beyond the weak coupling limit. In particular, if one
wishes to address the performance of a steadily working heat engine, the general results derived in [11–21] are
not of great help because they either focus on integrated changes of thermodynamic values (e.g., the total heat
exchanged in a finite time instead of the rate of heat exchange) and additionally rely on an initially
decorrelated system–environment state [11–13] and/or coupling only to a single thermal reservoir [11, 13–
17];or they remain very formal [18–21]. Furthermore,model-specific studies are either based on simple or
exactly solvablemodels from the field of quantum transport [22–25] and quantumBrownianmotion [26–29],
or spin-bosonmodels [30–32] often in combinationwith specific transformations applicable only to special
Hamiltonians (polaron transformations) [31, 33–36]; or the investigations are restricted to numerical
studies [37].

The goal of this paper is to close the gap between the general results, which are often hard to apply in practice,
and studies restricted to overly specificmodels. Here, we propose a frameworkwhich allows to carry over all
concepts known from theweak coupling regime of thermodynamics to the strong coupling andnon-Markovian
regime (wewill in fact see that strong coupling is easier to treat than non-Markovianity)3. Our framework is
general in the sense that it can be applied to an arbitrary (quantumor classical4 and even driven) system coupled
linearly to an arbitrary number of harmonic oscillator heat baths. Thus, apart fromnot being able to treat, e.g.,
fermionic reservoirs at themoment, we capturemany relevant situations encountered in the study of small-scale
engines.

The general idea is to give up the system–environment partition as it is dictated by themicroscopic
Hamiltonian(1). Instead, we define a new ‘supersystem’which includes this part of the environment which is
responsible for strong coupling and non-Markovian effects. By construction the resulting supersystemwould be
coupledweakly toMarkovian residual baths and can be treatedwithin the standard framework of quantumor
stochastic thermodynamics.More specifically, to achieve this idea, wewill identify a collective degree of freedom
in the reservoir which is then incorporated into the description of the system. This collective degree of freedom is
known as a reaction coordinate (RC) [38], whichwill capture non-Markovian and strong coupling effects. For
this ‘supersystem’ (original systemplus RC)wewill derive theME as usual allowing for a transparent
interpretation of the laws of thermodynamics.We note that a complementary analysis of quantumOtto cycles in
the strong coupling regime, also employing theRCmapping, appears in a relatedwork byNewman et al [39].
Apart from the thermodynamic applications we propose here, it has been shown that such a RCmapping and
related concepts can provide a very accuratemethod to investigate the behaviour of open quantum systems for a
variety of problems [40–51]. Evenmore generally, it is possible to apply thismethod iteratively by including
several RCs and in this way one can prove that every non-Markovian environment can bemapped to a
Markovian one [52–54].

Apart from adapting this generalmethod to treat heat engines in the strong coupling and non-Markovian
regime, we also consider concrete applications. In particular, we find that non-Markovian effects can
significantly enhance the steady state efficiency even in theweak coupling regime; a result which—to the best of
our knowledge—has not been found before. In addition, we also investigate the relation between ourmethod
and thewidely used polaron transformation, showing that the RC framework provides ameans to justify
particular polaron transformedME (PME), and reduces to it under special circumstances.

Outline:Wewill start by introducing the general technique of the RCmapping in section 2 as far as it is
needed tomake the present treatment self-consistent. After having established this tool, wewill present the
general thermodynamic framework based on it in section 3. Particular applications to devices working out of
equilibrium then follow in section 4 (efficiency study of amaser heat engine in the non-Markovian regime) and
section 5 (a single electron transistor (strongly) coupled to vibrations). Final remarks about the range of validity,
open problems and the thermodynamic interpretation of themethod are given in section 6.

3
Wewish to remark that, though often correlated, the concepts of strong coupling and non-Markovianity can be defined separately.

Especially, a system can be strongly coupled to an environment but behave purelyMarkovian and, vice versa, it can be coupled veryweakly
but behave strongly non-Markovian.
4
The notationwe are using is adapted to the quantummechanical situation but all transformations carry over to the classical situation, too.
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2. Reaction coordinatemapping

Weconsider an arbitrary systemwithHamiltonianHS(t) coupled linearly via some systemoperator s to a bath of
harmonic oscillators (the coupling to several baths follows straightforwardly from this treatment, see next
section). The totalHamiltonian is assumed to have the typical Brownianmotion form [55, 56]

( ) ( )å w
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withmass-weighted positions xk andmomenta pk of the bath fulfilling [ ] d=x p, ik l kl (we set  º 1 throughout).
It is worth to point out that the completion of the square is important for a number of reasons, e.g., to guarantee
a thermodynamically stableHamiltonian for all coupling strengths ck [57]. In the derivation ofMEs one often

neglects the quadratic system ‘renormalization’ term å w
sk

c1

2
2k

k

2

2 from the beginning, though its contribution is, in

principle, of the same order as the Lamb shift term.
An important result of themicroscopic theory of Brownianmotion is that the effect of the bath on the system

can be captured solely by one special function known as the spectral density (SD) of the bath:
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The SD is a positive function for w > 0 andmust fulfill ( )w J 00 for w  0 and w  ¥.
Now, the spirit of the RCmethod is to define the interactionwith the collective degrees of the freedomof the

bath as one new coordinate: the RCX1 (see figure 1). Hence, we seek a transformationwhichmaps

( )å l=c x X , 4
k

k k 0 1

where l0 is an unspecified parameter so far.More formally, we perform a normalmode transformation of the
form

( )= L = LX x P p, . 5

Here, we used a vector notation for the collection of original and transformed bath coordinates andmomenta,
e.g., ( )= ¼ ¼x x xx , , , ,k N1

T describes the original bath coordinates. For definiteness we considered afinite
number ofN bath oscillators (having the limit  ¥N inmind). Furthermore,Λ is an orthogonalN×N
matrix, i.e., L = L-1 T, which guarantees that [ ] d=X P, ik l kl . Thus,Λ has ( )-N N 1

2
independent components

which arefixed by the requirement that the collection of residual bath oscillators (i.e., all oscillators except the
RC itself) is of normal form. This leads to

( )åw dL L = W 6
k

k lk mk lm l
2 2

for ¹l 1 and ¹m 1and allows us tomap theHamiltonian(2) to
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Here, we used lL = - ck k1 0
1 which follows from equation (4). Furthermore, we defined wW º å Lk k k1

2 2
1
2 and

wº -å L LCk l l kl k
2

1. Finally, the system gets renormalized due to d wW º å - ck k k0
2 2 2 and from [ ] =X P, i1 1 we

can deduce that l = å ck k0
2 2.

At this point we can already recognize an important property of themapping. Suppose thatwe scale the
coupling coefficients ck by  ac ck k for some a Î . Then, the only parameters influenced by this will be l0

Figure 1. Sketch of the RCmapping. Before themapping (left figure) the system can be visualized as being coupled to a large number
of harmonic oscillators, see equation (2). After themapping (rightfigure) the system couples to the RConly, but in turn the RC is
coupled to a large number of residual oscillators as described by theHamiltonian(17).
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and dW0, i.e., all information about the overall original systembath coupling strength is captured in the system
RC coupling and a system renormalization term. The remaining terms, especially the new coupling coefficients
Ck, are independent of the initial coupling strengthα.

