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Abstract
Embedding geometries in structured grids allows a simple treatment of complex objects in
fluid simulations. Various methods for embedding geometries are available. The commonly
used Brinkman-volume-penalization models geometries as porous media, and approximates
a solid object in the limit of vanishing porosity. In its simplest form, the momentum equations
are augmented by a term penalizing the fluid velocity, yielding good results in many applica-
tions. However, it induces numerical stiffness, especially if high-pressure gradients need to
be balanced. Here, we focus on the effect of the reduced effective volume (commonly called
porosity) of the porous medium. An approach is derived, which allows reducing the flux
through objects to practically zero with little increase of numerical stiffness. Also, non-slip
boundary conditions and adiabatic boundary conditions are easily constructed. The porosity
terms allow keeping the skew symmetry of the underlying numerical scheme, by which the
numerical stability is improved. Furthermore, very good conservation of mass and energy
in the non-penalized domain can be achieved, for which the boundary smoothing introduces
a small ambiguity in its definition. The scheme is tested for acoustic scenarios, for near
incompressible and strongly compressible flows.

Keywords CFD · Immersed boundaries · Penalization · Energy stable methods · Skew
symmetry · Conservation · Compressible flows · Slip boundaries · Adaptive filter
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1 Introduction

Most flows in technical applications are defined by the geometrical properties of the enclosing
or the contained objects, which are often of complex shape. To simulate flows in such settings,
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commonly grids are constructed, where cell boundaries or grid lines are aligned with the
boundaries of the objects. This simplifies the implementation of boundary conditions, as
these conditions can be enforced at specific cell boundaries or grid lines. However, the
construction of such grids often is a considerable effort on its own.

Alternatively, simple Euclidean grids can be used and the object boundaries can be approx-
imated by force-like terms. Different approaches are in use. With the immersed boundary
(IB) methods the boundary is given by a set of point forces, as in a pioneering work by Peskin
[47] for the simulation of heart valves. An IB Method for compressible flow is presented for
example by Palma et al. [20].

The point forces are distributed to the closest grid points by utilizing discrete delta func-
tions. The cut-cell approach is often used for finite volume schemes, where the cells are
divided along the object boundary as introduced by Berger et al. [9], see also [49,56]. While
in principle simple, extra care is needed to avoid very small or distorted cells. Often immersed
boundaries are used for fluid-structure interaction, a recent review is provided by [37]. An
interesting approach was recently presented in [35], in which ghost points and interpolation
is combined with summation-by-parts finite differences. The latter guarantees well-defined
fluxes, which is helpful for stability.

This article focuses on Brinkman penalization, for which not only the boundary but the
whole interior of the object is forced. This can be viewed as a sponge-like or porous medium,
which becomes impenetrable for a vanishing porosity. Often the porosity associated force
terms do not jump at the interface, instead, they are smoothed over a few grid points to avoid
numerical problems. It is also advantageous for moving objects, where otherwise the discrete
inclusion of grid points yields high-frequency fluctuations in the numerical solution.

In the most simple case, the porous object is modeled by the Darcy term, an extra friction
term punishing a flow velocity relative to the object’s movement. Its original application is to
describe flows through porous media in technical or geological applications, as for example
done byMasson and co-workers [24]. As a penalizationmethod it is used by Boiron et al. [11]
for compressible flows and by Farge et al. [52] for incompressible flows. Angot et al. present
[4] convergence theorems to the true solution for incompressible flows. Despite its simplicity,
it often yields good results. For example, a highly resolved incompressible flapping flight
simulation, as a flowaroundmoving objects, is presented byEngels et al. [21].Due to the finite
strength of the Darcy term, the non-slip condition is effectively replaced by an exponential
decay of the flow velocity in the object. The smearing of the interface increases this effect.
This can be mitigated by a locally refined grid of a multi-resolution approach, which is,
combinedwith an artificial compressibilitymethod, presented by Engels et al. [23]. The effect
of the smoothing of the mask function on the convergence of the solution is investigated for
incompressible flows by Hester et al. [28]. It is found that the slow convergence observed in
earlier work is due to a displacement of the effective boundary, which can be improved by
an optimally chosen smoothing.

Liu and Vasilyev [40] treat compressible flows by a Brinkman penalization method pop-
ularizing the approach in the compressible regime. They include both, the linear friction
relative to the object (Darcy’s law), and the effective volume fraction remaining for the fluid
φ, which is often called porosity. In this publication, it will be referred to as volume frac-
tion to distinguish it from porosity as a complex physical setting. The difference to the here
proposed scheme will be discussed below in Sect. 2. Komatsu et al. [38] calculate acoustic
radiation of flows passing different objects by a variant of the method of Liu and Vasilyev
[40], which is modified to be invariant under Galilean transformation.

The shallowwater equations are mathematically very similar to compressible flows. In the
work of Kevlahan et al. [34], a Brinkman penalization method is derived for these equations
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from a variational principle, paying particular attention to the volume fraction. It is pointed
out that the transport of momentum and mass should be consistent, and that the speed of
sound should not be modified by the volume fraction, to avoid stiffening of the equations.

Following the discussion of Kevlahan et al. [34], the effect of the volume fraction is inves-
tigated in this report. Similar to the shallow water equations presented there, compressible
Navier-Stokes equations are derived, where consistency in the treatment of the volume frac-
tion is emphasized. In this publication, it is shown that the volume fraction is helpful in the
context of Brinkman penalization in many aspects, namely in avoiding stiffness, in creating
slip boundaries, and good adiabatic boundaries, and for conservation properties. Interestingly
the derived equations were presented before by Liu and Vasilyev [40], as the fundamental
equations for flow through porous material by Darcy, but where turned down following argu-
ments in Nield and Bejan [44] and Beck [7], suggesting structural problems. However, here
no such structural problems appear, instead, it is found that the volume fraction and Darcy
term can be chosen largely independently, resulting in a substantial extension of possible
boundary conditions for the Brinkman penalization method.

Recently Kemm et al. [33] described a similar method derived from a two-phase flow
based on the Baer-Nunziato model [6], reducing it to one fluid phase and prescribing the front
movement. It is referred to as a diffuse interface approach and not as Brinkman penalization.
These equations agree with the here obtained equations when the Darcy friction terms are
neglected. Source terms similar to the Darcy friction are discussed for the Baer-Nunziato
model by Kapila et al. [32]. While here the focus here the is on static boundaries, Kemm et
al. [33] successfully investigates moving boundaries and discusses in a rigorous manner the
non-penetration condition. Their numerical implementation builds on the ADER predictor-
corrector discontinuous Galerkin approach byDumbser et al. [13,17,18], where the fluxes are
calculated by an approximate Riemann solver. The Riemannn problem for the Baer-Nunziato
model is discussed in depth by Andrianov et al. [2,3] and Han et al. [27]. A Riemann solver
for the Baer-Nunziato model are discussed for example by Torro et al. [55] (HLLC-type) or
Pelanti et al. [46] (Roe type).

The perspective of a two-fluid model allows an elegant description of fluid-structure
interaction by an Euerian description of the elastic solid as described by Favrie et al. [25,43]
and including reactive matter as describe byMichael et al. [42]. Acoustic waves in geological
settings for non-simple geometries are discussed by Taveli et al. [53]. Similarly, free surfaces
of fluids are described by Dumbser [16] and by Gaburro et al. [26].

The basic principle of the here presented method is closely related to the one of Kemm et
al. [33]. It is motivated by the Brinkman penalization method and not by the Baer-Nunziato
model, thereby bringing these different modeling approaches together. The simple geom-
etry treatment allows to use (conservative) finite differences, which are fully explicit and
straightforward to implement. To permit the application of finite difference to a wide range
of problems a filtering strategy must be adapted, which allows a locally varying filter strength
and is conservative for a variable reduced volume φ. The resulting method is efficient and is
tested on acoustic, strongly compressible, and near incompressible flows.

The paper is organized as follows. In Sect. 2 the basic equations are derived following the
ideas described in [34] and the conservationproperties are discussed.The applicationof afilter
demands a modification, which is described in Sect. 3. Numerical examples underpinning the
claims are presented in Sect. 4. First, the good acoustic properties are discussed in Sect. 4.1
including the stiffness of the method and the containment for large pressure gradients. On the
other hand, in Sect. 4.2 the flow configuration of potential flow with slip around a cylinder
and a supersonic flow along a wedge is shown. The conservation properties are tested for
a strongly unsteady blast wave in containment. Finally, a vortex street as an example for
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Fig. 1 The effective volume for the fluid can be interpreted in a quasi-one-dimensional flow as a reduced
cross-section by reorganizing the material of a flow tube, yielding a configuration known from the theory of
stream lines. This gives an extra pressure source term in the momentum equation

a simulation with a refined grid is presented. The results are summarized in Sect. 5. The
Appendix A provides technical details of the finite difference method and the filter.

