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in patient reported outcome measures be 
predicted by machine learning in patients 
with total knee or hip arthroplasty? A systematic 
review
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Abstract 

Objectives:  To systematically review studies using machine learning (ML) algorithms to predict whether patients 
undergoing total knee or total hip arthroplasty achieve an improvement as high or higher than the minimal clinically 
important differences (MCID) in patient reported outcome measures (PROMs) (classification problem).

Methods:  Studies were eligible to be included in the review if they collected PROMs both pre- and postintervention, 
reported the method of MCID calculation and applied ML. ML was defined as a family of models which automatically 
learn from data when selecting features, identifying nonlinear relations or interactions. Predictive performance must 
have been assessed using common metrics. Studies were searched on MEDLINE, PubMed Central, Web of Science 
Core Collection, Google Scholar and Cochrane Library. Study selection and risk of bias assessment (ROB) was con-
ducted by two independent researchers.

Results:  517 studies were eligible for title and abstract screening. After screening title and abstract, 18 studies quali-
fied for full-text screening. Finally, six studies were included. The most commonly applied ML algorithms were random 
forest and gradient boosting. Overall, eleven different ML algorithms have been applied in all papers. All studies 
reported at least fair predictive performance, with two reporting excellent performance. Sample size varied widely 
across studies, with 587 to 34,110 individuals observed. PROMs also varied widely across studies, with sixteen applied 
to TKA and six applied to THA. There was no single PROM utilized commonly in all studies. All studies calculated MCIDs 
for PROMs based on anchor-based or distribution-based methods or referred to literature which did so. Five studies 
reported variable importance for their models. Two studies were at high risk of bias.

Discussion:  No ML model was identified to perform best at the problem stated, nor can any PROM said to be best 
predictable. Reporting standards must be improved to reduce risk of bias and improve comparability to other studies.
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Introduction
Total hip arthroplasty (THA) and total knee arthroplasty 
(TKA), also referred to as total hip or total knee replace-
ment [1], both subsumed under the term total joint 
arthroplasty (TJA) [2] reflect a common medical treat-
ment in developed OECD countries. The rates for joint 
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replacement are increasing rapidly in OECD countries 
within the last decades. From 2000 to 2013, a 35 percent 
increase in THAs and a roughly 100 percent increase in 
TKAs has been reported. However, there exist huge dif-
ferences in TJA rates across countries within the OECD. 
Even though age is a strong predictor for the need of 
TJA, variations in population age are not the key driver 
of differences in TJA across countries [3]. For OECD 
countries, the trend in THAs is predicted to grow from 
184 implants per 100,000 inhabitants (2015) up to 275 
implants per 100,000 inhabitants in 2050 [4]. For TKA, 
the annual growth rate across OECD countries is esti-
mated to be 5.5 percent per year [5]. Additionally, various 
international studies predict (highly) increasing rates of 
TKA and/or THA for countries such as the UK [6], Ger-
many [7, 8], New Zealand [9], Sweden [10, 11], the US 
[12–14], Australia [15] or Taiwan [16]. However, it has 
been reported that up to 30 percent of patients undergo-
ing TJA remain unsatisfied [17]. Thus, the question arises 
whether it is possible to select only patients for surgery 
that will also be satisfied afterwards.

Over the past decades, various standardized, patient 
reported measures have been developed to capture 
patient’s perception of their health or quality of life. 
These measures are referred to as patient reported out-
come measures (PROMs). So far, the implementation of 
PROMs in clinical practice is rare [18]. There exist both 
indication/disease/condition specific PROMs such as 
for TKA [19] or THA [20], but also PROMs that meas-
ure generic health status [21]. Once measured before and 
after a medical treatment has been conducted, PROMs 
provide the possibility to evaluate whether a clinical 
treatment has led to an improvement relevant to the 
patient. Such improvements, specifically the smallest still 
relevant to the patient, are also referred to as minimal 
clinically important differences, short MCIDs [22, 23]. 
MCIDs for PROMs can be derived using different meth-
ods such as distribution-based methods [24, 25], anchor-
based methods, or by expert consensus [23, 26].

Knowing that a substantial share of patients fail to 
achieve MCIDs after TJA [2, 27–29], it would be a huge 
advantage to know which patients will or will not achieve 
a MCID from a given treatment before the treatment 
is conducted [2]. If possible, accurate predictions can 
reduce costs for the healthcare system by preventing 
patients that will not benefit from treatment from unnec-
essarily receiving it, decreasing their risk associated with 
surgery and facilitate optimal resource allocation within 
the healthcare system.

