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Abstract. We employ a nonequilibrium energy balance and carrier rate
equation model based on microscopic semiconductor theory to describe the
quantum-dot (QD) laser dynamics under optical injection and time-delayed
feedback. The model goes beyond typical phenomenological approximations
of rate equations, such as the α-factor, yet allows for a thorough numerical
bifurcation analysis, which would not be possible with the computationally
demanding microscopic equations. We find that with QD lasers, independent
amplitude and phase dynamics may lead to less complicated scenarios under
optical perturbations than predicted by conventional models using the α-factor
to describe the carrier-induced refractive index change. For instance, in the short
external cavity feedback regime, higher critical feedback strength is actually
required to induce instabilities. Generally, the α-factor should only be used when
the carrier distribution can follow the QD laser dynamics adiabatically.
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1. Introduction

The nonlinear dynamics of semiconductor lasers under external optical perturbations have been
the subject of extensive experimental and theoretical studies. Of particular interest are the
dynamical response of lasers to the injection of an optical signal into the cavity [1–6] and their
sensitivity to time-delayed optical self-feedback [7–16].

It is generally accepted that quantum-dot (QD) lasers exhibit less complex dynamics when
subjected to optical perturbations [17]. For technological applications QD lasers thus have
the advantage of a lower sensitivity to optical feedback [18] when compared to conventional
quantum-well (QW) devices. The theoretical discussion of optically perturbed QD lasers is
usually carried out on the basis of rate equations. From an analysis of these rate equations, the
reduced sensitivity of QD lasers toward perturbations can be attributed to the strong damping of
relaxation oscillations (ROs) in QD lasers [18–21] and a smaller amplitude-phase coupling. The
amplitude-phase coupling is commonly expressed in terms of the phenomenological linewidth-
enhancement factor α [22], assuming a linear relationship between changes of the gain and
refractive index in the active laser medium. As we have previously shown [23, 24], the concept
of the α-factor can break down in QD lasers, and a more rigorous modeling approach must be
used to accurately account for the charge carrier dynamics of all optically active charge carrier
states. While a microscopic description of the QD laser dynamics under optical perturbations
would be favorable, the large computational effort associated with such an approach generally
prevents a thorough bifurcation study.

In this paper, we present a microscopically based balance equation (MBBE) model,
consisting of energy balance and carrier density rate equations based on a microscopic laser
model. We show that such a model can very well reproduce the predictions of the microscopic
model, while still maintaining the computational simplicity of conventional rate equations. We
are consequently able to perform a thorough bifurcation analysis of the nonlinear QD laser
dynamics when optical injection or time-delayed feedback is considered. We highlight the
differences in the QD laser dynamics inferred by using an α-factor when compared to our
MBBE model. We can show that, depending on the charge carrier scattering lifetimes, an
α-factor will lead to qualitatively different predictions of the laser dynamics. Furthermore, we
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(c)

Figure 1. Schematic illustration of the considered QD laser structure with (a)
optical injection and (b) time-delayed optical feedback. (c) Energy diagram
across one QD. ρ

j
b,m denote the QD occupation probabilities for b = {e, h},

m = {GS, ES} and the subgroup index j of the inhomogeneously broadened
QD ensemble, with its spectral width given by 1E . The QD GS subgroup with
j =

1
2 jmax = 25 is assumed to match the laser mode energy h̄ω. The QDs are

embedded in InGaAs QWs, which are electrically pumped (pump strength J ).
The QW carrier density is given by wb. The QD center ground state (GS) energy
lies 1Eb below the QW band edge, with one excited state lying 1b above the
GS energy. The charge carrier exchange between different states is described by
the direct capture scattering rates Scap

b,m , and the relaxation rates Srel
b .

find that the desynchronized dynamics of refractive index and gain lead to a simplification of
occurring dynamical instabilities and reduce the sensitivity of the laser to optical feedback.

The paper is organized as follows. In section 2 we present the theoretical model used to
describe the QD laser device with optical injection or time-delayed optical feedback. We then
present numerical bifurcation analyses of the laser system under optical injection or feedback
in section 3. A conclusion is then given in section 4.

2. Microscopically based balance equation model

We consider a 1.2 mm long ridge waveguide edge-emitting dot-in-a-well single-mode laser
device, consisting of a number of aL = 15 stacked InGaAs QW layers with height hQW, each
embedding a density of N QD InAs QDs. The QDs are assumed to have localized bound electron
and hole states, with a ground state (GS) centered at a transition frequency corresponding to an
emission linewidth of λ = 1.3µm, and the twofold degenerate first excited state (ES). Figure 1
illustrates the energetic structure of the device across one QD.

We distribute the QD bound states into different subgroups, denoted by the index j , to
account for the inhomogeneous broadening of the QD gain material. The probability density
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function f ( j) describes the probability to find a QD in the j th subgroup, assuming a normal
distribution of the QD transition energies

f ( j) =
1

N
exp

(
−4 ln 2

(h̄ω
j
GS − h̄ω)2

1E2

)
, (1)

where ω j
m is the transition frequency of the j th QD subgroup of the mth bound QD state, with

m = {GS, ES}, and ω is the cavity resonance frequency. The inhomogeneous broadening width
(FWHM) is given by 1E , and

N =

∑
j

exp

(
−4 ln 2

(h̄ω
j
GS − h̄ω)2

1E2

)−1

(2)

is a normalization parameter, chosen such that
∑

j f ( j) = 1. The spectral broadening of the QD
transitions is given by the sum of the broadening of the electron and hole single-particle energies
of the bound GS: 1E = 1εe + 1εh. We assume a broadening of the bound state energies
proportional to the corresponding localization energies: 1εb = 1E 1Eb

1Ee+1Eh
. In the simulations,

we will use j ∈ {0, . . . , jmax} for a total of jmax + 1 = 51 subgroups, distributed uniformly in the
GS transition energy interval [h̄ω − 21E, h̄ω + 21E].