Now, the crux of thematter is that we do not have to determineΛ directly; instead, the normalmode
transformation can be fully fixed by knowledge of the SD ( )wJ0 only [38]. To see this wefirst of all note that all
relevant quantities of the system andRC itself can be expressed in terms of the original SD as follows:
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The effect of the residual environment on the system andRC is itself captured by the new SD
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and the remaining task is to relate ( )wJ0 to ( )wJ1 .Wewill here use the prescription given byMartinazzo et al [53]
whohave shown the following relation under reasonablemild conditions5
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For completeness wewill present a derivation of this result in appendix A. Similarmethods to link the SDs can be
found in [38, 48, 52, 54]. In equation (12), ( )W z0 denotes theCauchy transformof ( )wJ0 given by
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Furthermore, one can also show that (see [53] or appendix A again)
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Relation(15) allows us to rewrite theHamiltonian(7) in a Brownianmotion form [49]
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whichmakes its thermodynamic stability evident. Hence, the physical frequency of the RC is not given by W1but
by the square-root of equation (15).

Finally, we note that the power of the RCmapping also comes from the fact that it can be applied iteratively.
This then yields a chain of RCswhere the last one is coupled to a residual environment. Remarkably, the relation
between the SDs, equation (12), still carries over to this situation (replacing the index 0 by n and the index 1 by
+n 1, where n labels the different RCs) and also all other parameters can be defined in terms of the SD as in

equations (8)–(10) [52–54]. Furthermore and very importantly, thefixed point of this iteration scheme is a
Markovian SD [53] and the necessary conditions for convergence to aMarkovian SDwereworked out in [54]
and are fulfilled for the situation considered here6. Thus, already at this timewe can conclude that the
dependence on the initial coupling strength is absorbed by including only oneRC (amore critical discussion of
this point is shifted to section 6)while strong non-Markovianitymight require several RCs.

5 ( )wJ0 should be continuous and strictly positive for ( )w wÎ 0, R and zero for w wR , where wR denotes a cutoff frequency [53].
6
In the theory of Brownianmotion,Markovian behaviour is ensured by anOhmic SDwhich scales linearly withω up to a high enough

frequency cutoff wR and then falls off to zero [55].We stress, however, that the correct definition of non-Markovianity in the quantum
mechanical context is non-trivial,may not be guaranteed by this condition alone, and is undermuch debate at themoment, see, e.g.,
[58–60].
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3.Nonequilibrium thermodynamics within theRC framework

Wenow imagine the situationwhere our system is coupled to several reservoirs labeled by ν andwhere the time-
dependent driving is responsible for work extraction and injection. The obvious generalization of the
Hamiltonian(2) to this situation is
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where the coupling to reservoir ν ismediated by the systemoperator sνwhichmight be all different for different
ν. A sketch of a possible scenario is shown infigure 2.We can then decide to include zero, one or several RCs for
each reservoir depending on the coupling strength and the shape of the SD. Again, all whatwe need to know for
thismapping are the SDs ( )( ) wnJ0 for each reservoir ν. The same transformations as introduced in section 2will
carry over in exactly the sameway to the situation ofmultiple reservoirs. It is in particular worth pointing out
that eachRCmapping is a unitary transformation only on theHilbert space of bath ν, i.e., it leaves the systempart
and all other baths fully untouched. This feature allows us to really present a general thermodynamic framework
valid for any system, which is coupled to its environment in the prescribedway.

After having included a sufficient number of RCs, the next step is to define a new ‘supersystem’ consisting
out of the original system and all RCs. The idea is then to treat this supersystemwithin the standard Born–
Markov secular (BMS) approximation, assuming that the bath of the residual oscillators is in thermal
equilibrium, and to derive aMarkovianME for the supersystem. ThisME then has a transparent
thermodynamic interpretation (aswewill review below for reasons of consistency) and this is indeed the
strength of our approach: byfinding this part of the environment which acts as an ideal, weakly coupled and
memory-less thermal bathwe are able to provide a formally clean definition of heat, which has a very precise
meaning in thermodynamics and does not simply equal the energyflowing into the surroundings in the general
(i.e., non-Markovian and strongly coupled) case. Besides this fact, it is worth pointing out here that already
including one RC can give remarkable numerical results in agreement with the formally exact hierarchical
equations ofmotionmethod, as it was recently shownby Iles-Smith et al [48, 51]. Further research in this
directionwas also conducted in [40–46].

The standard framework of quantum thermodynamics starts with amicroscopically derivedMEof the form
[4–6, 8–10]
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Here, ( )r t denotes the densitymatrix and ( )¢H tS theHamiltonian of the supersystem, i.e., the system andRCs.
The time-dependence of ( )¢H tS might result from an initial time-dependence ofHS(t). For example, in case of a
single RCwe have (see equation (17))
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Furthermore, the dissipators or thermal generators ( )( ) n t are of Lindblad form [61] and fulfill local detailed
balance, i.e.

( ) ( )( ) ( ) =n b- ¢nt e 0, 21H tS

Figure 2. Sketch of a system coupled to a hot reservoir (red, blurred oscillators) and a cold reservoir (blue oscillators). After the
mappingwe have, as an example, included oneRC for each reservoir to account for non-Markovian and strong coupling effects. Note,
however, that we do not have to include a RC if the reservoir is weakly coupled andMarkovian, or wemight have to include two or
more RCs in case of strong non-Markovianity. After themappingwe then treat the system andRCs as one new system as indicated by
the shaded grey box.
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where bn is the temperature of reservoir ν andwhich tells us that the ratio of backward to forward transition
rates is given by a Boltzmann factor for the case of a Pauli rateME for a non-degenerate supersystem
Hamiltonian7 [4].We remark that, strictly speaking, aMEof the form(19) can only be derived for a slow time-
dependence ofHS(t). However, using techniques fromFloquet theory it is also possible to derive aME for
(strong) periodic driving [61]with a similar thermodynamic interpretation [8, 10, 62]. For an arbitrary driving
HS(t) there is no guarantee tofind a simpleME for the system, but a thermodynamic analysis can be still carried
out [63] (see also the general treatment [12]).

We nowdefine the internal energy and entropy of the supersystem via

( ) { ( ) ( )} ( ) { ( ) ( )} ( )r r rº ¢ º -E t H t t S t t ttr , tr ln . 22S

Thefirst law of thermodynamics then acquires the form
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wherewe identified the rate of work (power) done on the supersystem and the heatflow coming from reservoir ν
as8
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d S . The second law stipulates that the rate of entropy production
˙ ( )S ti is always positive
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It is possible to prove equation (26) by use of Spohn’s inequality stating that [3]

{[ ( ) ( )][ ( ) ]} ( )( ) ( ) r r r- -n nt t ttr ln ln 0 27eq

for every ν and ( ) ( )r ºn b
n

- ¢n Ze H t
eq

S . By summing equation (27) over νwe obtain the second law. At this point we
wish to emphasize thatwithin our theory the reservoirs ν enter additively (or separately) in thefirst and second
law of thermodynamics, which is reminiscent of the fact that the RCmapping can be applied to each bath
separately as indicated infigure 2. Especially, the temperatures (and chemical potentials) of the residual baths are
still the same andwell-defined.