2 The Penalized Equations

Here, the modification of flow equations to represent immersed objects will be derived in
analogy to one-dimensional gas dynamics.

2.1 Derivation of the Analytical Equations

The modified equations are to include the effects of reduced effective volume fraction φ =
Vfluid/Vtotal, since the volume of the material occupied by porous media is unavailable for
the fluid. It is expected that the equations mainly scale with the volume fraction since mass,
momentum, and energy scale likewise. TheDarcy term, describing linear friction proportional
to the relative velocity between flow and object, is added in a second step. As stated by
Kevlahan et al. [34] for the shallow water equations, it is important that mass and momentum
(and for the Navier-Stokes equations, energy) are transported with the same speed. We also
want to keep the speed of sound c unaltered by the penalization, since this suggests that the
same CFL condition CFL = (|u|+ c)Δt/Δx stays valid [34]. The validity of this assumption
is discussed below in Sect. 4.1.3.

Instead of deriving the equations from first principles by the theory of variations as in
[34], we observe that for one dimension the Euler equations of varying cross-section are
structurally similar to the equations derived in [34]. The speed of sound is independent of
the cross-section φ, and the transport of mass and momentum are modified in the same
way. Further, the essential modification by φ in [34] is a non-conservative pressure gradient
φ∂x p, as it appears in one-dimensional gasdynamics, see Eq. (5). This can be motivated
by the fact that no specific distribution of the porous material was prescribed. By this, it
can be reorganized microscopically as a tube of reduced cross-section, see Fig. 1. This was
recognized before, see [3] and references therein.

This leads to an extra factor φ in every flux term and an additional source term p∂xφ for
the momentum equation, which is detailed in text-books of gasdynamics, e.g. [1]. A similar
modification of the pressure gradient can be identified in the shallow water equation for an
uneven bottom height [34] and the Navier-Stokes equation in cylindrical coordinates, where
the role of the reduced cross-section is the circumference proportional to the radius r |.1 It
is also found for porous material [44] and in the Baer-Nunziato model for multi-phase flow

1 The radial momentum equation can be written as ∂t (ρrur ) + ∂t (rρur ur ) + ∂z(rρur uz) + r∂r p = 0.
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[3], see below. In all these applications a reduction of a cross-section-like property yields a
source term in the momentum equation of this type.

The equations for mass, momentum, and energy in one dimension without friction are
therefore just the equations for one-dimensional gas dynamics in varying cross-section φ

φ∂tρ + ∂x (φρu) = 0 (1)

φ∂t (ρu) + ∂x (φρuu) + ∂xφ p = p ∂xφ (2)

φ∂t (ρet ) + ∂x (φρuet ) + ∂x (φup) = 0. (3)

We introduced the mass density ρ, the velocity u, the pressure p and the total energy
et = u2/2 + ein, where we in the following assume the internal energy of an ideal gas
ein = p

ρ
1

γ−1 , with the adiabatic index γ . In principle, the varying cross-section φ can have
arbitrary (positive) values. In the following it is identifiedwith the reducedvolumebyporosity,
so that it is in the range φ = [0, 1]. In the vanishing limit φ → 0 no volume is left for the
fluid. The volume fraction appears linearly in all terms on the left-hand side, whereas the
term on the right-hand side is a source term without a derivative of any of the dynamical
variables. From this, it follows that the equations are hyperbolicwith unchanged characteristic
velocities: the acoustic waves with λ± = u ± c with the speed of sound c = √

γ p/ρ and
the entropy wave λs = u. Further, all flux terms are modified in the same manner, so that
the consistency demand of [34] is automatically fulfilled. If φ is constant (and non-zero), the
equations reduce to the standard one-dimensional Euler equations.

Due to the source term p ∂xφ, the momentum is not conserved, whereas the total mass
and energy are conserved. This is physically sound, since a change in cross-section creates
reflections, whereas mass and energy are unaltered.

The Eqs. (1)–(3) can be generalized straightforwardly to multiple dimensions and aug-
mented with dissipative terms. Summing convention is assumed for all Greek indices
α, β = 1, 2, 3 marking spatial directions. The two pressure terms in the momentum equation
have been combined ∂xα (φ p) − p∂xαφ = φ∂xα p, resulting in the equations

∂t (φρ) + ∂xα (φρuα) = 0 (4)

∂t (φρuα) + ∂xβ (φρuβuα) + φ∂xα p = φχ(utα − uα) + ∂xβ (φταβ) (5)

∂t (φρet ) + ∂xα (φρuαet + φuα p) = ∂xα (φuβταβ) + ∂xα (φλ∂xαT ). (6)

Further, the Darcy friction term is included in the momentum equation with a spatially
dependent force strengthχ = 1/η and the target value utα , which is the speed of the immersed
object, which is always zero in this report. We also assume that the objects are static, i.e. φ
and χ are time independent, in the following. The dissipative term contain the temperature
T = p/ρRW with the universal gas constant R and the molecular weight W . The viscous
friction is given by ταβ = μ

(
∂xβuα + ∂xαuβ

) + (μd − 2/3μ)δα,β∂xγ uγ with μ and μd

the shear and volumetric friction and δα,β the Kronecker delta. Similar to the Darcy term,
a penalization can be added to the energy equation to enforce e.g. isothermal boundary
conditions, [11]. These dissipative fluxes are scaled by φ since these fluxes take place in the
fluid part only. It also keeps the symmetry of the dissipation terms, i.e. guarantees negative
semi-definite operators.
Comparison with former schemes Liu and Vasilyev [40] discuss different equations for the
Brinkman penalization, of which some agree with here proposed equations, while the equa-
tions used in the numerical implementation [40, eqn. (18–20)] do not. For example their mass
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equation is

∂tρ = −
[
1 +

(
1

φ
− 1

)
χ

]
∂αmα (7)

with χ the mask function and mα = ρuα . In contrast, the mass equation in the initial
discussion [40, (eqn 2)] and the momentum equation [40, (eqn 5)], attributed to Wooding
[60], agrees with our equations.2 For the latter, the mass equation (4) needs to be split off the
momentum equation (5)

ρ∂t (uα) + ρuβ∂xβ (uα) + ∂xα p = χ(utα − uα) + 1

φ
∂xβ (φταβ) (8)

by which the volume fraction cancels in all terms beside the shear friction term. This is struc-
turally also found by Kevlahan et al. [34]. However, the (steady state) momentum equation
given by Wooding [60, (eqn. 6)] in the cited reference is

1

ρ
∇ p − g + 1

k
νq = −φ−2q · ∇q (9)

with q = φu (aligned to our notation), with g the gravity vector and k the Darcy friction
factor. The combination of the pressure term and the non-linear transport term disagrees with
(8) and not all terms have the same order in φ.

Liu and Vasilyev abandon Wooding’s equation, similar to the here proposed, due to an
argument of Beck [7], who, however, uses a Darcy equation (his Eq. 1), where a constant φ
does not cancel. Beck finds an insufficient number of boundary conditions for his buoyancy
flow, however, noproblems are apparent for the here usedEqs. (4–5).Themomentumequation
of Nield and Bejan [44, (page 8)] agrees with the here found equation. They argue to drop
the non-linear transport, by citing Beck, and by practical considerations for a real porous
material, which does not seem imperative for our artificial application of porous model.
Instead, it is shown in the simulations that equations used here, with all terms linear in φ,
allow to choose the volume fraction φ and the Darcy term largely independently, making
it possible to model different boundary conditions. The way φ enters the equations in this
article agrees with the equations of Kemm et al. [33], derived from the two-phase flow of
Baer-Nunziato model. A similar approach for acoustic waves is given by Tavelli et al. [53].
Moving Objects Moving objects imply a time dependency of the cross-section φ = φ(t),
which results in additional terms in the governing equations. These are derived here for the
sake of completeness and fully agree with Kemm et al. [33].

A time-dependent reduced volume can be interpreted as a flux term, see Fig. 2. For example
for the mass equation, the balance equation of an infinitesimal volume is

∫

Ω

(∂tρ)dV + (φρu)x2 − (φρu)x1 + (ρv)y=φ − (ρv)y=0 = 0. (10)

Here, we assume that the horizontal fluid velocity is constant for one x-position, so that the
flux along the boundaries at x1 and x2 is a factorφ. The vertical velocity at the lower boundary
is assumed to be zero v(0) = 0 and v(φ) = ∂tφ at the upper boundary. For an infinitesimal
Δx the volume integral can be replaced by a multiplication with the volume

∫
Ω
dV = φΔx .