The dynamic system describing the laser is modeled within a rate equation approach based
on the optical Bloch equations [24–29]. We start with the equations for the slowly varying
electric field envelope E , the occupation probabilities in each subgroup of the QD bound state
ρ

j
b,m , and the carrier densities in each QW layer wb, given by the sum over all occupation

probabilities ρb(k2D) in the two-dimensional (2D) k-states k2D:

wb =
2

A

∑
k2D

ρb(k2D) (3)

with the in-plane device area A. The real electric field is given by E(t) =
1
2 [E (t)e−iωt +

E ∗(t)eiωt ]. The index b = {e, h} distinguishes electrons and holes, m = {GS, ES} distinguishes
QD ground and first excited states:

d

dt
E =

iω0

2εbgε0

1

AhQW

∑
α={GS,ES,QW}

µ∗

α pα − κE , (4)

d

dt
ρ

j
b,m =

1

h̄
Im(p j

mµ∗

mE ∗) − Wmρ j
e,mρ

j
h,m +

∂

∂t
ρ

j
b,m

∣∣∣
col

, (5)

d

dt
wb =

J

e0
− Rw

losswewh +
∂

∂t
wb

∣∣∣
col

. (6)

In the above equations, 0 = aLhQW A/Vmode denotes the geometric confinement factor (Vmode =

10−15 m3 is the effective mode volume), εbg and ε0 are the background and vacuum permittivity,
respectively, and κ is the optical loss rate. The sum over α includes all possible optical
transitions, where µα and pα are the corresponding dipole transition matrix element and
the microscopic polarization, respectively. The spontaneous recombination losses in the QDs
are given by the recombination rate Wm . Rw

loss describes the charge carrier losses in the
QW states due to spontaneous recombination and takes higher order losses into account
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phenomenologically. J is the pump current density per unit area into the QW states, with the
electron charge e0.

Representing details of QD dephasing [30, 31] with an effective dephasing time T2,
and assuming that this time is sufficiently short to allow the interband polarization pα to be
adiabatically eliminated, yield the quasi-static relation

pα(t) = −i
µαT2

2h̄
(ρe,α + ρh,α − 1)

1 − i1ωαT2

1 + (1ωαT2)
2 E (t), (7)

where 1ωα ≡ ωα − ω is the frequency detuning of the transition α. The microscopic
polarization thus takes on a value proportional to the electric field, and is modulated by the
homogeneous linewidth, given by a Lorentzian line shape with a width of 2h̄/T2, centered on
the cavity resonance frequency, with its imaginary part decaying like (1ωα)

−2 and its real part
like (1ωα)

−1 for large detuning |1ωαT2| � 1. Inserting the relation for pα given in equation (7)
into equation (4), the equation can be rewritten as
d

dt
E = [g(ω, t) − κ] E , (8)

g(ω, t) ≡
iω0

2εbgε0

2N QD

hQW

∑
m

νm

∑
j

f ( j)µ∗

m

p j
m(t)

E (t)

+ Im

 iω0

2εbgε0

2

AhQW

∑
k2D

µ∗

QW

pk2D

QW(t)

E (t)

,

(9)

where Re[g(ω, t)] describes the amplitude gain of the electric field and Im[g(ω, t)] is the
change of instantaneous electric field frequency due to carrier-induced changes of the refractive
index. The sum is now separated into the sum over the localized QD states (with νm their degree
of degeneracy excluding spin) and the corresponding subgroups, as well as a sum over the QW
k-states.

The optical transition frequencies of the QW can be assumed to be detuned far enough from
the laser frequency such that they do not influence the amplitude gain appreciably. However,
since the real part of the microscopic polarization decays more slowly than its imaginary part,
the QW transitions need to be taken into account when determining the instantaneous frequency
change of the electric field. In equation (9), this is done by including the contribution of the
polarization of the QW transitions pk2D

QW to the imaginary part of the complex gain.
The definition of the complex gain in equation (9) shows that every optical transition

contributes to gain and index change differently. The total differential changes of these
quantities during the operation of the QD laser, which strongly influence the dynamic response
to optical perturbations, is thus dependent on the variation of the charge carrier occupation for
each independent transition. It is therefore in general not possible to make predictions about the
laser dynamics without a careful consideration of the charge carrier dynamics, as we will show
later on in section 3, where we compare our results with a model where the ratio of frequency
and gain changes are related by a single factor (α-factor).

The scattering terms labeled ∂tρ|col in equations (5) and (6) governing the charge carrier
exchange between the carrier reservoir and the QD bound states are written as [32, 33]

∂ρ
j

b,m

∂t

∣∣∣
col

=

[
Sin,cap

b,m (1 − ρ
j

b,m) − Sout,cap
b,m ρ

j
b,m

]
±

[
Sin,rel

b

νm
ρ

j
b,ES(1−ρ

j
b,GS) −

Sout,rel
b

νm
(1−ρ

j
b,ES)ρ

j
b,GS

]
,

(10)
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∂wb

∂t

∣∣∣
col

= −2N QD
∑
m, j

νm f ( j)
[

Sin,cap
b,m (1−ρ

j
b,m) − Sout,cap

b,m, j ρ
j

b,m

]
, (11)

where + and − correspond to m = GS and ES, respectively.
Scattering processes in a QD structure can be substantially different from a QW, requiring

non-perturbative treatment and memory effects [30, 34, 35]. For the present study, we
neglect those differences and revert to the customary second Born and Markov approximation
calculations to determine the nonlinear capture rates Sin,cap into the bound QD states as well as
the relaxation rate Sin,rel between the QD ES and GS, including their dependences on the QW
charge carrier density and temperature [36, 37]. The corresponding out-scattering (escape) rates
can be determined from detailed balance relations [33]

Sout,cap
b,m, j (we, wh, T eq

b ) = Sin,cap
b,m (we, wh, T eq

b ) exp

(
−

EF
eq
b − ε

j
b,m

kBT eq
b

)
, (12)

Sout,rel
b (we, wh, T eq

b ) = Sin,rel
b (we, wh, T eq

b ) exp

(
−

1b

kBT eq
b

)
, (13)

where E eq
Fb

and T eq
b are the carrier density dependent quasi-Fermi level and quasi-equilibrium

temperature of the QW carrier distribution, respectively. The energy spacing between GS and
ES is given by 1b. The energy ε

j
b,m denotes the single-particle energy of the j th subgroup of

the mth bound QD state, and kB is the Boltzmann constant. Here it is assumed that the QW
states are in quasi-equilibrium, i.e. the QW carrier distributions can be described by quasi-
Fermi-distributions f (εb(k2D), E eq

Fb
, T eq

b ). This assumption is supported by simulations of the
microscopic model, which shows only very little deviation from quasi-equilibrium within the
QW distribution.