Finally, if the system is undriven it will eventually reach a steady state and the first and second law become

˙ ˙ ( )( )å= +
n

nW Q0 , 28

˙ ˙ ( )( ) åb= -
n

n
nS Q 0. 29i

To indicate thatwe are at steady state, we dropped the time dependence on all quantities and for simplicity we
will exclusively focus on the steady state regime for the rest of this paper.We also note that even for an undriven
system theremight be still a work source present (i.e., ˙ ¹W 0) by identifying awork reservoir appropriately, see
section 4, or due to the possibility of particle transport (‘chemical work’), see section 5.

Beforewe proceed to illustrate our theory with examples of heat engines working out of equilibrium, itmight
beworth to stress a simple consequence of our treatment at equilibrium. If the supersystem is time independent
and in contact with only one reservoir at inverse temperatureβ, it will relax to an equilibrium state

( )r  ¥ ~ b- ¢t e HS such that the equilibrium state of the original system is [48]

( ) { } ( )r  ¥ ~ b- ¢t tr e . 30H
S RC

S

In appendix Bwewill demonstrate that this state is consistent to lowest order perturbation theory in the coupling
to the residual bathwith the conventionally usedHamiltonian ofmean force as introduced byKirkwood [64]. In
particular, this state in general does not equal the canonical equilibrium state of the system alone, i.e.,

( )r  ¥ ~ b-t e H
S

S. Experimentally, deviations from the canonical state b-e HS might be a clear indicator for
persistent system environment correlationsmaking it necessary to go beyond the Born approximation, e.g., by

7
If we also allow for particle transport by coupling the system to a particle reservoir with chemical potential mn , we have the relation

( )( ) [ ( ) ] =n b m- ¢ - ¢n nt e 0H t NS S insteadwhere ¢NS is the particle number operator of the supersystem.
8
In presence of particle transport the heatflow ˙ ( ) ( ) ( )( ) ( ) ( )m= -n n

n
nQ t I t I tE M is composed of an energy current

( ) { ( ) ( ) ( )}( ) ( ) r= ¢n nI t H t t ttrE S and amatter current ( ) { ( ) ( )}( ) ( ) r= ¢n nI t N t ttrM S flowing into the supersystem. The first law then predicts
energy conservation, ( ) ˙ ( ) ( )( )= + ån

nE t W t I t
t

d

d E , and particle number conservation, ( ) ( )( )= ån
nN t I t

t

d

d M .
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using the RCmapping. Given the SDof the reservoir, it should be then possible to test the prediction(30) in an
actual experiment.

4. Application I: three-level-maser heat engine

4.1. Standard treatmentwithout RC
Possibly one of the simplest heat engine one can think of consists of three time-independent levels described by
theHamiltonian

∣ ∣ ( )å= ñá
=

H i i 31
i

iS
0

2

with   < <0 1 2. The idea behind this engine is themodel of a simplemaserwhich is lasing at a particular
transition, say «0 1. This lasing corresponds to ‘work’ output and it is achieved due to population inversion
between the levels ∣ ñ0 and ∣ ñ1 . This in turn can bemediated via a third level ∣ ñ2 due to the presence of two heat
reservoirs at different temperatures (called the ‘hot’ and ‘cold’ reservoir respectively), also see figure 3 for a
sketch. Initially, thismodel was investigated in 1959 [65], but it is still of interest today [66–70].

The coupling to the reservoirs ismediated by the systemoperators
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Here, in units where  = 1, the parameter  has units of an energy or frequency such that sνhas the same units as
the coordinates nxk, of the bath oscillators. However, in all numerical calculations which followwewill simply
set  º 1.Within the standard approach (BMS approximation for the systemonly) the thermal generators ( ) n

in equation (19) of each bath become

( ) {[ ( )] ( ) }

( ) {[ ( )] ( ) }

( ) {[ ( )] ( ) }

( )
( )

( )
( )

( )
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
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  

  

=
D

+ D + D

=
D

+ D + D

=
D

+ D + D

J
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J
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1 ,

1 .

h
h

h h

c
c

c c

w
w

w w
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20 02 20 20

0 21
21 12 21 21
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Here, we have introduced the dissipator ∣ ∣ ∣ ∣ {∣ ∣ } r r rº ñá ñá - ñái j j i j j ,ij
1

2
, the Bose distribution

( ) ( )D º -n
b D -nn e 1ij

1ij and the SDs ( )( ) wnJ0 of bath ν are evaluated at the transition frequency  D º -ij i j.
Given the prescription of section 3, it is not hard to compute the thermodynamic behaviour of our system.

At steady state thefirst law becomes ˙ ˙ ˙= + +W Q Q0 h c with ˙ ˙ºW Qw while the second law states that
˙ ˙ ˙ b b b- - -W Q Q 0w h

h
c

c . To quantify the performance of work extraction (i.e., ˙ <W 0), we introduce the
efficiency of the heat engine:

Figure 3. Sketch of themaser heat engine where theworkingmedium comprises three discrete levels and each transition is coupled to
a separate reservoir called the hot (‘h’, red), cold (‘c’, blue) andwork (‘w’, green) reservoir. The black arrows indicate the direction in
whichwe define energy flows to be positive.
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˙
˙

( )h
b b
b b

º
-

=
D
D

-
-

W

Q
, 33

h
c h

c w

10

20

where the inequality is a consequence of the second law. Furthermore and very remarkably, it is possible to show
that the efficiency of themaser heat engine is always given by the ratioD D10 20 independent of all other
parameters (as long as ˙ <W 0, of course).

Note that to completely justify the notion of a ‘work reservoir’, we should take the limit b  0w [69, 70],
which complies with Sommerfelds notion of temperature as the ‘work value of heat’ [71]. In this limit the
entropy change ˙b- Ww in thework reservoirw goes to zero, the second law acquires the form

˙ ˙ b b- -Q Q 0h
h

c
c and the efficiency(33) is bounded byCarnot efficiency h = -1 T

TCarnot
c

h
.Microscopically,

however, we recognize that the Bose distribution ( )Dnw 10 diverges for b  0w (though Ẇ remains finite),
unless we additionally require that the bath SD scales like ( )( ) bD = D GJ w

w w0 10 10 for small bw. In this ideal limit
we then obtain

( ) ( )( )  = G +
b 
lim , 34w

w
0

01 10
w

i.e., the rates of upward and downward transitions are equal. However, for all numerical results reported below
we take bw to be small but non-zero.