By this (10) results in φΔx∂tρ + (φuρ)x2 − (φuρ)x1 + Δxρ∂tφ = 0, or for Δx → 0 and
with the help of the product rule

∂tφρ + ∂x (φuρ) = 0 (11)

2 Observe the Dupuit-Forchheimer relationship vα = φuα , used there.
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Fig. 2 A time-dependent
effective volume introduces
addition flux terms, as φ̇ can be
identified with a velocity at the
boundary, see text

In the samemanner, the transport terms formomentumand energy produce the termnecessary
to include φ in the time derivative. Reconsidering all terms of (4–6) in this manner, one finds
that only one further term is created by a time dependent φ which arises from the pressure
work term in the energy equation. The same reasoning as above shows that the pressure work
term ∂x (φup) becomes∂x (φup) + p∂tφ.

The Eqs. (4–6) become

∂t (φρ) + ∂xα (φρuα) = 0 (12)

∂t (φρuα) + ∂xβ (φρuβuα) + φ∂xα p = φχ(utα − uα) + ∂xβ (φταβ) (13)

∂t (φρet ) + ∂xα [φρuα(et + up)] + p∂tφ = ∂xα (φuβταβ) + ∂xα (φλ∂xαT ) (14)

A similar derivation for moving walls for the flow of blood is presented in [5], where the
density becomes a constant due to the incompressibility assumption. The equations agree
with Kemm et al. [33] if the Darcy and viscous terms are omitted.

To elucidate the relevance of these extra terms, we use the product rule for time derivative
terms, and splitting of the kinetic energy uαuα/2 = et − ein from the total energy equation
to arrive at (in 1D)

φ∂t (ρ) + ∂x (φρu) = −ρφ̇ (15)

φ∂t (ρu) + ∂x (φρuu) + φ∂x p = −ρuφ̇ (16)

φ∂t (ρein) + ∂x (φρuein) + ∂x (φup) − φu∂x p = −(p + ρein)φ̇. (17)

For the total energy of an ideal gas et = (p/ρ) · 1/(γ − 1) the last equation becomes

φ∂t (p) + γ ∂x (φup) − (γ − 1)φu∂x p = −(γ p)φ̇ (18)

Without the spatial part a change in φ produces a change in the density given by dφ/φ +
dρ/ρ = 0 and φdp + γ pdφ = 0 from which the adiabatic relation dp/p − γ dρ/ρ = 0
follows. This shows that a temporal changing φ is just an adiabatic pressure source, as
expected for a homogeneous compression. Splitting off the mass equation from momentum
shows that the change inmomentum is fully due to the change of density.Adetailed discussion
of the dynamic φ is found in [33].
Implementation Strategy To describe embedded objects, the friction term χ can be chosen
to be large or φ can be made small, where of course a combination is possible. The strategy
will be to reduce the volume fraction by several orders of magnitude (typically down to
10−6 − 10−8) so that the remaining volume is practically zero and by this all convective and
viscous fluxes. Second, the Darcy friction is chosen as big as the time step permits for an
explicit time marching. Stronger values the Darcy friction could be handled by an implicit or
semi-implicit method as, for example, used in [11]. However, a very large choice corresponds
to simply setting the target values inside the objects. This reduces the smoothness of the
solution having a detrimental effect on the discrete solution. This effect is discussed in more
detail for example in [22,57]. The reduced volume fraction implies a good approximation of
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the non-penetration condition, producing thereby a slip boundary condition, while the Darcy
friction ensures the non-slip part. Close to a boundary, large shear forces result from this,
restricting the time step. However, since the Darcy term needs to balance forces similar to
the shear forces in the fluid itself, this leads to a very similar stiffness and no additional time
step restriction results.

2.2 Conservation Properties

The conservation of mass and energy in the full domain is obvious from (4) and (6), while
the momentum (5) is not conserved. However, in the case of immersed objects, it is not the
conservation in the full domainΩ = Ωf ∪Ωs that is physically relevant, but the conservation
in the fluidΩf domain without the objectsΩs. If we first consider a penalization by a sharply
varying φ such that

φ =
{

ε Ωs, inside the objects
1 Ωf , otherwise

(19)

and remark that the conserved quantities are weighted by φ, we find e.g. for the mass

M =
∫

Ω

φ(x)ρ(x)dV =
∫

Ωf

φ(x)ρ(x)dV +
∫

Ωs

φ(x)ρ(x)dV

= 1
∫

Ωf

ρ(x)dV + ε

∫

Ωs

ρ(x)dV . (20)

By this, the total mass is decomposed in mass in the fluid and in the solid region M =
Mf + εMs. The last term is suppressed by a small volume fraction of ε. If the value of the
density in the porous region is bounded, its fraction of the total mass is suppressed by ε → 0,
the mass in the fluid domain is approximated by the total mass, and therefore approximately
conserved. In many practical cases, the maximal values of ρ in the objects can be estimated
from physical reasoning. This can be stagnation values in external flows or a doubling of
pressure and density for acoustic reflections. We find very good conservation in tests, with
the only ambiguity being the finite thickness of the transition of φ from one to ε, which is
needed for numerical stability. This smearing of the boundary induces some arbitrariness of
the exact location of the object and of the separation of the two integrals in (20). However,
mass leaving the fluid domain is not lost, but ’inside’ the boundary region so that this property
can be viewed as a not perfectly rigid boundary. The same reasoning can be made for the
energy. The momentum is not conserved, as mentioned before, as objects act as momentum
sources by deflection flow or reflecting acoustics.

By this, the volume fraction approach implies an (approximate) adiabatic boundary con-
dition, if no temperature is forced. Since the energy content of the gas in the solid region is
suppressed by φ, its total energy content and the fluxes are suppressed by the same factor.
By this, only negligible energy enters or leaves the object, assuming again finite values of
the energy density in the object.

2.3 Discrete Equations

Immersed boundaries allow using simple Cartesian grids. This permits to use finite difference
methods, which are easy to implement and to parallelize. Finite differences allow for small
discretization errors by simply using appropriate finite difference stencils. Various finite
difference formulations are available. The here used method is a skew-symmetric method,
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due to the combination of strict conservation and the absence of numerical damping. The
first is essential for the faithful treatment of shocks, while the latter is advantageous for the
simulation of acoustics and fine turbulence. For skew-symmetric schemes, the momentum
transport term is formulated to yield a skew-symmetric matrix after discretization. This has
the elementary property that quadratic forms become zero qT Aq = 0 if the matrix A is
skew-symmetric A = −AT . This implies that the discrete momentum transport term does
not change the kinetic energy, in agreement with the analytical theory. A violation of this
fact is a major source of instabilities since numerical damping or numerical excitation are
equally likely.

It is found that the derivation of the skew-symmetric scheme of Reiss et al. [51] can
directly be adopted to include φ. Details can be found in the Appendix A, here we restrict
the discussion to a brief description. However, this special discretization is not mandatory
and it is expected that other discretizations work as well.

We use
√

ρ,
√

ρuα and p as calculation variables. This unusual choice origins from a
symmetric splitting of the kinetic energy ρuαuα/2 = (

√
ρuα)(

√
ρuα)/2. This suggests

using
√

ρ as a variable to form the velocity uα = (
√

ρuα)/
√

ρ, without evaluating the
square root of a field. The final equations (for a time constant volume fraction φ) are

∂t (
√

ρ) + ∂xα (φρuα)/(2φ
√

ρ) = 0 (21)

φ
√

ρ∂t (
√

ρuα) + 1

2

[
φρuβ∂xβuα + ∂xβ (φρuβuα)

)] + φ∂xα p

= φχ(utα − uα) + ∂xβ (φταβ) (22)

φ

γ − 1
∂t (p) + γ

γ − 1
∂xα (φ puα) − φuα∂xα p

= ∂xα (φuβταβ) + ∂xαφλ∂xαT − uα

[
φχ(utα − uα) + ∂xβ (φταβ)

]
. (23)

The equations are discretized simply by replacing all derivatives with finite differences with
symmetric stencils and evaluating all products or divisions pointwise. The time-stepping is
the standard fourth-order Runge-Kutta scheme. This is followed by filtering for cases where
otherwise highly oscillatory solutions occur, namely when complex geometries focus waves
and most importantly for shocks where dissipation is demanded by physics. A specially
designed filter is needed in general, which is discussed in Sect. 3.

The whole method is fully explicit and simple to implement. A source code producing all
the numerical examples is provided as supplementary information on the journal homepage.3

It seems attractive to include φ in redefining ρ and p, but big rounding errors were found
in this case for a small φ, so we refrain from doing so. Note that we divide by φ for time-
stepping, so that it cannot be set to zero in the numerical implementation. The transport term
in the momentum equation is explicitly skew-symmetric, which is preserved if the spatial
discretization simply replaces the derivatives with central finite difference matrices. The
kinetic energy is changed only by compression work, and not by numerical friction. The total
energy as the sum of the kinetic and internal energy is conserved.