An approach that could be exploited for predicting 
whether patients will receive MCIDs after TJA is machine 
learning (ML), a branch of artificial intelligence (AI) [30]. 
So far, ML methods have shown to be able to outperform 

more traditional methods such as regression techniques 
in various prediction tasks [31–34]. When ML is applied 
to prediction tasks, typically supervised ML is used [35]. 
Supervised ML is trained to perform predictions based 
on various variables (features), using training data where 
the outcome variables value is known (labelled) [35, 36]. 
Once trained, supervised ML is used to predict outcomes 
in unlabeled test data, which contains the same features 
as the training data. While predicting continuous out-
comes in ML is referred to as regression, categorial out-
come prediction is said to be classification [35]. However, 
there are various models available for application in a 
classification task. Among those, it is not clear a priori 
which model will perform best on a given task [35, 37]. 
Instead, researchers rely on trial and error, testing vari-
ous models regarding their predictive performance, then 
selecting the model that performs best [35].

In contrast to traditional statistical prediction mod-
els such as logistic regressions (LRs), machine learning 
typically requires less human input, is less theory led 
and handles nonlinear relationships of variables [37], 
variable selection or interactions itself [27]. In applica-
tion, traditional models are rather designed to identify 
associations than performing predictions [2]. However, 
there exist various distinctions of ML and traditional 
models, ranging from classifying anything else than 
traditional regression as ML [38] to defining the dif-
ference between statistical models and machine learn-
ing as a continuum, where a model is closer to ML the 
less human input (e.g. defining interactions, non-linear 
specifications) it requires [39]. Breiman [40] described 
ML and traditional models rather as two cultures. One 
culture aims to predict outcomes with given inputs with-
out the aim to explain the relationship between inputs 
and outputs in detail. The other culture rather aims to 
model the relations between input and output correctly 
but is not deeply interested in achieving best predictive 
performance. For the reason of this study, we define ML 
as methods other than traditional LR or linear regression 
[38, 41], thus included models handle at least non-linear 
relationships, feature selection or interactions them-
selves. Consequentially, we distinguish from Christo-
doulou et al. [42] and also include LASSO (least absolute 
shrinkage and selection operator) models as ML into our 
review, setting the cut-off between ML and traditional 
models closer to the traditional models edge. However, 
some studies [27, 28] included have also performed LRs. 
LR results will not be presented in the results section of 
this paper.

ML techniques have already been applied and system-
atically reviewed in various prediction tasks in healthcare 
such as for sepsis prediction [43], psychiatric disorders 
prediction [41], neurosurgery outcomes [34], therapeutic 



Page 3 of 14Langenberger et al. BMC Medical Informatics and Decision Making           (2022) 22:18 	

outcomes in depression [44], and more. However, no sys-
tematic review summarizing the results for ML in the 
prediction of MCIDs in PROMs for patients undergoing 
TJA has been conducted so far.

Following the PICOTS scheme [45], our aim was to 
systematically review studies applying machine learning 
(I/C) in order to predict, based on pre-surgery data (T) 
from TKA/THA patients (P/S), whether or not patients 
that underwent TKA or THA (P) achieve a difference in 
pre- and post-surgery (T) PROM scores as high or higher 
as a derived MCID (O) (binary outcome, classification 
task).

Methods
Protocol and registration
The study was registered in the PROSPERO registry (ID: 
CRD42021229935) for systematic reviews on 4th of Feb-
ruary 2021. No protocol has been published. We followed 
the Preferred Reporting Items for Systematic reviews 
and Meta-Analysis of Diagnostic Test Accuracy Studies 
(PRISMA-DTA) checklist for the structure of this sys-
tematic review.

Eligibility criteria
Studies included in this review must satisfy the follow-
ing criteria: patients included in the study underwent 
either total knee or total hip arthroplasty (of any etiol-
ogy), or both; reported at least one PROM both before 
and at least one time after treatment; written in English 
or German; MCIDs were derived either anchor-based, 
distribution-based or through expert consensus (or ref-
erenced literature must include either of the three cal-
culation categories); MCID calculation method must 
have been reported (at least in the referenced literature); 
predictions for MCIDs after treatment were performed; 
prediction models were based on machine learning; pre-
dictive performance was assessed using either area under 
the receiver operating curve (AUC)/c-statistic, J-statistic 
(Youden-Index), G-mean, F1-measure, sensitivity and 
specificity, or accuracy.

