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By means of Monte Carlo simulations in the grand canonical ensemble we study the morphology
of the nematic phase of a simple model liquid crystal interacting with an alternating sequence of
chemically different stripes. The stripes anchor molecules such that their orientation is either parallel
or perpendicular with the substrate plane. The different molecular orientations are realized through
anchoring functions that cause an energetic penalty for molecules oriented in an undesired fashion.
We consider combinations of monostable and degenerate anchoring fields. The nature of the nematic
phase is characterized through both the local nematic order parameter and the associated local direc-
tor field. We observe states of uniaxial or biaxial symmetry depending on the ratio of stripe widths
and the range of fluid-substrate attraction. In some cases the specific substrate pattern causes regions
of biaxial symmetry to coexist with a bulk-like regime sufficiently far away from the substrates in
which the local director field indicates a (homogeneous) bent state of the nematic liquid crystal.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757391]

I. INTRODUCTION

An important feature of bulk nematic liquid crystals is
their birefringence which makes this class of materials par-
ticularly useful with regard to displays.1 In the realm of opti-
cal switches—to name another important example—droplets
of nematic liquid crystals have been suggested as microres-
onators with a wide range of applications.2 For the nematic
phase to be birefringent a spatially homogeneous director
field is the fundamental requirement. However, if the nematic
liquid crystal interacts with a solid substrate the director field
is perturbed and may become spatially inhomogeneous over
large distances such that the material is no longer entirely
birefringent but exhibits defects that can be detected and ana-
lyzed optically because the correlation length associated with
the perturbation is in the range of the wavelength of visi-
ble light. This has been demonstrated by Guzmán et al. who
therefore propose nematic liquid crystals in confinement as
biosensors.3

If the solid substrate is endowed with some sort of sub-
structure which may be topological or chemical in nature,4

even more complex perturbations of the local director field are
to be expected that may have important repercussions in the
realm of nanooptical devices.5, 6 Experimentally, it is nowa-
days feasible to prepare submicro-textured substrates in a va-
riety of ways7–9 including microcontact printing10 or nanorub-
bing using the tip of an atomic force microscope.11 In this
latter work the authors succeeded in setting up a solid sub-
strate with a checkerboard pattern where the liquid crystal
molecules are anchored planar but with orthogonal orienta-
tions between neighboring square unit domains. Individual
domains can be made as small as 0.5 μm× 0.5 μm and are
therefore roughly comparable in size to the nanopatterns stud-
ied in this work. However, with more sophisticated patterning

techniques it seems conceivable that the pattern size studied in
Ref. 11 is by no means the lower limit of what can be realized
experimentally. The two diagonals of the square domains in
Ref. 11 are therefore equally stable with respect to the macro-
scopic alignment of the liquid crystal. By means of an electric
field it is possible to switch between these two equivalent di-
rections. This opens the possibility to use nanostructured do-
mains as microscopic switches.

On the theoretical side Kondrat and Poniewierski
investigated the anchoring of a liquid crystal at a solid sub-
strate patterned with alternating stripes at which molecules
align themselves in a parallel and in a homeotropic (normal
to the substrate plane) fashion, respectively.12 By minimizing
the free energy of their system the authors investigate the im-
pact of the relative width of the differently anchoring stripes
on the phase behavior of the liquid crystal. Later Poniewierski
and Kondrat studied a system in which a liquid crystal is sand-
wiched between two planar substrates decorated with alter-
nating planar and homeotropically anchoring stripes.13 How-
ever, in this work the stripes on the two opposite substrates
are shifted with respect to one another and the distortion free
energy of the liquid-crystalline phase is investigated as a func-
tion of substrate separation. The combined impact of sub-
strate topology and chemical decoration has been studied by
Harnau et al.14

Within the framework of Frank-Oseen theory Kondrat
et al. computed the solvation force for a liquid crystal inter-
acting with a patterned substrate.15 Haddadan and Dietrich
studied lateral and normal forces in a liquid crystal confined
between plane parallel substrates decorated with periodically
varying regions of different anchoring conditions.16

Atherton and Sambles investigated the director field in
a nematic liquid crystal in a twisted nematic cell set up
with micropatterned substrates.17 They could show that the

0021-9606/2012/137(14)/144703/10/$30.00 © 2012 American Institute of Physics137, 144703-1

http://dx.doi.org/10.1063/1.4757391
http://dx.doi.org/10.1063/1.4757391


144703-2 Greschek, Gubbins, and Schoen J. Chem. Phys. 137, 144703 (2012)

director field is very sensitive to small changes in the elastic
constants characterizing the liquid crystal. The phase diagram
of a liquid crystal interacting with a micropatterned substrate
has been calculated by Atherton who observed four distinctly
different topologies of the local director field depending on
various model parameters.18

These earlier studies usually take an ansatz for the free
energy which is subsequently minimized to obtain informa-
tion about properties characterizing the thermodynamically
stable phase. Thus, only limited insight into molecular causes
of substrate-induced formation of orientation patterns can
be provided by these approaches. It therefore seems worth-
while to complement the already existing, interesting the-
oretical studies by molecular simulation. In this work we
present Monte Carlo (MC) simulations of a simple liquid
crystal confined between chemically striped walls where the
stripes are distinguished by different anchoring scenarios that
lead to the formation of domains. In these domains liquid-
crystal molecules (i.e., mesogens) are oriented either in a
homeotropic or in a planar fashion with respect to the sub-
strate plane. The differently oriented domains are separated
by interfaces that are isotropic with respect to the distribution
of molecular orientations.

