
Towards Cloud-based Asynchronous Elasticity for
Iterative HPC Applications

Rodrigo da Rosa Righi1, Vinicius Facco Rodrigues1, Cristiano André
da Costa1, Diego Kreutz2 and Hans-Ulrich Heiss3

1 Applied Computing Graduate Program - Unisinos - Av. Unisinos, 950 – São Leopoldo, RS,
Brazil
2 SnT, University of Luxembourg - 4, rue Alphonse Weicker L-2721 Luxembourg
3 Technische Universität Berlin - Sekretariat EN 6, Einsteinufer 17 D-10587 Berlin

E-mail: rrrighi@unisinos.br, viniciusfacco@live.com, cac@unisinos.br,
diego.kreutz@uni.lu, hans-ulrich.heiss@tu-berlin.de

Abstract. Elasticity is one of the key features of cloud computing. It allows applications to
dynamically scale computing and storage resources, avoiding over- and under-provisioning. In
high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks
or key-value applications through a load balancer and a loosely-coupled set of virtual machine
(VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled
HPC applications, we observe the need of rewriting source codes, previous knowledge of the
application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides,
there are problems related to how profit this new feature in the HPC scope, since in MPI
2.0 applications the programmers need to handle communicators by themselves, and a sudden
consolidation of a VM, together with a process, can compromise the entire execution. To
address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts
as a middleware that allows iterative HPC applications to take advantage of dynamic resource
provisioning of cloud infrastructures without any major modification. AutoElastic provides a
new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow
applications to either increase or decrease their computing resources without blocking the
current execution. The feasibility of AutoElastic is demonstrated through a prototype that
runs a CPU-bound numerical integration application on top of the OpenNebula middleware.
The results showed the saving of about 3 min at each scaling out operations, emphasizing the
contribution of the new concept on contexts where seconds are precious.

1. Introduction
One of the key features of the cloud includes the elasticity, where users can scale at any moment
their resource consumption up or down according to either the demand or the desired response
time [1, 2]. Considering the HPC landscape and a very long running parallel application, a user
may want to increase the number of instances to try and reduce the completion time of the
application. On the other hand, if an application is not scaling in a linear or close to linear
way, and if the user is flexible with respect to the completion time, the number of instances
can be reduced. This results in a lower nodes × hours index, and thus in a lower cost and
energy saving. Although there are benefits to HPC systems, cloud elasticity has been more
extensively explored on client-server Web architectures, such as video on demand, online stores,

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

BOINC applications, e-governance and Web services [2]. As illustrated in Figure 1, a typical
strategy in this context uses horizontal cloud elasticity to replicate virtual machine instances in
a datacenter [3, 4]. Despite transparent to the user, this kind of mechanism is suitable on loosely
coupled programs in which replicas do not establish communication among themselves [5, 6].

Load
Balancer

VM Replica

Request
Dispatching

Request Execution

VM Replica

User
Request

VM Replica

New VM
Replica

Figure 1. Standard cloud elasticity mechanism: horizontal elasticity and an elasticity controller
acting as load balancer.

Although pertinent for bag-of-tasks and key-store HPC applications, replication techniques
and centralized load balancers are not useful by default to implement elasticity on tightly-
coupled HPC applications, as those modeled as Bulk-Synchronous Parallel (BSP), Divide-and-
Conquer or pipeline [2, 7]. This happens because any resource (de)allocation causes a process
reorganization as well as the updating of the whole communication topology, not only the
interaction between the load balancer and the target replicas. In addition, there is a problem
related to virtual machine consolidation, which can result in a sudden termination of a process
and its disconnection from the communication topology; and consequently, resulting in the
application crash. Most parallel applications have been developed using the MPI 1.x, which
means that they do not have any support for changing the number of processes during the
execution, so applications cannot explore elasticity without an appropriate support [8]. While
this changed with MPI version 2.0, significant effort is needed at application level both to
manually change the process group and to redistribute the data to effectively use a different
number of processes.

Figure 2 (a) depicts a situation in which elasticity controls are implemented inside the
application code using the cloud-supported API. This strategy requires user expertise on cloud
monitoring, besides the selection of the appropriate points to insert the calls. Part (b) of Figure
2 explores the use of an elasticity controller outside the application, which is normally offered as
optional component in platforms such as Amazon and Windows Azure [9]. Resource monitoring,
as well as allocation and deallocation of VMs are tasks belonging to the controller, but users must
both insert calls in their applications and handle the communication topology reorganization.
The call of the elasticity() method represents a link between the application and the controller,
so the use of a controller without it has no effect in load balancing because of the application
is not able to detect and use new resources [10]. To bypass these limitations, some approaches
impose code rewriting [2, 11], previous configuration of elastic rules and actions [2, 12, 13, 14],
former knowledge of the application phases [2, 12, 13, 14], and the stop-reconfigure-and-go [2]
mechanism, to obtain gains from resource reconfiguration.

Aiming at providing cloud elasticity for HPC applications in an efficient and transparent

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

2

1. Create thread
for resource
monitoring

2. Initialize
application
parameters

Elasticity
takes
place

5. Scale in or
out

synchronous
operations

6. Topology
reorganization
and process

launching

7. Wait for
periodical elasticity

verification

Process
Termination

Start

End

Application Side
Elasticity Controller

Yes

No

Yes

No

Elasticity()

4. Topology
reorganization
and process

launching

5. Wait for
periodical elasticity

verification

Process
Termination End

Yes

No

Yes

No

Cloud supported
Elasticity controller

2. Resource
monitoring

(a) (b)

3. Scale in
or out

synchronous
operations

Elasticity
takes
place

Start

No

Yes

3. Launch
computational

processes

1. Initialize
application
parameters

Start

2. Launch
computational

processes

Application Side
Elasticity Controller

4. Stop
computational

processes

3. Stop
computational

processes

1. Setup of
elasticity

thresholds

Figure 2. Different approaches for cloud elasticity: (a) elasticity actions are managed directly
at application code; (b) use of an elasticity controller outside the application, which can
offer a concomitance between elasticity and application’s processes actions. However, this
approach is not transparent to the users, who need to test elasticity actions and reorganize
the communication topology by themselves. On the other hand, AutoElastic offers the concept
of asynchronous elasticity by offering a framework to address the aforementioned asynchronism
totally transparent from the user. To accomplish this, AutoElastic addresses the shading boxes
of part (b) which are put apart from the user responsibility.

manner, we are proposing a PaaS-based model called AutoElastic1. Particularly, AutoElastic
is focusing on master-slave iterative applications, but offers a flexible framework to support
1 Project website: http://autoelastic.com

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

3

other HPC programming styles, such as pipeline and BSP. AutoElastic’s contribution relies on
the concept of asynchronous elasticity: transparent resource and process reorganization at user
perspective, neither blocking nor stopping the application execution at any resource allocation
or deallocation action. To accomplish this, AutoElastic provides a framework with a controller
that transparently manages horizontal elasticity actions, i.e., without requiring any application
modification or adptation. Taking at starting point Figure 2 (b), our approach offers a framework
to hide all shading boxes from the user. Although the standard use of a controller enables the
setup of VMs in parallel to the application runtime, the benefits of the new resources are not
transparent to the users. As discussed earlier, scaling in operations also appear as a problem in
the standard utilization of a controller, since a consolidation of one or more VMs will sudden
terminate the processes residing on them, which can imply in a premature application ending.