Studies were excluded from this review if they met 
the following criteria: case studies or reports; books; 
reviews; congress articles or presentations; only applied 
traditional statistical models; outcomes were not patient 
reported.

Information sources
The search was conducted on November 2nd, 2021. 
The databases MEDLINE, PubMED Central (PMC), 
Web of Science Core Collection, Google Scholar and 
the Cochrane Library were searched. The initial search 
term consisted of several variations of four blocks that 
build up the search term components (see Additional 

file 1: Detailed search terms for each database searched). 
Each block consisted of several variations including 
MeSH terms, truncations, synonyms, acronyms, or 
related terms of the component aimed to be identified 
by each block. The first block consisted of terms related 
to supervised machine learning, which is the category of 
method necessary to be applied in the included papers. 
The second block consisted of terms indicating the use 
of PROMs, while the third consisted of terms related to 
MCIDs. Fourth and finally, terms related to total knee or 
hip arthroplasty were included into the search term.

Search
Search terms are fully available in Additional file  1: 
Appendix 1.

Study selection
After conducting the initial search, all papers identi-
fied on all databases were transferred to Citavi 6.7, a lit-
erature management software from the Swiss Academic 
Software GmbH, Wädenswil, Swiss. Next, all duplicates 
were removed. Further, all articles of excluded document 
type (see eligibility criteria) were removed. The remain-
ing studies were screened on titles and abstracts. After 
excluding off-topic papers or papers in the wrong lan-
guage (see Fig. 1), the rest of studies were read full text. 
After excluding studies that turned out to be subject to 
exclusion criteria / did not meet the inclusion criteria, 
the final papers included into the study were identified. 
The whole process was conducted by two researchers 
(BL, AT) independently. Differences in included papers 
in the different stages (identification, screening, eligibil-
ity, and inclusion) were discussed and settled by arguing 
in line with the inclusion and exclusion criteria. If differ-
ences could not be settled, a third researcher (VV) was 
available for consultation for final settlement. For each 
stage, we applied a low-threshold strategy. That is, if at 
least one of the search-conducting reviewers thought it 
is somehow possible that a paper has hit the inclusion 
criteria, even if one might assume objectively that it is 
unlikely, the paper was included for the next stage [46].

Data collection and items collected
Once identified to be included into this systematic 
review, specific data from studies was collected stand-
ardized. That is, a previously constructed, standardized 
table including features relevant to interpret the predic-
tive performance of the applied models was filled with 
the data reported by the respective study (Table 1). Spe-
cifically, the table includes the following items: Country 
of data origin, PROMs/MCID values, MCID calculation 
method, time-difference surgery to post-surgery PROM 
collection (months), number of observations, number 
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of features, applied machine learning methods, ratio of 
training to test dataset, cross-validation applied in the 
training dataset, whether outlier detection and analysis 
were performed, whether missing value management was 
reported, whether feature preprocessing was performed, 
whether imbalanced data adjustment was performed, the 
AUC/c-statistic, J-statistic, F1-measure, sensitivity, speci-
ficity and accuracy, the Brier score, the best predictive 

model and best predicted PROM, and the predictive task 
(classification or regression).

Risk of bias assessment
Risk of bias assessment was conducted using PROBAST 
(Prediction model Risk of Bias ASsessment Tool). 
PROBAST includes a four-step approach. While 
steps one and two consider the review question and 

610 studies unique hits in the 
searched databases

517 studies eligible for title and 
abstract screening

6 studies included

18 studies eligible for full text 
screening

499 studies excluded based on title/abstract screening

Review (63)
No English or German (1)
No THA/TKA patients (49)
No PROMs reported (82)
No MCIDs reported or wrong derived (115)
No MCID prediction models (185)
No machine learning (4)

12 studies excluded after full-text reading

Review (0)
No English or German (0)
No THA/TKA patients (2)
No PROMs reported (0)
No MCIDs reported or wrong derived (5)
No MCID prediction models (0)
No machine learning (5)

93 studies excluded based on document type

Books (66)
Editor’s comment (1)
Posters or abstracts for congress (16)
Study Protocol (10)

1,145 studies hits in the searched 
databases

535 duplicates removed

Fig. 1  PRISMA (preferred reporting items for systematic reviews and meta-analysis) flowchart
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Table 1  Extracted data of the included studies

