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Abstract
The reservoir computing scheme is amachine learningmechanismwhich utilizes the naturally
occurring computational capabilities of dynamical systems.One important subset of systems that has
proven powerful both in experiments and theory are delay-systems. In this work, we investigate the
reservoir computing performance of hybrid network-delay systems systematically by evaluating the
NARMA10 and the Sante Fe task for varying systemparameters.We construct ‘multiplexed networks’
that can be seen as intermediate steps on the scale from classical networks to the ‘virtual networks’ of
delay systems.Wefind that the delay approach can be extended to the network casewithout loss of
computational power, enabling the construction of faster reservoir computing systems.

1. Introduction

Reservoir computing is a supervisedmachine-learning scheme for recurrent networks that utilizes the naturally
occurring computational power of large dynamical systems.Wheremore generalmachine learning schemes aim
to train a recurrent neural network in its entirety, reservoir computing differs in its approach by training only a
few select links. This divides the system into an input layer, a dynamical reservoir and an output layer. Originally,
reservoir computingwas inspired both by systematicmachine-learning considerations [1] aswell as the human
brain [2]. It was later found that under certain conditions even a general training scheme for recurrent networks
can produce structures thatmimic the tripartite division of reservoir computing [3]. Proposed applications
include channel equalizations for satellite communications [4], real-time audio processing [5] and
unscrambling of bits after long-haul optical data transmission [6].

Reservoir computing workswithmany different types of dynamical reservoirs. It has also been
experimentally demonstrated in awide variety of systems, benefiting from the fact that the dynamical system
need not be trained. Successful demonstrations include systems of dissociated neural cell cultures [7], a bucket of
water [8] andfield programmable gate arrays (FPGAs) [9].

Understanding the deepermechanisms behind the performance of different dynamical reservoirs is still an
open problem. Previous works have focused on the link between performance and the Lyapunov Spectrum [10]
and comparison of different node types [11]. Extensions of the reservoir computing have also been proposed:
both the use of plasticity [12] of links in the artificial neural network, as well as deterministically constructing
networks [13] or spatialmultiplexing [14] try to boost the performance. However,most of these theoretical
investigations have focused on themoremachine-learning inspired time-discrete artificial neural networks, as
opposed to photonic and time-continuous systems.

Interest in reservoir computing was renewed especially in the photonics and semiconductor community,
after Appeltant et al presented a novel scheme [15]. Instead of an extended physical systemor large network of
single units, this virtual network approach uses a long delay-line to produce a high dimensional phase-space in
time. Several groups have successfully implemented such a delay-line based reservoir computer using both optic
[16–18] and opto-electronic [19, 20] experiments. Possible extensions to the virtual network scheme have also
been considered, among others are hierarchical time-multiplexing [21] or the use of counter-propagating fields
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in a ring laser for simultaneous tasks [22]. Additionally, [23] proposes to analytically calculate the response and
time series of such a virtual network and then use the analytic formula to speed up computation.

Simultaneously the traditional network implementation has seen additional improvements by the use of
fully passive dynamical reservoirs [24–26], which greatly reduces the noise and improves performance.
However, for every real node a feed-inmechanism for data, as well as a read-outmechanism for the dynamical
response is needed. So even a network of passive elements will still require a significant amount of complexity. In
this paper we aim to show a systematic comparison between the ‘delay-line’ approach of virtual networks and
the original ‘real’networks consisting ofmultiple oscillators. Additionally, we propose amixed scheme
containing bothmultiple real nodes connected in a network, as well as long delay lines extending the system
dimension in time, whichwe call ‘multiplexed networks’.We explicitly do not aim to set new performance
records, but to compare existingmethods quantitatively to investigate reservoir computing systematically.

2. Reservoir computing

Reservoir computing is amachine learning scheme aiming to utilize the intrinsic computational power of
complex dynamical systems. The typical problem is to transformor extract data from a given time-dependent
data stream.Usually, the target transformation is not explicitly known or computationally very costly and
therefore a direct solution of the problemon a computer seems undesirable. Hence a supervisedmachine
learning approach is used. The learning takes place in the typical two step process:first, a training phasefixes the
malleable parameters of the reservoir computer at an optimal value, and then a testing phase evaluates the
quality of the learned behaviour.

Figure 1 depicts a sketchof the reservoir computing paradigm.At the core of the reservoir computer lies a
dynamical systemwith a high phase-space, also called ‘reservoir’. Historically, these systemswerefirst envisioned to
be networks of discretemaps [1]orneuralmodels [2]. The data is fed into the systemvia somenumber of variable
parameters, e.g. the driving current of a laser or the voltage applied to neurons, or injectedwith a driving signal, e.g.
input light pulses into anoptical system.Thedynamical systemwill thenbedriven by input data, resulting in some
trajectory in its phase space. This process is often called ‘expansion in feature space’, as the resulting trajectory can
be of amuchhigher dimension than theoriginal data series. The highdimensional response of the dynamical
reservoir is then readout andused as thebasis for reconstructing thedesiredoutput.While conventional deep
convolutional neural network learning schemesheavily focus on the training of the internal degrees of the network,
the ‘reservoir’ is assumed to befixed for reservoir computing. In fact, training is only applied to the linear output
weighting, forwhich a simple linear regression is enough tofind the optimal values [1].

However, for this simplification in the training procedure a pricemust be paid in system size:We require the
desired transformation to be constructable by amere linear combination of the degrees of freedomof the
reservoir. Hence, to be sufficiently computationally powerful, the systemneeds to be large enough to contain
many degrees of freedom.While conventionally trained artificial neural networks are ‘condensed’ to contain
only useful elements, reservoir computing, even in its fully trained state, can carry a lot of overhead, i.e. elements
that are not useful for the computation. Therefore reservoir computers can be expected to be always larger than
their fully trained counterparts. A simple example of a time-discrete reservoir computer, often called ‘echo state
network’, is shown in themethods section.