The proposed model assumes that the target HPC application is iterative by nature, i.e., it has
a time-step loop. This is a reasonable assumption for the most of MPI programs [15, 16], so this
does not limit the applicability of our model. This article describes AutoElastic and a prototype
developed with OpenNebula. Tests with a CPU-bound numeric integration application show
gains up to 26% when using AutoElastic in comparison with a static provisioning. The remainder
of this article will first introduce the related work in Section 2, pointing out open issues and
research opportunities. Section 3 is the main part of the article, describing AutoElastic’s
framework together with asynchronous elasticity concept in details. Section 4 describes a
prototype implementation. Evaluation methodology and results are discussed in Sections 5
and 6. Finally, Section 7 emphasizes the scientific contribution of the work and notes several
challenges that we can address in the future.

2. Related Work
Elasticity is one of the most attractive features of cloud computing because it allows users to
scale resources on-demand. There are different ways of using the elasticity provided by cloud
infrastructures, such as manual setup [17, 18, 19], and by pre-configuration of reactive elastic
mechanisms [20, 9]. While the former is not suitable for applications that need automatic and
transparent elasticity, the latter implies in rather complicated tasks for non-cloud savvy users
(e.g., define thresholds and elasticity actions).

Amazon AWS (http://aws.amazon.com), Nimbus (http://www.nimbusproject.org) and
Windows Azure (http://azure.microsoft.com) are examples of systems that provide elasticity
through pre-configured reactive mechanisms. Middleware solutions for building elastic
computing infrastructures, such as OpenStack (https://www.openstack.org), OpenNebula
(http://opennebula.org), Eucalyptus (https://www.eucalyptus.com) and CloudStack
(http://cloudstack.apache.org), commonly offer elasticity through manual mechanisms
(e.g., command line and graphical tool that allow users to control virtual machines).
Complementary solutions such as Elastack [21], which provides automated monitoring and
adaptation functions, can be integrated with OpenStack-like systems to provide dynamic
infrastructure elasticity. However, it works only at the infrastructure level, i.e., applications
have to be made aware that nodes can be started or shut down at any time. In other words, it
is up to the developers to ensure any kind of consistency or failure tolerance in the applications.

More recently, different research initiatives started to look at how elasticity can be leveraged
by HPC applications. As an example, ElasticMPI proposes an elasticity framework for MPI
applications through the stop-reconfigure-and-go approach [2]. However, this approach can
negatively impact the performance of applications, in particular those that do not have long
execution times. A second drawback of ElasticMPI is that it requires applications to be
modified. Another approach, named Auto-elasticity [22], considers a pre-defined auto-elasticity
by adjusting the number of VM instances accordingly to the application’s input data (workload).
In other words, as Auto-elasticity assumes that a program is modeled on deadline basis, the

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

4

number of VMs is pre-defined in order to meet the deadlines.
Most of the existing solutions that provide cloud elasticity for high performance applications

are commonly built around the master-slave programming model [2, 11, 23]. In case of iterative
applications, which is the most common one, it means that at each new loop the master
redistributes the tasks to slaves [2, 11]. However, in most cases the elasticity of the system
is provided in a reactive way at the IaaS level, i.e., without knowledge of on-the-fly information
from the applications. Summing up, current approaches suffer from different issues such as
(i) lack of mechanism to verify whether the application reached (or not) its peak load when
achieving a load balancing threshold value [21, 23]; (ii) extra complexity at the application level,
i.e., the code needs to be instrumented and/or reorganized [2, 11]; (iii) static elasticity defined
by pre-execution information [2, 14]; (iv) reconfiguration of the application’s resources using a
stop-and-relaunch approach [2]; and (v) assume that the communication latency between any
two VMs is constant [24].

Considering the scope of MPI applications, Raveendran, Bicer and Agrawal [2] proposed
one of the most advanced approaches to support the execution of such kind of applications.
Nevertheless, as mentioned above, their solution needs application data in advance to feed the
elasticity middleware and the insertion of elasticity code in the MPI application, besides the
need to stop and relauching the whole application when elasticity takes place. Observing the
initiatives described here, we are prooposing AutoElastic as a first step towards addressing the
aforementioned issues (i), (ii), (iii), and (iv). In other words, our solution does not add any
extra code or complexity to the existing HPC applications, allows dynamic (runtime) elasticity,
and enables on-the-fly reconfiguration of resources without having to stop and relaunch the
application.

3. AutoElastic Model
Traditionally, HPC applications are executed on clusters or even in grid architectures. In general,
both have a fixed number of resources that must be maintained in terms of infrastructure
configuration, scheduling (where tools such as PBS2, OAR3, OGS4 are usually employed for
resource reservation and job scheduling) and energy consumption. In addition, the tuning of the
number of processes to execute a HPC application can be a hard procedure: (i) both short and
large values will not explore the distributed system in an efficient way; (ii) a fixed value cannot
fit irregular applications, where the workload varies along the execution and/or sometimes it
is not predictable in advance. On the other hand, cloud elasticity abstracts the infrastructure
configuration and technical details about resource scheduling from users, who pay for resources,
and energy consequently, in accordance with the application’s demands. However, the main
gaps between the duet HPC and elasticity are application modeling and the overhead related
to scaling out operations. Aiming at addressing these gaps, we propose AutoElastic – a cloud
elasticity model that operates at the PaaS level of a cloud, acting as a middleware that enables
the transformation of a non-elastic parallel application in an elastic one. Thus, AutoElastic was
proposed as a solution to answer questions such as:

(i) Is it possible to provide cloud elasticity to high performance computing applications in a
transparent and non-intrusive way (i.e., without needing to modify applications)?

(ii) Which HPC applications can benefit from cloud elasticity and what are the gains of using
cloud elasticity?

(iii) What are the minimal assumptions to transparently support cloud elasticity in HPC
applications?