The remainder of our paper is organized as follows. In
Secs. II and III we introduce our model system and present
technical details of our calculations. Results for various an-
choring conditions and model parameters are presented in
Sec. IV. They are summarized and discussed in the conclud-
ing Sec. V.

II. MODEL

We consider a system of N mesogens interacting with
each other in a pairwise additive fashion such that the total
fluid-fluid (ff) configurational potential energy may be cast as

�ff(R, Û) = 1

2

N∑
i=1

N∑
j=1
j �=i

ϕ(r ij , ûi , ûj ), (2.1)

where r ij ≡ r i − rj is the distance vector between the
centers-of-mass of mesogens i and j. In Eq. (2.1),
R ≡ {r1, r2, . . . , rN } and Û ≡ {̂u1, û1, . . . , ûN } are short-
hand notations for the sets of center-of-mass coordinates and
unit vectors specifying the orientation of the mesogens, re-
spectively. Throughout this paper “.̂ . .” denotes a unit vector.

As in our previous work19–22 we decompose the in-
termolecular interaction potential into an isotropic and an
anisotropic contribution,

ϕ(r ij , ûi , ûj ) = ϕiso(rij ) + ϕanis(r ij , ûi , ûj ), (2.2)

where rij = |r ij | and the isotropic contribution is given by the
well-known Lennard-Jones potential:

ϕiso(rij ) = 4εff

[(
σ

rij

)12

−
(

σ

rij

)6
]

. (2.3)

In Eq. (2.3), σ is the diameter of a spherically symmetric ref-
erence particle and εff is the depth of the attractive well of

ϕiso. The anisotropic contribution is given by

ϕanis(r ij , ûi , ûj ) = −4εff

(
σ

rij

)6

� (̂r ij , ûi , ûj ), (2.4)

where r̂ ij = r ij /rij . In Eq. (2.4), the function � (̂r ij , ûi , ûj )
describes the orientation dependence of the intermolecular in-
teractions. It has to be constructed such that uanis meets certain
symmetry requirements.23 For instance, the head-tail symme-
try of the mesogens has to be preserved, that is ϕanis should be
invariant if ûi and/or ûj change sign. Moreover,∫ ∫

dûidûjϕanis(r ij , ûi , ûj ) = 0. (2.5)

These requirements are met if

� (̂r ij , ûi , ûj ) = 5ε1P2(̂ui · ûi)

+ 5ε2[P2(̂ui · r̂ ij ) + P2(̂uj · r̂ ij )],

(2.6)

which is obtained from a summation of certain Wigner
matrices,23 where

P2(x) ≡ 1

2
(3x2 − 1) (2.7)

is the second Legendre polynomial and ε1 = 0.04 and
ε2 = −0.08 are chosen throughout this work.

The model potential introduced in Eqs. (2.1)–(2.7) de-
scribes the interaction between a pair of thermotropic meso-
gens. In our model liquid-crystalline phases come about be-
cause of the anisotropic attraction and not because of a large,
anisometric excluded volume (i.e., a large aspect ratio) as in
the more conventional Gay-Berne and Kihara models of liq-
uid crystals or their various hybrids.

The liquid crystal is confined between two planar, chem-
ically structured solid substrates separated by a distance sz

along the z-axis of a space-fixed Cartesian coordinate system.
The setup of the model is illustrated by the cartoon presented
in Fig. 1. Hence, a fluid-substrate (fs) contribution to the total
configurational potential energy arises which may be cast as

�fs(X,Z, Û) =
2∑

k=1

N∑
i=1

φ(k)(xi, zi, ûi ; κ), (2.8)

where X ≡ {x1, x2, . . . , xN} and Z ≡ {z1, z2, . . . , zN} are short-
hand notations. In Eq. (2.8)

φ(k)(xi, zi, ûi ; κ) = εfs

[
a1

(
σ

zi ± sz/2

)10

− a2
exp (−κ |zi ± sz/2|)

|zi ± sz/2| g(xi, ûi)

]
,

(2.9)

where g(xi, ûi) is the so-called anchoring function (see be-
low). We assume the lower (k = 1) substrate to be located
at z = −sz/2 whereas the upper one (k = 2) is located at
z = +sz/2. Hence, the fluid-substrate potential function con-
sists of a repulsive part and an attractive, Yukawa part where
κ−1 is a screening length such that the range of φ(k) of attrac-
tive fluid-substrate interactions becomes shorter with increas-
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FIG. 1. Cartoon of the setup of the simulation cell in the x–z plane. Sub-
strates are separated by a distance sz; the width of the simulation cell along
the x-axis is sx. Periodic boundary conditions are applied at x = ±sx/2 and
y = ±sy/2 (normal to the paper plane). Substrates consist of a central stripe
of width dw shaded in dark blue where mesogens are anchored either direc-
tionally or parallel; at the two outer stripes of width (sx − dw)/2 shaded in
gray the anchoring is always homeotropic. System properties are translation-
ally invariant along the y-axis; in the x–z plane mirror symmetry exists with
respect to both the x and z axes. Local properties are therefore displayed only
in the first quadrant shaded in red.