However, the fixed nature of the reservoir also allows experimentalists to utilize naturally occurring complex
dynamical systems as reservoirs. This is the great advantage of the reservoir computing paradigm, which allows
that the intrinsic computational powers of physical processes can be used [27].

Figure 1. Sketch of the reservoir computing scheme: a streamof input data is fed to a dynamical system,which reacts and traces out a
transient in its high-dimensional phase-space. This high-dimensional transient is then recorded and linearly combined to generate the
desired output data.
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3. Reservoir computingwith delay

A class of systems that is naturally suited for reservoir computing are delay systems [15, 27], which are described
by delay-differential equations (DDEs). TheseDDEs contain terms that are not only dependent on the
instantaneous variables Î( )X t N , but also on their delayed states before a certain timeX (t−τ).
Mathematically the phase space dimension of aDDE system is infinite.Many systems in nature can be described
by systems ofDDEs, where the delay-termusually hides a compressed spatial variable. Themost common
example are laser systems, where a laserwith delayed feedback via amirror has been studied extensively in the
literature [28, 29]. Here, the emitted electromagnetic waves can be describedwith the help of a delay term.
Similarly, lasers can also be delay-coupled [30]. Optical and electro-optical systems consisting of only a single
nodewith delay have been successfully used for reservoir computing [15–20, 31, 32] , and are especially suited
due to their high speeds.

In reality,measurement resolution and noise limit the amount of information that can be storedwithin a
delay-system.Hence, a single delay-system is not infinitely computationally powerful. (If these limitations apply
to the puremathematical construct of aDDEdoes not seemobvious). Additionally, real-world systems operate
in continuous time—not the discrete time ofmost of the simulated artificial neural networks. This necessitates
the use of an external clock time and a refined data injection and extraction protocol. Input data typically
consists of amulti-dimensional vector representing time-discretizedmeasurements. This vector is converted
into a piece-wise constant function I(t), with constant step lengthT (a sketch of this is shown infigure 2(a)).
While in principle, the reservoir can be directly drivenwith the piece-wise constant input data I(t), this usually
leads to a comparably low-dimensional trajectory for delay-systems. Efficient reservoir computingwith delay-
systems relies on the so called ‘masking’ or ‘time-multiplexing’ procedure [15]. AT-periodic function, called the
mask, ismultiplied on top of the piece-wise constant I (t) resulting in a rich inputλ(t), shown infigure 2(b). This
more complex input data stream induces a dynamically richer response of the reservoir that is still strongly
dependent on the input data.

Using a single-nodewith delay as a reservoir therefore has a few distinct advantages: the setup is easily scaled
up or down, depending on the required phase space dimension if the delay line is simplymodified. Furthermore,
these systems have been successfully used in experimental setups owing to the comparably simple
implementationwhen only a single ‘active node’ is needed [15, 16, 19]. However, the sequential nature of the
data input and readout also slows the systemdown. In fact, doubling the number of virtual nodes would lead to a
doubling of the clock cycleT.

4. Virtual andmultiplexed networks

Often themask is chosen to be a piece-wise constant functionwith lengths of θ=T/NV, where ÎNV is the
time-multiplexing or virtualisation factor. Alternatively, the use of chaotic and self-generatedmasks has been
proposed [33]. Aswith the input, the readout also needs a reference clockwhen used in a continuous time
system. This necessarily needs to alignwith the input periodsT, as otherwise input and outputwould start to
drift with respect to each other. The phase space readout could nowbe done once per input-timingwindowT,
but this would lead to a very poorly resolved and low-dimensional readout of the complex phase space
trajectory.With a piece-wise constantmask it ismuchmore natural to read outwith the same frequency as the
characteristicmask time scale, i.e. once per θ. Reading out even faster is possible, however in real experiments
this readout process is the actual bottle neck and therefore increasing it is not trivial.With a piece-wise constant
mask and synchronized readout the system can essentially be thought of as a ‘VirtualNetwork’. Each time
interval θ represents a ‘VirtualNode’ ofwhich there areNV in total [15]. This analogy helps to link the original

Figure 2. Sketch of themasking or time-multiplexing procedure. The raw input data as given by a vector is transformed into a piece-
wise constant function (a). A repeating pattern ismultiplied on top of it, called a ‘mask’. The resultingmasked signal (b) is injected into
the system to evoke amore complex phase space response. (c)Visualization for the creation of ‘virtual networks’, ‘multiplexed
networks’ and ‘real networks’ in systemswith delay. Dotted circles are virtual nodes, while solid circles denote real nodes.
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network-based concepts of reservoir computingwith the delay-based examples. For some cases, an explicit or
approximate transformation to a network picture can be derived and used [23, 34].