2 Project Website: http://www.arc.ox.ac.uk/content/pbs
3 Project Website: https://oar.imag.fr/
4 Previously known as Sun Grid Engine (SGE). Project Website: http://gridscheduler.sourceforge.net

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

5

AutoElastic provides transparent horizontal and reactive elasticity for parallel applications,
i.e., without requiring the intervention of the programmer (also named here as cloud user) to
specify sets of rules, actions, or modify the application’s code. Figure 3 (a) illustrates the
traditional approaches of providing cloud elasticity to HPC applications, while (b) highlights
AutoElastic’s idea. The approach proposed by AutoElastic allows users to submit a traditional,
non-elastic aware, application to the cloud, while the framework takes care of resource
reorganization through automatic VM allocation and consolidation procedures. As AutoElastic
works at the granularity of virtual machines, it has to be aware of the VM instantiation overhead
to provide seamless elasticity, i.e., in a non-prohibitive way for HPC applications.

if metric > x
then A1

if metric < y
then A2

A1: Allocate
VM

A2: Deallocate
VM

#include<>
int main()
{….
}

ActionsRules Application

Rules Actions

(b)

AutoElastic Manager

Monitoring

Resource
Management

Cloud Front-End

AutoElastic
Middleware

Application

Resources

(a)

Cloud

Monitoring

Resource
Management

Cloud Front-End

Application

Resources
Rules Actions

Cloud

#include<>
int main()
{….
}

Application

Figure 3. General ideas on using elasticity: (a) standard approach adopted by Amazon
AWS and Windows Azure, in which the user must pre-configure a set of elasticity rules and
actions; (b) AutoElastic idea, contemplating a manager that coordinates the elasticity actions
and configurations on behalf of the user.

3.1. Architecture
AutoElastic is a middleware that operates as PaaS (Platform as a Service) that allows non-
elastic parallel applications to take advantage of cloud elasticity without any change. To provide
elasticity, it works with scaling in and out operations that consolidate or allocate virtual machine
instances, respectively. Figure 4 depicts the AutoElastic architecture, presenting the framework
components and the mapping of VMs. The framework includes a Manager, which can be either
assigned to a virtual machine inside the cloud or to act as a stand-alone program outside the
cloud. This is possible by taking advantage of cloud-supported APIs. As HPC applications
are commonly CPU-bounded, we opted to create a process per VM and c working VMs per
computing node, where c refers to the number of computational cores inside the node. This
design decision has been previously investigated and validated as a way of exploring the efficiency
of large computing nodes [25]. In addition, Figure 4 also presents the first ideas regarding the
scope of HPC applications, presenting VMs that execute master and slave processes.

The AutoElastic Manager monitors the virtual machines, taking elasticity actions when
considering them as pertinent for the current hardware and application behavior. The user can
inform a file with an SLA (Service-Level Agreement) containing the minimum and the maximum
number of allowed VMs to execute the application on the cloud. If no SLA is provided, the

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

6

VM
Master

Cloud

SM S

Node 0

M

S

Master
process
Slave
process

VM0 VMc-1

S S

Node m-1

VM(m-1)c VMn-1

Area
for
Data
Share Cloud

Front-
End

Interconnection Network

AutoElastic
Manager

Ap
pl
i-

ca
tio
n

Vi
rtu
al

M
ac
hi
ne
s

C
om

pu
ta
tio
na
l

R
es
ou
rc
es

Figure 4. The AutoElastic architecture. While the number of nodes is m, the number of cores
in a node is identified by c. The number of VMs running slave processes is n, which can be
computed by c × m.

default upper bound of virtual machines is two times the number of VMs used when launching
the application. Instead of offering an application-sided elasticity, the use of a manager brings
the benefits to resource reorganization in an asynchronous way at the application perspective,
not penalizing it on VM (de)allocation actions. However, this non-blocking operation implies
in the following question: How can we notify the application about the resource reconfiguration?
We can achieve this goal through a framework that implements the concept of asynchronous
elasticity.

Asynchronous elasticity is a way of asynchronously notifying applications regarding
changes on the underlying infrastructure, such as the number of computing instances.
For instance, the application is notified as soon as a new computing VM instance (scale
out) is available in the system without impairing its normal execution flow.

AutoElastic provides a framework that implements the concept of asynchronous elasticity.
One of its key elements to provide asynchronous elasticity in a transparent fashion is a shared
data area, which is used to provide interaction between the AutoElastic Manager and the VMs
inside the cloud. Shared data areas are a common practice for sharing data between VM
instances on cloud infrastructures [17, 18, 19]. They can be implemented by different means such
as network file systems, message-oriented middlewares, and tuple spaces. Thus, AutoElastic uses
the shared data area as a manner to combine HPC application and cloud elasticity, so providing
actions as presented in Table 1.

Table 1. Actions provided through the shared data area.
Action Direction Description

Action 1 AutoElastic Manager → Master Process There is a new resource with c virtual machines which can be
accessed using given IP addresses.

Action 2 AutoElastic Manager → Master Process Request for permission to consolidate a specific node, which
encompasses given virtual machines.

Action 3 Master Process → AutoElastic Manager Answer for Action 2 allowing the consolidation of the specified
computing node.

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

7

The shared data area provides three types of notifications, as summarized in Table 1. Action
1 is an asynchronous notification sent by the AutoElastic Manager to the application announcing
new ready to use computing resources. Figure 5 illustrates the functioning of the AutoElastic
Manager when creating a new slave, so launching Action 1 afterwards. Action 2 is required
for two reasons: (i) to avoid abruptly finishing a running process, which might lead to data
losses; (ii) to ensure that the application will not be aborted due to a sudden interruption of
a process. This second rationale is particularly important for MPI applications that execute
over TCP/IP networks since they are usually aborted when a process abruptly disconnects.
Finally, Action 3 is a decision taken by the master process that avoids inconsistent global state
during the application’s execution. In other words, once Action 2 has been received, the master
process does not dispatch any task to the specific slaves which belong to the node that will be
consolidated. The shared data area plays a key role in this process since it keeps all processes
updated regarding any resource reconfiguration, allowing a safely adaptation to the new network
topology.

Master
Process
(compiled with
the AutoElastic
middleware)

Writes Action
1 in the
shared
partition

AutoElastic
Manager

New VM, with
a new Slave
Process Overhead

related to VM
bootstrapping

Verification
of the VM

status

Time

Verifies the occurrence of Action 1.
The Master accepts a connection
from the new slave, reorganizing

the communication topology

Scaling out
operation:

VM
allocation

VM Launching

Requests
connection

with the
master

Verification of elasticity
actions in the shared
data area at each
external loop iteration

Periodical
observation
point

After bootstrapping a
VM, a new process is
automatically executed

Procedure Information

Figure 5. Functioning of the master, the new slave and the AutoElastic Manager to enable the
Asynchronous Elasticity.