ing κ . A very scholarly discussion of the Yukawa potential
and the disparate physical situations to which it applies was
given by Rowlinson.24 Here we use the Yukawa attraction out
of mere convenience because the range of the attractive con-
tribution to φ(k) can be changed continuously by varying κ .22

To fix the depth of the attractive well and the location of the
minimum of φ(k) we introduced the dimensionless parameters

a1 = −κσ + 1

κσ − 9
, (2.10)

a2 = −10 exp (κσ )

κσ − 9
(2.11)

in Eq. (2.9). These parameters guarantee that

dφ(k)

dz

∣∣∣∣
z=zmin

= 0, (2.12)

φ(k)
∣∣
z=zmin

= −εfs, (2.13)

where zmin ≡ ±sz/2∓σ denotes the location of the minimum
of φ(k) relative to the upper and lower substrate, respectively.
We illustrate the form of the fluid-substrate interaction poten-
tial for three values of κ by the plots in Fig. 2.

Because φ(k)(xi, zi, ûi ; κ) in Eq. (2.9) does not depend on
yi local system properties are translationally invariant in the
y-direction. Moreover, assuming the origin of the coordinate
system to be located at the center of the simulation cell all
local properties are symmetric with respect to both the x and
z axes. This permits us to average our data over correspond-
ing points in all four quadrants. The result of this averaging
then needs to be represented only for points in the upper right
quadrant shaded in red in Fig. 1.

It should be noted at this point that values for κ have been
chosen here with no particular experimental setup in mind. By
varying κ we merely intend to see what impact a variation of
the interaction range normal to the substrate plane has on de-
fect topologies emerging in the adjacent nematic liquid crys-

FIG. 2. Fluid-substrate potential φ(1) at lower substrate (zwall = −sz/2) as
a function of position z. Curves have been generated for κσ = 0.0 (----),
κσ = 0.45 (—), κσ = 2.00 (- · - · ), εfs/εff = 15/4, and for g(xi , ûi ) = 1
[see Eq. (2.9)]. The value of εfs is used throughout this work.

tal. Experimentally this might be realized through differently
shielded, additional external (e.g., electric or magnetic) fields.

The function g(xi, ûi) in Eq. (2.9) is the anchoring func-
tion which serves to discriminate energetically different ori-
entations of mesogens at different parts of the substrate.
Throughout this work we shall assume that the substrates of
length sx in the x-direction are decorated with a central stripe
of width dw at which the anchoring of a mesogen differs from
that at the outer two stripes both of widths (sx − dw)/2. At the
outer stripes mesogens are always anchored homeotropically
whereas they may be anchored either planar or directionally
at the central stripe (see Fig. 1). We realize regions of differ-
ent anchoring scenarios through the anchoring function [see
Eq. (2.9)],

g(xi, ûi) ≡ g� (̂ui) + [g↔(̂ui) − g� (̂ui)]s(xi ; dw), (2.14)

where

s(xi ; dw) = 1

2
[tanh (xi − dw) − tanh (xi + dw)] (2.15)

is a switching function varying between 0 and 1 (see Fig. 3).
The functions g↔ and g� are specified in Table I.

0.0

0.2

0.4

0.6

0.8

1.0

-10 -8 -6 -4 -2 0 2 4 6 8 10

FIG. 3. Switching function s(x; dw) as a function of lateral position for
sx = 20 and dw = 10. In gray shaded areas mesogens are preferentially
aligned homeotropically whereas in dark blue shaded areas the alignment
is predominantly parallel with the substrate plane.
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TABLE I. Combinations of anchoring functions applied at outer (g�) and
inner stripes (g↔), respectively. Acronym hd corresponds to a combination of
homeotropic (h) and directional (d) anchoring whereas acronym hp refers to a
combination of homeotropic (h) and planar (p) anchoring. In the terminology
of Jerôme25 h and d anchoring scenarios are monostable whereas p anchoring
is degenerate.

Acronym g� (̂u) g↔ (̂u)

hd (̂u · êz)2 (̂u · êx)2

hp (̂u · êz)2 (̂u · êx)2 + (̂u · êy)2

The switching function is defined such that it vanishes
in regions where the substrates impose a predominantly
homeotropic alignment of a mesogen. In those regions con-
trolled by the central stripe a parallel (planar or directional,
see Table I) alignment is preferred because here s(x; dw) → 1
as |x| → 0.

III. TECHNICAL DETAILS

As in our previous work22 we use MC simulations in the
grand canonical ensemble employing the algorithm suggested
by Gruhn and Schoen26 in which the simulation cell is in
(virtual) thermodynamic equilibrium with the bulk. Because
our system is highly inhomogeneous the use of the grand
canonical ensemble in the MC simulations is clearly advan-
tageous. For example, in the grand canonical ensemble we
can easily make sure that under equilibrium conditions (i.e.,
for the same chemical potential μ and temperature T) a corre-
sponding bulk system is also in the nematic phase. A similar
comparison would be possible only rather indirectly in other
suitably defined statistical physical ensembles such as the
canonical or an isothermal-isobaric ensemble. Specifying in
the former the same mean number density of the bulk and
that of the confined system does not imply that the two are
in thermodynamic equilibrium because of the inhomogeneity
of the confined system. Likewise the (scalar) pressure P bears
no obvious relation to elements of the pressure tensor P of the
confined system so that again no conclusions can be drawn
about the coexistence between bulk and confined phases.