Now, our approach is to consider the situationwhere it is actually not valid to apply this BMSME for the
systemonly. For instance, this could be due to a structured (non-Markovian) SD. In this case, one should
actually use a non-MarkovianME for the system (e.g., the Redfield equation [61]). However, the
thermodynamic interpretation of non-MarkovianMEs is not clear and has not been established yet. In contrast,
within our approachwe know that we can include a RC into our description in order to account for non-
Markovian effects on the three-level system (3LS)while the 3LS andRC evolve in aMarkovianway. Any
deviations from the efficiencyD D10 20 then indicate non-Markovian and/or strong coupling effects whichwe
would be unable to detect by using the naiveME approach outlined in this section.

4.2. Thermodynamics withRC
For definiteness we choose the SDof the cold bath to be parameterized as

( )
( )

( ) ( )( ) w
gw

w w g w
w w=

- +
Q -J

d
, 35c

0
0
2

2
0
2 2 2 2 R

while we still assume that it is safe to apply theMarkov approximationwith respect to the interactionwith the
hot andwork reservoir. Thus, by following the prescription of section 2we obtain themodified system
Hamiltonian

∣ ∣ ( )å
l
d

d
l

¢ = ñá + +
W

-
W

=

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥H i i P X s

1

2
, 36

i
i cS

0

2

1
2 0

2

0
2 1

0
2

0

2

and the SD ( )( ) wJ c
1 of the residual cold bath is determined by equation (12). Infigure 4we plot ( )( ) wJ c

0 and
( )( ) wJ c

1 for comparison.
At this point it is noteworthy that similarmodels have been also used in quantumbiology tomodel light-

harvesting complexes [72, 73]. Indeed, guided by thismotivation, a number of researchers have started to

Figure 4.Plot of the SDs ( )( ) wJ c
0 (equation (35), blue, solid) and ( )( ) wJ c

1 (determined by equation (12), orange, dashed) over w w0 for
two different values of γ and d0: g w w= =d0.035 , 0.060 0 0 (left) and g w w= =d0.47 , 0.670 0 0 (right) and w w= 3R 0 in both cases.
We recognize a pronounced peak at w w» 0 for small γ in ( )( ) wJ c

0 whereas the shape of ( )( ) wJ c
1 remains rather unaffected.
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investigate light-harvesting complexes from a heat engine perspective [74, 75] thoughwewish to stress that the
models used there are not exactly the same as the one used here. Furthermore, [74]models thework reservoir
effectively as a zero temperature reservoir, which causes divergences in the standard thermodynamic formalism.
In [75] the polaron transformationwas used in order to access strong coupling effects.Wewill introduce this
transformation in section 5 for a differentmodel to compare it with our RCmethod.

To proceedwefirst of all note that the systemHamiltonian can be alternatively written as

∣ ∣ ∣ ∣

(∣ ∣ ∣ ∣) ( )

 



d d

l l
d

¢ = D +
W

ñá + D +
W

ñá

- ñá + ñá + +
W

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

H

X P X

4
1 1

4
2 2

2
1 2 2 1

1

2
, 37

S 10
0
2

20
0
2

0
1 1

2 0
2

0
2 1

2

wherewemade use of the fact that we can choose the ground state energy of the 3LS arbitrarily and set it to
 º 00 . ThisHamiltonian describes a Rabimodel (harmonic oscillator coupled to a two-level system) plus one
additional energy level ∣ ñ0 . Especially note that the energy levels of state ∣ ñ1 and ∣ ñ2 get both shifted by the same
amount dW 40

2 . In theweak coupling (but non-Markovian) regime—inwhichwewish to compare our
extendedmodel with the one treated before—these terms become negligible small.

To investigate the thermodynamic behaviour of our system,wewill nowuse aMEwhich is explicit
concerning the system-RC interaction, but treats the coupling to the other reservoirs perturbatively and in a
Markovianway. Following standard procedures [6, 8, 9, 61] it is then possible to derive the BMSMEof the
form(19)with time-independentHamiltonian ¢HS and dissipators

( ) n . Thus, the thermodynamic treatment
follows straightforwardly from section 3 and is formally equivalent to themodel of section 4.1.Hence, thefirst
and second law become at steady state

˜̇ ˜̇ ˜̇ ( )= + +Q Q W0 , 38
h c

˜̇ ˜̇ ˜̇ ( ) b b b- - -Q Q W0 . 39h
h

c
c

w

Now, however, we used a tilde on all energyflows because they are numerically different from the corresponding
quantities in section 4.1. Likewisewe introduce the efficiency of our engine for ˜̇ <W 0 as

˜
˜̇

˜̇
( )h =

-W

Q
, 40

h

which is also bounded by theCarnot efficiency in the limit b  0w .
Because it is not possible to diagonalize theHamiltonian(37) in a simplemanner, one has to treat theME

numerically, and technical details of the derivation are presented in the appendix C.We also note that we
decided to compare theMEbased only on the Born andMarkov approximation (i.e.,without secular
approximation)with the BMSME.The latter is usually only well justified for systemswhere the level spacing is
much larger than the level broadening. This becomes increasingly questionable formore complex systemswith
many different (and not alwayswell separated) eigen frequencies. On the other hand, the advantage of the BMS
ME is that the resulting generator is of Lindblad form and allows for amathematically clear proof of Spohn’s
inequality(27) [3, 8, 61]. In the numerical results reported below, however, we never found any violation of the
second law evenwhenwe used theMEwithout secular approximation.

Figures 5–7 shownumerical results obtained from themodel without RC (dashed lines, see section 4.1) and
withRC (with (solid lines) andwithout (dots) secular approximation) for a specific choice of parameters. This
choicewas done to illustrate—fromour point of view—interesting features ofMarkovian and non-Markovian
heat engines.However, a detailed investigation of themodel is beyond the scope of the paper andwould also be
questionable because themodel from section 4.1 clearly is a simplified toymodel. Nevertheless, wewish to
remark that the qualitative behaviour of our numerical results remains the same for awide range of parameters.
Furthermore, we have focused on plots of the efficiency andwork, which are both of great interest in
thermodynamics: obviously, wewant to have a large power output, but on the other hand, a large power output
does notmean that our engineworksmore efficiently. In fact, if we possess a heat enginewith low power output
but high efficiency, we can also build amachinewith high power output and the same efficiency by running
several of thesemachines in parallel. Hence, we think efficiency is amore universal quantity onwhich one
should putmore emphasis in the study of heat engines in the strong coupling and non-Markovian regime.

Turning to thedetails,we can infer fromfigure 5 two important points. First, our approachpredicts an efficiency
enhancement of 10%–20% in comparison to the standard theoretical framework fromsection 4.1.Weherenote that
itmakes sense to compare themodelwithout andwithRCbecause all parameters of the latter are completelyfixedby
the initialmodel.We simplyuse twodifferent theoreticalmethods to study the same engine, but only the latter allows
to capture, e.g., non-Markovian effects. The secondpoint tonote concerns the secular approximation.Whereas for a
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Figure 5.Comparison of the efficiency (top) and the dimensionless work flow ˙ ( )wGW h 0 (bottom) of the non-Markovian heat engine
including the RC (BMSME: blue solid lines;MEwithout secular approximation: black dots) and the correspondingMarkovian theory
without RC from section 4.1 (orange dashed lines) as a function of the level splitting wD21 0. The insets zoom into the region indicated
by the grey box in themain figues. Parameters of the SD(35) are w=d 0.01040 0

2, g w= 0.0176 0, w w= 588R 0, and w = 0.170 .
Furthermore, we chose wD = 2.5310 0, b w = 0.0017w 0 , b w = 0.17h 0 and b w = 17c 0 (implying aCarnot efficiency of
h = 0.99Carnot ). Finally, to completely specify themodel we also need to fix the SDs of the hot andwork reservoir, which are
determined by the coupling rates G = G20w h and G = 0.001h , see appendix C.