AutoElastic uses VM replication to provide cloud elasticity for HPC applications [26]. When
scaling out the Manager launches new virtual machines using a pre-defined VM template. If
the current nodes are working at full capacity, the Manager will first allocate a new computing
node to launch the new VMs. The bootstrap of a VM is a time consuming procedure (e.g.,
boot time of the operating system) that finishes with the execution of a slave process. This
slave automatically requests a connection to the master process, completing the asynchronous
elasticity cycle. The master process will include the new slaves in the process group without any
disruption or interruption on the application’s execution. After that, the new slave processes
will normally receive tasks from the master. The consolidation (scale in) takes place at a node
granularity and not at the VM or process level. This design decision seeks to explore efficiency
and energy saving, not using the power of a computing node partially. In fact, it has been

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

8

claimed before that the number of VMs or processes inside a node is not the main factor for
energy saving, but the fact that the node is turned on or off [27] .

Similarly to previous work [20, 28], AutoElastic performs resource monitoring periodically.
Considering a monitoring interval, AutoElastic captures the CPU metric and computes a
time series based on the lower and upper thresholds [29]. Particularly, thresholds are largely
used in the state-of-the-art of cloud elasticity to drive resource reorganization on CPU-bound
applications [1, 2, 4, 28]. AutoElastic uses the concept of moving average over a specific number of
load observations to generate a single metric value; so elasticity actions are triggered on situations
in which one of the thresholds violates this metric. To accomplish this, we are collecting CPU
data using the function LP (Load Prediction), as presented in Equations 1 and 2. MA(i, j)
informs the CPU load of a virtual machine j at the observation number i. It performs a moving
average considering the last x observations of load C, taking at start point the observation
number i. Using this value, we compute an arithmetic average, so establishing an average load
for the system by using the function LP (i). In this function, n refers to the number of virtual
machines in execution. Action 1 is triggered if LP is larger then the upper threshold, while
Action 2 takes place when LP is shorter than the lower threshold. Finally, Equation 3 presents
an empirical definition of the cost for execution an application with elasticity. The total number
of observations is expressed by z, while Active V Ms(i) gives us the number of VMs in execution
at observation i (1 ≤ i ≤ z). These numbers are important to compare elastic and non-elastic
executions of HPC applications. Non-elastic executions have always the same number of VMs
for all observations.

MA(i, j) =
∑i

k=i−x+1 Cjk

x
where i ≥ x (1)

LP (i) =
∑n

j=1 MA(i, j)
n

(2)

Cost = app time ×
z∑

i=1
Active V Ms(i) (3)

3.2. Model of Parallel Application
AutoElastic explores data parallelism on iterative message passing applications, which are
modeled following the master-slave parallel programming model. This parallel programming
model is extensively used in genetic algorithms, the Monte Carlo technique, geometric
transformations for 2D and 3D images, asymmetric cryptography and SETI@home-like
applications [2]. However, it is worth emphasizing that the framework allows the existing
processes of the HPC application to know the identifier of the new instantiated processes, i.e.,
enabling also a all-to-all communication topology. In other words, it means that AutoElastic
supports also applications such as BSP and Divide-and-Conquer.

For developing the communication framework, we investigated the semantics and syntax of
both MPI 1.0 and 2.0. While the former statically creates all processes at launching time,
the latter supports dynamic process creation and on-the-fly reconfiguration of the connection
topology. It means that MPI 2.0 is suitable for elastic environments. The AutoElastic parallel
applications follow the MPMD (Multiple Program Multiple Data) principle, where master and
slave processes have different executable codes. Each type of binary is mapped to a different
VM template. The idea is to offer application decoupling for processes with different purposes,
enabling flexibility and making the implementation of elasticity easier. Listing 1 presents a
pseudocode of an AutoElastic-supported iterative application. The master code executes a

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

9

series of tasks, capturing each one sequentially and parallelizing one-by-one to be processed on
slave processes. This behavior can be observed in the external loop (line 2).

Currently, AutoElastic works with the following MPI 2.0-like communications directives:
(i) publication of a connection port; (ii) looking for a server, taking as starting point a
connection port; (ii) connection request; (iv) connection accept and; (v) disconnection request.
Different from the approach in which a master launches processes using the so-called spawn()
directive, AutoElastic acts in accordance with the second MPI 2.0 approach to support dynamic
process creation: Sockets-based point-to-point communication. The launching of a new VM
automatically entails the execution of a slave process, which requests a connection to the master
automatically, as presented in Listing 2. Here, we emphasize that an AutoElastic-supported
application does not need to necessarily rely on the MPI 2.0 API, but only follow the semantics
of the communication directives.

Listing 1. Pseudo-language of the the master process
1 . s i z e = i n i t i a l m a p p i n g (por t s) ;
2 . for (j =0; j< t o t a l t a s k s ; j++){
3 . p u b l i s h p o r t s (ports , s i z e) ;
4 . for (i =0; i< s i z e ; i ++){
5 . connec t i on accept (s l a v e s [i] , po r t s [i]) ;
6 . }
7 . c a l c u l a t e l o a d (s i z e , work [j] , i n t e r v a l s) ;
8 . for (i =0; i< s i z e ; i ++){
9 . task = c r e a t e t a s k (work [j] , i n t e r v a l s [i]) ;

10 . send assync (s l a v e s [i] , task) ;
11 . }
12 . for (i =0; i< s i z e ; i ++){
13 . r e cv sync (s l a v e s [i] , r e s u l t s [i]) ;
14 . }
15 . s t o r e r e s u l t s (s l a v e [j] , r e s u l t s) ;
16 . for (i =0; i< s i z e ; i ++){
17 . d i s connec t (s l a v e s [i]) ;
18 . }
19 . unpub l i sh por t s (por t s) ;
20 . }

Listing 2. Pseudo-language of the of the slave process
1 . master = lookup (master address , naming) ;
2 . port = c r e a t e p o r t (IP address , VM id) ;
3 . while (true){
4 . c onnec t i on r eque s t (master , port) ;
5 . r e cv sync (master , task) ;
6 . r e s u l t = compute (task) ;
7 . send assync (master , r e s u l t) ;
8 . d i s connec t (master) ;
9 . }

Listing 3. Code to manage elasticity in the master process
1 . int changes = 0 ;
2 . i f (Action == 1){
3 . changes += add VMs () ;
4 . }
5 . else i f (Action == 2){
6 . changes −= drop VMs () ;
7 . a l l o w c o n s o l i d a t i o n () ; // enab l ing Action3
8 . }
9 . i f (Action ==1 or Action == 2){

10 . r e o r g a n i z e p o r t s (por t s) ;
11 . }
12 . s i z e += changes ;

The initial mapping method (line 1 of Listing 1) is used by the master process to verify
the execution configuration, which defines the initial setup of virtual machines, an identifier and

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

10

the IP addresses of each process. Taking into account this information, the master knows the
number of slaves and creates port names to receive connections from the slave processes. The
communication happens asynchronously, where the master sends data to slaves in a non-blocking
fashion but receives data from them synchronously. In fact, loop-based programs are convenient
to implement cloud elasticity because it is easier to reconfigure the number of resources in
the beginning of each iteration without changing the application semantics. Moreover, the job
distribution loop is where the global consistent state of the system is kept.