In the grand canonical ensemble and for the present
model fluid microstates are distributed in configuration
space according to exp{−β[U (R, Û) − μN ] − ln N !
− 5N ln(
m/I)}22 once the system is equilibrated (

thermal de Broglie wavelength, m molecular mass, I moment
of inertia). To realize this distribution of microstates the
evolution of the system proceeds according to a Markov
process consisting of two substeps. In the first of these it is
decided with equal probability whether to displace or rotate
a sequentially picked mesogen. Whether such an attempted
displacement or rotation is accepted is decided upon the asso-
ciated change in configurational potential energy employing
the well-known Metropolis criterion.27 The increments by
which molecules are displaced or rotated are adjusted during
each run such that on average 40%–60% of all attempted
displacements or rotations are successful.

Once all N mesogens have been considered in the first
step it is decided with equal probability whether to remove an

existing mesogen from the system or to create a new one at
a randomly chosen position with random orientation. Again,
deletion and creation are accepted on the basis of the as-
sociated change in configurational potential energy employ-
ing a modified Metropolis criterion.27 Together the N dis-
placements/rotations and deletion/creation attempts constitute
a MC cycle where N is the number of mesogens present at the
beginning of a new cycle. To guarantee reliable results, we al-
low the system to equilibrate for 4 × 104 cycles followed by
1.1 × 105 cycles to compute averages.

To save computer time and because all interaction poten-
tials in our model are short range we cut off the interaction
between a pair of mesogens if their center-of-mass distance
exceeds the radius rc = 3.0σ of a cutoff sphere centered on
one of the two mesogens of the pair. In addition, we employ a
combination of a conventional Verlet neighbor list and a link-
cell list as described in the book by Allen and Tildesley.28

A mesogen is considered a neighbor of a reference mesogen
at the center if their center-of-mass distance does not exceed
rN = 3.5σ . At rc the interaction potential remains unshifted
and no corrections for the neglected long-range interac-
tions are applied to any ensemble average. Moreover, fluid-
substrate interactions are not cut off.

From now on, we express all quantities of interest in
dimensionless (i.e., “reduced”) units. This means, length is
given in units of σ and energy in units of εff. All other derived
quantities are expressed in suitable combinations of these ba-
sic quantities. In all simulations we consider a simulation cell
of sx = sy = 20, sz = 25.

For a given value of κ , we begin by generating a start-
ing configuration at equal stripe widths dw = 10 by filling
the simulation cell with randomly oriented particles located
at random positions. We then let this initially isotropic fluid
equilibrate to its nematic state which is the thermodynami-
cally stable equilibrium state given the chosen temperature
T = 0.9 and chemical potential μ = −12.089. For these values
the equilibrated fluid is sufficiently deep in the one phase re-
gion of the nematic phase indicated by a relatively high value
of 0.58 for the nematic order parameter which we shall in-
troduce formally in Sec. III A.22 Under these thermodynamic
conditions our systems accommodate about 9000 mesogens
on average. To study the influence of dw on the nematic di-
rector field we start from the equilibrated nematic configura-
tion at dw = 10 and perform a series of simulations where we
increase or steadily decrease dw in small steps between indi-
vidual MC runs. Subsequent runs are started from the equili-
brated configuration of the preceding one.

A. Properties

Because of the presence of the substrates and their chem-
ical structure the degree of nematic order and the orientation
of the mesogens may vary locally. To obtain a quantitative
measure of these features of the confined liquid crystal we
analyze the local alignment tensor

Q(r) ≡ 1

2ρ(r)

〈
N∑

i=1

[3ûi ⊗ ûi − 1] δ(r − r i)

〉
, (3.1)
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where the operator ⊗ represents the tensor (i.e., dyadic) prod-
uct of the unit vector ûi with itself, 1 is the unit tensor, and
δ(r − r i) denotes the Dirac δ-function. In Eq. (3.1)

ρ(r) =
〈

1

N

N∑
i=1

δ(r − r i)

〉
(3.2)

is the local density of the liquid crystal.
Because of the definition in Eq. (3.1), Q(r) is a real, sym-

metric, traceless, second-rank tensor that may be represented
by a 3 × 3 matrix. Using Jacobi’s method29 we compute
the three eigenvalues λ−(r) < λ0(r) < λ+(r) of Q(r) numer-
ically. We take λ+(r) as a measure of local nematic order and
drop the subscript + henceforth to ease the notational burden.
Moreover, by solving the eigenvalue equation

Q(r) n̂(r) = λ(r) n̂(r), (3.3)

we obtain the director field n̂(r) which provides quantitative
information about the local orientation of the mesogens in the
nematic phase. Because the fluid-substrate potential given in
Eq. (2.9) depends only on the position of a mesogen in the
x–z plane properties of the liquid crystal are translationally
invariant along the y-direction. Therefore, we may replace the
local nematic order parameter λ(r) and the director field n̂(r)
by λ(x, z) and n̂(x, z), respectively, both of which depend only
on position in the x–z plane.