In this workwe systematically compare network and delay-based approaches. For this, we construct whatwe
call ‘multiplexed networks’ that include both delay lines and real nodes within a networks.We refer to physical
nodes as ‘real nodes’, as opposed to the ‘virtual nodes’ created through time-multiplexing.With some small
adjustments themasking procedure described in section 3 can be generalized to coupled networkmotifs. In
principle one could take any small network of instantaneously coupled oscillators, give each individual node or a
subset of nodes its own delayed feedbackwith identical delay time τ and then apply themasking procedure to the
network as awhole. This way, the network could be seen as a singlemultidimensional node that is used in the
sameway as described in section 3.However, this approach has two drawbacks: first, the networkmotif needs
additional external feedback connection, whichwould necessitate additional physical components for an
experimental implementation. Additionally,most sufficiently fast real-world implementations of coupled
systemswill not be able to be instantaneously coupled inside the networkmotif.We propose a differentmasking
process for networkmotifs that profits from the fact that small networkmotifs of real nodes would usually
already contain time-delay connections. Hence these already present delay-connections can be utilized for the
time-multiplexing procedure.We therefore generate amask for each node independently and simply drive and
read-out the network as is.While in the traditional delay-line approach the ‘virtual nodes’ are often portrayed as
lieing on the single long delay-loop, this representation is no longer possible in a complex networkmotif.
Nevertheless, the same principles of time-multiplexing apply.

Figure 2(c) shows a sketch of the different network types that wewill compare: virtual networks consist of a
single nodewith feedback, inwhich a rich phase space response is createdwith themasking procedure as
described in section 3.We also look at delay-coupled networkmotifs using the already present delay of the
connections, whichwe call ‘multiplexed networks’. Amask of lengthT is generated for each node individually,
and the state of every real node is recorded simultaneously.Whenwe increase the number of real nodes and
reduce the virtualisation factorNV to 1 the systembecomes a ‘real network’ containing no virtual nodes and a
short delay τ;θ.

Many systems in nature are coupled oscillatory systems. These not only include electromagnetic waves, but
also nano-mechanical oscillators and chemical oscillators among others. Aswe are interested in fundamental
properties of reservoir computing systems, wewill not focus on a specific experimental application in depth.
Instead, we employ the fundamental case ofNRdelay-coupled Stuart-Landau oscillators, described by the
complex variables ÎZk in the following systemofDDEs:

ål w g k t= + + + -f

=

˙ ( ∣ ∣ ) ( ) ( )Z Z Z e G Z ti 1k k k
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R

Here l Î is the bifurcation parameter with anAndronov-Hopf-bifurcation occurring atλ=0 in a solitary
oscillator, w Î is the frequency of the free-running oscillator. The sign of the real part of the nonlinearity

g Î defineswhether the Andronov-Hopf-bifurcation is sub- or supercritical, while the imaginary part defines
the hardness of the spring and induces an amplitude-phase coupling. Hence, Im(γ) is linked to the amplitude-
phase or linewidth-enhancement factor of semiconductor lasers [35]. The network-coupling between the
oscillators is defined by the coupling strength k Î and coupling phase f pÎ [ ]0, 2 . The topology of the
network is given by the adjacencymatrixGkl. The coupling and feedback termsZk (t−τ) are delayedwith the
delay time τ. For our numerical simulationswe set g = -( )Re 0.1 (supercritical case), g =( )Im 0.5,ω=1 and
κ=0.1, unless noted otherwise.We assume all delay-lengths to be identical. Thismodel can approximate a
wide range of different delay-coupled oscillatory systems. The Stuart-Landau system is the normal formof an
Andronov-Hopf-bifurcation and therefore any system close to such a bifurcation can be approximatedwith the
nonlinearity of equation (1). Thismodel can therefore also describe lasers if they are operated close to an
instability threshold.

For the systematic study of reservoir computing performance, we create networks of different sizes. As the
reservoir computing performances generally increases with the dimension of the readout, we keep the output-
degrees constant. For this, we create networks forwhich the product of real nodesNR and degree of virtualisation
NV is constant. However, as the degree of virtualisation is linkedwith the time-per-virtual-node θ, thismeanswe
also change the delay time τwhen changingNV.We have chosen to use a systemwith base 2 to create the
different networks.We keep the productNV NR=28 constant and increaseNR by factors of 2 fromNR=1 to

=N 2R
8. The time per virtual node is θ=12 and the delay time set to *t = N17 V . Hence, the delay time τ varies

from17 time units forNV=1 to 2176 time units forNV=128.Ourmask length and delay-length are therefore
non-identical, which has been shown to increase performance [20].We inject by varyingλ in equation (1),
corresponding to a driving current in a laser. Themaximum injection strength is 0.01 and themask values are
binary, i.e. either 0 or 1.We utilize a standard static output as a bias in training and testing.
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We test the systemusing theNonlinear-AutoregressiveMoving Average Task (NARMA) [36] of length 10.
This simulates a complex nonlinear transformof an input array, where bothmemory andnonlinear
transformation capabilities are needed. From a given series uk drawn from auniformdistribution [0, 0.5], the
trained systemhas to calculate the correspondingNARMA10 series. TheNARMA10(uk) is defined by an
iterative formulaAk as given by:

å= + + ++
=

- -

⎛
⎝⎜

⎞
⎠⎟ ( )A A A A u u0.3 0.05 1.5 0.1 2k k k

i
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Furthermore, we also test the performance for the Santa-Fe laser chaotic time series prediction task. This
dataset contains roughly 9000 data points for a chaotic laser. Given the time series up to a point t, the system is
trained to predict the future step(s) of this chaotic series.We restrict ourselves to the 1-step prediction in this
report.We have always used a training and testing length of 2900 data points with a buffer length of 100 for the
Santa Fe task.

We evaluate the performance for both tasks by calculating the normalized-root-mean-squared error
(NRMSE), where the normalization is donewith the varianceσ2(y) of the target sequence yk. Given a target series
yk and the output of the trained system ŷk, we calculate theNRMSE as:

å
s

=
-
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TheNRMSE is 0 for a perfect agreement between target and output, while 1 is the highest reasonable error,
representing a static prediction of the average of the target.

