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Abstract— Learning the similarity between remote sensing
(RS) images forms the foundation for content-based RS image
retrieval (CBIR). Recently, deep metric learning approaches that
map the semantic similarity of images into an embedding (metric)
space have been found very popular in RS. A common approach
for learning the metric space relies on the selection of triplets of
similar (positive) and dissimilar (negative) images to a reference
image called an anchor. Choosing triplets is a difficult task
particularly for multilabel RS CBIR, where each training image
is annotated by multiple class labels. To address this problem,
in this article, we propose a novel triplet sampling method in
the framework of deep neural networks (DNNs) defined for
multilabel RS CBIR problems. The proposed method selects
a small set of the most representative and informative triplets
based on two main steps. In the first step, a set of anchors that
are diverse to each other in the embedding space is selected
from the current minibatch using an iterative algorithm. In the
second step, different sets of positive and negative images are
chosen for each anchor by evaluating the relevancy, hardness,
and diversity of the images among each other based on a novel
strategy. Experimental results obtained on two multilabel bench-
mark archives show that the selection of the most informative
and representative triplets in the context of DNNs results in:
1) reducing the computational complexity of the training phase
of the DNNs without any significant loss on the performance
and 2) an increase in learning speed since informative triplets
allow fast convergence. The code of the proposed method is
publicly available at https://git.tu-berlin.de/rsim/image-retrieval-
from-triplets.

Index Terms— Deep neural networks (DNNs), metric learning,
multilabel image retrieval, remote sensing (RS), triplet selection.

I. INTRODUCTION

IN recent years, advancements in satellite technology have
led to fast-growing archives of remote sensing (RS) images.

One of the most emerging applications in RS is the accurate
retrieval of RS images from such archives. Thus, the devel-
opment of content-based image retrieval (CBIR) methods has
recently attracted great attention [1]. The performance of any
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CBIR system relies on its capability to learn discriminative and
robust image representations to describe the complex semantic
content of RS images.

Conventional CBIR systems exploit handcrafted features
to describe the content of images. As an example, Wang
and Newsam present a retrieval system employing the well-
known scale-invariant feature transform (SIFT) to extract
bag-of-visual-words representations of image features [2].
Aptoula introduces the use of bag-of-morphological-words
representations for local texture descriptors [3]. In [4], a com-
parative analysis of local binary patterns (LBPs) that cap-
ture local patterns between neighboring pixels is presented.
Chaudhuri et al. [5] present a method that represents image
content by a graph, where the graph nodes describe the
image region properties and the edges represent the spatial
relationships among the regions. Binary hash codes obtained
through kernel-based hashing methods are found effective
for describing RS images in [6]. After extracting the image
features, the most similar images with respect to a query image
can be found by performing the k-nearest neighbor (k-NN)
search algorithm. In the case of graph-based image represen-
tations, graph comparison methods, such as the inexact graph
matching approach, proposed by Chaudhuri et al. [7] can be
used. The images represented by binary hash codes can be
searched and retrieved by using the computationally efficient
hamming distance [6].

The abovementioned CBIR systems cannot simultaneously
optimize feature learning and image retrieval and, thus, result
in a limited capability to represent the high-level semantic
content of RS images. This issue leads to insufficient search
and retrieval performance [1]. To overcome this problem,
CBIR systems based on deep neural networks (DNNs) have
been recently presented in RS [8]. As an example, Li et al. [9]
propose a method that fuses deep features and handcrafted
features. This method exploits four convolutional neural net-
works (CNNs) to extract features at different steps and with
different coarse levels. Then, these deep features are fused with
traditional image descriptors, such as LBPs and SIFT, to be
used in the retrieval process. A convolutional autoencoder
is used by Tang et al. [10] to obtain deep bag-of-words
image descriptors. To this end, a reconstruction loss function
that minimizes the error between the input and the extracted
descriptors is considered. Imbriaco et al. [11] extract local con-
volutional features and aggregate them into a global descriptor,
where the deep features are extracted through a pretrained
model without any fine-tuning. Boualleg and Farrah address
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Fig. 1. Example of three triplets consisting of images from BigEarthNet [15].
Each triplet given in different rows consists of an anchor (in blue frame),
a positive image (in green frame), and a negative image (in red frame). The
associated multilabels are given below the respective images.

the semantic gap between low-level features and high-level
perception of semantic similarity in [12]. This is achieved by
using a CNN to detect semantic concepts and a relevance
feedback strategy to ensure that CBIR results match with a
query image. Sabahi et al. [13] address the abovementioned
semantic gap by employing a recurrent neural network to
model the human visual memory.

In recent years, deep metric learning (DML)-based methods
that aim at learning a feature space (in which similar images
are close to each other) have attracted attention in RS. Current
DML models are mostly trained using a triplet loss function
made up of three images as: 1) an anchor image; 2) a positive
image that is similar to the anchor; and 3) a negative image
that is dissimilar to the anchor [14]. An example of triplets
constructed from BigEarthNet [15] can be seen in Fig. 1.
A difficult task in DML is to construct the set of triplets.
A simple strategy is to define triplets from an existing training
set of labeled images. Roy et al. [16] apply a strategy that:
1) randomly selects an anchor from a minibatch of training
images and 2) randomly chooses one positive image that
has the same class label as the anchor while selecting one
negative image that has a different class label. Similarly,
Lai et al. [8] select triplets randomly based on the class labels
of training images to train an end-to-end model for hashing.
For each anchor image, there can be several positive and
negative images. Thus, random selection does not guarantee
the selection of the most representative and informative images
to the anchor and can result in the construction of so-called
trivial triplets (see Section II for details). We would like to
note that one can also exploit all the images in the minibatch
to construct triplets, as suggested in [17]. However, this choice
significantly increases the total number of triplets and, thus, the
computational complexity of the training phase of the retrieval
system [18], [19].