This procedure follows that proposed earlier by
Andrienko et al. in their study of topological defects in a
liquid crystal.30 Notice, however, that the computation of
eigenvalues and eigenvectors is based upon an already
ensemble-averaged Q(x, z) whereas conventionally19, 31–34

the instantaneous alignment tensor is used to compute its
eigenvalues which are then ensemble-averaged subsequently.
However, for reasons explained elsewhere22 this approach
could cause a substantial system size dependence of the local
nematic order parameter that needs to be corrected for. The
present approach avoids that problem by taking the ensemble
average first and then diagonalizing Q(x, z) afterwards.35

Another useful measure of local order is provided by the
second Legendre polynomial

Pα (x, z) =
〈

1

2N (x, z)

N(x,z)∑
i=1

[
3(ûi(x, z) · êα)2 − 1

]〉
,

(3.4)
where êα is a unit vector pointing along the α-axis in a Carte-
sian coordinate system. In analyzing local nematic order via
Q(x, z) or Pα(x, z) two main differences should be kept in
mind. First, whereas the local nematic director computed
from Q(x, z) is a priori unknown and may in principle point
in any direction, the analysis of Pα(x, z) explicitly assumes
that the local nematic director points along the α-axis of the
Cartesian coordinate system. If, for example, n̂(x, z) · êα = 0,
Pα(x, z) < 0 even though λ(x, z) > 0 may reveal a substan-
tial degree of nematic order. Hence, it seems prudent to an-
alyze all three second Legendre polynomials in the x-, y-,
and z-directions simultaneously. Second, because of its defini-
tion 0 ≤ λ(x, z) ≤ 1 whereas − 1

2 ≤ Pα (x, z) ≤ 1. Therefore,
some caution is required in comparing absolute values of both
quantities.

(c)

(b)(a)

FIG. 4. Schematic representation of local splay (a), bend (b), and twist (c)
configurations of a director field.

Another useful quantity to investigate in the context of
this work is the so-called Frank free energy density36 which
in the one-constant approximation may be cast as

F (r) = K

2
{[∇ · n̂ (r)]2 + [̂n (r) · ∇ × n̂ (r)]2

+ [̂n (r) × ∇ × n̂ (r)]2}. (3.5)

In Eq. (3.5), K is the so-called elastic constant and the three
terms on the right side correspond to splay, twist, and bend
deformations of the local nematic director field. These three
contributions, which are assumed to be the major ones in our
case, are depicted schematically in Fig. 4. However, because
we have access to the local nematic director field it is not nec-
essary to consider twist, splay, and bend contributions sepa-
rately. In fact, it proves to be more convenient to use a slightly
different form of F(r). This follows by employing the identity
(∇ × a)2 = (a · ∇ × a)2 + (a × ∇ × a)2 which holds for an
arbitrary vector a. Thus, we may rewrite Eq. (3.5) more com-
pactly as

F (r) = K

2
{[∇ · n̂ (r)]2 + [∇ × n̂ (r)]2}. (3.6)

Because the local director field is constant in the y-direction,
the Frank free-energy density also turns out to be a function
of position in the x–z plane only. Hence, we may replace the
argument r by x and z. The Frank free-energy density is di-
rectly related to local deformations of the nematic director
field. Hence, it may be interpreted as a quantitative measure
of long-range elastic forces present in a nematic liquid crys-
tal which are caused by a local perturbation of an otherwise
homogeneous director field. Because of its definition it is also
important to realize that an analysis of F (x, z) only makes
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sense in the nematic phase. Moreover, from both Eqs. (3.5)
and (3.6) it is immediately obvious that in order to compute
F (x, z) the local nematic director field needs to be differ-
entiated which is done numerically using a standard finite-
difference scheme.

However, a small technical problem arises due to the fact
that n̂ (r) and −n̂ (r) are equivalent. This reflects the uni-
axial symmetry of our molecules and is a consequence of
the mathematical structure of Q in the eigenvalue Eq. (3.3).
Hence, in a straightforward calculation of F (x, z) by a nu-
merical differentiation of the director field one needs to make
sure that neighboring local directors satisfy the condition that
their scalar product is non-negative to avoid spurious results.
Specifically, let n̂ (r) and n̂′ (r ′) be neighboring local direc-
tors stored on a regularly meshed grid where r ′ ≡ r ± δr · êα

and δr is the mesh width (α = x, y, z). For any one of
the six local directors n̂′ (r ′) that are nearest neighbors of
n̂ (r) on the grid, n̂′ (r ′) is replaced by −n̂′ (r ′) if the con-
dition n̂ (r) · n̂′ (r ′) < 0 is satisfied. Notice that this deliber-
ate change in sign prior to the numerical differentiation of
n̂(r) does not affect the final result for F (x, z) which depends
quadratically on the local derivatives of n̂(r). All local quan-
tities are analyzed in terms of two-dimensional histograms
based upon a mesh width of δx = δz = 0.1.