Until now, no assumption was made about the charge carrier temperature T eq
b . Often, it

is assumed to be close to the ambient or lattice temperature. However, in QD optoelectronic
devices the charge carrier temperature can exceed the lattice temperature T`, due to carrier
heating effects such as free-carrier and two-photon absorption or Auger-heating [38–42]. The
reason for Auger-heating is that Auger scattering processes are energy conserving. Thus,
whenever a charge carrier scatters from a carrier reservoir state into a energetically lower QD
state, another charge carrier will gain the energy difference as kinetic energy, thus leading to a
heating of the carrier distribution. This mechanism is illustrated in figure 2 for direct capture and
QD carrier relaxation processes. In the microscopic description (see appendix A), the carrier
heating can be extracted from the k2D-resolved carrier occupation. This, however, requires
the computationally demanding tracking of the carrier occupation of each k2D-state and the
numerical solving of energy and carrier conservation conditions in each simulation time step.
In our balance equation model, we describe carrier heating effects in the 2D reservoir by means
of combined carrier density and energy balance equations [43, 44], allowing us to reproduce
the results of the microscopic model without the need to track every k2D-state separately, thus
reducing computation time significantly. A similar approach was presented in [42], which we
generalize by including the first ES of the QD and going beyond the low-carrier-density limit.

In order to account for dynamic changes in the charge carrier temperature, we now derive
the additional energy balance equation for the QW carriers. The total charge carrier energy
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Figure 2. Mechanism of Auger-heating in QD devices, shown representatively
for electrons only. (a) Direct capture processes: a carrier with energy ε1 relative
to the QW band edge scatters into a QD state, while another carrier gains kinetic
energy equal to 1Em

e + ε1. The net energy change in the QW is 1Em
e . (b)

Relaxation processes: a carrier relaxes from the QD ES into the GS, adding a
net energy of 1e to the total QW carrier energy.

density ub per unit area in the QW can be determined from summing over all electronic k-states
in the QW:

ub =
2

A

∑
k2D

εb(k2D)ρb(k2D), (14)

where εb(k2D) is the single-particle energy of the electronic state at k2D. In quasi-equilibrium,
the QW carrier energy density can be expressed via

ueq
b (EF

eq
b , Tb) =

2

A

∑
k2D

εb(k2D) f (εb(k2D), EF
eq
b , T eq

b ) (15)

with the quasi-Fermi distribution f (ε, EF, T ). The quasi-Fermi level relative to the QW band-
edge in dependence of the QW carrier density wb is given by

EF
eq
b = ±kBT eq

b log

[
exp

(
wb

DbkBT eq
b

)
− 1

]
(16)

with the 2D density of states Db = m∗

b/(π h̄2) and the sign + (−) for b = e (h). Using the above
expression, the carrier energy density can be evaluated as a function of the carrier density and
temperature: ueq

b (wb, Tb). By solving the inverse function, a corresponding quasi-equilibrium
carrier temperature T eq

b (wb, ub) can be assigned to each combination of carrier density and
energy density in every time step of the simulation.

The QW energy density balance equation can be written in terms of contributions from
different sources:

d

dt
ub =

∂ub

∂t

∣∣∣
pump

+
∂ub

∂t

∣∣∣
rec

+
∂ub

∂t

∣∣∣
col

+
∂ub

∂t

∣∣∣
phon

+
∂ub

∂t

∣∣∣
th
. (17)

We consider a change in carrier energy due to electrically pumped carriers (subscript pump),
interband recombination processes (rec), Auger-scattering (col), scattering with lattice phonons
(phon), and due to the thermalization of the electron and hole distributions toward a common
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carrier temperature (th) [45]. These contributions are given by the following expressions:

∂ub

∂t

∣∣∣
pump

=
J

e0
ε̄p,b, (18)

∂ub

∂t

∣∣∣
rec

= −ub
Rw

losswewh

wb
, (19)

∂ub

∂t

∣∣∣
col

= 1Eb
∂wb

∂t

∣∣∣cap

GS
+ (1Eb − 1b)

∂wb

∂t

∣∣∣cap

ES
+ 1b

∑
j

f ( j)2N QD ∂ρ
j

b,GS

∂t

∣∣∣rel

, (20)

∂ub

∂t

∣∣∣
phon

= −γp

[
ub − ueq

b (wb, T`)
]
, (21)

∂ub

∂t

∣∣∣
th

= ∓γth

([
ue − ueq

e (we, T eq
h )
]
−
[
uh − ueq

h (wh, T eq
e )
])

. (22)

Here, ε̄p,b is the average carrier energy of electrically injected carriers, and γp, γth are the
carrier–phonon scattering and thermalization rates, respectively. In equation (22) the rhs enters
with a negative (positive) sign for electrons (holes). The partial derivatives in equation (20)
account for charge carrier scattering between the QW and the QD ground and excited states, as
well as relaxation processes between GS and ES, respectively:

∂

∂t
wb

∣∣∣cap

m
= −2N QDνm

∑
j

f ( j)
[

Sin,cap
b,m (1 − ρ

j
b,m) − Sout,cap

b,m, j ρ
j

b,m

]
, (23)

∂ρ
j

b,GS

∂t

∣∣∣rel

= Sin,rel
b ρ

j
b,ES(1 − ρ

j
b,GS) − Sout,rel

b (1 − ρ
j

b,ES)ρ
j

b,GS. (24)

2.1. Optical perturbations: optical injection and time-delayed optical feedback

We now consider the optical perturbation of the QD laser system by optical injection and time-
delayed optical feedback. In an optical injection setup, an external optical signal, e.g. from a
different (master) laser, is injected into the (slave) laser cavity. Assuming a monochromatic
external signal, the optical injection leads to an additional forcing term in the electric field
equation

d

dt
E =

[
g(ω, t) − κ

]
E + K

E0

τin
exp

[
−i(ωinj − ω)t

]
. (25)

Here, the injected signal optical frequency is given by ωinj, and the dimensionless injection
strength is K , where E0 is the steady-state electric field amplitude of the free-running solitary
laser, and τin is the cavity round-trip time. The injection strength then equals the square root of
the injected power ratio, K =

√
Iinj/I 0.