The user must not insert any line about cloud elasticity in the code of the application.
AutoElastic middleware manages the transformation of a non-elastic application into an elastic
one at the PaaS level by one of the following strategies: (i) polymorphism can overload a method
to provide elasticity for object-oriented implementations; (ii) a source-to-source translator can
be used to insert code between the lines 1 and 2; (iii) a wrapper for the function in line 3
can be developed for procedural languages. Independent of the strategy, the code required for
elasticity is simple, as shown in Listing 3. First, we need to verify if there is a new action
from the AutoElastic Manager in the shared data area. If Action 1 has been activated, the
master process reads the information regarding the new slaves and knows that it must expect
new connections from them. In the case of Action 2, the master removes from its group the
processes that belong to a specific node. After doing that, it triggers Action 3.

Although the design of AutoElastic takes into account master-slave applications, the iterative
modeling and the use of MPI 2.0-like directives makes it easy to add and remove processes, as
well as establishment completely new and arbitrary topologies. At the implementation level,
it is possible to optimize connection and disconnection procedures if a particular slave process
remains among the active ones in the process list. This improvement can benefit TCP-like
connections that require a three way handshake protocol, which might be expensive for some
applications.

4. Implementation
We developed an AutoElastic prototype for OpenNebula-based private clouds. The OpenNebula
Java API, which was used for developing the AutoElastic Manager, provides the resources
required to control both resource monitoring and scaling in and out activities. Moreover, the
API is also used to launch parallel applications in the cloud. To run the processes, we created
two VM templates, one for the master and another for the slaves. Following, we present some
technical decisions in the prototype implementation:

• We used the WS-agreement XML standard5 to define an SLA, which specify the minimum
and maximum number of VMs for the tests;

• The shared data area was implemented through NFS, enabling all VMs inside the cloud
infrastructure to access the files. The AutoElastic Manager, which can run outside of the
cloud, uses the SSH protocol to access the shared data area on the front-end node;

• The load LP for the monitoring observation number i denoted LP (i) is computed using
the moving average of the slave VMs, considering an windows with 3 observations;

• The interval used for monitoring data was 30 seconds;
• Based on the related work (see Section 2), we defined 40% and 80% as the lower and upper

thresholds, respectively.

5. Parallel Application and Evaluation Methodology
We developed a numeric integration application to evaluate the gains with and without
asynchronous elasticity. The idea was to observe the benefits (e.g., gains in performance, such
5 https://www.ogf.org/documents/GFD.192.pdf

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

11

as reduced execution time) of cloud elasticity for HPC applications. The application computes
the numerical integration of a function f(x) in a closed interval [a, b]. In the implementation, we
used the Composite Trapezoidal rule from a Newton-Cotes postulation [30]. The Newton-Cotes
formula can be useful if the value of the integrand is given at equally spaced points. Considering
the partition of the interval [a, b] into s equally spaced subintervals, each one with length h
([xi; xi+1], for i = 0, 1, 2, ..., s − 1). Thus, xi+1 − xi = h = b−a

s . The integral of f(x) is defined as
the sum of the areas of the s trapezoids contained in the interval [a, b], as presented in Equation
4. Equation 5 shows the development of the integral in accordance with the Newton-Cotes
postulation. ∫ b

a
f(x) dx ≈ A0 + A1 + A2 + A3 + ... + As−1 (4)

where Ai = area of trapezoid i, with i = 0, 1, 2, 3, ..., s − 1.

∫ b

a
f(x) dx ≈ h

2 [f(x0) + f(xs) + 2.
s−1∑
i=1

f(xi)] (5)

The values of x0 and xs in Equation 5 are equal to a and b, respectively. In this context,
s means the number of subintervals. Following this Equation, there are s + 1 f(x)-like simple
equations for obtaining the final result of the numerical integration. The master process must
distribute these s+1 equations among the slaves. Logically, some slaves can receive more work
than others when s+1 is not fully divisible by the number of slaves. Thus, the number of
subintervals s define the computational load for each equation.

Aiming at analyzing the parallel application on different input loads, we considered four
patterns: Constant, Ascending, Descending and Wave. Table 2 and Figure 6 show the equation
of each pattern and the template used in the tests. The iterations in this figure mean the
number of functions that are generated, resulting in the same number of numerical integrations.
Additionally, the polynomial selected for the tests does not matter in this case because we are
focusing on the load variations and not on the result of the numerical integration itself.

Table 2. Functions to express different load patterns. In load(x), x is the iteration index at
application runtime.

Load Load Function Parameters
v w t z

Constant load(x) = w
2 - 1000000 - -

Ascending load(x) = x ∗ t ∗ z - - 0.2 500

Descending load(x) = w − (x ∗ t ∗ z) - 1000000 0.2 500

Wave load(x) = v ∗ z ∗ sen(t ∗ x) + v ∗ z + w 1 500 0.00125 500000

Figure 7 shows a graphical representation of each pattern. The x axis in the graph expresses
the number of functions (one function per iteration) that are being tested, while the y axis
informs the respective load. The load means the number of subintervals s between the limits a
and b, which in this experiment are 1 and 10, respectively. The larger the number of intervals is,
the greater the computational load for generating the numerical integration of the function. For
the sake of simplicity, the same function is employed in the tests, but the number of subintervals
for the integration varies. Considering the cloud infrastructure, OpenNebula is executed in a
cluster with 10 nodes. Each node has two processors, which are exclusively dedicated to the
cloud middleware. AutoElastic Manager runs outside the Cloud and uses the OpenNebula API
to control and launch VMs. Our SLA was set up for a minimum of 2 nodes (4 VMs) and a
maximum of 10 nodes (20 VMs).