5. Twodelay-coupled oscillators

The simplest case of amultiplexed network is the case of two real delay-coupled nodes. The systemof coupled
Stuart-Landau oscillators is a well-studied example in nonlinear dynamics. Networks of such oscillators can
exhibit a wide range of different dynamics [37–44]. Here, we study the connection between reservoir computing
capabilities and the dynamics of the underlying network [45]. Infigure 3we have numerically integrated the
system given by equation (1) but with a real-part coupling to highlight dynamical complexity.We chose
parametersNV=128,NR=2, τ=2176, γ=−0.1,ω=1,κ=0.04 for different values of the coupling phase
f and base input parameterλ. Note, thatλ is additionallymodified by the input procedure by up to 0.01 in
panels (c) and (d).

Panel a) offigure 3 shows the synchronization type of the networkwithout input.White regions correspond
to the off-stateZ1=Z2=0, synchronization = ¹Z Z 01 2 occurs in the red regions centred aroundf=0 and
anti-synchronization = - ¹Z Z 01 2 for the grey regions. Figure 3(b) shows the number of differentmaxima of
∣ ( )∣Z t of the networkwithout input, highlighting the regions of dynamic complexity. The black regions exhibit
constant amplitudes =∣ ∣Z cN , while the coloured regions contain higher-order dynamics, i.e. amplitude
oscillations, period doubling cascades and quasiperiodic behaviour. Thewhite regions contain other dynamics,
mostly the off-solution and complex behaviour. Finally, figure 3(c) shows the error landscape asmeasured by the
NRMSE for the Santa Fe 1-step prediction task for this network, with the results for theNARMA10 task in panel
(d).We have used a training length of 1500 data points for training and 500 data points for testing, with an
additional 150 data points as a buffer for theNARMA task. The darker/blue colours correspond to a low error,
i.e. high performance, while brighter/yellow regions exhibit poor reservoir computing capabilities.

Analysing the relationshipbetween the different characteristics shown infigure 3we canfind a few general
trends:first, wefind that the regions of theoff-solution (lowλ, comparefigure 3(a) cannot be used for reservoir
computing. This is not surprising, as the systemdoes not react at all to input, if theparameterλnever exceeds the
onset of oscillations. A system that does not react to the driving signalwill not be able to output a transformationof
that signal andhence nothave any computational power.Next,within the regions of synchronization and
desynchronization there is considerable variability of the error infigures 3(c) and (d). The regions of lowest error
generally liewithin the area of synchronization,while the anti-synchronizationnever reachesNRMSEvalues that
low.Moreover, there existmany regions that exhibit time-dependent amplitude-modulations evenwithout input
(cf coloured regions infigure 3(b)), i.e. the system is on a limit cycle. These amplitude oscillationswill, in general,
not have a period that is identical to our input timingwindowT.Hence, the networkwill react differently to the
same input, depending on its position inphase spacewhen the input is applied. This violates one of the core
requirements for reservoir computing, namely the ‘reproducibility’ofphase-space trajectories [46].Nevertheless,
wefind the regions of best performance to lie in those areas. This demonstrates that looking at the networkwithout
input is not sufficient to predict the reservoir computing behaviour. It is likely that the amplitudes of the oscillations
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can influence, howmuch the performance is degraded. Figures 3(c) and (d) furthermore reveal, that the regions of
best performance canbe found close to the bifurcation lines separating the regions of different behaviour. The ‘edge
of chaos’has beenmentioned as the optimal driving point for reservoir computers in previousworks [11, 47]. A
similar effect is occurringhere,where the regions closer to dynamic complexity exhibit a better performance.

6.Numerical simulations and results

When going beyond the simple case ofNR=2, the possibility of how to couple the networks increases
dramatically.We cannot test and investigate all topologies, so in this report we use three different topologies for
the underlying network of real oscillators. Aswe are using the already present links inside the network, we can in
principle use any network topology in conjunctionwith the time-multiplexing procedure. However, as we are
most interested in general trendswewill abstain fromusing randomor complex topologies and focus on three
very simple topologies. First, we test a unidirectional ring (figure 4). This is not only a very simple network
topology, but also in some sense represents the ‘virtual network’ created for a single nodewith delay [23]. As a
second example, we use the same network but add cross-links for every fourth node, jumping forward 4 nodes
(figure 5). Note, that this networkwill be identical by construction to the unidirectional ring forNR�4. For
both types of unidirectional ringwe take the links to be all identical in strength. Lastly, we test a bidirectional ring
with feedback.Here we are inspired by the often used difference coupling t t- - -+ ( ) ( )Z t Z ti 1 and hence
the feedback is assumed to have double the strength and a differing sign than the bidirectional links (figure 6).

For each parameter combinationwe randomly generate themask sequence, i.e. the two-dimensional scans
shownhave a differentmask for every parameter combination. In the followingwe have used a training length of
5000, with an additional buffer of 1000 at the start to let the system settle into the correct trajectory. The
evaluationwas donewith identical lengths. The simulationswere programmedwith custom codewritten in
C++ and run on theCPUs of a network of approximately 30 conventional workstation computers.

Figure 4 shows from left to right the results of our numerical simulation of networks with different number
of real nodesNR for the unidirectional ring shown as a sketch on the left.While increasingNR, we adjust the
number of virtual nodes to keep the overall reservoir readout dimension constant. The top 8 panels show the
result for theNARMA10 task, while the bottompanels show the results for the Santa Fe laser 1-step prediction
task.High errors (yellow/white) designate undesirable regions for computing, while low errors (blue/dark grey)
show regions of effective computing.