Study Fontana et al. [2] Harris et al. [27]* Huber et al. [28]* Katakam et al. 
[59]

Zhang et al. [60] Kunze et al. [29]

Country of data 
origin

US US UK US Not reported US

Surgical procedure THA/TKA TKA THA/TKA TKA TKA THA

PROMs/MCID 
values

HOOS JR: 17.7
KOOS JR: 13.6
SF-36 (MCS + PCS): 
5.0 (both)

KOOS Total: 91.8
KOOS JR: 20.8
KOOS Pain: 25.0
KOOS Symptoms: 
14.3
KOOS ADL: 24.6
KOOS Quality of 
Life: 12.5
KOOS Recreation: 
17.5

EQ VAS Hip: 11
EQ VAS Knee: 10
OHS: 8a

OKS: 7a

KOOS: MCID value 
not reported
PROMIS Global PF: 
MCID value not 
reported
PROMIS Global MH: 
MCID value not 
reported
NRS Pain: MCID 
value not reported

SF-36 PCS: 10.0
SF-36 MCS: 5.0
WOMAC: 15.0

EQ VAS: Not reported

MCID calculation 
method

Anchor-based
Distribution-based

Anchor-based Distribution-based 
(VAS)
Anchor-based 
(OKS, OHS)

Distribution-based Anchor-based Distribution-basedb

Time-difference 
surgery to post-
surgery PROM col-
lection (months)

24 12 12 12 24 24

Number of obser-
vations

7,239 (THA)
6,480 (TKA)

587 30,524 (THA)
34,110 (TKA)

744 2840 616

Number of 
featuresc

66–97 6–106 81 (candidate 
predictors)

24 (candidate 
predictors)

18 (WOMAC); 19 
(other PROMs)

8

Applied machine 
learning methods

LASSO
Random forest
Support vector 
machine

LASSO
Gradient boosting 
machine
Quadratic discrimi-
nant analysis

Extreme gradient 
boosting machine
Random forest
Multistep adaptive 
elastic net
Neural network
Naive Bayes
k-nearest neigh-
bours
Boosted logistic 
regression

Stochastic gradient 
boosting
Random forest
Support vector 
machine
Neural network
Elastic-net penal-
ized logistic regres-
sion

Support vector 
machine
LASSO
Random forest
Extreme gradient 
boosting

Stochastic gradient 
boosting
Random forest
Support vector 
machine
Neural network
Elastic net penalized 
logistic regression

Ratio of training to 
test dataset

80:20 No test dataset About 1:1 (dataset 
of the next year)

80:20 80:20 80:20

Cross-validation 
applied in the train-
ing dataset

Yes Yes Yes Yes Yes Yes

Outlier detec-
tion and analysis 
performed?

Not reported Not reported Not reported Not reported Not reported Not reported

Missing value man-
agement reported?

Yes Not reported Yes Yes Yes Yes

Feature preprocess-
ing performed?

Yes Not reported Not reported Not reported Not reported Not reported

Imbalanced data 
adjustment per-
formed?

Not reported Not reported Yes Not reported Yes Not reported

AUC/c-statistice 0.89 (not reported) 0.72 (not reported)d Not reported on 
test data

0.77 (0.74–0.79) SVM: 0.95 
(0.94–0.97)
XGB: 0.95 
(0.94–0.97)

0.97 (0.94–0.99)

J-statistic – – 0.59 (not reported) – – –

F1-measure – – 0.78 (not reported) – SVM: 0.85 (not 
reported)
XGB: 0.86 (not 
reported)

–
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classification of the prediction model, step three assesses 
the risk of bias (ROB) and applicability, and finally step 
four closes with an overall judgement [47]. The assess-
ment tool assesses participants, predictors, outcomes 
and analysis ROB as well as participants, predictors and 
applicability to the review question [45]. For PROBAST 
assessment, risk of bias is thus assessed both at study and 
outcome level.

Summary measures
Outcomes of studies needed to be reported as AUC/c-
statistics, J-statistics, G-mean, F1-measure, sensitivity 
and specificity, or accuracy.

Synthesis of results
Due to the variety of models, features and included 
PROMs from which outcomes (MCIDs) were derived in 
the studies, no meta-analysis could be conducted.