Considering the free-running laser in the steady-state, its oscillation frequency is shifted
from the carrier frequency ω due to charge-carrier-induced frequency changes. These changes
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are given by the imaginary part of the gain, such that the free-running laser frequency is
given by

ω0
= ω − Im[g0], (26)

where g0 is the steady-state complex gain of the free-running laser, given by equation (9)
evaluated at the steady-state. We now define the injection frequency detuning as the frequency
difference between the injected signal and free-running laser

1νinj ≡
1

2π

(
ωinj − ω0

)
. (27)

In order to eliminate the explicit time-dependence of the injected signal, we express the electric
field in a rotating frame [3], given by

E(t) ≡ Ex + iEy ≡ E (t) exp[i(2π1νinj − Im[g0])t. (28)

Inserting this equation into equation (25) yields

d

dt
E =

[
g(ω, t) − κ

]
E + i(2π1νinj − Im[g0])E + K

E0

τin
. (29)

Besides optical injection, time-delayed optical feedback in semiconductor lasers has been
a topic of great interest [12, 16, 46–48]. When an external mirror is placed in the laser beam
outside of the laser cavity with a distance `, the emitted light couples back into the laser cavity
after a time τec = `/c, where c is the vacuum speed of light. We model this by introducing a
time-delayed feedback term in the time evolution of the electric field

d

dt
E(t) =

[
g(ω, t) − i Im[g0] − κ

]
E(t) + κKfbe−iC E(t − τec), (30)

where C is the phase of the reflected electric field, and Kfb ∈ [0, 1] is the feedback strength,
denoting the ratio of the light lost through the cavity mirrors that is coupled back into the cavity.
Again, the electric field is expressed in a rotating frame, such that its phase velocity vanishes in
the steady-state. The external cavity feedback time τec and the feedback phase C are in principal
both determined from the optical path length of the feedback section, however, the feedback
phase is much more sensitive to changes. A change of the optical path length of one photon
wavelength leads to a complete rotation by 2π of the feedback signal, while τec barely changes.
Thus, the feedback phase and delay time can generally be assumed to be independent from each
other.

3. Bifurcation analysis

We now employ the model presented in the previous section in numerical simulations. The
parameters used in the simulations are given in table 1, unless stated otherwise. In the following,
we discuss two different types of QDs, characterized by their localization energies, as given in
table 2, which we refer to as shallow and deep QDs, respectively. In the shallow QD structure
the localized QD states have a comparably low energetic distance to the QW band edge, which
leads to carrier exchange between QD and QW on the order of picoseconds. On the other hand,
the deeply confined QDs reduce the scattering efficiency, leading to slower electron scattering
on the order of nanoseconds.
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Table 1. Numerical parameters used in the simulation.
Symbol Value Symbol Value

κ 0.05 ps−1 τin 48 ps
µm 0.6 e0 nm WGS 0.44 ns−1

µQW 0.5 e0 nm WES 0.24 ns−1

εbg 14.2 Rw
loss 540 ns−1 nm2

0 0.15 h̄ω 0.952 eV
T2 100 fs hQW 4 nm
1E 55 meV N QD 1011 cm−2

εp,e 155 meV m∗
e 0.043me

εp,h 76 meV m∗

h 0.45me

γp 1011 s−1 γth 1012 s−1

jmax 51 A 2.4 × 10−5 cm−2

aL 15

Table 2. QD localization energies for the considered QD structures.
Shallow dots Deep dots

Symbol Value Symbol Value

1Ee 74 meV 1Ee 210 meV
1Eh 40 meV 1Eh 50 meV
1e 50 meV 1e 64 meV
1h 20 meV 1h 6 meV
Im[g0](J = 2Jth) 527.1 GHz Im[g0](J = 2Jth) 433.6 GHz

3.1. Optical injection

It is well known that semiconductor lasers can exhibit a variety of dynamical scenarios under
optical injection [1–3, 6], including chaotic dynamics [49], excitability [5, 50, 51] or optical
rogue waves [52, 53]. Within a certain frequency range of the injected signal, the laser can
emit cw light resonant to the frequency of the injected signal, a phenomenon known as phase
locking [54]. For frequency detunings 1νinj outside of this so-called locking tongue, periodic
oscillations as well as quasi-periodic or chaotic intensity pulsations can be observed. The exact
dynamics of the QD laser under optical injection critically depend on the phase dynamics of
the electric field inside the laser cavity, and thus on the refractive index dynamics of the gain
medium.

In the following we want to address the question how the usual modeling approach that
uses an α-factor changes the observed dynamics of an optically injected QD laser. To this end,
we rewrite equation (29) as

d

dt
E =

[
Re g(ω, t) − κ

]
(1 − iα)E + 2π i1νinj E + K

E0

τin
, (31)

where we use a constant α ≡ α̃K , evaluated at K = 0 (see appendix equation (B.3)), to describe
the index change of the QD laser, as is usually done in conventional models. This way
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Figure 3. Two-parameter bifurcation diagrams of an optically injected (a), (c)
shallow-dot and (b), (d) deep-dot QD laser. The color code denotes the number
of intensity extrema found at each (K , 1νinj) parameter point, using the MBBE
model (a), (b) and the MBBE with an α-factor (c), (d), respectively. The solutions
were obtained numerically by sweeping the injection detuning outwards from
1νinj = 0. The light-blue to light-yellow shaded region shows the increasing laser
intensity in the phase-locked region, where the QD laser emits cw light. The other
color code denotes periodic oscillations (orange to dark blue), as well as chaotic
or quasi-periodic behavior (white). The hatched region denotes phase-bounded
oscillation, where the mean output frequency is equal to νinj. The solid and
dashed lines denote SNIC and Hopf bifurcation lines, respectively, delimiting
the phase-locked region. J = 2Jth.

we are able to compare the dynamics of the optically injected QD laser described by the
MBBE model using equation (29) with the results obtained by using α̃K in equation (31).
By creating two-parameter bifurcation diagrams we are able to numerically trace the stable
solutions in the (K , 1νinj) parameter space. For each value of K , we sweep the detuning outward
from zero and collect the number of extrema found in time series of the intensity for each
parameter combination. The number of extrema allows us to characterize the laser dynamics.
One extremum indicates a steady-state with cw laser operation, whereas two or more extrema
show that an oscillatory solution is found.

The resulting bifurcation diagrams are shown in figures 3(a), (c) and (b), (d), for the shallow
and deep dot, respectively. The simulations were done at a pump current at twice the respective
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threshold current Jth, where an output power of 14 mW (3 mW) is reached for the shallow (deep)
dots. The threshold is reached for an average QD GS occupation of 1.11 carriers per dot.