The structure of the coloured regions infigure 4 is dominated by a sudden cut-off for lowλ. This
corresponds to the threshold of oscillations for the individual oscillator, and for values lower than a criticalλno
stable oscillation exists. This is the samemechanism as already discussed for the case ofNR=2 in section 5.
Note, that themaximum input strength of the pump term is 0.01. The comparison of the different number of
real nodes infigure 4 shows several trends: while atfirst the structure is washed out with almost no dependence
on the coupling phasef, this changes for highNR: two lines of highNRMSEbecome visible (the red and yellow
lines infigure 4 forNR=64). These likely indicate bifurcations in the underlying state diagram. For the
networkswith the highest number of real nodes (NR=128 andNR=256 infigure 4) the performance is greatly
degraded, partly due tomultistability. Additionally, the cut-off threshold is stronglymodified in these last
panels, as the delay-time τ is significantly shorter, as we scale the delay inversely with the number of real nodes,
i.e. t t= *= =128N N2 256R R .

Figure 3.Two delay-coupled oscillators: two dimensional parameter scan for the system as in equation (1) but with only real-part
coupling for different pump termsλ and coupling phasef. (a) Synchronization state of the system; synchronized (red), anti-
synchronized (grey), off-solutionZk=0 (white). (b)Periodicity of the dynamics: harmonic oscillations (black), regular amplitude
oscillations (dark red labelled ‘P1’), higher order dynamics (orange labelled ‘P2’) and the off-solution (white). Reservoir computing
performancemeasured byNRMSE in colour code for the Santa Fe 1-step prediction (c) andNARMA10 task (d). Parameters:NR=2,
NV=128, τ=2176, γ=−0.1,ω=1,κ=0.04.
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Overall, the performance of the network reaches values favourable for reservoir computing in all the low-NR

cases. Furthermore, fromNR=16, 8 infigure 4 it is qualitatively apparent, that the dependence of the
performance on the parameters is reduced for these intermediate networks.

The second row infigure 4 show the results for numerical simulations of the network of Stuart-Landau
oscillators as given by equation (1) for the Santa Fe laser chaotic time-series prediction task for differentNR in the
plane ofλ and coupling-phasef. The grey color code shows the test runNRMSE.Note the different scaling
compared to theNARMA10 colour scale, due to the overall lowerNRMSE for the Santa Fe task. The Santa Fe
laser taskNRMSE shows a qualitatively similar behaviour as theNARMA10NRMSE shown in the top-panels of
figure 4. The same lines of high error can be found forNR=64, 128. Additionally, the region of good
performance is limited by the same cut-off for lowλ.Wefind a high degree of similarity between the
performance in the Santa Fe andNARMA10 task, i.e. regions that are suitable for one task are also suitable for the
other. For some values ofNR this ismore apparent than others infigure 4. The generally acceptedmechanism
behindmost of the transformations is the ability of the reservoir to storememory and its ability of nonlinear
transformation. [48] introduced the notion of dividing the stored information inside the reservoir into the linear
memory capacity, representing amere recording of past inputs, and nonlinearmemory capacity, representing

Figure 5.Unidirectional Ringwith Jumps: numerically evaluated reservoir computing capabilites of theNARMA task for differentNR

plotted in the plane ofλ and coupling phasef. The color code shows the rootmean squared error (NRMSE) of theNARMA10-task as
described in equation (3). Parameters:NV=256/NR, t = * N17 V , γ=−0.1,ω=1,κ=0.04.

Figure 6.Bidirectional Ringwith Self-Feedback: numerically evaluated reservoir computing capabilites of theNARMA task for
differentNR plotted in the plane ofλ and coupling phasef. The color code shows the rootmean squared error (NRMSE) of the
NARMA10-task as described in equation (3). Parameters:NV=256/NR, t = * N17 V , γ=−0.1,ω=1,κ=0.04.

Figure 4.Unidirectional Ring: numerically evaluated reservoir computing capabilities of theNARMA task (top) and Santa Fe task
(bottom) for differentNR plotted in the plane ofλ and coupling phasef. The colour code shows the rootmean squared error
(NRMSE) as described in equation (3) for theNARMA task in blue-yellow, and the Santa Fe task in grey. Parameters:NV=256/NR,
t = * N17 V , γ=−0.1,ω=1,κ=0.04.
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storage of transformed information. Together thesememory capacities form a complete basis in the space of
transformations. The fact that both Santa Fe andNARMA10 exhibit similar performance profile as shown in
figure 4 indicates that both tasks need a similar set of linearly and nonlinearly stored information.

We have used the data sets generated forfigure 4 to calculate the covariance ofNRMSE for the Santa Fe and
NARMA10 task. Using the rawdata, wefind very high covariances of over 0.9 for all values ofNR. However, this
behaviour ismostly dominated by the regions ofNRMSE close or equal to 1 for lowλ.Whenwe exclude all
points withNRMSE greater than 0.9we get drastically lower values, ranging from0.6 forNR=128 to 0.03 for
NR=32. Thesemuch lower values have two reasons: first, even a visual inspection does reveal some deviation of
details for theNRMSE landscape infigure 4. For example, the error seems to generally increase withλ for
NR=2 for theNARMA10 task, while it decreases for the sameNRwithλ in the Santa Fe task. Second, andmore
importantly, the covariances we have calculated only represented a lower bound.We have two sources of
uncertainty for our simulations that we cannot control for infigure 4, namely that we are independently creating
randombinarymasks and drawing the source sequence uk for theNARMA10 task for every parameter
combination andNR.We are therefore comparing the Santa Fe andNarma task results for differentmasks, while
the parameter scan of theNARMA10 task shown infigure 4 uses a new independent but identically distributed
uk for every parameter combination. These limitations have only been considered after the extensive numerical
simulations required for the two-dimensional parameter scans and therefore a detailed analysis will have to be
left for future investigations.