Results
Study selection
Searches of the search terms were conducted on the pre-
viously mentioned databases (see section “Data sources”) 
on November the 2nd, 2021. Searches in PubMed Cen-
tral, MEDLINE, Web of Science Core Collection, Google 
Scholar and Cochrane Library yielded 139, 355, 314, 237 
and 100 hits, respectively, resulting in 1145 hits in total. 

Table 1  (continued)

Study Fontana et al. [2] Harris et al. [27]* Huber et al. [28]* Katakam et al. 
[59]

Zhang et al. [60] Kunze et al. [29]

Sensitivity – – 0.82 (not reported) – SVM: 93.1 (not 
reported)
XGB: 95.6 (not 
reported)

–

Specificity – – 0.77 (not reported) – SVM: 86.8 (not 
reported)
XGB: 84.9 (not 
reported)

–

Accuracy – 0.79 (not reported), 
balanced accuracy

– – –

Brier Scoree Not reported LASSO (KOOS Pain): 
0.16 (not reported)
LASSO (KOOS 
Symptoms): 0.17 
(not reported)
LASSO (KOOS ADL): 
0.17 (not reported)
GBM (KOOS PAIN): 
0.16 (not reported)
QDA (KOOS PAIN): 
0.16 (not reported)

Not reported 0.15 (0.12–0.19) SVM: 0.12 (not 
reported)
XGB: 0.11 (not 
reported)

0.054 (0.047–0.062)

Best predictive 
model

Logistic LASSO
Random forest

LASSO, Gradient 
boosting machine, 
QDA (Pain)
LASSO (KOOS 
Symptoms + KOOS 
ADL)

Extreme gradient 
boosting

Neural Network
Elastic-net penal-
ized logistic regres-
sion

Support vector 
machine (SVM)
Extreme gradient 
boosting (XGB)

Random forest

Best predictive 
PROM

SF-36 MCS KOOS Pain
KOOS Symptoms
KOOS ADL

EQ VAS (hip) KOOS SF-36 MCS EQ VAS

Predictive task Classification Classification Classification Classification Classification Classification

HOOS JR, Hip disability and osteoarthritis outcome score joint replacement; KOOS JR, Knee injury and osteoarthritis outcome score joint replacement; SF-36 MCS, 
Short form-36 mental component score; SF-36 PCS, Short form-36 physical component score; EQ, EuroQol; VAS, Visual analog scale; OKS, Oxford Knee Score; OHS, 
Oxford Hip Score; LASSO, Least absolute shrinkage and selection operator; AUC, area under the receiver operating curve; QDA, Quadratic discriminant analysis; ADL, 
Activities of daily life; JR, Joint replacement

*Also applied LR
a Value was taken from literature
b This value was calculated on postoperative score distribution
c Finally included in the models when not otherwise stated
d Result from the training dataset with fivefold cross validation as no AUC was reported on test data
e Confidence intervals (95% if not otherwise specified) in parenthesis
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All hits were transferred to Citavi 6.7. 610 unique titles 
were identified. 93 were excluded based on document 
type (see eligibility criteria). After screening title and 
abstract of the remaining 517 studies, 18 studies under-
went full text screening. Thereof, six titles were included 
after full-text reading (see Fig. 1).

From the 18 articles screened for full text, two studies 
were excluded due to including the wrong study popula-
tion from the perspective of this review. One study [48] 
included knee arthroscopies and one [49] patients with 
osteochondral allograft for cartilage defects. Next, five 
studies [50–54] did not calculate MCIDs, even though 
they researched PROMs in TJA patients. Finally, six stud-
ies [26, 55–58] aimed to make comparable predictions as 
searched for this review except failing to apply machine 
learning.

Study characteristics
Machine learning models applied
The studies included applied various machine learning 
techniques, while two of them [2, 27] also included LRs. 
One for comparison with ML [27], the other defined LR 
as ML [28]. The number of included ML techniques var-
ied from three [2] to seven [28]. Overall, the four most 
commonly applied algorithms across studies were ran-
dom forest [2, 28, 29, 59, 60], gradient boosting machine 
(GBM)1 [21, 28, 29, 59, 60], support vector machine 
(SVM) [2, 29, 59, 60] and LASSO [2, 27, 60]. We reported, 
for each study, the model that performed best on the test 
dataset on the studies main outcome metric, which was 
the AUC for all studies except for Huber et al. [28], where 
J-statistic was the favored outcome on the test dataset. In 
case only a validation dataset was used and no test data-
set [27], the main outcome on the validation dataset was 
reported. For the model(s) performing best on the main 
outcome, we also reported all other outcomes reported 
in the studies.