The bifurcation diagrams in figure 3 were obtained by using the independent refractive-
index-gain dynamics (top), or an α-factor (bottom). The type of solution is indicated by the
color code. The light-blue to light-yellow shaded region denotes parameter values for which a
steady-state is reached, with the color indicating the relative laser intensity, increasing from blue
to yellow. This region corresponds to the locking tongue, where the QD laser is phase-locked
to the injected optical signal (cf [6], where locking tongues are discussed for a simplified QD
laser model). Upon leaving this locking tongue, the cw solution is lost either in a saddle-node
on an invariant cycle (SNIC) bifurcation, shown by the continuous black line, or in a Hopf
bifurcation (dashed black line), and both coalesce in a zero-Hopf point (open circle). The QD
laser then begins to operate in an oscillatory regime, which in the simplest case is a period-1
oscillation (running phase solution, orange shaded). For larger values of the injection strength,
these periodic solutions can be phase-bounded (hatched area). Here, the electric field follows
a limit cycle, however, its average phase velocity is zero, such that the laser is on average still
locked to the frequency of the injected field [55–58].

Close to the zero-Hopf points, where the SNIC and Hopf bifurcation lines meet, parameter
regions of complex dynamics outside of the locking region exist, denoted by a different color
code (red to dark blue), corresponding to periodic orbits of higher periodicity. These orbits are
created in period-doubling bifurcations, which can be embedded within each other, leading to
a period-doubling cascade and a subsequent birth of a chaotic attractor [49]. The regions of
chaotic and quasi-periodic dynamics are depicted as white areas.

When comparing the numerical results of the MBBE model with that using an α ≡ α̃K ,
the shape and extent of the phase-locked parameter region shows a very good agreement for
both models. The dynamics outside of the locking tongue, however, shows large differences.
For the shallow dot structure, the use of α̃K leads to a complicated bifurcation structure for
K around 0.25 for positive 1νinj. In the MBBE model, this region is confined to a very narrow
area outside of the SNIC bifurcation line. For negative detuning, the period-doubling bifurcation
regime shifts toward lower K and is also reduced in size, however retaining its general shape.

The differences for the deep QD laser are even stronger. The overall bifurcation scenario
is comparable to the shallow dot case when using constant α̃K , with a slightly larger region of
complex dynamics due to a weaker damping of the ROs in the deep dot laser [6]. The MBBE
model, however, predicts a vastly different scenario. Here, the extension of the bifurcation
structures outside of the locking tongue is much smaller, with only very small islands of complex
dynamics embedded in the areas of period-2 oscillation.

In order to verify the predictions of our balance equation model, we compare its numerical
results with one-dimensional bifurcation diagrams of the shallow dot laser calculated using the
microscopic model (see appendix A) for constant K in figure 4, corresponding to a vertical
slice through the bifurcation diagrams in figure 3. The bifurcation diagrams reveal a very good
quantitative agreement between the MBBE and microscopic models for both the shallow and
deep dots (not shown here). Note, however, the slightly different value of K and scaling of the
1νinj-axis in figure 4(a), revealing slight differences in the position of the occurring bifurcations
in the parameter space when using the MBBE model. These differences can be related to the
different treatment of the scattering processes in the microscopic model, where an effective
relaxation rate approximation is used, whereas the MBBE model utilizes microscopically
calculated Boltzmann-like scattering terms. Nevertheless, the comparison shows that our
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Figure 4. One-dimensional bifurcation diagrams of the shallow dot laser under
optical injection for (a) the microscopic model, (b) the MBBE model and (c) the
MBBE model with constant α̃K . Shown are the extrema of the laser intensity
obtained for different values of 1νinj. Note the slightly different value of K and
scaling of the 1νinj-axis in (a).

simplified balance equation system can very well reproduce the results of the microscopic
model. The comparison with the α̃K model, as seen before, shows strong qualitative differences.
While around K ≈ 0.70 the bifurcation structure outside the phase-locked region shows some
similarities to that observed for the MBBE and microscopic models in figure 4, no value of K
was found at which the α̃K model could reproduce these dynamics as closely as the MBBE
model.

The observed differences in the two descriptions of the refractive index dynamics can be
understood by investigating the transient evolution of the optical susceptibility. In figure 5 we
plot the dynamics of χ of the optically injected shallow dot laser (K = 0.5) upon instantaneous
switching of the detuning of the injected signal from 0 GHz (resonant) to a finite value. As long
as the detuning is not too large, i.e. still within the locking tongue, the laser reaches a steady-
state. The steady-state susceptibility χ s then lies on the black curve in figure 5, which shows
a near-linear relationship between real and imaginary part of χ . Such a linear relationship can
very well be approximated by an α-factor, which explains the good agreement in the shape
of the locking tongue between both models. However, looking at the transient evolution of
χ(t) upon switching of 1νinj (blue solid curves) and the periodic oscillation when choosing
1νinj outside of the locking range (green dashed line), it becomes obvious that the dynamic
transients cannot be described by such linear relationship, as χ(t) can exhibit complicated
dynamics itself. Especially when discussing dynamically complex solutions where the electric
field exhibits dynamics on the timescale of the carrier lifetimes, the charge carrier distribution
is no longer able to adiabatically follow the electric field dynamics. Using an α-factor would
restrict Reχ to a functional dependence on Im χ and thus artificially constrain the dynamics of

New Journal of Physics 15 (2013) 093031 (http://www.njp.org/)

http://www.njp.org/


14

Figure 5. Transients of the optically injected QD laser in the complex
susceptibility plane (Reχ, Im χ) for shallow QDs. The thick black line marks
the steady-state values χ s of the susceptibility for K = 0.5, and 1νinj varied
across the phase-locked detuning range. The susceptibility at 1νinj = 0 GHz is
marked by the black circle, and the black crosses mark χ s at detuning values
of (from right to left) 1.5, 3, 4.5 GHz, respectively. The blue lines show the
transient evolution of χ after instantaneous switching of the injection detuning
from 1νinj = 0GHz to 1.5, 3.0 and 4.5 GHz, respectively. The dashed green line
marks the transient of χ for 1νinj = 6 GHz, for which the laser is unlocked and
exhibits periodic intensity oscillations.

χ(t) in phase-space. Thus, models with the α-factor cannot reproduce the QD laser dynamics
which we observe by using the MBBE model described above.