Figure 5 shows the result of theNARMA testing error for the unidirectional ringwith jumps (network type
sketched on the left). Due to construction, this system is identical forNR=2 andNR=4 to the pure
unidirectional ring as shown in figure 4.We do however randomly generate a newmask andNARMA target
series for every parameter combination. Therefore a comparison between figure 5 andfigure 4 forNR=2 and
NR=4 allows us to see the influence of differingmasks. The global structure of theNRMSE is not changed. This
indicates that the performance is reproducible across differentmasks andNARMA10 series. ForNR�8
figures 5 and 4 differ due to the extra links added infigure 5. From amere visual inspection no drastic difference
of the quality of performance can be seen.Nevertheless, the global structure differs as the lines of bad
performance and border regionswith the off-state have shifted. This is to be expected, as additional linkswill
change the bifurcations occurring in the network and bifurcations are usually associatedwith extrema in the
performance. Aswas found for the pure unidirectional ring, we also see a dramatic breakdown in performance
infigure 5 forNR=256. Additionally, the same ‘washing out’ of structure can be observed for the intermediate
values ofNR=8, 16, 32, indicating a reduced parameter dependence ofmultiplexed networkswithmultiple real
and virtual nodes.

Lastly, figure 6 shows the performance of a bidirectionally coupled ring of oscillators with feedback as
described by equation (1) (topology sketched on the left). Due to the fundamentally different topology, the
global structure of theNRMSE shown infigure 6 differs fromfigures 4 and 5. Both the boundary towards the
‘off-solution’ (which has shifted outside the bottomoffigure 6) aswell as regions of optimal performance are at
different locations. The dropout of performance for low degrees of virtualisation, i.e. high number of real nodes
is themost extreme in this topology (compareNR=256 across figures 4, 5 and 6). This is possibly due to higher
multistability of the systemdue to themore complex but regular topology.

For a qualitative comparison of the general trends we have generated figure 7, where the number of real
nodes andNRMSE for theNARMA10 task is shown.Wehave used data simulated for the 2-parameter scans
shown infigures 4, 5 and 6. The blue dots correspond to the optimal or lowestNRMSE foundwithin the 2d-scan
for a given network sizeNR. The black line infigure 7 shows the averageNRMSE for theNARMA task (excluding

Figure 7.NARMAperformancemeasured by theNRMSE as a function of the number of real nodesNR for the unidirectional ring (A),
unidirectional ringwith jumps (B) and the bidirectional ringwith feedback (C). The best value found is shown in blue, while the
average is shown by the black dashed line. The grey area represents one standard deviation from the average.
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thewhite regions of no performance infigure 4). The grey band shows one standard deviation of theNRMSE
data. The qualitative impression of the colour plots infigure 4 are largely validated by the quantitative
evaluation: both the averageNRMSE aswell as the optimalNRMSE aremostly flat formultiplexed networks
created for lownumber of real nodesNR until the performance breaks down for the large networks with low
virtualisation. For the simulations as obtainedwe have found that the networkwith no virtualisation never
showed an averageNRMSE smaller than 0.3, i.e there always is a dramatic breakdown of performancewith lack
of virtualisationAll network topologies show qualitatively similar results infigure 7.

There are stillmore effects that warrant some attention.We simulated a network of slightly non-identical
units for the bidirectional ringwith feedback. Thismore closely resembles an actual experimental
implementation of a network, as in real setups no two nodeswould be absolutely identical.We have used the
same parameter locations as for the bidirectional ringwith feedback.However, the differences we foundwere
small.

For all the networks used here, we have employed the same delay length for every network link. Considering
thatmaking themask and delay termnon-identical improves performance, it seems likely that non-identical
delay-lines could have a similar effect. However, simulating a network of non-identical delay-links is time-
consuming and left for future investigations here.

7. Conclusions

Wehave investigated the reservoir computing performance of a time-continuous systemwith delay.While
many studies have been published concerning a single dynamical systemwith a long delay loop, we have
numerically simulated networkmotifs consisting of several nodes that are delay-coupled.We have used the
time-multiplexing/masking procedure to generate additional high-dimensional trajectories.We have
constructed the ‘multiplexed networks’ in such away, that the over all dimension of the read-out stays constant.
This enables us to not only qualitatively, but also quantitatively compare the reservoir computing performance.

Reservoir computers consisting exclusively of large real, regular networks have exhibited poor performance
in both theNARMAand Santa Fe task, independent of local topology.We attribute this both to the higher
multistability of such systems, as well as the relative lack of complex phase space trajectories due to the absence of
time-multiplexing. In contrast, networks of only small and intermediate size have performed consistently on a
state-of-the-art level.We found a lowered parameter sensitivity and an enhanced computation speed for such
multiplexed systems. This is encouraging for experimental realizations, as our results indicate that the design of a
reservoir computer can be chosenwith some degree of freedom. As long as a sufficient time-multiplexing is
used, the number of real nodes can be adjusted tofit experimental limitations and desired output speed.
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Appendix

Aminimal example of an ‘echo state network’, i.e. a time-discrete reservoir computer, as described from [1] is:

+ = +( ) ( ( ) ( )) ( )X t f W X t W I t1 , 4res in

=( ) ( ) ( )O t W X t , 5out

WhereX(t) is the state-vector of the network ofmaps,Wres is the adjacencymatrix of the network,Win is the
matrix of input-coupling for the data stream I(t). The time is taken to be discrete Ît and the evolution of the
network is given by equation (4). f (X) represents a local sigmoidal function that acts element-wise onX. The
outputO(t) is calculated fromX(t)with the outcouplingweightmatrixWout. ThematricesWres,Win andeWout

nowhave to be chosen in such away that =( ) ( ( ( )))O t Y X I t corresponds to the desired I O transformation.
The distinguishing feature now lies in the optimization process.While conventional deep convolutional neural
network learning schemes heavily focus on the training of theWres, thismatrix is assumed to befixed for
reservoir computing. In fact, training is only applied to the outputweightmatrixWout, for which a simple linear
regression is enough tofind the optimal values [1].