To overcome the limitation of random selection, the DML
methods that evaluate the hardness of images during the
sampling process are introduced in the computer vision (CV)
literature (see Section II for details). According to our knowl-
edge, most of the triplet sampling methods in CV assume that
each image is annotated by a single label associated with the
most significant content of the considered image and, thus,
rely on single-label image annotations to decide which images
are positive or negative for a given anchor image. However,
RS images typically consist of multiple classes and, thus,
can simultaneously be associated with different class labels
(i.e., multilabels). From the DML perspective, the selection
of triplets from training images annotated by multilabels is
more complex than that from training images labeled by single
labels. To achieve accurate DML in multilabel RS CBIR,
methods that accurately select a set of triplets from multilabel
training images are needed.

To address this problem, we propose a novel triplet sampling
method in the framework of DML designed for multilabel RS
CBIR problems. Unlike the existing triplet sampling methods,
the proposed method aims to select a small set of triplets from
each minibatch of multilabel training images. To this end, the
proposed method consists of two consecutive steps. In the first
step, a small number of diverse anchors are selected based on
a simple but efficient iterative algorithm. In the second step,
relevant, hard and diverse positive and negative images with
respect to each anchor are chosen based on a novel strategy.
Then, the triplets are constructed from the selected anchors and
their respective positive and negative images. Based on these
consecutive steps, the proposed method constructs a small
number of the most informative and representative triplets
to drive DML, resulting in an accurate CBIR and also in a
reduced training complexity for the considered DNN. It is
worth noting that the proposed triplet sampling method is
independent of the considered DNN architecture and, there-
fore, can be used within any DNN presented in the literature.
In the experiments, different DNN architectures are consid-
ered, while the k-NN algorithm is used for the retrieval process
after the characterization of the image descriptors through the
considered method. Experiments carried out on two multilabel
RS benchmark archives demonstrate the effectiveness of the
proposed method.

The rest of the article is organized as follows. Section II
presents the related works on triplet sampling. Section III
introduces the proposed method. Section IV describes the con-
sidered datasets and the experimental setup, while Section V
provides the experimental results. Section VI concludes our
article.

II. RELATED WORKS ON TRIPLET SAMPLING

The development of DML methods that aim to learn a
metric space (in which semantically similar images are close
to each other) is important for an accurate CBIR. It has been
shown that the triplet-based DML methods perform consid-
erably well for the CBIR tasks [16], [20]. The triplet-based
DML methods use triplets of images to learn a metric space
by means of the triplet loss [14]. The optimization objective
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Fig. 2. Abstract representation of triplet selection and the progress for
feature space update. Blue arrows indicate reducing distances for updating
the embedding, while red arrows indicate increasing the distances. Xa marks
a chosen anchor; P1, P2, and P3 are positive images; and N1, N2, and N3
are negative images in different triplets. The triplet (Xa , P1, N1) is trivial
because it already satisfies the margins, and thus, the corresponding distances
are not updated. The triplet (Xa , P2, N2) leads to a relatively small error, and
the images are pushed and pulled a little. The triplet (Xa , P3, N3) violates
the margin greatly and causes a significant error. P3 is a positive image but
very far from the anchor, so it is considered as a hard positive image. N3 is,
respectively, a hard negative image.

is to minimize the feature distance between the anchor and
its positive sample (i.e., image) while maximizing the feature
distance between the anchor and the negative sample. The goal
is to ensure that the positive sample is closer to the anchor
than the negative sample by at least a margin. During the
training of a triplet-based DML method, for the triplets that
consist of a positive image inside the margin and the negative
image outside the margin, a zero value triplet loss is obtained,
leading to small gradient values and slow convergence. For the
triplets that consist of a positive image visually less similar
to the anchor (i.e., outside the margin) and a negative image
visually more similar to the anchor (i.e., inside the margin),
a high triplet loss value is obtained. High loss values lead to
large gradient values, and thus, the parameters of the model
are updated. When a positive image is far from the margin,
it is called a hard positive image. A negative image is called
hard negative if it is inside the margin and very close to the
anchor. If the distance between the anchor and positive image
of a triplet is higher than the distance between the anchor
and negative image, the triplet is considered as a hard triplet.
In Fig. 2, an abstract representation of the triplet selection and
the feature space update is demonstrated. The images P1, P2,
and P3 are the positive images for the anchor Xa in different
triplets, while images N1, N2, and N3 are the negative images
for the anchor Xa . After updating the embedding (metric)
space using the selected triplets, P2 and P3 are pulled closer
to the anchor Xa, while N2 and N3 pushed far away from
the anchor Xa toward outside the margin. The positive image
P1 is inside the margin, and the negative image N1 is outside
the margin; thus, triplet (Xa, P1, N1) is a trivial triplet. The
positive image P3 is a hard positive image for anchor Xa since
it is outside the margin and far from the anchor image. The
negative image N3 is a hard negative image, as it is very close
to the anchor. The triplet (Xa, P3, N3) is a hard triplet and
causes a high loss value to update the parameters of the model.
Since the trivial triplets are not sufficiently informative and

lead to slow convergence, the use of hard triplets has been
considered to overcome this problem.