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

12

+;5;x^5;+;x^2;+;x^1
1,10
CONSTANT
10000
0,1000000,0,0

Polynomial
$a, $b
load
$iterations
$v, $w, $t, $z

(a) (b)

+;5;x^5;+;x^2;+;x^1
1,10
ASCENDING
10000
0,0,0.2,500

(c)

+;5;x^5;+;x^2;+;x^1
1,10
DESCENDING
10000
0,1000000,0.2,500

(d)

+;5;x^5;+;x^2;+;x^1
1,10
WAVE
10000
1,500,0.00125,500000

(e)

Figure 6. (a) Template of the input file for the tests; (b), (c), (d) and (e) are instances of the
template when observing the load functions in Table 2.

0
1
2
3
4
5
6
7
8
9

10

1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

N
um

be
r o

f s
ub

in
te

rv
al

s
[lo

ad
(x

)]
x

10
00

00

Iteration

Ascending Constant Descending Wave

Figure 7. Graphical vision of the load patterns.

6. Evaluation and Discussing Results
We evaluated the numerical application using four load patterns in two scenarios: enabling and
disabling cloud elasticity. At each execution, the initial configuration considers 2 nodes, the
first executing 2 VMs (2 slave processes) and the second executing 3 VMs (2 slave processes
and the master). We collected two metrics, the time (in seconds) to execute the application
and the number of load observations performed by AutoElastic during the execution. At each
observation i, we have the number of VMs execution on that moment, as well as the result
for LP (i). The results can be seen in Table 3. The last column shows the cost according to
Equation 3.

Table 3. Results of the executions with and without elasticity support.
Elasticity Load Observations with Total

Observations
Time Cost4 VMs 6 VMs 8 VMs

Disabled

Ascending 84 0 0 84 2426 815136
Constant 79 0 0 79 2370 748920
Descending 84 0 0 84 2397 805392
Wave 84 0 0 84 2444 821184

Enabled

Ascending 31 26 8 65 1978 680432
Constant 79 0 0 79 2370 748920
Descending 9 14 33 56 1775 681600
Wave 9 29 22 60 1895 731470

As can be seen in the Table 3, when elasticity is enabled, the loads Ascending, Descending
and Wave used different numbers of VMs during the application execution time. On the other
hand, the load Constant used the same configuration in both scenarios with elasticity disabled
and enabled. This behavior happened because the LP (i) remained between the lower and upper
thresholds, i.e., no elasticity operations were necessary. On the other hand, the execution time
and the amount of observations are lower in executions where resource reorganizations happened.

In the Ascending load with elasticity enabled, 47.7%, 40% and 12.3% of the observations

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

13

returned 4, 6 and 8 VMs, respectively. The allocation of more VMs along the execution brings
a better execution final when compared to the non-elastic execition. This happens because
the load grows slowly and takes more time to the LP (i) reach the upper threshold, thus the
VM configuration stays with the initial configuration (4 VMs) for a long time. This behavior
repeats itself when new resources are available. In the Descending case, 16.1%, 25% and 58.9%
of the observations returned 4, 6 and 8 VMs respectively. Here the behavior is opposite to
the Ascending load because, in this turn, the resources are allocated in the beginning of the
execution and, as the load decreases slowly, it takes more time to reach the lower threshold.
Finally, in the Wave load 15%, 48.3% and 36.7% of the observations returned 4, 6 and 8 VMs,
respectively. In this case, as the load grows and decrease during the execution, it needs more
resources in the beginning and after varies between the scenarios with 6 and 8 VMs.

Figures 8 and 9 illustrate the execution time of the application and the total cost obtained
on each scenario. The elastic execution outperforms the non-elastic execution in the Ascending,
Descending and Wave patterns, presenting performance gains of 18%, 26% and 22%, respectively.
This behavior was also perceived when observing the cost, where AutoElastic with elasticity
support resulted in costs approximately 14%, 11% and 10% lower than those with the non-
elastic execution for the same mentioned load patterns. Considering that we are allocating
more resources on-the-fly to avoid bottlenecks in the application’s execution, elasticity helped to
reduce the execution times, as can be seen in Table 3. Although using more resources, the gain
in the time metric is enough to provide the lower values of cost in favor of the elastic execution.
In other words, when compared with the non-elastic execution, AutoElastic uses more resources,
which is compensated in terms of execution time.

2426 2370 2397 2444
1978

2370
1775 1895

0

500

1000

1500

2000

2500

3000

Ascending Constant Descending Wave

Ti
m

e
(s

ec
on

ds
)

Load

AutoElastic with elasticity disable AutoElastic with elasticity enable

Figure 8. Time to execute the parallel application in the different scenarios and loads.

776320 748920 757452 791856
664608 748920 670950 708730

0

150000

300000

450000

600000

750000

900000

Ascending Constant Descending Wave

C
os

t

Load

AutoElastic with elasticity disable AutoElastic with elasticity enable

Figure 9. Cost obtained to execute the parallel application in the different scenarios and loads.

Figure 10 depicts a comparison regarding the history of resource allocation when combining
load patterns and scenarios. We are not considering the Constant pattern because it does not
cause elasticity actions. As expected, we allocate resources in specific moments in the Ascending
pattern, while the Descending pattern shows a behavior of allocation in the beginning and a
single deallocation in the end of the application. We leave as a future work a deeper analysis
of the impact of variable thresholds. More precisely, Figure 10 (b) presents a situation in

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

14

which resource management could be improved by increasing the value of the lower threshold.
This strategy would imply in a better reactivity and resource usage, since the resources in the
descending part will be deallocated sooner. Finally, parts (d), (e) and (f) of Figure 10 present
executions in which the CPU demand is close to the theoretical rate available for the application,
indicating moments of saturation and so, compromising the application performance.