9

J. Phys. Commun. 2 (2018) 085007 ARöhmandKLüdge



ORCID iDs

André Röhm https://orcid.org/0000-0002-8552-7922
Kathy Lüdge https://orcid.org/0000-0002-4831-8910

References

[1] JaegerH2001The ‘echo state’ approach to analysing and training recurrent neural networksGMDReport 148GMD—German
National Research Institute for Computer Science

[2] MaassW,Natschläger T andMarkramH2002Neural Comp. 14 2531
[3] SchillerU and Steil J 2004Neurocomputing 63 5–23
[4] BauduinM, Smerieri A,Massar S andHorlin F 2015 IEEE LXXXIVehicular Technology Conference (VTC Spring)
[5] Keuninckx L,Danckaert J and van der SandeG 2017Cogn. Comput. 9 315–26
[6] Argyris A, Bueno J, SorianoMCand Fischer I 2017 Improving detection in optical communications using all-optical reservoir

computingConference on Lasers and Electro-Optics Europe&EuropeanQuantumElectronics Conference (CLEO/Europe-EQEC)
(https://doi.org/10.1109/CLEOE-EQEC.2017.8086463)

[7] Dockendorf K, Park I,He P, Principe J C andDeMarse TB 2009Biosystems 95 90–7
[8] FernandoC and Sojakka S 2003Advances in Artificial Life 2801 588–98
[9] Antonik P,Duport F,HermansM, Smerieri A,HaeltermanMandMassar S 2016 IEEETrans. Neural Netw. Learn. Syst. 28 2686–98
[10] RodanA andTiňo P 2011 IEEETrans. Neural Netw. 22 131–44
[11] VerstraetenD, Schrauwen B,D’HaeneMand Stroobandt D 2007Neural Netw. 20 391
[12] Steil J 2007Neural Netw. 20 353–64
[13] RodanA andTiňo P 2012Neural Comput. 24 1822
[14] NakajimaK, Fujii K, NegoroM,Mitarai K andKitagawaM2018Boosting computational power through spatialmultiplexing in

quantum reservoir computing arXiv:1803.04574
[15] Appeltant L, SorianoMC, van der SandeG,Danckaert J,Massar S, Dambre J, SchrauwenB,MirassoCR and Fischer I 2011Nature

Commun. 2 468
[16] BrunnerD, SorianoMC,MirassoCR and Fischer I 2013Nature Commun. 4 1364
[17] VinckierQ,Duport F, Smerieri A, VandoorneK, Bienstman P,HaeltermanMandMassar S 2015Optica 2 438–46
[18] NguimdoRM, Lacot E, JacquinO,HugonO, van der SandeG and deChatellusHG2017Opt. Lett. 42 375–8
[19] Larger L, SorianoMC, BrunnerD, Appeltant L, Gutierrez JM, Pesquera L,Mirasso CR and Fischer I 2012Opt. Express 20 3241
[20] Paquot Y,Duport F, Smerieri A, Dambre J, SchrauwenB,HaeltermanMandMassar S 2012 Sci. Rep. 2 287
[21] ZhangH, FengX, Li B,WangY, Cui K, Liu F, DouWandHuangY 2014Opt. Express 22 31356
[22] NguimdoRM,Verschaffelt G,Danckaert J and van der SandeG 2015 IEEETrans. Neural Netw. Learn. Syst. 26 3301–7
[23] Schumacher J, Toutounji H andPipaG 2013An analytical approach to single node delay-coupled reservoir computingConference:

XXIII International Conference onArtificial Neural Networks (Berlin: Springer) (https://doi.org/10.1007/978-3-642-40728-4_4)
[24] VandoorneK,DierckxW, SchrauwenB, VerstraetenD, Baets R, Bienstman P andCampenhout J V 2008Opt. Express 16 11182
[25] VandoorneK,Dambre J, VerstraetenD, Schrauwen B andBienstman P 2011 IEEE T.Neural. Networ 22 3541
[26] VandoorneK,Mechet P, VanVaerenbergh T, FiersM,MorthierG, VerstraetenD, Schrauwen B,Dambre J andBienstman P 2014

Nature Photon 5 3541
[27] Crutchfield J P, DittoWand Sinha S 2010Chaos 20 037101
[28] LangR andKobayashi K 1980 IEEE J. QuantumElectron. 16 347
[29] Alsing PM,Kovanis V, Gavrielides A and Erneux T 1996Phys. Rev.A 53 4429
[30] SorianoMC,García-Ojalvo J,MirassoCR and Fischer I 2013Rev.Mod. Phys. 85 421
[31] Dejonckheere A,Duport F, Smerieri A, Fang L,Oudar J L, HaeltermanMandMassar S 2014Opt. Express 22 10868–81
[32] Herman S, SorianoMC,Dambre J, Bienstman P and Fischer I 2015 Photonic delay systems asmachine learning implementations