Most of the methods in RS do not consider the hardness
of the images in the selected triplets and exploit the random
triplet selection strategy as mentioned in the introduction [16],
[17], [21]. Unlike RS, in the CV community, the use of triplets
is more extended, and the importance of the hardness is widely
studied [22]–[25]. As an example, Xuan et al. [22] propose a
triplet selection strategy that selects the closest positive sample
(easy positive) and the closest negative (hard negative) for
each anchor. Yuan et al. [25] propose a hard-aware deeply
cascaded (HDC) embedding method. For each anchor and a
selected positive sample, HDC selects the negative samples
at multiple hardness levels to construct different triplets.
Hardness levels are defined based on the distances in the
embedding space. Yang et al. [19] investigate the importance
of hard positive images by combining a positive image with
all negative image pairs in the batch. Then, the positive images
are weighted and hard positives are preferred. Ge et al. [24]
propose a hard triplet selection method that constructs a
class-level hierarchical tree of image features for the whole
dataset, where visually similar classes are merged recursively.
Then, the selection of the triplets is done based on a distance
computed between an anchor image and different pairs of
image classes through the hierarchical tree. In addition to
the methods that aim to select triplets, there are also several
works that focus on reformulating the triplet loss function
to emphasize the effect of hard triplets [26]–[28]. As an
example, Zhang et al. [27] adapt the focal loss that is initially
defined for classification problems and propose an extended
version for triplets as an alternative to the triplet loss. This
loss function ensures that more importance is given to hard
triplets than easier ones, and thus, the model can learn from the
most informative triplets and converge faster. Kim et al. [26]
developed an adapted version of the triplet loss for pose
estimation. This loss function preserves the distance ratios
from the label space in the embedding space. In [28], the
multisimilarity loss function is proposed to reformulate the
triplet loss with a weighting strategy. By using the weighting
strategy, this loss function considers the relative similarity of
all positive and all negative samples in a minibatch. In [29],
the multiclass N-pair loss function is proposed to generalize
the triplet loss function for multiple negative images associ-
ated with an anchor. In detail, for each anchor image, one
positive image and several negative images are selected as
hard negatives from different negative classes. In [21], the
dual-anchor triplet loss function is introduced as an extension
of the triplet loss. In addition to the objectives of the triplet
loss, this loss function also aims at increasing the distance
between the positive and negative images for a given anchor.
Wang et al. [30] extend the concept of triplets to the whole
minibatch, where all available images are first sorted and then
divided into a positive set and a negative set. Afterward,
an extension of the triplet loss is used to force a margin
between the two sets by using all the images. This loss func-
tion employs a weighting strategy to increase the importance
of the hard negative images. In [31], it is shown that, when an
accurate sampling strategy is considered, deep learning (DL)
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Fig. 3. Block scheme of the proposed triplet sampling method to drive the
training phase of a DNN for multilabel CBIR problems.

models with different modified loss functions provide similar
accuracies. This proves the fact that triplet selection is as
important as loss function in the framework of DML. Most
of the triplet-based methods in CV assume that a single label
is associated with each image. However, RS images typically
consist of multiple classes and are associated with multilabel,
which makes selecting triplets more complex than the single-
label scenario.

III. PROPOSED METHOD

A. Problem Formulation

Let XXX = {X1, . . . , X M } be an archive consisting of M
images, where Xm is the mth image in the archive. We assume
that a training set XXX T ⊂ XXX is available. Each image in XXX T

is annotated with a set of class labels, which describes the
content of the image. Let L = {1, 2, . . . , N} be the set of all
possible class labels. Each image X j ∈ XXX T is associated with
a multilabel vector L j = {l1

j , l2
j , . . . , l N

j }, where l i
j = 1 if the

class label i ∈ L is associated with the image X j , and l i
j = 0

otherwise. Each training image X j is annotated with at least
one class label.

We propose a novel triplet sampling method in the frame-
work of DL-based multilabel CBIR. The proposed method
aims: 1) to select a small set of informative and representative
triplets from each training minibatch BBB and 2) to accurately
describe the complex semantic content of RS images. To this
end, it consists of two consecutive steps: 1) selection of
anchors that are diverse to each other in the feature space
and 2) selection of positive and negative images with respect
to each selected anchor. To achieve the latter step, we jointly
evaluate the relevancy, hardness, and diversity of the images
during the selection (see Fig. 3). The proposed method is
independent of the considered DL model and can be used with
any DL model designed for CBIR problems. In Sections III-B
and III-C, the two steps of the proposed method are described
in detail.