Figure 6.Comparison of the efficiency, the dimensionless work flow ˙ ( )wGW h 0 and the dimensionless heatflow ˙ ( )( ) wGQ c
h 0 into the

cold reservoir of the non-Markovian heat engine including the RC (BMSME: blue solid lines;MEwithout secular approximation:
black dots) and the correspondingMarkovian theorywithout RC from section 4.1 (orange dashed lines)as a function of γ (see
equation (35)). All parameters are as in figure 5 except that wD = 4.1220 0.
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large parameter regime it seems tobe remarkablywell justified, it can also completely fail bypredicting anearly
hundred times larger power output for the case wD »21 0 (interestingly, this effect cancelswhenwe compute the
efficiency). In fact, if this resonance condition ismet9,many energy levels are very close to eachother (thoughnever
exactly degenerate) and anaive applicationof the secular approximation is not justified.

Infigure 6we show the efficiency, work and heatflow as a function of γ. Aswe can infer from equation (35)
(also seefigure 4) a smaller γ implies a stronger peaked SD ( )( ) wJ c

0 . Thus, γ can be seen as ameasure of the non-
Markovianity of the SD and figure 6 proves that this is the cause of the efficiency enhancement. This justifies our
claim that non-Markovianmachines can significantly outperform theirMarkovian counterparts even at steady
state10. Physically, the reason for this can be traced back to the Purcell effect which predicts an enhanced
spontaneous emission rate for the «1 2 transition in presence of a (resonant) cavity [76] and thus allows for a
stronger population inversion between the states ∣ ñ0 and ∣ ñ1 . By including the RCwe can indeed capture this
effect which is clearly beyond the ‘naive’Markovian treatment of section 4.1. Furthermore, figure 6 also shows
thatwe recover the results from section 4.1 in the limit of large γ. In fact, for large γ the SDdoes not only become
moreMarkovian, but also the SD ( )( ) wJ c

1 of the residual cold bath is directly proportional to γ, see
equation (C.14), such that the RC evolves on time-scalesmuch shorter then the 3LS and can be adiabatically
eliminated. Furthermore, figure 6 also shows that the BMSMEof the supersystem completely fails in this
regime. This behaviour can be traced back to the fact that the secular approximation does not commutewith the
adiabatic elimination of the RC, i.e., the time-scales involved in the coherent evolution of the system are of the
same order as the dynamics of the relaxation due to the residual cold bath.

Finally, figure 7 shows the thermodynamics as a function of the system-RC coupling strength d0 (or the
coupling strength between the 3LS and the cold reservoir, respectively). Again, we can observe a strong efficiency
enhancement and an almost perfect agreement between the secular and non-secularME. Furthermore, we
observe that the efficiency decreases as a function of d0 while the power outputfirst increases up to a certain
critical coupling strength and then starts to decrease again (note that the power output for the 3LSME from
section 4.1 reaches a constant value for  ¥d0 instead). In fact, for all parameters we have checkedwe always
observed a decreasing efficiency as a function of d0.Whether this is a general feature ormodel specific remains an
open question, whichmight be eventually answerable within the RC framework.

5. Application II: single electron transistor coupled to vibrations

5.1.Model andRCmapping
As a second applicationwe consider a single quantumdot in contact with two fermionic reservoirs (typically
called a single electron transistor) and additionally coupled to a bath of phonons. Relatedmodels have been

Figure 7.Comparison of the efficiency and the dimensionless workflow ˙ ( )wGW h 0 (inset) of the non-Markovian heat engine
including the RC (BMSME: blue solid lines;MEwithout secular approximation: black dots) and the correspondingMarkovian theory
without RC from section 4.1 (orange dashed lines) as a function of the system-RC coupling strength wd0 0

2 (note that l=d0 0 in our
case, see appendixC). All parameters are as in figure 5 except that wD = 4.1220 0.

9
Note that w0 equals the frequency of the RC for large cutoff frequency wR , see appendixC.

10
Note that [37] also demonstrates an increased ability to extract work due to non-Markovian effects. However, [37] did not study the

efficiency and focused on transient effects,making it unclear whether a steadily working heat engine can be better than itsMarkovian
counterpart.
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studied, e.g., in [33, 34, 77–80], in order to understand electronic transport throughmolecules where the
phonon bathmodelsmolecular vibrations. Here, as well as outlining anothermodel applicable to the RC
method, we alsowish to compare with the polaron transformation, a technique frequently used to access the
regime of strong system–phonon coupling [31, 33–36, 79, 80].Wewill discuss whatwemean by that inmore
detail at the end of section 5.2.

The globalHamiltonian can bewritten as

( )–= + + +H H H H H . 41dot el el dot ph

The electronic part of the system is described by

( )†=H d d, 42dot

( )†åå=
n

n n nH c c , 43
k

k k kel

( ) ( )–
† †*åå= +

n
n n n nH t c d t dc , 44

k
k k k kel dot

where (†)d and (†)
nck, are fermionic annihilation (creation) operators of the dot and the reservoir with associated

on-site energy ò and lead energy  nk . Furthermore, the dot is connected to two leads { }n Î L R, with tunneling
amplitudes ntk . The interaction of the dotwith the phonon bath is assumed to be

( )†å w
w

= + -
⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤

⎦
⎥⎥H p x

h
d d

1

2
. 45

q
q q q

q

q
ph

2 2
2

2

Here, we denoted the coupling coefficients to the phonon bath by hq becausewe already use nck for the electrons
in the fermionic reservoirs.

Next, again in order to overcome the limitations of the usual BMSMEwe employ the RCmapping, this time
to the phonon bath. This transforms the system and phonon part to (see equation (7))

( )

( )

† † å

å å

w
l+ = + - + + W

- + + W

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H H

h
d d d dX P X

X C X P X
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2

1

2

1

2
.

q

q

q

q
q q

q
q q q

dot ph

2

2 0 1 1
2

1
2

1
2

1
2 2 2

Wenow identify our supersystem to be

˜ ( ) ( )† † l¢ = - + + WH d d d dX P X
1

2
46S 0 1 1

2
1
2

1
2

with ̃  wº + å hq q q
1

2
2 2 whereas the interactionwith the phonon bath is described via = - åH X C Xq q qI

ph
1

and the residual phonon bathHamiltonian becomes ( )= å + WH P Xq q q qB
ph 1

2
2 2 2 . Note that this does not exactly

correspond to themapping(17), but now theHamiltonian is closer to the literature towhichwewish to
compare our results [33]. Furthermore, the spectrumof ¢HS is still bounded frombelow for all coupling strengths
l0.