The skew-symmetric form suggests an unconditionally stable scheme. For this, a time-
stepping that conserves quadratic invariants is needed as presented by Brouwer et al. [12].
To be rigorously norm-stable, the variable

√
p instead of the pressure p has to be used,

however, this form works very well in our experience. All methods which conserve quadratic
invariants are implicit methods. This extra effort does not seem to be justified for many time
dynamic simulations, where all scales of interest need to be resolved since stability does

3 A source code is provided as Supplementary Information along this article.
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not guarantee the correctness of the fast dynamic. Explicit high order time-stepping yields
very good conservation properties, so that it can be used in most practical cases as shown
for different examples in [12]. The conservation can cheaply be validated during simulation
permitting to switch to a different time integrator. A reduction of the time step might often
be sufficient as thereby the conversation is strongly improved [12]. Explicit time integrators
with improved energy convergence are discussed for incompressible flows by Capuano et al.
[14], which might be adopted for our method.

3 Filtering

The non-linearity of the Navier-Stokes equations constantly produces higher wavenumbers,
which tend to exceed the grid resolution after some time if not removed by friction terms. This
is especially important in shocks, but also at boundaries. The high gradient of the immersed
objects can create high-frequency structures up to a grid-to-grid oscillation. To remove these
oscillations, artificial dissipation is often applied. Various methods to introduce dissipation
exist, an overview is given by Pirozzoli [48]. In the simplest case it is introduced by upwind
discretizations or similar by calculating fluxes by a Riemann solver, which creates in effect
an upwind stencil for the Riemann invariants [39].

Often hybridmethods are used, which switch based on a flux limiter from a high order, low
dissipative to low order dissipative scheme. Alternatively, artificial viscosity by an adaption
of the viscous parameters near discontinuities was proposed by Cook et al. [15]. Artificial
viscosity and the flux limiting are at least for simple examples structurally similar, see [39,
Chap. 16]. Adaptive filteringwas introducedwith the same purpose byYee et al. [61], where a
filter operationwith local filter strength allows to concentrate dissipation near discontinuities.
With a similar effect, varying filter order can be applied as used by Visbal et al. [58] and more
recently by Patel et al. [45]. A quantitative comparison of the different methods is provided
by Johnsen et al. [31]. These non-linear dissipation methods rely usually on a detector of
shocks or non-smoothness, which is used to determine the flux limiter, the artificial viscosity,
or the filter strength. Different shock detectors are compared in [48].

In the following, a filter is used in the numerical examples. This should not only remove
oscillatory components but also allow a locally varying filter strength and especially respect
the conservation with the varying volume fraction. Conservative filtering is often achieved by
filtering the conserved quantities, however, this is not appropriate here. Consider the mass in
one dimension, M = ∑

i (ρφ)iΔx , where i runs over all grid points. Filtering (ρφ)i would
keep the total mass constant, however, it would tend to increase ρ where φ is becoming small,
i.e. inside the boundary of immersed objects. This counteracts the intention to smooth the
physical quantities.

Conservative filters similar to [36] are now formulated analogously to dissipative flux
terms, which fulfill the desired properties, as argued in the following. The starting point is to
define fluxes between two adjacent grid points, similar to finite volume for some variable q
(depicted in 1D)

(φi qi ) = (φi qi ) + (Fi−1/2 − Fi+1/2), (24)

with Fi−1/2 = −(σφ)i−1/2(qi −qi−1)/4 and Fi+1/2 = F(i+1)−1/2. The flux form guarantees
the conservation of φq in the filtering, while the flux is non-zero only if q varies and the local
flux factor σi , (σφ)i−1/2 = (σi−1φi−1 + σiφi )/2 is non-zero. The filter strength σi can be
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locally varying and is thereby chosen to filter oscillations within objects or in under-resolved
parts of the flow, e.g. close to shocks.

To generalize the dissipation-like filtering (24), it can be written in matrix notation as

(qφ) = (qφ) + D̄(M(σφ))Dq , (25)

where the expression (24) is recovered with (D̄u)i = (ui − ui−1)/2 and (Du)i = (ui+1 −
ui )/2 and the averaging operation (Mu)i = (ui−1 + ui )/2. For the derivation periodic
grids are assumed from which the non-periodic case is constructed at the end. This method is
second-order if σ and φ are constant, and first order otherwise. This form reveals the principle
structure whereby the damping and the conservation properties can be checked easily, as
now detailed. With D̄ = −DT , and a positive semi-definite matrix (M(φσ)) (in our case
a diagonal matrix with non-negative elements), we find that the operator D̄(M(φσ))D is
negative semi-definite, since

qT D̄(M(φσ))Dq = −(Dq)T (M(φσ)(Dq) ≤ 0. (26)

Obviously (qφ) = (qφ) holds, if q is constant, since the derivative vanishes for any
constant function D1 = 0, with the vector of constant entries (1)i = 1, used to depict the
sum. The conservation is checked by

1T (qφ) = 1T (qφ) + 1T D̄(M(σφ))Dq = 1T (qφ) (27)

due to the telescoping property 1T D̄ = 0 for periodic grids.
To generalize to higher order, appropriate D̄ (thereby D = −D̄T ) and M , fulfilling the

mentioned properties, can be chosen. We demand that the resulting filter yields the filter
stencil of a higher-order filter when φ and σ are constant. In [10] D̄ was kept proportional to
a one-sided first derivative to keep the flux form, and D was calculated to create the desired
filter stencil. Here, we instead chose to keep D̄ = −DT so that the negative semi-definiteness
is guaranteed. We remark that the stencil (1,−2, 1)/4 for D and D̄ = −DT yields the filter
(−1, 4,−6, 4,−1)/16 for constant φσ , which is the standard fourth order filter, reducing to
second-order for non-constant φ or σ . It has the nice property that a purely linear function is
reproduced by filtering, even for non-constant σ or φ. Similarly, using this filter stencil for
D we find the filter stencil of eighth order (−1, 8,−28, 56,−70, 56,−28, 8,−1)/256 for
constant σ and φ. In both cases, no averaging by M is done, i.e. M = 1. The averaging in the
first/second-order method is needed to avoid a directional diffusion if the stencil D is non-
symmetric. Inmore dimensions, the contributions of the different spatial directions are simply
added where different σα for all spatial directions α are possible. An algorithmic description
and the later used adaptive filter strength for shocks are discussed in the Appendix C.

The non-periodic case can be handledwith the same D andM as above by choosing σ = 0
close to the boundary for a sufficient number of grid points, which results in a non-periodicity
stencil of the resulting filter. For the first/second-order filter, the choice of σ = 0 for the two
points next to the boundary in the direction perpendicular4 to the boundary does not change
the boundary values. Setting only the outermost points of σ zero would result in modified
outermost points, but without a modification of the flux by the filter [30]. This can be chosen
depending on the desired boundary condition.

4 In calculation space for transformed grids.
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4 Numerical Examples

4.1 Acoustic Configurations

4.1.1 Acoustic Reflection in 1D

A solid boundary reflects acoustic pulses. Here, we investigate how such a reflection is
created by the volume fraction alone. The one-dimensional domain with a length of L = 2m
is described with N = 1024 points. The domain is large enough to ignore the domain
boundaries for this example. The wall starts at x0 = 1m+δ0 where only the volume fraction
is reduced from 1 to ε = 10−8 with a hyperbolic tangent

f (x) = 1 − (1 − ε)(1 + tanh((x − x0)/δ))/2 (28)

with a thickness of δ = Δx as the grid spacing. The shift δ0 = 0.3Δx is chosen to align the
maximum of the reflected and the mirror pulse by visual inspection. This implies that the
effective location of the wall is not at φ ≈ 1/2 but shifted for the fraction of a grid spacing.
No Darcy term or filter is used in this example to reveal the effect of the volume fraction.
Standard fourth-order central difference and the classical Runge-Kutta-4 time stepping is
applied, as detailed in the Appendix A.

The initial data is an adiabatic, Gaussian pulse in pressure and density,

ρ = ρ0

(
1 + β exp

(
−(X − x0)

2/σ 2
pulse

))
p = p0(ρ/ρ0)

γ (29)

with relative height of β = 10−3, relative to ρ0 = 1kg/m3, p0 = 105Pa and σpulse = 8Δx ,
which is chosen so that no artefacts of the numerical dispersion error are visible by inspection.
For σpulse = 6Δx , the pulse is followed by clearly visible ringing.

The results are presented in Fig. 3. The space-time diagram shows that the right-going
pulse is reflected at x = 1m. The speed of sound is clearly the same within the object, as
well as outside. The snapshot of p at t ≈ 1.32 ms is shown in the second plot. The left-going
and the reflected pulse have the same amplitude, as expected, while the pulse in the object is
strongly increased and shows some ringing. Its increase is due to the doubling of the pressure
at the reflection point. Some additional increase is created by the restriction to very small
φ, which is not further analyzed here. To quantify the quality of the reflection, the reflected
pulse is compared with a mirror pulse, and a very good agreement is found. The inset shows
the difference relative to the initial pulse amplitude ∼ 2 · 10−3.