IV. RESULTS

We begin the discussion of our results in Fig. 5 by illus-
trating the impact of the range of the fluid-substrate potential

FIG. 5. Plots of the local nematic order parameter λ(x, z) in the x–z plane
(see attached color bar) for dw = 10 and hd anchoring (see Table I). Dashed
lines refer to the local nematic director n̂(x, z) projected onto the x–z plane.
(a) κσ = 0.00, (b) κσ = 0.45, and (c) κσ = 2.00. For symmetry reasons data
are plotted only in the quadrant x ≥ 0 and z ≥ 0 (see area shaded in red in
Fig. 1). Gray and blue bars at the top of the plots represent parallel (p or d)
and perpendicularly (h) anchoring stripes, respectively. For convenience these
bars have been placed in front of the substrates (i.e., inside the system) where,
however, no mesogens are located on account of the strongly diverging fluid-
substrate interaction potential.

through plots of both the local order parameter λ(x, z) and
the local nematic director field n̂(x, z). Plots in Fig. 5(a) have
been generated for the completely unshielded, longest-range
Yukawa attraction at κσ = 0.00. One notices two regions in
which λ(x, z) is relatively large and where n̂(x, z) reflects a
homogeneous, parallel, or perpendicular molecular orienta-
tion with respect to the x-axis. Both regions are separated by
a thin film of low local nematic order in which the molecular
orientation changes from parallel for |x| < dw/2 to perpen-
dicular for |x| > dw/2.

For κσ = 0.45 the fluid-substrate potential is moderately
shielded. Plots of λ(x, z) and n̂(x, z) in Fig. 5(b) indicate that
the regions of nearly perfect parallel and perpendicular molec-
ular orientation are now restricted to regions in the vicinity of
those parts of the substrate at which molecules are direction-
ally and homeotropically anchored, respectively. That is, the
range over which the chemical pattern of the substrate is im-
printed onto the adjacent nematic liquid crystal is limited by
the range of the fluid-substrate interactions as expected. How-
ever, sufficiently far away from the substrate surfaces (i.e., for
z � 6) Fig. 5(b) reveals that nematic order remains relatively
large with λ(x, z) ≈0.5–0.6 irrespective of position in the x–
z plane. Notice that this value agrees with the bulk value of
the nematic order parameter 0.58 under the present thermody-
namic conditions as one would anticipate (see Sec. III). The
corresponding local director field shows that molecules have
a small preference to align in a slightly more parallel fash-
ion for |x| < dw/2 whereas a more perpendicular orientation
is observed for |x| > dw/2. As one approaches the mid-plane
at |z| � 0 the director field becomes independent of position
along the x-axis such that the molecular orientation forms a
nonzero angle with the substrate normal. This angle is a fin-
gerprint of orientational frustration which arises because the
molecules try to compromise between the parallel orientation
imposed by the directional anchoring and the perpendicular
one enforced by the outer, homeotropically anchoring parts
of the substrates.20

If the range of the fluid-substrate potential is even shorter
plots in Fig. 5(c) for κσ = 2.00 show that the liquid crystal
becomes even more homogeneous with respect to the local
nematic order and the orientation of the local director field.
Comparing plots in Figs. 5(b) and 5(c) also reveals that the
orientation reflected by n̂(x, z) is different. This difference is
caused by the fact that both orientations of the director field
are energetically equivalent and hence they form with equal
probability. We have checked this by a number of runs where
we have driven an isotropic fluid with randomly distributed
molecular orientations to a nematic state and found that both
orientations of the director field arise more or less randomly
with roughly the same probability of occurrence.

If one varies dw while holding κσ = 0.45 fixed the larger
one of the differently anchoring substrates will dominate the
local nematic director field. This can be seen from plots in
Figs. 6(a) and 6(b) for dw = 4 and dw = 16, where n̂(x, z) is
mostly perpendicular and parallel with the substrate, respec-
tively. Whereas in Fig. 6(a) the region of parallel molecular
orientation is encircled by a nearly isotropic transition region
in which n̂(x, z) changes from planar to perpendicular ori-
entation over a relatively short distance a similar effect is
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FIG. 6. As Fig. 5(b), but for (a) dw = 4 and (b) dw = 16.

observed for dw = 16 in Fig. 6(b). Inside these channels
(along the y-axis) encircled by the isotropic transition regime
the local orientation imprinted by the adjacent chemical stripe
of the substrate is preserved.

The deformations of the director field for the hd anchor-
ing scenario are best discussed based on plots of the Frank
free energy density F (x, z) /K in Fig. 7 [see Eq. (3.6)]. Let
us begin the discussion with Fig. 7(a) where we present the
Frank free-energy density for the topology of the director
field shown in Fig. 5(b). Sufficiently far away from the junc-
tions between neighboring chemical stripes at |x| ≈ 0 and
|x| ≈ sz/2 but close to the substrate for |z| � 10 deformations
of the local director vanish as indicated by F (x, z) /K � 0.
However, as one approaches the junction |x| ≈ dw/2 the dif-
ferent anchoring directions cause a relatively strong distor-
tion of the local director field which is largest in regions
of lowest nematic order. At intermediate distances from the
substrate, that is for 6 � |z| � 9 the local nematic direc-
tor field depends on x over nearly the whole range 0 ≤ |x|
≤ sx/2. These director distortions are also reflected by small
values of F (x, z) /K which is characterized by a small but
broad maximum around |x| ≈ dw/2. Since the director field
becomes independent of x as one approaches the mid-plane
of the system the Frank free-energy density vanishes in that
region.