B. Diverse Anchor Selection

The first step of the proposed method aims to find a
small set of the most representative anchors. As mentioned
before, all samples (i.e., images) in the minibatch BBB could
be selected as anchors. However, such an approach results
in a large and redundant set of triplets and increases the

computational complexity of the training. In detail, the com-
plexity of the training grows cubically if all possible triplets
are exploited [27]. Selecting a small set of anchors can signif-
icantly reduce the computational complexity of the training.
To this end, we introduce a simple but efficient diverse anchor
selection (DAS) strategy. The DAS strategy aims to select
diverse anchors from the minibatch that, when included in the
set of triplets, can improve the retrieval performance. To this
end, it exhibits an iterative algorithm to evaluate the diversity
in the feature space among the samples from the minibatch.
The algorithm starts with an empty set A = ∅. The first anchor
is selected randomly from the current minibatch BBB and added
into A. At each iteration, a new anchor that is associated
with the highest distance from all already selected anchors is
selected from BBB. In detail, at the hth iteration, the hth anchor
image Xh is selected as

Xh = argmax
Xb∈BBB\A

[
max
Xa∈A

D(Xb, Xa)

]
(1)

where D(·, ·) is the feature similarity measure, defined as the
Euclidean distance between two images in the feature space.
It is worth noting that the Euclidean distances are normalized
based on min–max normalization. The steps are iterated until
H anchors are selected. Due to the selection of anchors that
are as distant as possible to each other in the feature space,
the diversity among the selected anchors with respect to their
correlation in the feature space is maximized. This results in
selecting a representative set of anchors, forming the basis for
the positive and negative image selection steps.

C. Relevant, Hard, and Diverse Positive–Negative
Image Selection

The second step of the proposed method aims to select, for
each anchor, positive and negative images that are informative
(i.e., relevant and hard) and representative (i.e., diverse to
each other in the feature space). This is achieved by a
novel relevant, hard, and diverse positive and negative image
selection strategy (RHDIS). The relevancy of an image to an
anchor is defined based on its multilabel similarity with respect
to the considered anchor. In detail, a positive image can be
associated with high relevancy to an anchor if their class label
similarity is high and vice versa. A negative image can be
relevant to an anchor if its class label similarity is small and
vice versa. The hardness of an image is associated with its
distance to the considered anchor in the feature space. In detail,
a positive image can be hard if its distance to the anchor in
the embedding space is high, whereas a negative image can
be considered hard if its distance to the anchor is small.

The proposed RHDIS strategy initially evaluates the infor-
mativeness (i.e., relevancy and hardness) of the images to
select the candidates for positive and negative images related
to each anchor image. Then, the representative (diverse) ones
among the most informative positive and negative images are
selected to construct the triplets. To this end, for each image
Xb in the minibatch BBB, informativeness scores Ip(Xa, Xb)
(which shows if Xb is a candidate positive image) and
In(Xa, Xb) (which shows if Xb is a candidate negative image)
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with respect to anchor Xa are initially computed as

Ip(Xa, Xb) = β × S(Xa, Xb) + (1 − β) × D(Xa, Xb) (2)

In(Xa, Xb) = β × [1 − S(Xa, Xb)] + (1 − β)

× [1 − D(Xa, Xb)] (3)

where S(Xa, Xb) shows the class label similarity between the
image Xb and Xa . S(Xa, Xb) ∈ [0, 1] is calculated based
on the soft pairwise similarity measure (i.e., the distance
between the multilabel vector La of Xa and Lb of Xb) [32].
If S(Xa, Xb) is high, Xb can be considered as a relevant
positive image, whereas, if [1−S(Xa, Xb)] is high, Xb can
be considered as a relevant negative image. D(Xa, Xb) is
the distance between Xb and Xa in the embedding space
and measures the hardness of images as mentioned before.
If both D(Xa, Xb) and S(Xa, Xb) are high, the image Xb can
be considered as a relevant and hard positive image. If both
[1−S(Xa, Xb)] and [1−D(Xa, Xb)] are high, the image Xb

can be considered as a relevant and hard negative image.
β ∈ [0, 1] is the weighting parameter and can be adjusted to
give more importance to either the relevancy or the hardness
of the image.

To construct a set PXa = {P1, P2, . . . , PC } of C positive
images for an anchor Xa , the image in the minibatch associated
with the highest Ip score with respect to Xa is chosen as
the first positive image. Then, the next images are iteratively
selected. We apply an iterative approach similar to the DAS
introduced in the first step to select the most representative
images. At the t th iteration, the tth positive image Pt is
selected as

Pt = argmax
Xb∈BBB\PXa

[
γ × Ip(Xa, Xb) + (1 − γ ) × max

Pc∈PXa

D(Xb, Pc)
]
.

(4)

This process is repeated until the desired number of positive
images is selected. The parameter γ ∈ [0, 1] controls the
influence of the diversity term.

To construct a set NXa = {N1, N2, . . . , NC } of C negative
images for each anchor Xa, the image with the highest In

score in the minibatch with regard to Xa is selected as the first
negative image. Afterward, the subsequent negative images are
iteratively selected. At the tth iteration, the tth negative image
Nt is selected as

Nt = argmax
Xb∈BBB\NXa

[
γ × In(Xa, Xb)+(1 − γ )× max

Nc∈NXa

D(Xb, Nc)
]
.

(5)

This selection strategy ensures that the selected positive and
negative images for each anchor are informative (i.e., hard and
relevant) and representative (i.e., diverse among each other in
the feature space). After selecting the final set of triplets from
the minibatch BBB, the triplet loss function is calculated as

L =
∑

∀Xa∈A

∀Pt ∈PXa∀Nt ∈NXa

max
(
[D(Xa, Pt ) − D(Xa, Nt ) + α], 0

)
(6)

where α is a margin enforced between positive and negative
images for an anchor image. After an end-to-end training of

Fig. 4. Example of images from the IRS-BigEarthNet archive and their
multilabels: (a) arable land, pastures, and coniferous forest; (b) arable land
and pastures; (c) pastures and inland waters; and (d) arable land, pastures,
and complex cultivation patterns.