Below it will be convenient toworkwith the bosonic ladder operators, which are related to position and
momentumoperators via

( ) ( ) ( )† †=
W

+ =
W

-X a a P a a
1

2
, i

2
. 47q

q
q q q

q
q q

In terms of these operators we have

˜ ( ) ( )† †
†

†
l¢ = + W + -

W
+⎜ ⎟⎛

⎝
⎞
⎠H d d a a

d d
a a

1

2 2
, 48S 1 1 1

0

1
1 1

( ) ( ) ( )† †å= - +
W W

+H a a
C

a a
2

, 49
q

q

q
q qI

ph
1 1

1

( )†å= W +⎜ ⎟⎛
⎝

⎞
⎠H a a

1

2
. 50

q
q q qB

ph

5.2.MEdescription
Todeduce the BMSMEweneed to diagonalize the systemHamiltonian(48). This can be accomplished via the
unitary transformation (we introduce l lº W20 1 for brevity)
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( ) ( )† †l
=

W
-

⎡
⎣⎢

⎤
⎦⎥U d d a aexp . 51

1
1 1

It transforms operators according to † †= + l
W

Ua U a d d1 1
1

and † ( )†
= - -l

WUdU de a a
1 1 1 . Hence, applying(51) to

¢HS yields

¯ ( )† † †¢ = + W +⎜ ⎟⎛
⎝

⎞
⎠UH U d d a a

1

2
52S 1 1 1

with ¯ ˜  lº - W2
1. ThisHamiltonian is obviously in diagonal formwith eigenstates ∣ ñn m, , where { }În 0, 1

( { }Îm 0, 1, 2 ,... ) quantifies the electronic (bosonic) occupation, and eigenenergies ( )̄= + W +E n mnm 1
1

2
.

Given the spectral decomposition of theHamiltonian it is simple to deduce the BMSME, especially if the
spectrum is non-degenerate, whichwill generically be the case (unless ̄ coincides with W1). To completely
specify ourmodel we choose to define and parametrize the SDof the fermionic leads as

( ) ∣ ∣ ( )
( )

( )åw p d w
d

w e d
G º - =

G
- +

n n n
n n

n n
t2 . 53

k
k k

2
2

2 2

Here, dn quantifies thewidth and en themaximumof the Lorentzian function. Furthermore, the SDof the
residual phonon bath is choosen to be ohmicwith exponential cutoff

( ) ( )∣ ∣w w= w w-J J e , 541 ph
R

which for large cutoff frequencies wR corresponds to an initial SD of the form(35) (as discussed at the end of
appendix C). Further technical details concerning the derivation of the BMSME are provided in appendixD.
A sketch of the resulting dynamics is provided infigure 8.

Beforewe proceed to shownumerical results, let us briefly explain an alternative way to treat strong system-
phonon interaction and towhichwe refer as the polaronME (PME). Similarly to theRCmapping, also the PME
starts with a unitary transformation, which acts on the bath and systemHilbert space though. This
transformation usually has the formof a generalized displacement operation such as(51). Then, within this
displaced reference frame it is possible to treat the coupling as a small perturbation again because the strong part
is absorbed in this new frame. Consequently, it is possible to derive aME valid for strong coupling for the system
part only (in our case here the quantumdot). In contrast, for our treatment we explicitly include the RC as a part
of the (super) system and use the transformation(51) later on only to formally diagonalize the supersystem.

5.3. Results
Infigure 9we plot thematter current from left to right versus the difference in chemical potentials

m m= -V L R of the electronic reservoirs. First, we see that at low electronic temperatures, the current displays
multiple steps, which occur at = DV E2i i, whereDEi are the transition frequencies of the system. Thus, the
steps enable one to deduce the renormalized electron energy ̄ and the phonon frequency W1 from the electronic
current. Furthermore, if we truncate the phononHilbert space at a small cutoff number Nc, we see that only few
plateaus are visible since the number of possible transitions is bounded.Most notably, however, when both Nc is

Figure 8.This sketch shows the level structure of theHamiltonian(52)with eigenstates ∣ ñn m, . The phonon bath (red, vertical arrows)
can induce transitions between states ∣ ∣ñ « + ñn m n m, , 1 whereas the electronic leads (blue, diagonal arrows) always change the
occupation number n of the quantumdot. Furthermore, the jump of an electron in or out of the system can be also accompanied by
multi-phonon transitions as exemplarily indicatedwith thin, dashed,magenta lines.
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large enough and the coupling between the RC and the residual oscillators is large, we reproduce earlier results
based on a PME [33] (solid curves). In fact, for a large coupling between theRC and its environment, the RCwill
thermalize onmuch shorter time-scales as compared to the dot-lead evolution. This is exactly the regime of the
PME inwhich it is assumed ad hoc that the environment in the polaron frame is equilibratedwith respect to the
dot state.We thus see that the RCmethod gives us away to physically andmathematically justify the PME, but in
general will be also applicable beyond that regime.

Finally, wewant to turn to the questionwhether it is possible to use our setup as a thermoelectric device, i.e.,
whetherwe can pump electrons against the bias due to a temperature gradient between electronic leads and
phonon reservoir. Fromfigure 9we see that we have zero current at zero bias even for different temperatures of
the electronic and phononic reservoirs (blue and turquoise). This is due to the fact that we chose d d=L R and
e e=L R (see equation (53)), whichmakes our setup symmetric under exchanging the labels L andR at zero bias.
Thismakes thermoelectric transport impossible andwill be changed now.

To quantify the irreversibility of our device we take a look at the entropy production(29)

˙ ˙ ˙ ˙

( ) ( ) ( )
b b b

b m m b b
=- - -
= - + -

S Q Q Q

I I 0. 55
i L

L
R

R
ph

ph

el L R M el ph E

For the last linewe assumed equal temperatures in the electronic leads b b b= =L R el andwe usedmatter
conservation º + = -I I IM M

L
M
R and energy conservation ( )º = - +I I I IE E

ph
E
L

E
R .

When the electronic and phononic temperatures are different (e.g. b b>el ph), heat willflowbetween the
electronic and phononic reservoirs, and the device can use a fraction of the heat to produce positive power

( )m m= - -P IL R M by transporting charges against the bias. The positivity of the entropy production leads to
an upper bound for the efficiency of heat-to-power conversion

( )
( )h

m m
=

- - I

I
, 56L R M

E

which is defined for ( )m m- <I 0L R M . As expected, one can show that the upper bound is given byCarnot
efficiency.