Finally, the spectrum is shown to reveal the frequency dependency of the difference
between the reflected pulse and the reference mirror pulse. A window [xm − 5.5σpulse, xm +
5.5σpulse] is created around location the maximum of reflected pulse xm . The pressure values
outside this sharp window are set to zero, and a Fourier transform is calculated for the remain-
ing values. By this, the spectrum of the reflected pulse and the reference pulse is calculated.
In Fig. 3 the absolute value of these two is compared. The numerically interesting range is
very well represented. Since the absolute value agrees very well, the error visible in Fig. 3c
is dominantly a phase error.

All results are largely independent of ε, if sufficiently small. It can be increased by orders
of magnitude without changing the result or decreased further without compromising the
numerical stability. The only visible effect is that the ringing of the pulse inside the object
and the kink at the boundary becomes stronger with a smaller ε.
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Fig. 3 a space-time diagram of an acoustic pulse (p). immersed boundary depicted by a dotted line, time of
snapshot by broken line. b Snapshot of pressure scaled by initial pulse strength, volume fraction dotted. c
Reflected pulse in comparison with mirror pulse. Relative difference in the inset. d Spectrum of pulse shows
good agreement over a large part of the wavenumbers

The observed displacement δ0 is much smaller in comparison with the in-depth discussion
of [28]. However, a substantially different situation was considered there: an incompressible
boundary layer enforced by a pure Darcy term.

4.1.2 Containment

One motivating aspect of this investigation is to improve the penalization for configurations
with high-pressure gradients. If the Darcy term is the only term to combat a high-pressure
difference, it must be chosen accordingly large, leading to a strong numerical stiffness or
even instabilities. In the method proposed here, the pressure gradient is counteracted by a
change in volume fraction, which is largely able to handle the pressure gradient even without
a Darcy term. In Fig. 4, a set-up is shown where two walls at x = 1 and x = 2 keep a high
pressure reservoir of 4p0 against p0 = 105.

Without a Darcy term, a chocked flow is found. The flow accelerates to sonic conditions
of Ma = u/c ≈ 1, with the sound velocity c = √

γ p/ρ, creating a supersonic expansion
terminated by a shock. Chocking conditions are not fully reached in the wall (Ma ≈ 0.75),
which is due to the filter acting similar to a viscosity. The second/fourth-order filter described
in Sect. 3 is applied in the whole region. However, since the volume fraction φ = 10−8 scales
the mass flux, it results in a mass flux of the order of ≈ 10−5. This is largely independent of
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Fig. 4 A one dimensional domain with two walls at x = 1 and x = 2 holding a fourfold pressure compared
with the outside. The start and end of the walls is marked by the thin broken lines. The volume fraction allows
to contain the gas: while the flow accelerates to the speed of sound (chocked flow), the mass flow ρuφ is
suppressed by the volume fraction φ = 10−8. A Darcy term can reduce the flow further. The inset shows the
logarithm of the mass flow, where small residual acoustic noise is visible

Fig. 5 The increase in stiffness is
given by the increase of the
maximal eigenvalue modulus as a
function of the boundary
smoothing thickness δ. It is
normalized by the maximal
eigenvalue of the problem with
constant φ. For wide boundary
functions (δ 	 Δx) the stiffness
agrees with the unmodified
system (φ ≡ 1), while for small
values of δ a steep increase is
visible

wall thickness. The steady-state is not fully reached in the simulation, instead, small acoustic
noise is still visible in the mass flux in the inset of Fig. 4. A Darcy friction term allows
reducing the mass flux further. The findings show the ability of the method to handle large
pressure differences.

4.1.3 Stiffness of the Method

Based on the CFL number criterion, it was argued that leaving the speed of sound unaltered
implies avoiding additional stiffness [34]. However, since the pressure amplitude is rapidly
increased and the velocity is reduced when a sound pulse reaches the wall location, some
additional stiffness is expected. The magnitude of the source term in the momentum equation
(2) suggests the possibility of a massive increase. Yet, a very moderate decrease of the
admissible CFL number, depending on the width of the boundary function, was found in the
simulation.

To investigate the stiffness, the eigenvalues with maximal magnitude were determined for
the described acoustic setup of Sect. 4.1.1, see Fig. 5. For a wide wall function δ 	 Δx
we reproduce the stiffness of the right-hand side without the volume fraction φ ≡ 1. For
small δ, a sharp increase of the stiffness was found. For the setting of the simulation δ = Δx
an increase of roughly 70% was found, consistent with the possible CFL numbers in the
simulation. For a slightly stronger smeared boundary δ = 1.5Δx , an increase of 25% of the
stiffness was found. As expected, the eigenmodes with the largest eigenvalues are always
strongly localized at the boundary location. One conclusion from this is that in order to

123



Journal of Scientific Computing            (2022) 90:86 Page 15 of 29    86 

Fig. 6 a Snapshot of the pressure, the boundary depicted by a thin red line. b Mirror pulse solution. c A cut
along y = 1, to allow a comparison, difference in the inset. d The tangential velocity along x = 1.25 agrees
excellently with the reference showing a faithful construction of slip boundaries

increase the quality of the boundary, instead of decreasing δ, a finer grid resolution can be
less restrictive on the time step. Altogether, the increase is moderate and can often be much
smaller than a pure Darcy term, especially for high-pressure gradients.

4.1.4 Acoustic Reflection in 2D

The acoustic case is extended to two dimensions. A square domain x × y =
(1/4, . . . , 5/4) × (1/4, . . . , 5/4) is embedded in a domain of size 2 m × 2 m, discretized
with 1024×1024 points. An adiabatic pulse centered at (1 m, 1 m), again with σpulse = 8Δx
and an amplitude of 10−3ρ0, ρ0 = 1, is used as initial condition. A reference can again be
created by the three mirror pulses, located at (1.5 m, 1 m), (1 m,1.5 m), (1.5 m, 1.5 m) with
the same amplitude as pulse inside the box. The pulse is reflected by the jump in φ, modeling
the wall. Again, acoustic waves are created within the object, where for a locally constant
φ = 10−8 in effect the same Euler equations are valid. The mass, momentum, and energy
content of the wall region are small by the factor of 10−8 as discussed before. Again, we find
excellent agreement, see Fig. 6. Not only is the acoustic wave, which impinges perpendicular
to the wall, well reproduced, furthermore the wave slipping along the wall at x = 1.25 is
correctly reproduced. Such a slip boundary cannot be presented if a Darcy term is used to
describe objects since this necessarily creates non-slip boundaries.
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Fig. 7 A flow around a slip cylinder compared with a potential flow solution. Left: The numerical streamlines
(broken, white) are almost perfectly on top of the analytical reference, depicted in black, the velocitymagnitude
is color-coded. Right: The x component of the velocity at the line (x = 5, broken red line in left plot) in
comparison with the analytical value, shows very good agreement. The difference shows kink close to the
outer sponge (y ≈ 4.4), where the analytical solution is enforced and a zigzag mode

4.2 Flow Configurations

4.2.1 Potential Cylinder Flow

To investigate the quality of the slip boundary condition, the friction-free flow around a
cylinder is calculated, for which exists a simple analytical solution. A flow velocity at infinity
of u0 = 10 m/s is used, so that (for reference values as above) a low Mach number of
Ma ≈ 0.02 allows to consider the flow as near incompressible. As boundary conditions,
the known potential flow upot = ∂xΦpot and vpot = ∂yΦpot, with the potential in polar

coordinates relative to the cylinder center Φpot = u0

(
1 + r20

r2

)
cos(ϑ), is set. The pressure

is calculated from the Bernoulli theorem, the density by the adiabatic condition.
The 2D domain of size (10 m × 10 m) is discretized by 514 × 514 points and contains

a cylinder of radius R0 = 1 m. The wall of the cylinder is again smoothed by the same
hyperbolic tangent as above with δ = 1.5Δx .

The initial condition is the velocity constant (u0, 0) (impulsively started cylinder). At the
boundary, we force the analytical solution by a sponge layer of thickness 10Δx , and use a
forcing strength for the Darcy and the sponge term of η = 2Δt .

Further, a filter of first/second-order as described above is used only inside the cylinder,
again with the same mask function retreated by 4Δx inside the object. A Darcy term is used
with a mask created by the same function as the volume fraction (28), where the reference
point x̄0 is moved relative to the wall position by 7Δx so that its action is practically zero at
the boundary. The purpose of both is to avoid dynamics inside the object, which otherwise
destabilizes the simulation.

We find excellent agreement with the analytical solution, see Fig. 7. The numerical stream-
lines are on top of the analytical ones and the pattern of the velocity magnitude matches the
expectations. The x component of the velocity along x = 5 also shows a very good quan-
titative agreement. A kink at the position where the sponge enforcing the boundaries ends,
and a small zigzag mode relative to the analytical solution, is visible.