Fig. 5. Example of images from the UCMerced Land Use archive and the
multilabels associated with them: (a) sand and sea; (b) airplane, cars, grass,
and pavement; (c) bare soil, buildings, and grass; and (d) buildings, cars,
pavement, and trees.

the whole neural network by minimizing the triplet loss and
learning the network parameters, the descriptors (i.e., features)
of the images in XXX \ XXX T are obtained. Then, the k most
semantically similar images with regard to a given query image
Xq ∈ XXX are selected by comparing their descriptors based on
the k-NN algorithm.

IV. DATASET DESCRIPTION AND DESIGN

OF EXPERIMENTS

A. Dataset Description

To evaluate the proposed method, we conducted exper-
iments on two different multilabel RS archives. The first
archive is BigEarthNet [15], [33], which is a large-scale
multilabel Sentinel-2 benchmark archive consisting of
590 326 images. In the experiments, we considered the images
acquired over Ireland in the summer of 2017 (denoted as IRS-
BigEarthNet). IRS-BigEarthNet contains 15 894 images, each
of which is made up of 120 × 120 pixels for 10-m bands,
60 × 60 pixels for 20-m bands, and 20 × 20 pixels for 60-m
bands. In the experiments, we excluded the 60-m bands and
applied bicubic interpolation to 20-m bands, which results in
ten bands, each of which has a size of 120 × 120 pixels. The
class labels of the images were obtained from the CORINE
Land Cover database of the year 2018 (CLC 2018). In the
experiments, we used the 19 class nomenclature presented
in [33]. As suggested in [33], images with snow cover, cloud
cover, and cloud shadows are excluded from training and
evaluation. Fig. 4 shows an example of images from the
IRS-BigEarthNet with the associated multilabel annotations.

The second benchmark archive is the UC Merced Land
Use (UCMerced) archive [34], which consists of 2100 images
selected from aerial orthoimagery with a spatial resolution of
30 cm. Each image has a size of 256 × 256 pixels. The
images are annotated with multilabels by Chaudhuri et al. [5].
There are 17 classes in total with at least one and a maximum
of seven class labels per image. Fig. 5 shows an exam-
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ple of images from this archive along with their multilabel
annotations.

The two benchmark archives differ greatly in size, complex-
ity, and characteristics. This allows us to demonstrate the gen-
eral applicability and success of the proposed triplet sampling
method in different scenarios. We randomly split UCMerced
images into 60% for training, 20% for validation, and 20%
for testing. For IRS-BigEarthNet, the officially provided splits
into training, validation, and evaluation sets were used. During
the training step, all triplets were sampled from the training
set. Query images were taken from the validation set, while
image retrieval is applied to the evaluation set.

B. Design of Experiments

In the experiments, different CNN architectures were con-
sidered as backbones, while an additional fully connected
layer was added to produce image embeddings. The resulting
CNNs were trained for image retrieval by means of the triplet
loss. It is worth noting that our method does not depend
on a specific DL model architecture. In our experiments,
we evaluated three different CNN architectures: 1) the shallow
CNN (S-CNN) [15]; 2) DenseNet-121 [35]; and 3) ResNet-
50 [36]. The last two architectures are well-known deep
models, while the first architecture is an explicitly shallow
model. All models were used without pretraining. The size
of the minibatch for IRS-BigEarthNet and UCMerced was
selected as 300 and 100, respectively. The training was
performed for 100 epochs with the Adam optimizer, using
an initial learning rate of 0.001 (which was exponentially
decayed every five epochs by 5%). The margin parameter
α of the triplet loss was set to 0.2. The values of β and γ
were set to 0.5 and 0.1, respectively, based on a grid search
strategy. All the experiments were conducted on NVIDIA
Tesla V100 GPUs with 32-GB memory. The results were
provided in terms of the different evaluation metrics, such as
accuracy, precision, recall, and F1 score [5]. These values were
the average of the values obtained by retrieving the 30 and
ten most similar images for IRS-BigEarthNet and UCMerced,
respectively.

We carried out different kinds of experiments in order to:
1) perform a sensitivity analysis with respect to different net-
work architectures and embedding sizes; 2) conduct an abla-
tion study of the proposed triplet sampling method; 3) compare
our method with different triplet sampling methods; and 4)
compare our method with state-of-the-art DML based meth-
ods. To perform the ablation study, we compared the proposed
DAS strategy (see Section III-B for the details) with two
frequently used anchor selection strategies that are given as
follows.

1) Batch anchor selection (BAS): This strategy selects each
image in the minibatch as an anchor once and can
be considered an upper bound strategy for the triplet
selection. This strategy does not miss any information
provided by specific triplets. However, it leads to a very
high number of final triplets that can be redundant.

2) Random anchor selection (RAS): This strategy selects a
fixed number of anchors from the minibatch without any

prior assumption. It is simple, but there is no guarantee
that the randomly chosen anchors provide a good basis
for the triplets.