However, plots in Fig. 6 indicate that globally the direc-
tor field n̂(x, z) is of biaxial symmetry. The local orientation
of the mesogens is mostly perpendicular and parallel with
the substrate plane. Because of the homogeneity of the ne-
matic director in these regions the elastic forces, which are
caused by distortions of the local nematic director field [see

FIG. 7. Plots of the Frank free energy density F (r) /K in the x–z plane
(see attached color bar) for κσ = 0.45 and hd anchoring. (a) dw = 10 and
(b) dw = 16. Notice the difference in scale between parts (a) and (b) of the
figure.

FIG. 8. As Fig. 5(a), but for hp anchoring, κσ = 0.00, (a) dw = 3,
(b) dw = 4, and (c) dw = 5.

Eq. (3.6)], are minimal and only differ considerably from zero
close to the isotropic interface encircling the region in which
the orientation of mesogens is controlled by the narrow chem-
ical stripe on the substrate. The isotropic region is represented
by the white area in Fig. 7 for which F (x, z) /K is undefined.

So far we have been considering combinations of monos-
table h and d anchoring scenarios at the chemically distinct
stripes of the substrates. It is now interesting to compare the
previously discussed results with those for degenrate planar
and monostable homeotropic anchoring. We begin by display-
ing in Fig. 8 results that are obtained for an unshielded fluid-
substrate interaction (i.e., for κσ = 0.00) and various widths
of the planar anchoring substrate part.

For the narrowest planar anchoring chemical stripe of
width dw = 3 plots in Fig. 8(a) show that on average a weak
tendency towards parallel molecular alignment with the sub-
strate prevails for |x| ≤ 1.5 and |z| � 10. However, λ(x, z)
remains relatively low in this region. On the contrary, λ(x, z)
attains values characteristic of the nematic phase for |x| ≥ 1.5
irrespective of z. In this regime molecules exhibit an orienta-
tion perpendicular to the substrate plane.

To gain a somewhat deeper insight into local orientation
effects we amend our analysis of λ(x, z) in Fig. 8(a) by that
of Px(x, z) and Pz(x, z) in Fig. 9. The plot in Fig. 9(a) reveals
a relatively large positive value of Pz(x, z) almost everywhere
in the liquid crystal except for the tiny region controlled by
the parallel anchoring chemical strips. However, in this re-
gion where nematic order is low [cf., Fig. 10(a)] a preferential
parallel alignment of the mesogens with the substrate plane
prevails as a comparison between plots in Figs. 9(b) and 9(c)
indicates. Notice in particular that Px(x, z) > Pz(x, z) and that
Px(x, z) > 0 in the region controlled by the parallel anchor-
ing chemical stripe. These features reflect a tendency of the
mesogens to assume a weak parallel alignment with the sub-
strate plane. This notion is supported by the plot of Pz(x, z)
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FIG. 9. Plots of the order parameter Pα in the x–z plane (see attached color
bar) for κσ = 0.00, dw = 3, and hp anchoring. (a) Pz, (b) Px, and (c) Pz.
(b) and (c) Enhancements of data obtained for the region surrounded by green
lines in (a) of the figure.

in Fig. 9(c) which shows that in the region where Px(x, z)
> 0, Pz(x, z) � −0.4 indicating an almost complete absence of
homeotropic alignment. We have also analyzed Py(x, z) which
turns out to satisfy the relation Px(x, z) � Py(x, z) which indi-
cates that the local director lies somewhere on the unit circle
in the x–y plane.

For a slightly wider central stripe plots in Fig. 8(b) show
that the imprinted parallel and perpendicular orientation of
molecules in the vicinity of the substrate (i.e., for z ≥ 10) are
separated by a region of relatively low nematic order that ex-

FIG. 10. As Fig. 8(c), but for different ranges of the fluid-substrate attraction;
(a) κσ = 1.00, (b) κσ = 1.40, and (c) κσ = 2.00.

tends into the more bulk-like regions of the liquid crystal z
≥ 6. Over the homeotropically anchoring portion of the sub-
strate (|x| ≥ 2) the perpendicular orientation of the molecules
imprinted by the substrate extends all the way down to the
midplane located at z = 0. On the contrary, molecular ori-
entation over the planar anchoring stripe (|x| ≤ 2) changes
from parallel in the immediate vicinity of the substrate to a
tilted orientation with respect to the substrate plane as one
approaches the midplane of the system which reflects again
orientational frustration of the molecules.20 This region of
orientational frustration changes for a slightly wider central
stripe to a well-defined thin layer in Fig. 8(c) of low ne-
matic order and frustrated molecular orientation if dw = 5
is considered. This thin layer separates two regions of or-
thogonal orientations where for |x| � 2.5 mesogens appear
to be only marginally tilted. Hence, the global orientation of
the liquid crystal again exhibits biaxial symmetry. The par-
allel alignment becomes nearly perfect if a substrate with
chemical stripes of equal widths dw = 10 is considered [see
Fig. 5(a)] which shows that the anchoring at the sub-
strate may be imprinted onto an adjacent bulk-like nematic
phase.