arXiv:1501.02592
[33] Nakayama J, KannoK andUchida A 2016Opt. Express 24 8679
[34] Grigoryeva L,Henriques J, Larger L andOrtega J P 2015 Sci. Rep. 5 12858
[35] BöhmF, Zakharova A, Schöll E and LüdgeK 2015Phys. Rev.E 91 040901(R)
[36] Atiya A F and Parlos AG 2000 IEEETrans. Neural Netw. 11 697
[37] HakimV andRappelW J 1992Phys. Rev.A 46R7347
[38] NakagawaK andKuramotoY 1993Prog. Theor. Phys. 89 313
[39] KuWL,GirvanMandOtt E 2015Chaos 25 123122
[40] KoseskaA, Volkov E andKurths J 2013Phys. Rep. 531 173
[41] UshakovOV,WünscheH J,Henneberger F, Khovanov I A, Schimansky-Geier L andZaksMA2005Phys. Rev. Lett. 95 123903
[42] Geffert PM, Zakharova A,Vüllings A, JustWand Schöll E 2014Eur. Phys. J.B 87 291
[43] ZakharovaA, KapellerM and Schöll E 2014Phys. Rev. Lett. 112 154101
[44] ZakharovaA, KapellerM and Schöll E 2016 J. Phys. Conf. Series 727 012018
[45] RöhmA, LüdgeK and Schneider I 2018Chaos 28 063114
[46] OliverN, Larger L and Fischer I 2016Chaos 26 103115
[47] Berg TW,Mørk J andHvam JM2004New J. Phys. 6 178
[48] Dambre J, VerstraetenD, SchrauwenB andMassar S 2012 Sci. Rep. 2

10

J. Phys. Commun. 2 (2018) 085007 ARöhmandKLüdge

https://orcid.org/0000-0002-8552-7922
https://orcid.org/0000-0002-8552-7922
https://orcid.org/0000-0002-8552-7922
https://orcid.org/0000-0002-8552-7922
https://orcid.org/0000-0002-4831-8910
https://orcid.org/0000-0002-4831-8910
https://orcid.org/0000-0002-4831-8910
https://orcid.org/0000-0002-4831-8910
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.neucom.2004.04.006
https://doi.org/10.1016/j.neucom.2004.04.006
https://doi.org/10.1016/j.neucom.2004.04.006
https://doi.org/10.1007/s12559-017-9457-5
https://doi.org/10.1007/s12559-017-9457-5
https://doi.org/10.1007/s12559-017-9457-5
https://doi.org/10.1109/CLEOE-EQEC.2017.8086463
https://doi.org/10.1016/j.biosystems.2008.08.001
https://doi.org/10.1016/j.biosystems.2008.08.001
https://doi.org/10.1016/j.biosystems.2008.08.001
https://doi.org/10.1007/b12035
https://doi.org/10.1007/b12035
https://doi.org/10.1007/b12035
https://doi.org/10.1109/tnnls.2016.2598655
https://doi.org/10.1109/tnnls.2016.2598655
https://doi.org/10.1109/tnnls.2016.2598655
https://doi.org/10.1109/TNN.2010.2089641
https://doi.org/10.1109/TNN.2010.2089641
https://doi.org/10.1109/TNN.2010.2089641
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1016/j.neunet.2007.04.011
https://doi.org/10.1016/j.neunet.2007.04.011
https://doi.org/10.1016/j.neunet.2007.04.011
https://doi.org/10.1162/NECO_a_00297
http://arxiv.org/abs/1803.04574
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1038/ncomms2368
https://doi.org/10.1364/OPTICA.2.000438
https://doi.org/10.1364/OPTICA.2.000438
https://doi.org/10.1364/OPTICA.2.000438
https://doi.org/10.1364/OL.42.000375
https://doi.org/10.1364/OL.42.000375
https://doi.org/10.1364/OL.42.000375
https://doi.org/10.1364/OE.20.003241
https://doi.org/10.1038/srep00287
https://doi.org/10.1364/OE.22.031356
https://doi.org/10.1109/TNNLS.2015.2404346
https://doi.org/10.1109/TNNLS.2015.2404346
https://doi.org/10.1109/TNNLS.2015.2404346
https://doi.org/10.1007/978-3-642-40728-4_4
https://doi.org/10.1364/OE.16.011182
https://doi.org/10.1109/TNN.2011.2161771
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1063/1.3492712
https://doi.org/10.1109/JQE.1980.1070479
https://doi.org/10.1103/PhysRevA.53.4429
https://doi.org/10.1103/RevModPhys.85.421
https://doi.org/10.1364/OE.22.010868
https://doi.org/10.1364/OE.22.010868
https://doi.org/10.1364/OE.22.010868
http://arxiv.org/abs/1501.02592
https://doi.org/10.1364/OE.24.008679
https://doi.org/10.1038/srep12858
https://doi.org/10.1103/PhysRevE.91.040901
https://doi.org/10.1109/72.846741
https://doi.org/10.1103/PhysRevA.46.R7347
https://doi.org/10.1143/ptp/89.2.313
https://doi.org/10.1063/1.4938534
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1103/PhysRevLett.95.123903
https://doi.org/10.1140/epjb/e2014-50541-2
https://doi.org/10.1103/PhysRevLett.112.154101
https://doi.org/10.1088/1742-6596/727/1/012018
https://doi.org/10.1063/1.5018262
https://doi.org/10.1063/1.4966021
https://doi.org/10.1088/1367-2630/6/1/178
https://doi.org/10.1038/srep00514

	1. Introduction
	2. Reservoir computing
	3. Reservoir computing with delay
	4. Virtual and multiplexed networks
	5. Two delay-coupled oscillators
	6. Numerical simulations and results
	7. Conclusions
	Acknowledgments
	Appendix
	References