In the experiments, 10% of all possible anchors from the
minibatch were chosen for the RAS and the proposed DAS
strategies. We compared the proposed relevant, hard, and
diverse positive–negative image selection (RHDIS) strategy
(see Section III-C for the details) with two baselines that
are:

1) Batch positive and negative image selection (BIS): This
strategy uses all images in the minibatch. Each image
is used as the positive and the negative images once.
It covers all possible triplets, leading to a very high
number of final triplets.

2) Random positive and negative image selection (RIS):
This strategy randomly selects sets of positive and
negative images and combines all of them into triplets.
Many of the resulting triplets may be trivial, but it
requires no prior knowledge and provides a lower bound
baseline.

In the experiments, we also assessed the effectiveness of the
joint use of the abovementioned strategies with proposed DAS
and RHDIS for the selection of anchors, as well as positive
and negative images. This is important as the anchor selection
step is independent of the step of the positive and negative
image selection, and thus, the proposed selection strategies
can be combined with the other well-known strategies.

In the experiments, we also compared the proposed
DAS-RHDIS method with two triplet sampling methods: 1) the
DML using triplet network that uses RAS for anchor selection
and RIS for positive and negative image selection (denoted
as TNDML) [37] and 2) enhancing RS image retrieval using
a triplet DML network, which employs BAS for the anchor
selection and BIS for positive and negative image selections
(denoted as RSDML) [17]. We also compared the proposed
DAS-RHDIS method with state-of-the-art DML methods for
CBIR: 1) the content-based medical image retrieval (CBMIR)
system, which utilizes a pairwise similarity loss function to
force all positive images to be close, while separating all the
negative images with a fixed distance [38]; 2) the multisimi-
larity loss with general pair weighting for deep metric learning
(denoted as MSL) [28]; 3) the dual-anchor triplet loss (denoted
as DATL) proposed in [21]; and 4) the improved DML with
multiclass N-pair loss objective (denoted as NPL) [29]. For all
the methods, we used the same CNN architecture and training
setup as in our method.

V. EXPERIMENTAL RESULTS

A. Sensitivity Analysis of the Proposed Method

In this subsection, we present the results of the sensitivity
analysis for the proposed triplet sampling method (denoted
as DAS-RHDIS) in terms of different DL model architec-
tures and different embedding sizes. To analyze the proposed
DAS-RHDIS method in the framework of different DL models
designed for multilabel RS CBIR, we selected the CNN
architectures of: 1) S-CNN; 2) DenseNet-121; and 3) ResNet-
50. The embedding size for each architecture was set to 256.
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TABLE I

PERFORMANCE OF DIFFERENT DL MODEL ARCHITECTURES
FOR THE UCMERCED ARCHIVE

TABLE II

EFFECT OF VARYING EMBEDDING SIZES ON THE RETRIEVAL
PERFORMANCE FOR THE UCMERCED ARCHIVE

In Table I, the results are shown for the UCMerced archive.
By assessing the table, one can observe that all the considered
DL model architectures provide a high performance. As an
example, although S-CNN is an explicitly shallow architecture,
it achieves more than 50% F1 score as in Dense-Net-121 and
ResNet-50. This shows that the proposed DAS-RHDIS method
is architecture-independent. One can also see from the table
that the best scores under all metrics were obtained when
ResNet-50 was utilized. As an example, ResNet-50 provides
almost 9% higher precision and 8.5% higher recall compared
to DenseNet-121. Compared with S-CNN, ResNet-50 leads to
more than 14% higher F1 score and accuracy. These results
show that a proper selection of a DL model architecture
can improve performance. For the rest of the experiments,
we provided the results obtained with ResNet-50 due to its
proven success.

In Table II, the results obtained by using different embed-
ding sizes are shown for the UCMerced archive. We evaluated
the effect of the embedding sizes of 256, 512, 1024, and 2048
used in the proposed DAS-RHDIS method. From the table, one
can see that the highest scores under all metrics are obtained
when the embedding size is 1024. Further increase in the
embedding size to 2048 does not improve the performance.
As an example, the proposed method with the embedding
size of 1024 provides a 7% higher F1 score compared to
that of 2048. This is in line with the works in the literature,
which demonstrate that, beyond a certain size, adding any
new embedding dimension may not improve the performance
[39]–[41]. By analyzing the table, one can also observe that
the lowest performance is obtained when the embedding size
is 256. In this case, the F1 score is reduced by almost 3%
compared to the embedding size of 1024. Accordingly, for
the rest of the experiments, we set the embedding size to
1024. These results were also confirmed through experiments
obtained by using the IRS-BigEarthNet archive (not reported
for space constraints).