The differences might be explained by a slightly different blockage, due to the non-sharp
boundary location. This interpretation is supported by the fact that the error becomes smaller
with higher grid resolution, by which this effect becomes effectively smaller. It is concluded
that slip conditions are created which are fully sufficient for practical calculations.
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Fig. 8 The modulus of the density gradient (pseudo-schlieren). Left: The slip boundary condition reproduces
the shock location predicted by the (inviscid) gas dynamical theory. The triple points close to the upper
and lower boundary arise from the periodic boundary conditions. Inset: The reduced volume φ (o) and the
normalized Darcy friction (+) around x = 1 and along y = 1 shows the smoothing of the boundary and the
shift of the Darcy friction away from the boundary. Right: The non-slip boundary condition produces a lift-off
and a slightly curved shock due to the flow displacement by the boundary layer, visible by the vortices at the
wedge

4.2.2 Wedge in Supersonic Flow

A wedge in supersonic flow is now investigated. The case follows [11] closely. Nor-
malized quantities are used in this section. A two-dimensional domain of 2 × 2 with a
wedge of half angel θ = 20◦ and tip at S = (0.5, 1) is investigated. The main differ-
ence to the cited reference is a periodic boundary condition in y for simplicity. Due to
the hyperbolicity of supersonic flows, large parts of the flow can be directly compared.
The in- and outflow is forced by a sponge term to Ma = 2, the reference values are
(ρ0, u0, v0, p0) = (1,Ma

√
γ , 0, 1), γ = 1.4.

To handle the shocks, an adaptive filter as described above is used, where σ is determined
by a shock detector as described by Bogey et al. [10] and modified as in [51] by a soft switch
function. A threshold of rth = 10−3 and a steepness of λF = 1/10 was used, see Appendix C
for more details.

Two different set-ups are compared. A non-slip boundary condition which compares to
[11] and a slip condition which can be directly compared with analytical predictions from gas
dynamics, where inviscid flow and thereby non-slip conditions are assumed. In both cases, a
resolution of 15362 grid points as in [11] is used.

Unsurprisingly, the slip boundary condition, made possible by the new method, agrees
much better with the gas dynamical prediction, see Fig. 8. The absence of numerical damping
allows for fine details, but also yields high frequency noise, which is removed by filtering
in post-processing. The error for the non-slip condition depends on the resolution since the
minimal boundary layer thickness (created by numerical dissipation) depends on it. For a
slip boundary, the agreement is largely independent of the resolution. This has also practical
consequences, especially in a first design phase, where a low resolution is often interesting
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Fig. 9 The modulus of the density gradient (pseudo-schlieren) for the time t = 1.5 and t = 2.0

when the boundary layer is not expected to be crucial for the design. Here, a lower resolution
permits a shorter design process, so that the volume fraction approach might be of help.

4.2.3 Wedge Shock Wave Interaction

Here, a shock-wedge interaction is discussed. The case follows a case presented by Kemm at
al. [33] and Dumbser et al. [19]. A a wedge of height h = 1 and length l = 1 is placed with
its tip at (2,3) in a domain of size (8 × 6). A shock wave is located at x = 1 at time t = 0,
with a Mach number Ma= 1.3 enters a gas at rest (u0 = 0) with ρ0 = 1.4 and p0 = 1 with
a adiabatic index of γ = 1.4.

The domain is resolved with 1000 × 750 points to be comparable with the additional
degrees of freedom of discontinuous Galerkin elements of [32]. The reduced volume is again
created from a signed-distance function and the smoothing by (28) with δ = Δx with a value
of ε = 10−8 in the object.

The shock filter with rth = 10−4 and λF = 4 is applied at every time step. Additionally, a
global filter strength σstatic = 0.05 is used to avoid noise in the simulation, see Appendix C
for details. The first/second-order stencil is used.

The overall agreement is good. However, the shocks are not as sharp as in the reference
simulation. This could be improved by a different shock detector (similar to a flux limiter) or
by optimized filter coefficients. Artificial viscosity [15]might be an option. This investigation
is not in the scope of this publication.

4.2.4 Pressure Pulse in Tube

This example is motivated by a detonation wave in a tube entering a plenum of a turbine
and aims at assessing the conservation quality. Such unsteady flows arise when coupling
detonative and unsteady combustion with turbines to construct new types of gas turbines,
see e.g. [8]. Here, high-pressure gradients appear, which challenges purely a Darcy-friction-
based volume penalization, since it has to balance the high-pressure forces. Unlike a turbine,
the domain is closed in the example, to allow a direct evaluation of conservation properties.

The two-dimensional domain is 2 m long and 1 m wide, with a tube of diameter 0.2
m in the left part and a chamber in the right part. All walls have a thickness of 0.05 m.
Three NACA6412 profiles of cord length 0.3 m tilted by−(3/16)π are placed in the domain,
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Fig. 10 Left: An unsteady jet flow entering into a closed chamber with obstacles is rich in physical phenomena
and produces strong unsteady pressure forces on the boundaries. The Mach number is shown in the upper half
and the volume fraction weighted mass density in the lower part. Right: The conservation of the total mass
depends on the definition of the integration domain, see text

mimicking a stator cascade, butmainly serving as non-trivial test objectswith strong curvature
and kinks.

As start condition, an elevated temperature of 700 K and pressure of 4 · 105 is created in a
patch between x = [0.05 m 0.8 m] and y = [0.2 m 0.8 m] smoothed by a hyperbolic tangent
with a width of δ = 0.02 m. By this, the tube is filled nearly homogeneously to the point of
x = 0.8 m. The increase of pressure and temperature inside the wall has negligible impact
due to its small effective volume. Otherwise, we set p0 = 105 Pa, and ρ0 = 1 kg/m3 and
zero velocity everywhere. A CFL Number of 0.3 is used, since otherwise non-smoothness in
the flow (away from the walls) is created, yielding a timestep of Δt ≈ 2.67 · 10−7.

As before, a Darcy term with strength 1/(2Δt) is used inside the wall with an offset of
7Δx to create slip walls. A first/second-order filter is used which is applied everywhere in
the object and at shock position in the flow. For this, the shock detector described for the
wedge flow is used again, with rth = 10−5.

A supersonic jet ejects from the tube and decays before fully established, due to the small
volume of the tube. By this, high-pressure loads and a large unsteadiness are created on
the profiles and the walls. A snapshot of the Mach-number and the density is shown for
the times t = 2.67 ms inf Fig. 10. The total mass conservation is shown. If the density is
integrated (summed-up over all grid points), near-perfect conservation is found, as expected
from the conservative mass equation (4). Since we implement it in the form (21), a small
error is introduced with an explicit time integration scheme (not strictly conserving quadratic
invariants), which yields a relative error below 10−7 over the full simulation with 20,000
steps. To integrate the fluid domain, one has to choose the exact location of the wall, due to
the ambiguity introduced by the smoothing of φ. Here, this is done by choosing a threshold
in φ, thus defining a sharp mask. The larger the threshold is chosen, the more of the boundary
region is omitted and the lower the conservation quality becomes, see Fig. 10. However,
the conservation error fluctuates around the correct value, since the mass is not lost but just
pressed into the wall smoothing region. Thus, this behavior might be better viewed as a
slightly elastic wall than as a mass conservation defect. In practice, the integration of the full
domain might be appropriate since the mass deep inside the object becomes as vanishingly
small as φ does. Altogether, we can confirm good conservation.
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Fig. 11 Left: A snapshot of the vorticity of the flow at time t = 1.44. Vorticity reference point as a red cross.
The grid is shown as white lines, where only every fourth line is plotted. Right: The vorticity at the reference
point as a function of time shows a Strouhal number of Sr = 0.173

4.2.5 Vortex Shedding

This case aims at a non-slip boundary and transformed grids. Transformed grids allow focus-
ing on location with high gradients in the flow and thereby reduce the total number of points
and likewise the numerical effort. Since the volume fraction is part of the continuous equa-
tions with a simple physical interpretation, it is straightforward to generalize the scheme to
transformed grids.

A flow with Reynolds number Re = (u0D)/ν = 150 around a cylinder with diameter
D = 1 is simulated in a domain of size (20×15), using normalized quantities in this section.
The in-flow velocity is u0 = 30 with a speed of sound c0 = 374 yielding a Mach-number of
Ma = 0.08 so that it can be safely regarded as incompressible.

The transformed grid with Nξ × Nη = (256 × 166) is given by

x = (x̃ − x̃1)/(x̃Nξ − x̃1) · Lξ (30)

y = (ỹ − ỹ1)/(ỹNη − ỹ1) · Lη (31)

where

x̃ = ξ − α(tanh((ξ − (x0 + α + xδ))/ψ) + 1) (32)

ỹ = η − α(tanh((η − (y0 + α))/ψ)) − α. (33)

Here, ξ = (Lξ +2α)(0, . . . , Nξ −1)/(Nξ −1) and η = (Lη +2α)(0, . . . , Nη −1)/(Nη −1).
The parameters areα = 7.2 andψ = 8 and xδ = −0.55From this, the coordinates are created
by normalizing to the desired domain size. The resulting grid is shown in Fig. 11, where every
fourth grid line is plotted. A CFL number of 1/2 was used.