0
200
400
600
800

0 60 12
0

18
0

24
1

30
2

36
2

42
2

48
2

54
3

60
3

66
4

72
4

78
5

84
5

90
6

96
6

10
26

10
87

11
48

12
08

12
68

13
29

13
89

14
49

15
09

15
69

16
29

16
89

17
50

18
10

18
70

19
31

19
91

20
52

21
13

21
73

22
33

22
94

23
54

24
15

24
44

24
44

C
P

U

Time (seconds)

Allocated CPU Used CPU Upper Threshold Lower Threshold

0
100
200
300
400
500
600
700
800

0
15

0
30

1
45

1
60

2
75

2
92

7
10

81
12

31
13

82
15

32
17

07
18

62
19

82

C
P

U

Time (seconds)

(a) Ascending

0
100
200
300
400
500
600
700
800

0
17

2
32

8
50

0
65

8
80

8
95

9
11

10
12

63
14

16
15

67
17

75

C
P

U

Time (seconds)

(b) Descending

0
100
200
300
400
500
600
700
800

0
17

4
33

0
50

4
66

1
81

1
99

7
11

49
13

24
14

80
16

32
17

83
18

95

C
P

U

Time (seconds)

(c) Wave

0
100
200
300
400
500
600
700
800

0
21

1
42

2
63

3
84

5
10

56
12

68
14

79
16

90
19

02
21

14
23

25
24

26

C
P

U

Time (seconds)

(d) Ascending

0
100
200
300
400
500
600
700
800

0
21

0
42

1
63

3
84

4
10

54
12

66
14

77
16

88
19

00
21

12
23

24
23

97

C
P

U

Time (seconds)

(e) Descending

0
100
200
300
400
500
600
700
800

0
21

1
42

2
63

3
84

5
10

56
12

68
14

79
16

89
19

00
21

13
23

24
24

44

C
P

U

Time (seconds)

(f) Wave

Figure 10. CPU behavior: (a), (b) and (c) with the elasticity enabled and (d), (e) and (f) with
the elasticity disabled.

In the environment testbed, the procedure of allocating new resources comprises the
transferring of two VMs to a new node in a 100 Mbps network and the initialization of the
VMs afterwards. Each VM is based on a template with 700 MBytes in size. During the whole
phase of allocating new VMs, the application executes normally with the current resources. The
resource reorganization is performed only after completely delivering the new VMs. Table 4
presents the instants in time when new resources were allocated in the tests (see Figure 10). In
this table, “VM allocation” represents the instant (including both number of the observation
and application time in this instant) in which the LP (i) function violates the threshold so
triggering a new resource allocation. The term “VM delivering” represents the moment in which
previously allocated resources were deallocated, i.e., detached from the application. The average
time between the start of a resource allocation and its delivering to the application is about 214
seconds.

As can be observed in Figure 10, when VMs are being delivered (Table 4), the accumulated
CPU load automatically increases as more resources are available. This happens because
AutoElastic only notifies the existence of new resources to the application when the the VMs
are totally up avoiding pauses in the application execution since the application only needs to
connect with the new processes. Figure 11 illustrates the amount of resources that are being
delivered, as well as the amount of resources that are being allocated during the application
execution. The specific instants in time can be see in Figure 10. Particularly, in blue we are
emphasizing the current application resources and in green, we identify the resources that are

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

15

Table 4. Analyzing the the time interval between detecting the need to allocate and the delivery
of 2 VMs at each elasticity action.

Load Observation Time (seconds) Total Operation
Time (seconds)VMs Allocation VMs Delivering VMs Allocation VMs Delivering

Ascending 25 31 752 958 206
Ascending 51 57 1562 1769 207
Descending 3 9 90 295 205
Descending 12 19 388 625 237
Wave 3 9 91 297 206
Wave 12 18 390 597 207
Wave 37 44 1211 1447 236

being allocated (see Table 4 for detail). This figure is important to observe that the resources are
only delivered to the application after being completely up; meanwhile, the application executed
normally without interruption, maintaining the current number of resources.

0
200
400
600
800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

C
P

U

Observation

Allocating CPU Available CPU

0
200
400
600
800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

C
P

U

Observation

(a) Ascending

0
200
400
600
800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

C
P

U

Observation

(b) Descending

0
200
400
600
800

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

C
P

U

Observation

(c) Wave

Figure 11. Resource allocations.

Figure 12 depicts the first resource allocation operation among those presented in Figure 11
(a). We can observe three things happening: (i) threshold violation, i.e., the value of LP (i) is
greater than the upper threshold; (ii) instantiation of two VMs in a new node; (iii) delivery of
the new allocated resources to the application.

7. Conclusion
This article addressed the cloud elasticity for iterative HPC applications through the proposition
of the AutoElastic model. AutoElastic self-organizes the number of virtual machines without
user intervention, bringing benefits both to the cloud administrator (better energy saving and

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

16

0
100
200
300
400
500
600

22
662

23
692

24
722

25
752

26
804

27
835

28
865

29
896

30
927

31
958

32
990

33
1021

34
1051

C
P

U

Observation

Time (sec.)

Available CPU Used CPU Upper Threshold Lower Threshold

Allocating new resources Delivering new resources
Threshold violation:

PC(25) > Upper Threshold

Figure 12. Detailed resource allocation process.

resource sharing among the users) and for the cloud users (who can take profit from a better
performance and a quickly application deployment in the cloud). Section 3 presented three
problem statements that were addressed as follows:

(i) AutoElastic acts at PaaS level, not requiring that the programmer write elasticity actions
and rules in the application code to provide an elastic execution. It also offers asynchronous
elasticity, which proved relevant to enable the use of HPC applications in the cloud
computing environment.

(ii) The current version of AutoElastic works with master-slave iterative applications, not
needing prior information about their behavior. AutoElastic provides a framework totally
compatible with tightly-coupled applications, so models such as BSP and Divide-and-
Conquer can be adapted in the future to take advantage of cloud elasticity. Concerning
the performance gains with cloud elasticity, the evaluation showed that it is possible to
reduce about 18% to 26% the execution time of a numerical integration application.

(iii) We are assuming that the user developed an iterative application, providing VM templates
both for the master and the slave processes. Moreover, the user has an option to submit an
SLA when launching the application. If not provided, AutoElastic takes as default twice
the number of VMs at this time for the largest infrastructure.

Our approach for application model is justified by the fact that HPC programs can be
developed with the Sockets-like MPI 2.0 programming style. This style allows process connection
and disconnection easily, providing an effective use of available resources. AutoElastic offers a
reactive and horizontal elasticity, going against the sentence claimed by Spinner et al. [31], who
affirm that only vertical scaling is suitable for HPC scenarios due to inherent overhead related
to the complementary approach. Thus, we modeled a framework to provide the novel concept
of asynchronous elasticity, which turned out as a crucial feature to enable automatic resource
reorganization without prohibitive costs. The aforesaid performance results are emphasized
when analyzed together with the consumed energy, showing that the AutoElastic’s elasticity
does not present a forbidding cost.

As a future work, we intend to explore the self-organization of the thresholds in accordance
with the application feedback. Finally, as explained earlier, we also plan to extend AutoElastic
to contemplate other parallel programming models, including Divide-and-Conquer and BSP.

Acknowledgments
This work was partially supported by the following Brazilian Agencies: CNPq (Conselho Na-
cional de Desenvolvimento Cient́ıfico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior) e FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul).