TABLE III

RESULTS OBTAINED BY THE DIFFERENT ANCHOR SELECTION
STRATEGIES (RAS, BAS, AND PROPOSED DAS) UNDER DIFFERENT

METRICS FOR THE UCMERCED ARCHIVE WHEN THE PROPOSED

RHDIS IS USED FOR POSITIVE AND NEGATIVE

IMAGE SELECTION

TABLE IV

RESULTS OBTAINED BY THE DIFFERENT POSITIVE AND NEGATIVE IMAGE

SELECTION STRATEGIES (RIS, BIS, AND PROPOSED RHDIS) UNDER

DIFFERENT METRICS FOR THE UCMERCED ARCHIVE WHEN THE

PROPOSED DAS IS USED FOR ANCHOR SELECTION

B. Ablation Study

In this subsection, we performed an ablation study to ana-
lyze the effectiveness of the proposed DAS and RHDIS strate-
gies. To demonstrate the effectiveness of the proposed DAS
strategy, we compare it with RAS and BAS strategies. Table III
shows the results associated with the different anchor strategies
for the UCMerced archive when the proposed RHDIS strategy
is used for positive and negative image selection. By analyzing
the table, one can observe that the proposed DAS strategy
provides the highest scores under all the metrics compared to
RAS and BAS. As an example, the proposed DAS strategy
provides more than 7% higher accuracy compared to RAS
under the same number of anchors (which is set to ten in
the experiments) when the positive and negative selection
strategy is set to proposed RHDIS. In addition, the proposed
DAS strategy leads to almost 4% higher recall with a smaller
number of anchors compared to BAS. It is worth noting
that BAS uses all the possible anchors from the minibatch
(i.e., 100 anchors). This shows the success of the proposed
DAS strategy to select diverse and representative anchors with
respect to random sampling and batch selection strategies.

In order to demonstrate the effectiveness of the proposed
RHDIS strategy, we compare it with RIS and BIS strategies.
Table IV shows the results associated with the different posi-
tive and negative image selection strategies for the UCMerced
archive when the proposed DAS strategy is used for anchor
selection. From the table, one can see that the proposed RHDIS
strategy achieves the highest performance under all metrics
compared to RIS and BIS. As an example, the recall of the
proposed RHDIS strategy is more than 8% higher compared
to that of BIS when the anchor selection strategy is set to the
proposed DAS. It is worth noting that BIS exploits all positive
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TABLE V

PERFORMANCE OF DIFFERENT TRIPLET SELECTION METHODS FOR THE IRS-BIGEARTHNET AND UCMERCED ARCHIVES

and negative images in the batch, while RHDIS relies on a
much smaller number of triplets to achieve this result. The
performance of RIS is lower than RHDIS and BIS under each
metric when the anchor selection strategy is set to the proposed
DAS. For example, the recall obtained by RIS is about 10%
lower than that of the proposed RHDIS under the same number
of triplets. This shows the effectiveness of the proposed
RHDIS selection strategy to select relevant, hard, and diverse
positive–negative images compared to random sampling and
batch selection strategies for a given set of anchors. These
results were also confirmed through experiments obtained by
using the IRS-BigEarthNet archive.

C. Comparison of the Proposed Method With Different
Triplet Sampling Methods

In this subsection, we evaluate the effectiveness of the
proposed DAS-RHDIS method compared to different triplet
selection methods, which are TNDML [37], and RSDML [17].
Table V shows the corresponding image retrieval performances
on the IRS-BigEarthNet and the UCMerced archives. By ana-
lyzing the table, one can see that the proposed DAS-RHDIS
method leads to the highest scores under all metrics for both
archives. For example, DAS-RHDIS outperforms TNDML
by 4% in precision and more than 3% in accuracy for the
IRS-BigEarthNet archive, and more than 13% in F1 score
and almost 15% in recall for the UCMerced archive. The
proposed DAS-RHDIS method provides about 2% higher and
8% higher F1 scores compared to the RSDML method for
IRS-BigEarthNet and UCMerced, respectively. These results
demonstrate the success of the proposed DAS-RHDIS method
compared to other triplet sampling methods.

Fig. 6 shows an example of images retrieved from
IRS-BigEarthNet by TNDML, RSDML, and the proposed
DAS-RHDIS when the query image contains arable land,
pastures, and complex cultivation patterns. The retrieval order
of images is given below the query image. By analyzing
the figure, one can observe that the classes of pasture and
arable land are very prominent in all retrieved images by
RSDML and DAS-RHDIS, while TNDML provides similar
images to the query only at the retrieved orders of five
and ten. When DAS-RHDIS is compared with RSDML, the
proposed method retrieves semantically more similar images.
One of the reasons is that the RSDML relies only on the
class label similarity, while the proposed DAS-RHDIS method:
1) extracts and exploits the semantic content of the images and

Fig. 6. Image retrieval example: (a) query image; (b) images retrieved by
TNDML; (c) images retrieved by RSDML; and (d) images retrieved by the
proposed DAS-RHDIS method (IRS-BigEarthNet archive).

2) considers the diversity and hardness of images during triplet
selection. We observed similar behavior for the UCMerced
archive. Fig. 7 shows an example of images retrieved from
UCMerced. The query image for this example only contains
the Field class. Most of the images retrieved by the proposed
method (except the 20th image) belong to the same class with
the query [see Fig. 7(d)]. However, only a small number of
images retrieved by the TNDML and the RSDML methods
contain the field class [see Fig. 7(b) and (c)].