For the deep dot laser, the bifurcations outside of the locking tongue are, surprisingly,
nearly symmetrical in 1νinj, which would generally only be expected for α = 0 in conventional
models, i.e. for no index variation at all. This can be explained by the comparably long scattering
lifetimes for the deep dots, leading to a very slow coupling between the resonant GS states and
the off-resonant states. The dynamics of the electric field inside the QD laser with deep QDs
are now much faster than the carrier dynamics, such that the carrier-induced index variation is
unable to follow the dynamics and shows only very little variation. This is illustrated in figure 6,
where the time series of the QD GS and ES occupation for an oscillatory parameter combination
are shown (subgroup averaged), revealing similar changes in the GS occupation between deep
and shallow dot, but much smaller variation of the ES occupation in the deep dot. Thus, in the
limit of very slow charge carrier exchange, the QD laser dynamics outside of the locking tongue
approach what would be expected for α = 0, whereas the phase-locking boundaries are similar
to those predicted from a finite α > 0.

Figure 7 illustrates this interpretation by comparing results for the full MBBE model with
results obtained with α = 0. The bifurcation structure of the deep QD laser outside of the locking
tongue closely resembles that predicted from using α = 0. Thus, the dynamics of the deep QD
laser can be closely approximated by two different α-factors: on the one hand, the steady-state
solutions and their stability can be rather well described by using the adiabatic α̃K as defined in
equation (B.3). On the other hand for oscillatory and complex solutions, the slow charge carrier
exchange leads to a weak influence of the resonant carrier dynamics on the off-resonant states,
and thus the dynamics closely resemble those of an device with α = 0. This approximation,
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Figure 6. Time series of the sum of the mean electron and hole occupation in the
QD GS (black) and ES (blue curves), averaged over the subgroups, for K = 0.2
and 1νinj = 2 GHz, both for the shallow (solid) and deep dot (dashed), using the
MBBE model. J = 2Jth.

Figure 7. Two-parameter bifurcation diagrams of the optically injected deep-dot
QD laser, cf figure 3. (a) MBBE model and (b) MBBE with α = 0.

however, is only valid for QDs that are very weakly coupled to the off-resonant charge carrier
reservoir. In the shallow dot case the situation is different. It is still possible to define an adiabatic
α̃K -factor to describe steady-state solutions, however, the coupling of resonant and off-resonant
states can lead to a strong nonequilibrium when dynamic solutions emerge. In that case, no
α-factor can be defined to describe the QD laser dynamics.

3.2. Delayed optical feedback

Another much studied experimental configuration leading to complex dynamics is a
semiconductor laser with time-delayed optical feedback. The dynamics induced by the optical
feedback are of major importance for applications of semiconductor lasers, since it can lead
to an unwanted deterioration of the laser performance [59, 60], and on the other hand can be
utilized, e.g. for chaos communication [61, 62] or random number generation [63, 64].

Time-delayed feedback is modeled by using equation (30). We choose τec = 100 ps,
corresponding to a feedback length of ` = 15 mm. In this short external cavity regime,
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Figure 8. Two-parameter bifurcation diagrams of the (a) shallow-dot and (b)
deep-dot QD laser with optical feedback, using the full MBBE model (top) and
an α-factor (bottom), respectively. The color code (orange to white) shows the
number of extrema found at each parameter point, and the color shading (light-
blue to light-yellow) shows the increasing intensity of the laser when cw-output
is emitted, cf figure 3. The dashed lines show the approximate position of the
saddle-node bifurcation lines, which meet in a cusp point. In the deep dot case
the saddle-node lines lie within or close to the regions of oscillatory dynamics
and are thus not accessible by direct integration. J = 2Jth.

characterized by a feedback length much smaller than the inverse RO frequency, τec � ( fRO)−1,
the response of the QD laser to the time-delayed feedback sensitively depends both on the
feedback strength Kfb as well as the feedback phase C [16, 46, 65]. To obtain a complete
analysis of the bifurcation scenario, we again numerically calculate two-parameter bifurcation
diagrams, now in the (Kfb, C) parameter space, by sweeping the feedback phase for each given
Kfb upwards. As before, we compare the MBBE model with feedback, equation (30), with a
model using α similar to equation (31), which reads

d

dt
E(t) =

[
Re g(ω, t) − κ

]
(1 − iα)E(t) + κKfbe−iC E(t − τec). (32)

We again use α = α̃K evaluated at K = 0 for the calculations with α, as it should describe the
QD laser reacting to an optical perturbation in the best way possible.

When optical feedback is introduced in QD lasers, new steady-state solutions which are
referred to as external cavity modes (ECMs) are born. ECMs describe the steady-state solutions
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corresponding to standing wave modes of the coupled laser and external cavity system [66–68].
The electric field then follows the relation

E(t) = Es exp

[
−i

(
ωs +

C

τec

)
t

]
, (33)

where Es is a constant field amplitude. The constant frequency shift compared to the free-
running laser is given by ωs + C

τec
, where ωs denotes the frequency of the ECM. The number of

existing ECMs depends on the delay time τec and the amplitude-phase coupling, where both
a higher delay and a stronger amplitude-phase coupling leads to a higher number of possible
ECMs fulfilling the standing wave condition. Due to the existence of multiple ECMs, the laser
with feedback often exhibits multi-stability as well as complex and chaotic dynamics when the
stability of a given ECM is lost [12, 15].

We simulate the balance equation model using either equation (30) or (32) for the
comparison of both QD laser models with optical feedback. The resulting bifurcation diagrams
are shown in figure 8. In figures 8(a) and (c) the faster scattering rates (shallow dot) lead to a
stronger damping of the laser ROs, which in turn simplify the existing bifurcation scenarios,
which was extensively studied in [16]. The slower scattering rates of the deep dot structure, on
the other hand, lead to more complex bifurcation structure as shown in figures 8(b) and (d). In
both cases, however, the use of an α-factor leads to a larger region of complex and oscillatory
dynamics when compared to the full MBBE model equations. In the shallow dot case, the model
predicts only a very narrow region of complex dynamics where the first ECM loses its stability,
and a different ECM is reached afterwards, evident from the sudden change in intensity. More
importantly, the critical feedback strength, for which non-cw dynamics appear, is predicted to
be higher in the full MBBE model compared to what the α-factor model predicts. This suggests
that the experimentally observed low sensitivity of QD lasers to optical feedback is, in fact, not
only caused by the stronger damping of ROs and a low α-factor, but also by the independent
dynamics of the real and imaginary part of the gain.