To break the inherent left–right symmetry of ourmodel, it is necessary to use different energy dependencies
of the electronic tunneling rates.We therefore consider the limit d d d= =L R but e e¹L R. Tomake the effect
rather strongwe also have to consider δ smaller than ∣ ∣en , but the use of the system as a thermoelectric device does
not require that  GJph . Infigure 10we plot the generated power and heat current from the hot phonon
reservoir into the system versus the bias voltage. First, we see that there exists a regionwhere the generated power
becomes positive,meaning that charges are transported against the bias. This is only possible when heatflows
from the phonon reservoir to the two electronic reservoirs, andwithin the region of positive powerwe can see
that the efficiency (inset) in equation (56) becomes finite and reaches for our chosen parameters about half
Carnot efficiency.We remark that a naive treatment of the quantumdot alonewithin a BMSMEwould always
predict IE= 0 because [ ] =H H, 0dot ph and thus, no transport of electrons against the bias would be possible in

Figure 9.Plot ofmatter current versus bias voltage for equal electronic tunneling rates G = G = GL R . Previous results (bold curves,
taken from [33]) are reproducedwhen the coupling to the residual oscillators ismuch larger than to the electronic leads (  GJph )
andwhen the cutoff Nc in the number of considered phononmodes is sufficiently large. Other parameters have been chosen as
d d= = W10L R 1, e e= = 0L R , w = W10R 1, ̃ = 0, l = W50 1

3 2.
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this framework.Having non-zero energy transport ¹I 0E is indeed a higher order effect (i.e., beyond second
order perturbation theory).

6. Final remarks

Wehave presented a frameworkwhich allows to investigate thermalmachines beyond the standardweak
coupling andMarkovian assumption. This treatment is general in the sense that it can be applied to any system
where strong coupling effects and non-Markovianity are caused by a linear couplingwith a bosonic bath.Our
framework is by construction thermodynamically consistent becausewe simply apply the standard framework
of quantum thermodynamics to an enlarged system. By this procedure we also automatically avoid spurious
effects like efficiencies beyondCarnot. Thus, in a certain sense the RCmapping helps us tofind the correct
border forwhich it is allowed to partition the ‘Universe’ into a ‘system’ and a ‘bath’ part, i.e., the partition for
which it is justified to apply the Born approximation.

Then, within this frameworkwe have observed that non-Markovianity can indeed strongly enhance the
efficiency of a heat engine even in theweak coupling limit. Furthermore, we also observed that strong coupling
decreases the efficiency, though it is not clear at themoment whether this is a general feature. As another
applicationwe considered a single electron transistor coupled to vibrations, which is an importantmodel to
understandmolecular transport. Besides studying its efficiency as a thermoelectric device we have demonstrated
that thewidely used PME follows fromour treatment as a special case and hence, justifying the PME.

Thoughwe believe that we have introduced a very useful and practical framework, one should also critically
question it. Especially, theremight be (atfirst sight) twoweak points onwhichwewould like to comment.

First, though it was shown in [53, 54] that the RCmapping is guaranteed to give a quasi-Ohmic (Markovian)
SD afterwe have included a sufficent number of RCs, it is not guaranteed that the resulting final SD is alsoweak
in the sense that it is justified to consider only second order perturbation theory in the coupling to the residual
baths. Thoughwe have seen in section 2 that the overall coupling strength of the original system to the
environment can be captured by using only oneRC, the resultingfinal SD in general depends on the shape of the
initial SD (but not on its ‘absolute value’) andmight be still large compared to parameters of the system,which
has to be checked in each case separately. Still, the RCmethod allows us to go beyond the standard perturbative
approach in a reasonable way and furthermore, by applying a conceptually similar yet technically different
mapping, one can show that also the resulting SDbecomes small [81].

Second, onemight object that the information aboutwhat happens to the original system itself is somehow
lost. Indeed, it is true that we can only give expressions for the heat flows, the power and the entropy production
for the supersystem, including the RCs, butwe do not know them for any particular subsystem.However, we
have already stated in section 3 that the definition of heat becomes unambiguous only in case of aweakly coupled
andmemory-less thermal bath. In addition, wewould like to defend this approach by the following remarks.
First of all, the division of a thermodynamic system into subsystems (e.g., system and reservoirs) is in fact

Figure 10.Plot of dimensionless power (solid black, dashed gray) and dimensionless energy current (solid red, dashed orange) versus
bias voltage for equal coupling strengths to all reservoirs G = G = G = J 2L R ph . For d d= = WL R 1 (solid curves) the efficiency (solid
blue, inset)—defined only in the region of positive power—reaches about half Carnot efficiency at best. This is improved by narrowing
the bandwidth to d d= = W0.5L R 1 (dashed curves). Other parameters have been chosen as e e= + W = -5L 1 R , w = W10R 1, ̃ = 0,
l = W0 1

3 2, b W = 100el 1 , b W = 0.01ph 1 , =N 10c .
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somethingwhich is only possible in theweak coupling limit. The very definition of ‘system’ becomes ambiguous
beyond that regime (also see the discussion on the zeroth law in [8]). Second, accessing the statistics of the system
alonewould require to incorporate explicitmeasurements in our framework, a problemwhichwas so far
completely ignored also in previouswork on strong coupling and non-Markovian thermodynamics. In fact,
even in theweak coupling regime one already relies on abstract tools such as full counting statistics to access the
statistics of energy exchanges with a heat bath [6]. However, work is usually regarded as a deterministic formof
energy and as such should be easily accessible in experiments, for instance, by counting electrons as required for
section 5. If the RCmapping is not directly applied to the ‘work reservoir’, our framework is able to predict
changedwork statistics which should bemeasurable in real experiments. Third and finally, we point out that
there has been progress to understand the energetics of arbitrarymultipartite systems locally [82, 83] and for
special situations this is also possible for the entropic balances [84, 85] (note that themeaning of ‘bipartite’ in
[84, 85] ismore restrictive than in [82, 83]). This opens up a new interpretation of thermodynamics in the strong
coupling and non-Markovian regime by recognizing the role played by the non-Markovian environment as an
effective feedback controller who acts back on the systembased on the information stored about it. Thus,
advances in the thermodynamic understanding ofmultipartite systemswill directly yield to new insights in the
field of strong coupling and non-Markovian thermodynamics.
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AppendixA.Mapping of the spectral densities

Wewill here prove equation (12) following theway ofMartinazzo et al [53]; for other derivations see
[38, 48, 52, 54]. Because the system is completely arbitrary in our treatment, wewill choose for themoment
without loss of generality a particle with position q andmomentum pmoving in a potentialV(q) and coupled via
the operator s= q to the bath. The equations ofmotion according to the original Hamiltonian(2) then take on
the form

( )å å
w

= -
¶
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+ -q
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q
c x
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q¨ , A.1

k
k k
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After Fourier transformation according to the definition
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Eliminating x̂k we canwrite
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Here, we have introduced theCauchy transformof ( )wJ0 :

( ) ( ) ( ) ( )ò òp
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w w
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wherewe used ( ) ( )w w- = -J J0 0 . As Leggett noticed [86], the SDof the bath is linked to the propagator via
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Especially within our notationwe have ( ) [ ( )]w w= +J W0 0I what can be directly proven by use of the identity
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For the next stepwe look at the transformedHamiltonian(7) to derive
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Playing the same game as abovewe can deduce that the Fourier space propagator for the system coordinate is

ˆ ( )
( )

( )l
d= - -

W - -
+ WL z z

z W z
A.140

2 0
2

1
2 2

1
0
2

whichmust be the same as equation (A.7). Furthermore, ( )W z1 is defined analogously to equation (A.8)with
( )wJ0 replaced by ( )wJ1 . Then, by comparisonwith equation (A.7)we see that
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Rearranging termswe obtain

( )
( )

( )l
= W - -W z z

W z
A.161 1

2 2 0
2

0

fromwhichwe can directly deduce the relation(12). Furthermore, by noting that ( ) d= WW 0i i
2 (i=0, 1)we

can also directly verify equation (15).