During the learning of a metric space by using the triplet
loss, a small subset of the available triplets carries the
information needed to learn an accurate representation for
image retrieval. The proposed DAS-RHDIS identifies these
triplets and only learns from a subset of selected informative
and representative samples, reducing the number of training
triplets. Fig. 8 shows the performance of TNDML, RSDML,
and the proposed DAS-RHDIS method in terms of the number
of accumulated training triplets under the same number of
epochs (which is set to 100 in the experiments) for the
UCMerced archive. The horizontal axis shows the number of
triplets in a logarithmic scale, while the vertical axis shows the
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TABLE VI

PERFORMANCE OF DIFFERENT DML METHODS FOR THE IRS-BIGEARTHNET AND UCMERCED ARCHIVES

Fig. 7. Image retrieval example: (a) query image; (b) images retrieved by
TNDML; (c) images retrieved by RSDML; and (d) images retrieved by the
proposed DAS-RHDIS method (UCMerced archive).

corresponding F1 scores. The performance is associated with
the numbers of triplets, which are utilized by the considered
triplet selection method. The annotation points indicate the
number of triplets needed for the considered method to reach
at least 90% of its final performance. From the figure, one
can observe that, even after the last training epoch of the
proposed DAS-RHDIS method, the total number of triplets
is significantly smaller than the first epoch of the RSDML
method. During training, the RSDML selects more triplets at
each epoch compared to the other two methods. This is due
to the characteristic of RSDML that selects all the possible
triplets from a minibatch, which grows cubically. The final F1

score of our proposed method is more than 8% higher than
RSDML with significantly less number of total triplets. One
can also see from the figure that TNDML (which uses random
triplet selection) under the same number of triplets with our
method leads to a significant performance drop. The F1 score
obtained by TNDML is 13% lower than the F1 score obtained

Fig. 8. F1 scores obtained by different triplet sampling strategies and the
number of accumulated triplets during the training (the UCMerced archive).

by the proposed DAS-RHDIS method. These results show the
effectiveness of our method to select a subset of informative
triplets during training, resulting in faster convergence and a
performance gain in the retrieval.

D. Comparison of the Proposed Method With the
State-of-the-Art DML Approaches

In this subsection, we assessed the effectiveness of the
proposed DAS-RHDIS method compared to the state-of-the-
art DML approaches, which are CBMIR [38], MSL [28],
DATL [21], and NPL [29]. Table VI shows the results under
different metrics for the IRS-BigEarthNet and UCMerced
archives. By analyzing the table, one can see that the pro-
posed DAS-RHDIS method leads to the highest scores under
all metrics for both archives. As an example, the proposed
DAS-RHDIS method provides 2% higher and 8% higher
accuracy compared to the DATL method for IRS-BigEarthNet
and UCMerced, respectively. The table also shows that the
CBMIR and the MSL methods obtain the lowest scores in most
of the metrics. For example, CBMIR provides more than 4%
lower and 14% lower precision than the proposed DAS-RHDIS
for IRS-BigEarthNet and UCMerced, respectively. Since the
loss function in CBMIR forces a fixed distance for all images,
it is more restrictive compared to the triplet-based DML
losses. This can lead to learning the metric space, in which
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the similarity between the images is not properly charac-
terized [31]. When compared with the MSL method, DAS-
RHDIS achieves 7% higher recall and more than 4% higher
accuracy for the IRS-BigEarthNet archive, and more than 7%
higher precision and 8% higher F1 score for the UCMerced
archive. Despite the proven success of the MSL method for
single-label images, we observed that the full capacity of
this method is not applicable for multilabel images. Since
the MSL method considers all the possible negatives and
positives, and their relative feature distances among each other,
its performance is very sensitive to the proper definition of the
positive and the negative sets for a given anchor. However,
the evident distinction of these sets is difficult to achieve for
multilabel images. When compared with the NPL method,
the proposed DAS-RHDIS method provides 2% higher and
7% higher F1 scores for IRS-BigEarthNet and UCMerced,
respectively. It is worth noting that NPL obtains relatively
closer results to the proposed DAS-RHDIS due to its negative
mining strategy. NPL uses an extension of the triplet loss,
which selects multiple negative images from different negative
classes for each anchor and positive image. This negative
mining strategy allows NPL to include class-based diversity
among the negative samples. However, in NPL, the hardness
and diversity in the positive samples are not considered,
resulting in the selection of trivial triplets. This can affect its
performance for the retrieval task. The proposed DAS-RHDIS
identifies informative and representative triplets by relying on
the relevancy, hardness, and diversity of images. This allows us
to reach more effective image retrieval performance compared
to the other methods.

VI. CONCLUSION

This article introduces a novel method to select a set of
informative and representative triplets from multilabel training
images to achieve DML for multilabel CBIR problems in RS.
The proposed triplet sampling method is defined based on a
two-steps procedure and applied to each training minibatch of
a DL-based retrieval system. In the first step, diverse anchor
images are selected based on a simple but efficient iterative
algorithm. Then, in the second step, sets of positive and neg-
ative images for each anchor are selected based on relevancy,
hardness, and diversity of the positive and negative images.
Finally, the triplets are constructed from the selected anchors
and their respective positive and negative images. Through the
abovementioned steps, the proposed method results in select-
ing a compact subset of informative and representative triplets,
which enables accurate and efficient learning of DL models
for multilabel CBIR in RS. Experimental results obtained on
two multilabel RS benchmark archives under different DL
architectures show the effectiveness of the proposed method
in CBIR problems. In detail, the results have demonstrated
that most of the available triplets do not contribute to the
learning progress and can be safely discarded. Focusing on
a small informative and representative subset is sufficient for
achieving comparable performance compared to the case, for
which all possible triplets are used. It is worth noting that the
proposed triplet sampling method does not rely on a specific

DL architecture and can be adapted to any metric learning
method.

As a final remark, we would like to point out that the
proposed method currently relies on the class labels to select
positive and negative images for each anchor. As future work,
we plan to develop an unsupervised strategy that can select
informative positive and negative images without requiring any
land-use land-cover class label.
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