The grid transformation is introduced by rewriting divergence and gradient operators with
the help of local bases, as discussed in the Appendix A. In the end, all divergence operators
are replaced by the so-called conservative form and the gradient operators by the so-called
non-conservative form, yielding a discretely consistent (and conservative) scheme, if all
derivatives are replaced by finite difference approximations with a (skew-)symmetric stencil.
Using summation by part operators results in well-defined fluxes at the boundaries result,
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see [51] for details.5 The grid is orthogonal; a non-orthogonal grid can also be handled by
this approach, it was however not explicitly tested.

The initial flow is the potential flow discussed in Sect. 4.2.1 with an additional Gaussian
velocity defect at (x0 = 0, y0 = 1/2), with a width of σdisturb = 1/2 and an amplitude −20
to trigger the vortex shedding: u0 = upot + (−20) exp

(−((X − x0)2 + (Y − y0)2)/σ 2
disturb

)
.

The inflow and outflow are created by sponge terms enforcing the potential flow around a
cylinder, where a quadratic sponge of thickness 10Lξ /Nξ is used. The sponge is visible by
creating extra vorticity close to the outflow in Fig. 11. A non-reflecting boundary condition
with reference conditions as the initial condition is used at the top and bottom.

The described filter of second/fourth-order is used inside the cylinder, with a small ampli-
tude of 1/100 in the whole domain to avoid grid to grid oscillations, presumably created by
the boundary conditions. The friction-like effect of the filter is by this small by the order 1/20
compared with the physical friction and should, thus, have little influence on the Reynolds
number.

The expected vortex shedding is found after a short transition time with a Strouhal number
of Sr = 0.173, which is in agreement with the literature. It is found to be robust towards
simulation details like resolution. The smoothing of φ of δ = (Lξ /Nξ )/2 was used, which is
close to one grid spacing at the cylinder wall due to the grid refinement. A sharper smoothing
for the Darcy term was used with δDarcy = δ/2, to ensure a quick decay of the tangential
velocity, however, small sensitivity was found in these parameters. This is important since
the good slip conditions possible by the volume fraction φ might be taken as an indicator of
possible problems with the non-slip conditions. No signs for this are, however, found in the
presented investigations.

Altogether, we find satisfactory results for this low Mach number, viscosity-driven case.

5 Conclusion and Outlook

A method to describe immersed objects was presented. It is easy to implement and has a
clear physical interpretation. Furthermore, it has good conservation properties. It naturally
allows implementing slip boundaries and adiabatic boundary conditions. The non-penetration
condition can be implemented with only a minor increase in the stiffness of the equation and
near-perfect pressure-tight boundaries are possible, even for high-pressure gradients.

The derivation follows considerations of Kevlahan et al. [34] for shallow water equation
and builds on a physical consistent treatment of the porosity, understood as a reduced volume
fraction available for the fluid. By this, it becomes equivalent to the available cross-section.

While themainmethodworkswell, the filter, needed especially for the treatment of shocks
needsmanual adjustment and does not produce as sharp shocks as shock limitermethods [33].
This will be addressed in future works by optimizing the filter for the specific discretization
of the Euler equations.

The method does not pose any extra difficulties in a parallel environment. For more com-
plex geometries large simulations in 3D are in preparation. To avoid the increased stiffness
for very sharp boundary functions, a better resolution close to the boundary is favorable,
if such a high localization of the wall is demanded by the problem. Alternatively, to the
shown local grid transformations, a local grid refinement as in [23] can be used, which is also
under investigation. The possible non-slip conditions and the very good reflectivity make this

5 In the cited reference, the conservative form is used for the pressure terms. However, using the non-
conservative form is more consistent with the incompressible theory [50].
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equation a good candidate especially for aero-acoustic problems, which are currently further
investigated.
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A Numerical Details

Here, details of numerical implementation are described. A source code producing all the
numerical examples is provided as supplementary material on the journal homepage.6 The
time stepping consists of an (explicit) Runge-Kutta-4, which evaluates as the spatial part of
the equations discretized by (explicit) finite differences. Afilter is used after the time-stepping
to remove oscillatory behavior. The main program structure is presented in Algorithm 1.

The right-hand side (rhs) is the spatial part of the equations. The flow is described in the
variables are

√
ρ, (

√
ρuα) and p. All other quantities are expressed by theses, e.g. uα =

(
√

ρuα)/
√

ρ. The temperature is calculated from the ideal gas law T = p/((
√

ρ)2Rs) with
the specific gas constant Rs = R/W calculated from the universal gas constant R and the
molecular weight W . For transformed grids and temporal constant reduced volume φ the
discretized equations are

Jφ2
√

ρ∂t
√

ρ + Dξβ (ũβφρ) = 0 (34)

Jφ
√

ρ∂t (
√

ρuα) + 1

2
(Dξβ ũβρφuα + φρũβDξβuα) + φ D̄xα p

= φχ(utα − uα) + Dξβ φτ̃αβ (35)

Jφ
1

γ − 1
∂t p + γ

γ − 1
Dξβ ũβφ p − uαφ D̄xα p =

−uα[φχ(utα − uα) + Dξαφτ̃αβ ] + Dξαuβφτ̃αβ − Dξα ϕ̃α . (36)

6 A source code is provided as Supplementary Information along this article.
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Algorithm 1 The main solver
q0 = initialFlow() # inital condition for the case

for n = 1 to NtimeSteps do

# Runge Kutta 4 time stepping:
k1 := rhs(q0)
k2 := rhs(q0 + Δt

2 k1)

k3 := rhs(q0 + Δt
2 k2)

k4 := rhs(q0 + Δt k3)
q1 := q0 + Δt(k1 + 2k2 + 2k3 + k4)/6

# filter if demanded
if filterAtStep(n) then

σα = calcFilterStrength(q1) # adaptive filter strength for shocks
for α = 1 to spatialDimensions do

q1 = q1 + (D̄α(M(σαφ))Dαq1)/φ
end for

end if
# plot or save state
q0 := q1 # prepare next time step

end for
return

From theses equations the time derivatives of the calculation variables directly follows,
yielding the structure ∂t q = rhs(q):

∂t
√

ρ = − [
Dξβ (ũβφρ)

]
/(Jφ2

√
ρ) (37)

∂t (
√

ρuα) = (38)

−
[
+1

2
(Dξβ ũβρφuα + φρũβDξβ uα + φ D̄xα p − φχ(utα − uα) − Dξβ φτ̃αβ

]
/(Jφ

√
ρ)

∂t p = (39)

−
[ γ

γ − 1
Dξβ ũβφ p − uαφ D̄xα p + uα[φχ(utα − uα) + Dξα φτ̃αβ ]

−Dξαuβφτ̃αβ + Dξα ϕ̃α

]γ − 1

Jφ
(40)

All field quantities are assumed to be multiplied or divided pointwise. The heat flux ϕ̃α

was introduced, which is not to be confused with the reduced volume. For Cartesian grids
J ≡ 1, ũα = uα and D̄xα = Dxα . The derivative matrices are central finite difference
derivative matrices along one spatial direction, i.e., one index of the discretized field. In
detail, assuming summing convention:

(Dξ1 f )i, j,k = (Dξ1)i,i ′ fi ′, j,k (Dξ2 f )i, j,k = (Dξ2) j, j ′ fi, j ′,k (Dξ3 f )i, j,k

= (Dξ3)k,k′ fi, j,k′

A curvilinear grid is introduced by a transformation following Thompson et al. [59]. The
transformation is implied by the discrete values of the coordinates at the grid points

r =
⎛

⎝
x1
x2
x3

⎞

⎠ ≡
⎛

⎝
x1(ξ1, ξ2, ξ3)
x2(ξ1, ξ2, ξ3)
x3(ξ1, ξ2, ξ3)

⎞

⎠ .
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where the calculation space variables are discretized equidistantly (ξ1)i = iΔξ1, (ξ2) j =
jΔξ2, (ξ3)k = kΔξ3. From these grid points the local base vectors

eα = Dξαr (41)

and the matrix containing the metric factors7 are calculated

m = (e2 × e3, e3 × e1, e1 × e2) =
⎛

⎝
Dξ2 x2 −Dξ1x2 0

−Dξ2 x1 Dξ1x1 0
0 0 J

⎞

⎠ . (42)

In the second step a two-dimensional transformation (x1 = x1(ξ1, ξ2), x2 = x2(ξ1, ξ2),
x3 = ξ3) was taken, which is used in this report; in this case all fields are assumed to be
independent of ξ3. The Jacobian is J = (e1 × e2) · e3. With this, the derivatives in physical
space (x) can be rewritten in computational space (ξ ) as

Dxα f = 1

J
mαβDξβ f

or

Dxα f = 1

J
Dξβmαβ f

which is called the non-conservative and the conservative form. Despite this naming con-
servative schemes can be constructed from both forms, see also [50] on this point. They are
analytical identical but differ in general for a discretized derivative. These two forms allows
to formulate the Eqs. (21–23) on curvilinear grids. The metric can mostly be absorbed into
the effective velocity ũα = mfiuβ . The pressure gradient is written as D̄xα = mαβDξβ . The
heat flux becomes by the combination of the non-conservative for the inner derivative, and the
conservative form for the outer derivative a symmetric operator ϕ̃α = −λΦ

J mαγmαβDξβ T .
In the same manner, the shear viscosity is found to be

τ̃αβ = μ
(mδβmαγ

J
Dξγ uδ + mδβmδγ

J
Dξγ uα

)
+ (μd − 2/3μ)δα,ω

mβωmγ δ

J
Dξδuγ .