4. Conclusion

In summary, we presented an energy balance and carrier density rate equation model for
QD lasers that is derived from a microscopic theory. The MBBE model takes into account
carrier heating and describes the index change due to carriers in off-resonant states rigorously,
without the use of an α-factor. Equally important, it is applicable to numerical bifurcation
analyses of QD lasers subjected to either external optical injection or time-delayed optical
feedback.

We have investigated the differences in the dynamics of QD laser structures arising from
using an α-factor, compared to the dynamics predicted from the model with dynamic gain
and index changes. Depending on the timescale of the charge carrier scattering, we have
observed different kinds of dynamic behavior of the QD laser. In the limit of very slow carrier
scattering, e.g. as encountered for QDs with very large localization energies, the index change
becomes increasingly smaller and the dynamic scenarios resemble those predicted by choosing
α = 0, while adiabatic index changes between steady states can still be described by a finite,
adiabatic α̃. For shallow QDs with faster charge carrier scattering, the laser dynamics are
appreciably influenced by the independent index dynamics. Thus no α-factor can be defined
which would predict the observed dynamics.
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In general we have found that the bifurcation structure and dynamics of the QD laser system
described by the energy balance equations is much simpler than what is predicted from models
employing an α-factor. In the short external cavity regime of feedback setups, the full energy
balance model equations predict a higher critical optical feedback strength than the rate equation
models using an α-factor. Thus, we conclude that the higher tolerance of QD lasers to optical
perturbations and the observed simpler dynamics is not only caused by the strongly damped
ROs commonly found in QD lasers, but to a large degree by the additional degree of freedom
introduced by the independent dynamics of the gain and index changes.
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Appendix A. Microscopic model

The microscopic description of semiconductor QD laser devices can be done on varying levels
of complexity. Here, we apply a model derived from semi-classical laser theory, which treats
charge carrier collisions at the level of effective relaxation rates.

In the microscopic model the electric field is driven by the dynamics of the microscopic
polarization of each QD subgroup:

d

dt
E =

iω0

2εbgε0

2N QD

hQW

∑
m

νm

∑
j

f ( j)µ∗

m p j
m − κE , (A.1)

d

dt
p j

m = −i(ω j
m − ω)p j

m − i
µmE

2h̄
(ρ j

e,m+ρ
j
h,m−1) −

p j
m

T2
. (A.2)

The QW charge carrier distribution is described by tracking the occupation probability
of individual k2D states in time, allowing the description of nonequilibrium distributions.
Additionally, the k3D-resolved occupation of bulk states are taken into account. The dynamic
equations for these charge carrier states are then given by

d

dt
ρb(k2D) = γc–c

[
f (εb(k2D), µ

(QW,bulk)

b,c–c , T (QW,bulk)

b,c–c ) − ρb(k2D)
]

+γc–p

[
f (εb(k2D), µ

(QW,bulk)

b,c–p , T`) − ρb(k2D)
]

+γth

[
f (εb(k2D), µ

(QW,th)

b,th , Tb′) − ρb(k2D)
]

+τb,GS
−1
[

f (εb(k2D), µ
(QW,GS)

b , T (QW,GS)

b ) − ρb(k2D)
]

+τb,ES
−1
[

f (εb(k2D), µ
(QW,ES)

b , T (QW,ES)

b ) − ρb(k2D)
]
− R2D

b,lossρb(k2D), (A.3)
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d

dt
ρb(k3D) = γc–c

[
f (εb(k2D), µ

(QW,bulk)

b,c–c , T (QW,bulk)

b,c–c ) − ρb(k3D)
]

+γc–p

[
f (εb(k3D), µ

(QW,bulk)

b,c–p , T`) − ρb(k3D)
]

−R3D
b,lossρb(k3D) + γJ f (εb(k3D), µJ

b , T`)[1 − ρb(k3D)] (A.4)

along with the scattering expression for the QD occupation probabilities

∂ρ
j

b,m

∂t

∣∣∣
col

= τb,m
−1
[

f (ε
j
b,m, µ

(QW,m)

b , T (QW,m)

b ) − ρ
j

b,m

]
+

∂ρ
j

b,m

∂t

∣∣∣
rel

, (A.5)

where
∂ρ

j
b,m

∂t

∣∣∣
rel

describes the relaxation between QD states as given in equation (11). The

scattering here is described within the relaxation rate approximation, leading to the relaxation
of the given carrier occupations toward a common quasi-Fermi distribution. These distributions
are calculated from carrier number and energy conservation conditions, e.g. for determining
(µ

(QW,GS)

b , T (QW,GS)

b ), one needs to solve

0
!
=

2

A

∑
k2D

[
f (εb(k2D), µ

(QW,GS)

b , T (QW,GS)

b ) − ρb(k2D)
]

+2N QD
∑

j

f ( j)
[

f (ε
j
b,GS, µ

(QW,GS)

b , T (QW,GS)

b ) − ρ
j

b,GS

]
, (A.6)

0
!
=

2

A

∑
k2D

εb(k2D)
[

f (εb(k2D), µ
(QW,GS)

b , T (QW,GS)

b ) − ρb(k2D)
]

+2N QD
∑

j

f ( j)ε j
b,GS

[
f (ε

j
b,GS, µ

(QW,GS)

b , T (QW,GS)

b ) − ρ
j

b,GS

]
(A.7)

and analogous conditions for all other scattering processes. Carrier–carrier scattering in general
will lead to an increase in carrier temperature, while we additionally assume carrier–phonon
scattering between QW and bulk states, which cools the distribution down to the lattice
temperature. As such, only the quasi-Fermi levels µ

(QW,bulk)

b,c–p are unknown, and solving only
equation (A.6) is sufficient for the carrier–phonon scattering. We incorporate carrier–carrier
Auger scattering (rate γc–c = 1 ps−1) and carrier–phonon scattering (γc–p = 0.1 ps−1) between
QW and bulk states (superscript (QW, bulk)), QW and QD states ((QW, GS) and (QW, ES),
Auger only), with their Auger-scattering rate given by τ−1

b,m = (Sin,cap
b,m + Sout,cap

b,m ), as well as
thermalization of QW electron and hole distributions ((QW, th), γth = 1 ps−1) toward the
temperature of the respective opposite charge carrier species b′. The effective loss terms are
given by