Appendix B.Non-canonical equilibriums states and the potential ofmean force

TheHamiltonian (or potential) ofmean force is an elegant way to express the exact reduced system state of a
thermal equilibrium system–bath state [64], whichwas also used, e.g., in [14, 15, 17]. The central idea is to
introduce theHamiltonian ofmean force

{ }
{ }
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º -
b
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- + +
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tr e

tr e
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H H H
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such that the reduced system state can be expressed as

( )
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*
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Z

e
B.2

H

S
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with the partition function { }* *= b-Z tr e H
S S . Indeed, it is straightforward to show that equation (B.2) coincides

with the reduced equilibirum state of system and environment, i.e.,
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e
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H H HS E
SE

S I E
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To see this it suffices to note that by definition { } { }( )* = b b- + + -Z tr e tr eH H H H
S SE E

S I E E .
To explore the connection of equation (B.2)with the equilibrium state(30) stated in themain text, we

perform the RCmapping on the global system–bathHamiltonian:

( )+ + = ¢ + ¢ + ¢H H H H H H B.4S I E S I E

with –¢ = + +H H H HS S S RC RC describing the system, system-RC coupling and the RC respectively, and ¢HI

describes the coupling to the residual bath described by ¢HE. Since thismapping is exact, we can express the
Hamiltonian ofmean force (and consequently the partition functionZS) in terms of the transformed
Hamiltonian:
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Now, if it is justified to regard the coupling ¢HI to the residual bath asweak compared to all other contributions,
we obtain to lowest (i.e., zeroth) order inHI theHamiltonian ofmean force and partition function
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Here, we used [ ]¢ =H H, 0RC E , which is guaranteed by construction. Thus, to lowest order
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as described by equation (30) showing the consistency of our approachwith standard results from equilibrium
statisticalmechanics. Especially, note that it is computationally relatively cheap to compute equation (30) as
compared to the exact result(B.2).

AppendixC.MEwithout secular approximation for application I

Wehere provide details for the derivation of the Born–MarkovMEbased on the systemHamiltonian ¢HS (37),
which treats the system-RC coupling non-perturbatively while we are aiming at a perturbative treatment of the
coupling to the remaining reservoirs. The couplingHamiltonian is

( )( )å å= = Ä
n

n

n
n nH H s B C.1I I

with sh and sw given in equation (32) and =s Xc 1due to the RCmapping. Furthermore, for { }n Î h w, the
coupling operators of the bath are = -ån n nB c xk k k and the free bathHamiltonian reads

( )( ) w= å +n
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2
2 2 2 . For n = c the formof the operators remains the same butwe have to substitute

x Xkc kc, p Pkc kc, c Ckc kc and w  Wkc kc.

Note that we are here neglecting renormalization terms of the form å w n
n

n
sk

c1

2
2k

k

2

2 which are of second order in

the system–bath coupling.Wewill later on neglect any Lamb shift terms aswell which are also of second order.
This is consistent because the heatflows(25) are itself already of second order in the coupling. The contribution
due to the renormalization and Lamb shift termswould then be of fourth order in total, which is beyond the
validity of our perturbative approach.

After applying the Born andMarkov approximation, the formal starting point of theME is the second order
equation in the interaction picture [8, 9, 61] (the interaction picture is defined by
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equilibriumdensitymatrix of the reservoir. Furthermore, the fact that theME additively decomposes into
contributions from each reservoir ν is due to the fact that { }( ) ( ) =n
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After introducing the bath correlation function
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If we split the correlation function into real and imaginary part, ( ) ( ) ( )t t t= +n n nC C CiR I , we canwrite
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This form is still not very useful for numerical implementation. To achieve this goal wewrite
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and neglecting the principal value (Lamb shift) terms, we arrive at aMEof the form
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The newoperators appearing in this equation are given as
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Finally, themodel is specified by choosing the SDs of the baths as discussed in themain text. For thework
bathwe again use ( ) ( )( ) ( )w w b= = D GJ Jw w

w w0 10 tomimic a constant SD in the infinite temperature limit. The

SDof the hot bath is parameterized by ( ) ( ) ( )( ) ( )w w w w= = Q -wG
D

J Jh h
0 R

h

20
and for the cold bath

( ) ( )( ) ( )w w=J Jc c
1 is given by the relation(12)with ( )( ) wJ c

0 given in equation (35).We are especially interested in
the regime of a large cutoff frequency w 1R because this allows by virtue of the residue theorem to evaluate

( )( ) wJ c
1 exactly. Note that the residue theorem requires ( )wJ0 to be analytic (except for isolated poles), which is—
strictly speaking—never the case for a hard cutoff ( )w wQ -R . However, the discrepancywith the true solution
vanishs for w  ¥R . Then, for w g>4 0

2 2, it follows that

( ) ( ) ( )( ) w gw w w= Q -J . C.14c
1 R

Furthermore, we also have l = d0 0 and d wW = d0 0 0 such that the frequency of the RC is w=l
dW 0

0

0
.

The secularME requires to perform an additional approximation on top of the Born–MarkovME(C.11).
This can be done by averaging the generator of the Born–MarkovME in the interaction picture in time (similar
to a rotatingwave approximation) [6, 61] or by dynamical coarse graining of the time-evolution [9, 87].Wewill
skip any details here because the secularME is also reviewed in appendixD.

AppendixD. BMSME for application II

For a non-degenerate systemHamiltonian, it is well-known that the BMSME yields a simple rate equation
(‘PauliME’) in the eigenbasis ofHS [4, 9, 61]. This can be put into the form
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where Pk is the probability tofind the system in state ∣ ñk and the transition rate from energy eigenstate l to k is
given by
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Here, we assumed a general interactionHamiltonian of the form = å Äa a aH A BI . Furthermore, the gab
denote the Fourier transforms of the reservoir correlation functions
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For ourmodel from section 5, we identify the coupling operators
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and the non-vanishing correlation functions yield
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Here, we have used the definition of the fermionic SD(53) and the SDof the residual oscillators is as usual
defined by
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From equation (D.2) and equations (D.10)–(D.14)we see that the rates additively decompose into left, right, and
phonon contributions and the total ratematrix in equation (D.1) has the structure = + +W W W WL R ph,
where for ¹k l wehave
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Tomake the transition rates explicit, we have to evaluate thematrix elements of the system coupling operators,
too. The electronic jumps can be separated into pure electronic transitions and bosonic excitations of the RC.

Denoting by ∣ ∣¢ ¢ñ º ñ
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whereas the transitions triggered by the phonon reservoir simply yield
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Having the rates at hand, we are nowfinally able to compute the quantities shown in section 5.3. A visualization
of the resulting rate equation, which has a highly connected structure, is also provided infigure 8.
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