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

17

References
[1] Lorido-Botran T, Miguel-Alonso J and Lozano J 2014 A review of auto-scaling techniques for elastic

applications in cloud environments Journal of Grid Computing 12 pp 559–592
[2] Raveendran A, Bicer T and Agrawal G 2011 A framework for elastic execution of existing MPI programs

Proceedings of the 2011 IEEE Int. Symposium on Parallel and Distributed Processing Workshops and PhD
Forum IPDPSW ’11 (Washington, DC, USA: IEEE Computer Society) pp 940–947

[3] Han R, Guo L, Ghanem M M and Guo Y 2012 Lightweight resource scaling for cloud applications Cluster
Computing and the Grid, IEEE International Symposium on 0 644–651

[4] Ward J S and Barker A 2014 Self managing monitoring for highly elastic large scale cloud deployments
Proceedings of the Sixth International Workshop on Data Intensive Distributed Computing DIDC ’14 (New
York, NY, USA: ACM) pp 3–10

[5] Galante G and Bona L C E d 2012 A survey on cloud computing elasticity Proceedings of the 2012 IEEE/ACM
Fifth International Conference on Utility and Cloud Computing UCC ’12 (Washington, DC, USA: IEEE
Computer Society) pp 263–270

[6] Jennings B and Stadler R 2014 Resource management in clouds: Survey and research challenges Journal of
Network and Systems Management 1–53

[7] Frincu M E, Genaud S and Gossa J 2013 Comparing provisioning and scheduling strategies for workflows on
clouds Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum IPDPSW ’13 (Washington, DC, USA: IEEE Computer Society) pp 2101–2110

[8] Wilkinson B and Allen C 2005 Parallel Programming: Techniques and Applications Using Networked
Workstations and Parallel Computers An Alan R. Apt book (Pearson/Prentice Hall)

[9] Roloff E, Birck F, Diener M, Carissimi A and Navaux P 2012 Evaluating high performance computing on
the Windows Azure Platform Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on
pp 803–810

[10] Coutinho E, de Carvalho Sousa F, Rego P, Gomes D and de Souza J 2014 Elasticity in cloud computing: A
survey annals of telecommunications - annales des telecommunications 1–21

[11] Rajan D, Canino A, Izaguirre J A and Thain D 2011 Converting a high performance application to an elastic
cloud application Proceedings of the 2011 IEEE Third International Conference on Cloud Computing
Technology and Science CLOUDCOM ’11 (Washington, DC, USA: IEEE Computer Society) pp 383–390

[12] Knauth T and Fetzer C 2011 Scaling non-elastic applications using virtual machines Cloud Computing
(CLOUD), 2011 IEEE International Conference on pp 468–475

[13] Kumar K, Feng J, Nimmagadda Y and Lu Y H 2011 Resource allocation for real-time tasks using cloud
computing Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th International
Conference on pp 1–7

[14] Michon E, Gossa J and Genaud S 2012 Free elasticity and free CPU power for scientific workloads on IaaS
clouds Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th International Conference on pp 85–92

[15] Hendrickson B 2009 Computational science: Emerging opportunities and challenges Journal of Physics:
Conference Series 180 012013

[16] Tan L, Kothapalli S, Chen L, Hussaini O, Bissiri R and Chen Z 2014 A survey of power and energy efficient
techniques for high performance numerical linear algebra operations Parallel Computing 40 559–573

[17] Cai B, Xu F, Ye F and Zhou W 2012 Research and application of migrating legacy systems to the private
cloud platform with Cloudstack Automation and Logistics (ICAL), 2012 IEEE International Conference
on pp 400–404

[18] Milojicic D, Llorente I M and Montero R S 2011 OpenNebula: A cloud management tool Internet Computing,
IEEE 15 11–14

[19] Wen X, Gu G, Li Q, Gao Y and Zhang X 2012 Comparison of open-source cloud management platforms:
OpenStack and OpenNebula Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International
Conference on pp 2457–2461

[20] Chiu D and Agrawal G 2010 Evaluating caching and storage options on the Amazon Web Services Cloud
Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on pp 17–24

[21] Beernaert L, Matos M, Vilaça R and Oliveira R 2012 Automatic elasticity in OpenStack Proceedings of the
Workshop on Secure and Dependable Middleware for Cloud Monitoring and Management SDMCMM ’12
(New York, NY, USA: ACM) pp 2:1–2:6

[22] Mao M, Li J and Humphrey M 2010 Cloud auto-scaling with deadline and budget constraints Grid Computing
(GRID), 2010 11th IEEE/ACM International Conference on pp 41–48

[23] Martin P, Brown A, Powley W and Vazquez-Poletti J L 2011 Autonomic management of elastic services
in the cloud Proceedings of the 2011 IEEE Symposium on Computers and Communications ISCC ’11
(Washington, DC, USA: IEEE Computer Society) pp 135–140

[24] Zhang X, Shae Z Y, Zheng S and Jamjoom H 2012 Virtual machine migration in an over-committed cloud

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

18

Network Operations and Management Symposium (NOMS), 2012 IEEE pp 196–203
[25] Lee Y, Avizienis R, Bishara A, Xia R, Lockhart D, Batten C and Asanovic K 2011 Exploring the tradeoffs

between programmability and efficiency in data-parallel accelerators Computer Architecture (ISCA), 2011
38th Annual International Symposium on pp 129–140

[26] Kouki Y, Oliveira F A d, Dupont S and Ledoux T 2014 A language support for cloud elasticity management
Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on pp
206–215

[27] Baliga J, Ayre R, Hinton K and Tucker R 2011 Green cloud computing: Balancing energy in processing,
storage, and transport Proceedings of the IEEE 99 149–167

[28] Imai S, Chestna T and Varela C A 2012 Elastic scalable cloud computing using application-level migration
Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing UCC
’12 (Washington, DC, USA: IEEE Computer Society) pp 91–98

[29] Jamshidi P, Ahmad A and Pahl C 2014 Autonomic resource provisioning for cloud-based software Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
SEAMS 2014 (New York, NY, USA: ACM) pp 95–104

[30] Comanescu M 2012 Implementation of time-varying observers used in direct field orientation of motor drives
by trapezoidal integration Power Electronics, Machines and Drives (PEMD 2012), 6th IET International
Conference on pp 1–6

[31] Spinner S, Kounev S, Zhu X, Lu L, Uysal M, Holler A and Griffith R 2014 Runtime vertical scaling
of virtualized applications via online model estimation Proceedings of the 2014 IEEE 8th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO)

XV Brazilian Symposium on High Performance Computational Systems (WSCAD 2014) IOP Publishing
Journal of Physics: Conference Series 649 (2015) 012006 doi:10.1088/1742-6596/649/1/012006

19