(43)

In this form, the spatial part is fully explicit.

B Conservation

The conservation properties of the scheme build on the conservation properties of the spatial
and the temporal discretization. While the spatial part is strictly conservative, the temporal
discretization used in this publication produces a small error, so that strict conservation is
assured only for Δt → 0. Special implicit methods to overcome this are discussed below.

The show the spatial conservation consider the Eqs. (34–36). We assume periodic grids
in the following so that the discrete derivatives fulfill the telescoping sum property

1T Dξα f ≡
∑

i, j,k

1(Dξα f )i, j,k = 0 (44)

7 Note that for general transformations in three dimensions a rewriting of these factors is necessary to preserve
consistencies [54]. This modification can directly be included in the here presented method.
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and skew symmetry

DT
ξα = −Dξα f , (45)

as a result of the skew-symmetry of the one-dimensional (central) derivative.Thenon-periodic
case can be treated with SBP matrices in a fully consistent manner (as in [51]), but is not
detailed here for the sake of brevity. Viscous terms are omitted in the discussion but can be
included in a straightforward manner.

The conservation of the total mass M follows directly by summing the equation 1T (34)
from which the spatial part evaluates to zero due to (44) and the temporal part becomes with
the product rule8

1T Jφ2
√

ρ∂t
√

ρ + 1T Dξβ (ũβφρ) = ∂t (1T Jφ(
√

ρ)2) = ∂t M = 0. (46)

The change of total momentum is calculated from 1
2u

T
α (34) + (35) :

uTα Jφ
√

ρ∂t
√

ρ + uTα Dξβ (ũβρφ)/2+
1T Jφ

√
ρ∂t (

√
ρuα) + 1

2
(1T Dξβ (ũβρφ)uα + 1T (φρũβ)Dξβuα) + 1Tφ D̄xα p

= uTα Jφ
√

ρ∂t
√

ρ + 1T Jφ
√

ρ∂t (
√

ρuα) + 1Tφ D̄xα p

= ∂t1T Jφ
√

ρ(
√

ρuα) + 1Tφ D̄xα p = 1Tφχ(utα − uα) (47)

The telescoping sumproperty in thefirst termof themomentum transport and the combination

uTα Dξβ (ũβρφ) + 1T (φρũβ)Dξβuα = uTα Dξβ (ũβρφ) + (φρũβ)T Dξβuα = 0 (48)

becomes zero by the skew-symmetry of the discrete derivative since (φρũβ)T Dξβuα =
(
(φρũβ)T Dξβuα

)T = uTα D
T
ξβ (φρũβ) = −uTα Dξβ (φρũβ). The first term in (47) is the

temporal change of the total momentum the second is the source expected due to reduced
effective volume by the embedded objects; it is a discrete form of the integral

∫
Ω

p ∂xαφ ∼
1T D̄xαφ p−1Tφ D̄xα p, since the first term is zero by the telescoping sum property. The term
proportional to χ is the momentum source due to the Darcy friction term. All momentum
changes are thereby a direct consequence of the source terms modeling the objects.

The energy conservation is obtained by the combination of the equation of internal energy
and kinetic energy. The latter is calculated by uTα (35):

(uα
√

ρ)T Jφ∂t (
√

ρuα) + 1

2
uTα (Dξβ ũβρφuα + φρũβDξβuα)Duρ + uTα φ D̄xα p

= uTα φχ(utα − uα) (49)

The second term, the transport, can be regarded as a quadratic form uTα D
ρφuuα over the

skew symmetric matrix Dρφu = (Dξβ {ũβρφ} + {φρũβ}Dξβ ) = −(Dρφu)T , which is zero
in general. The skew symmetry becomes clear if one considers the pointwise multiplications
in the operator as diagonal matrix {φρũβ} with the corresponding values on the diagonal.
This skew-symmetry is the central point of the method as it avoids any numerical change of
the kinetic energy. In most schemes, the momentum equation can change the kinetic energy,
which often demands the introduction of numerical dissipation even for smooth flow fields
for stability reasons.

8 Assuming here a time constant J and φ. Time-dependent grids are not considered in this report, while a
time-dependent reduced volume yields the extra term demanded by the mass conservation, as seen from (12).
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Calculating the internal energy part from 1T (36) , where the divergence terms again
evaluate to zero, combines with (49) to yield

∂t

[
1T

Jφ p

γ − 1
+ 1

2
∂t (uα

√
ρ)T Jφ(

√
ρuα)

]
= 0. (50)

The pressure terms in kinetic and internal energy couple the kinetic and internal energy and
cancel, as in the analytical case. The Darcy term cancels if it is included in the internal energy
equation (36). Since the changeof kinetic energyby theDarcy term in themomentumequation
might be compensated by the object, it is justified modeling that the term proportional to χ is
omitted in (36) and the total energy is not constant. This can be interpreted as a penalization
term for the energy as used in [11] and is done in the simulations presented in this report.
The term could easily be included if strict energy conservation is desired.

The boundary conditions at the domain boundary are either periodic boundaries, imple-
mented by a periodic derivative matrix in this direction, or are created by quadratic sponges
as discussed in [41] or are characteristic boundaries where a decoupling in Riemann waves
is done with respect to a reference state and the in-going waves are set to zero, as discussed
in the appendix of [30] with a system matrix in a direction perpendicular to the boundary,
see [29, sec 16.5] for details.

The product rule, which was used for the time derivative, is violated in most time dis-
cretizations. The conservation of quadratic invariants, needed in this approach for strict
conservation, are respected by the implicit Gauss-Lobatto methods [12]. The special choice
of variables allows to use these methods and directly guarantees strict conservation, however,
the error with the RK4 is so small that the numerical effort for the implicit time integration
does not seem justified in most cases [12]. For example, the relative error of the conservation
mass in the full domain of the pulse tube test case was below 10−7 for the mass, which seems
sufficient for the majority of practical studies.

C Filter Details

Numerical dissipation is introduced by a filter in the presented report. It ensures a sufficient
amount of dissipation for shocks and allows to suppress highly oscillatory behavior, which
can be created by the nearly non-smooth φ within the objects by waves entering from the
physical domain. The basic properties of the filter are discussed in Sect. 3.

Here, details of the shock detector are provided, which is a slightly modified version of
the detector discussed in [10]. The core idea is to create a shock detector to locally activate
filtering. The filter can also be activated within the objects or (e.g. with a small strength) in
the full region.

The shock detection is based on the local divergence

Θ = div(φ(u)), (51)

from which the non-smoothness is calculated by an expression similar to a second derivative

(DξαΘ)i, j,k = (−Θi+1, j .k + 2Θi+1, j,k − Θi−1, j,k)/4, (52)

from which a magnitude is calculated by

(DξαΘ)
magn
i, j,k = 1

2

[
(DΘi, j,k − DΘi+1, j,k)

2 + (DΘi, j,k − DΘi−1, j,k)
2] , (53)
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and likewise in the other spatial directions. Other non-smoothness criteria are possible for
example, a adaptive filter based on theWENOdetector is presented in [58], different detectors
are compared in [48]. The non-smoothness parameter (DξαΘ)magn is compared with the grid

spacing and the local speed of sound rα = (Dξα Θ)magn

c2/Δξ2α
from which finally the filter strength

is calculated as

σ shock
α = 1 − tanh

(
rth

rαλF

)
. (54)

Here, rth and λF are adjustable parameters. The procedure is similar to a flux limiter, which
create in a non-linear manner a local amount of dissipation. Flux limiters usually go from
high order schemes to low order up-wind methods, while here a purely dissipative term
is added. The functional form (54) is different from [10], where a non-smooth function is
used, creating a by switching sometimes high-frequency noise in the solution. This adaptive
part can be combined with a user-defined static (and locally varying) filtering strength by
σα = max(σ shock

α , σstatic). The static part is for example a filter actingwithin the solid objects.
The construction ensures that 0 ≤ σα ≤ 1, ensuring dissipative behavior.
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