R2D
b,loss = Rw

loss

wewh

wb
R3D

b,loss = Rw
loss

n3D
e n3D

h

n3D
b

(A.8)

with n3D the bulk carrier density per unit area. The electrical pumping is described
in equation (A.4) by the pump rate γJ = 1 ps−1, and the pump carrier distribution
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f (εb(k3D), µJ
b , T`), with its quasi-Fermi level determined from the condition

J

e
!
= γJ

2

A

∑
k3D

f (εb(k3D), µJ
b , T`)[1 − ρb(k3D)]. (A.9)

The above equations together with equations (5) and (8) then form the microscopic QD model.
An inclusion of many-body effects within the Hartree–Fock approximation could be done

in a straightforward way [23, 26], leading to a dynamic renormalization of the single-particle
energies and the Rabi frequency. We have not included these effects in the present work in
order to highlight the differences in the dynamics arising from the independent dynamics of the
carrier-induced gain and index changes.

Appendix B. Failure of characterizing quantum-dot lasers by an α-factor

We evaluate the phase dynamics of the electric field. The phase-response of semiconductor
lasers, i.e. the coupling between amplitude and phase of the electric field, is commonly modeled
by introducing the so called linewidth enhancement factor α [22, 69]. It is then assumed that
there exists a linear relationship between carrier-induced changes in the gain and refractive
index. Expressed in terms of the optical susceptibility χ(ω) = 2εbg/(iω0)g(ω), α is defined as

α ≡
∂ Re χ(ω)/∂ N

∂ Im χ(ω)/∂ N
≡ −

∂ Im g(ω)/∂ N

∂ Re g(ω)/∂ N
, (B.1)

where ∂/∂ N is the derivative with respect to the total charge carrier number N , containing all
carriers inside the QD subgroups and the reservoir. The exact variation ∂ N must be determined
from the system dynamics. Due to the intricate scattering dynamics between the resonant and
off-resonant carrier states in QD devices, the carrier variation depends on the exact change
of operating conditions, which can lead to strongly different α-factors for different types of
applications [24], which explains the vast range of values for α in QD lasers reported in the
literature [70–74]. In order to illustrate this difference, we evaluate the response of the laser
device to changes of the pump current below threshold:

α̃J ≡
Re 1χ s(ω)

Im 1χ s(ω)

∣∣∣∣
J

≡
Re
[
χ s(ω)|(J+1J ) − χ s(ω)|J

]
Im
[
χ s(ω)|(J+1J ) − χ s(ω)|J

] , (B.2)

where χ s(ω)|J denotes the steady-state susceptibility at the pump current J . The tilde here
denotes the evaluation of the difference of the steady-state susceptibilities, after all transients
have worn off. We thus define α̃ as the adiabatic α-factor of the system. The α̃J evaluated in this
way corresponds to measurements that evaluate amplified spontaneous emission spectra below
threshold [75] in order to yield an α-factor. Above threshold, the before-mentioned method
cannot be applied due to the clamping of the steady-state gain at the threshold value. We
therefore need to apply a different method above threshold. Using either the optical injection or
feedback setup we evaluate

α̃K ≡
Re 1χ s(ω)

Im 1χ s(ω)

∣∣∣∣
K

≡
Re
[
χ s(ω)|(K=1K ) − χ s(ω)|K=0

]
Im
[
χ s(ω)|(K=1K ) − χ s(ω)|K=0

] , (B.3)

defined similarly to equation (B.2), but instead of changing the pump current, a weak resonant
(1νinj = 0) optical signal injected into the cavity is considered, and either the injection strength
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Figure B.1. Calculated adiabatic α̃-factor 1 Re χ s

1 Im χ s as a function of the pump
current J in units of the threshold current Jth, for shallow (blue diamonds) and
deep (red circles) QDs. Below the threshold current, marked by the vertical
dashed line, the change of the steady-state susceptibility under increasing pump
current 1χ s

|J is evaluated (equation (B.2)), whereas for J > Jth, the change
1χ s

|K is induced by slightly increasing the injection strength from K = 0 to
0.01 for 1νinj = 0 GHz (cf equation (B.3)).

Figure B.2. Changes in the steady-state gain spectrum χ s(ω) of the shallow-dot
QD laser upon increasing the pump current from 0.99Jth to Jth (black curves),
and upon switching the injection strength between K = 0.02 and 0 at J = 1.01Jth

(blue curves). The solid and dashed lines show changes in the imaginary and
real part of the steady-state susceptibility, respectively. The vertical lines denote,
from left to right, the respective transition energies of the QD GS, QD ES and
QW band edge.

K or the feedback strength Kfb is varied. This optical signal induces a change of the electric field
inside the cavity, which in turn varies the carrier distribution by stimulated emission, leading to
gain and index changes.

The two methods to determine an α-factor are numerically evaluated for both types of QDs
and shown as a function of the pump current in figure B.1. Below threshold both QD structures
show an increase of the adiabatic α̃-factor below threshold, in agreement with experimental
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findings [76]. For the shallow dots α̃ reaches values around 1.5 at threshold, while the deep
dot case exhibits values up to 1.0. This difference can be explained by the larger energetic
distance of the resonant QD transitions and the off-resonant continuum transitions in the deep
dot case, as it reduces the impact of the reservoir carriers on the index change at the optical
transitions.

Above threshold, α̃K , defined in equation (B.3), is evaluated for both laser systems. It is
immediately visible that the definition of α̃K , which considers the change of χ S by an optical
signal, leads to drastically different values than the method based on the gain and index change
under pump current variation. This difference can be traced to different changes in the charge
carrier occupation when evaluating α̃J and α̃K . In figure B.2, the differential changes in the
steady-state susceptibility 1χ s under changes of the pump current (black curves) and changes
in the injection strength (blue curves) are shown. From the changes of Im 1χ s (solid lines), it
can be seen that changes in the pump current lead to a larger variation of the occupation of off-
resonant states when compared to the changes under the influence of an optical signal. This then
leads to a stronger relative change in refractive index, proportional to Re 1χ s (dashed lines) at
the optical transition. This in turn leads to a larger value of α̃J .

The different values of α̃J and α̃K illustrate the difficulty of characterizing QD laser devices
by using an α-factor. The laser can react vastly differently under different perturbations even at
the same operational point.
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