However, comparing λ(x, z) in the regime of parallel
alignment with the one in the region where the mesogens ex-
hibit homeotropic alignment it turns out that λ(x, z) is lower
in the former. This is because degenerate planar anchoring
is weaker than monostable homeotropic anchoring. The dif-
ferent degrees of local nematic order may be rationalized by
entropic arguments. In the formation of ordered phases the
mesogens lose rotational configurational entropy. This loss
is larger in the case of monostable homeotropic anchoring,
where the mesogens have to align with a single easy axis,
compared with degenerate planar anchoring where an infi-
nite number of easy axes exists on the unit circle in the x–y
plane. Hence, the stability of the ordered phase is expected
to be larger for the monostable anchored case which should
result in a larger degree of nematic order. From this line of
arguments it follows that in cases where the substrate is dec-
orated with chemical stripes that both anchor molecules in
a monostable way the degree of local nematic order should
be roughly the same. The plot in Fig. 5(a) confirms this
notion.

As expected the strong imprinting of the specific an-
choring by the substrate diminishes as one reduces the range
of fluid-substrate attraction κ while maintaining the relative
widths of the different anchoring stripes. For κσ = 1.00 plots
in Fig. 10(a) show that a homogeneous region of frustrated
molecular orientation develops towards the midplane at z = 0.
The specific anchoring of the stripes can be imprinted onto the
liquid crystal only over a relatively short range of distances
from the substrate. In the immediate vicinity of the substrates
and at the junction between planar and homeotropically an-
choring stripes a region of low nematic order exists. This re-
gion grows towards the center of the planar anchoring stripe
as κ increases. A comparison between the sequence of plots
presented in Figs. 10(a)–10(c) also shows that the frustrated
molecular orientation near the midplane visible in Fig. 10(a)
changes to a nearly perfect perpendicular one in the entire
system outside the isotropic region near the planar anchoring
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stripe, again indicating the greater strength of monostable an-
choring scenarios.

V. SUMMARY AND CONCLUSIONS

By means of MC simulations in the grand canonical
ensemble we investigate the impact of a chemically pat-
terned substrate on the local order and director field of a
nematic liquid crystal. The pattern consists of alternating
stripes of variable width. The stripes anchor molecules in
different ways. We consider combinations of homeotrop-
ically and directionally anchoring stripes both of which
belong to the class of monostable anchoring scenarios.25

In addition, the effect of a combination of monostable
homeotropic anchoring and of degenerate planar anchoring is
investigated.

The observed defect topologies depend crucially on the
relative widths of the different stripes and on the range of
the fluid-substrate attraction. The latter is modelled by a
Yukawa potential which allows for a continuous variation
of the attraction range via the shielding parameter κ . For
the longest range attraction and equally wide stripes the
molecular orientation imposed by monostable homeotropic
anchoring and degenerate directional anchoring stripe is im-
printed nearly perfectly onto the adjacent nematic liquid crys-
tal. Regions of nearly perfect homogeneous homeotropic and
parallel alignment of molecules are separated by a thin re-
gion of low nematic order in which the director field is dis-
torted over a short distance of about one molecular diame-
ter. If the range of fluid-substrate attraction is reduced the
anchoring imposed by different parts of the substrate can-
not be imprinted onto the liquid crystal but causes frus-
tration of the molecular orientation. This frustration is sig-
naled by a molecular orientation which may be viewed
as a compromise between perfect parallel and homeotropic
orientations.

If one instead maintains the longest range attraction but
varies the width dw of the planar anchoring stripe the direc-
tor field is mostly dominated by the homeotropic anchoring
imposed by the two outer stripes for small dw. As dw in-
creases the director field in that part of the system controlled
by the planar anchoring stripe exhibits orientational frustra-
tion which eventually changes to a perfect planar orientation
if a critical stripe width is reached. The planar orientation as
dictated by the inner stripe is separated by a thin layer from
the remainder of the liquid crystal where a homeotropic ori-
entation prevails.

An interesting phenomenon is observed if the width of
an outer monostable anchoring and the inner degenerate an-
choring stripe are the same but the range of fluid-substrate
attraction is gradually reduced. In this event a region of low
nematic order develops over the planar anchoring substrate as
κ increases. The director field outside the isotropic regime is
then dictated by the homeotropically anchoring substrate if
the isotropic regime near the planar anchoring stripe is fully
developed. Thus, the symmetry of the director field is uniax-
ial in regions of high nematic order. Another conclusion that
can be drawn from our results is that the director field is biax-
ial in the vicinity of the substrates for stripes of equal width.

The bulk-like region sufficiently far removed from the sub-
strate surfaces exhibits a local director field that is bent on ac-
count of orientational frustration. As κ decreases eventually
a fully developed state occurs in which the director field has
biaxial symmetry even though our molecules are of uniaxial
symmetry.

States of biaxial symmetry also arise for moderately
long-range fluid-substrate attraction if both stripes are char-
acterized by a monostable anchoring scenario. If, in this case,
one of the stripes is much smaller (larger) than the other
one a small region exists in which mesogens are almost per-
fectly aligned. This region is encircled by a transition zone
in which the confined liquid crystal is isotropic. This zone
then separates the small region from the remainder of the
liquid crystal in which mesogens orient themselves in a di-
rection orthogonal to the molecular orientation in the small
region.
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