Sample size, data origin and number of features
Sample size varied widely across studies. While Harris 
et al. [27] only included 587 TKAs (both for training and 
validation) in their analysis, Huber et  al. [28] included 
34,110 individuals with TKA for model development and 
34,406 TKAs for testing. For THA, they used 30,524 and 
31,905 individuals for training and testing, respectively. 
The other studies ranged in between (see Table 1). While 
Huber et  al. [28] used data from NHS treated patients 
among patients treated in multiple centers (all run by 
NHS), Katakam et  al. [59] used data from five sites, 

Harris et al. [27] included three sites (VA medical cent-
ers). Zhang et al. [60], Kunze et al. [29] and Fontana et al. 
[2] only exploited data from one site.

Due to the different datasets utilized, the number of 
features initially available to the models varied across 
studies. Fontana et al. [2] had access to 51 initial variables 
in their “before surgery” setting. However, as 25 of them 
were categorial, the number of features (including the 
categories dummies) included in their analysis must have 
been higher but was not reported. Further, the number 
of features used by each model was not reported. Harris 
et al. [27] came up with 106 variables out of which mod-
els were able to select the variables relevant for predic-
tions. Their final models included six to 106 variables, 
depending on algorithm and PROM. Huber et  al. [28] 
had access to 81 variables out of which models were able 
to select their individual number of predictors, however 
the final number of features per model was not reported. 
Kunze et  al. [29] initially had access to eleven variables 
to be included in predictive models. After recursive fea-
ture selection, they came up with eight variables included 
into the final models. Katakam et  al. [59] initially had 
access to 24 variables (including dummies for categorial 
variables). They did not report the final number of vari-
ables after feature selection exploiting the random for-
est. Finally, Zhang et al. [60] included 18 variables for the 
WOMAC and 19 variables for the other PROMs in their 
final prediction models.

Training, validation, and testing
All included studies used some approach to perform 
training and validation of their developed models. How-
ever, studies applied different approaches to do so. Harris 
et  al. [27] performed cross-validation with bootstrap-
ping on the training dataset to assess their models’ per-
formance (internal validation) but did not exploit any 
unforeseen test dataset. Huber et  al. [28] used cross-
validation in the training dataset for model selection 
and tested their models on an independent test dataset 
of the subsequent year. The remaining studies split their 
dataset beforehand randomly into training and test data. 
While the proportions of training to dataset were 20:80 
in Fontana et  al. [2], Kunze et  al. [29] and Zhang et  al. 
[60], Katakam et al. [59] split the dataset into 70 percent 
training and 30 percent test data. During model training, 
all studies applied cross-validation to perform hyperpa-
rameter tuning and model selection. Then, performance 
evaluation was executed on the test dataset which was 
completely unforeseen by the algorithms. Huber et  al. 
[28] and Zhang et al. [60] applied upsampling (a replica-
tion of the minority class to receive a balanced training 
dataset) in the training dataset to account for dispropor-
tions across outcome groups.

1  Note that several GBM variations such as stochastic gradient boosting, 
extreme gradient boosting or gradient boosting are summarized under the 
umbrella of GBM.
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Predictive performance
To evaluate models’ predictive performance, papers 
reported different performance indicators. For perfor-
mance comparison in this section, only performance 
reported on the test dataset is included since it is indica-
tive of model generalization, while performance assess-
ment on training data could be biased due to overfitting. 
That is, models fit the training data disproportionally 
well but have poor generalization on test data [35]. As an 
exception, in case of development studies, performance 
on training data was reported in case cross-validation 
was applied to account for overfitting.

Most of the studies reported the AUC as main perfor-
mance measure. The AUC is calculated as the area under 
the receiver operator curve, and the receiver operator 
curve is a plot of sensitivity against false positive rate 
(1-specificity) of a given predictive tool using different 
decision thresholds for categorizing outcomes as either 
positive or negative [61]. AUC/c-statistic values are clas-
sified as fail (0.5–0.59), poor (0.6–0.69), fair (0.7–0.79), 
good (0.8–0.89) or excellent (0.9–1.0) [27, 62]. The best 
model in Harris et  al. [27] and Katakam et  al. [59] per-
formed fair, the best model in Fontana et  al. [2] good 
and the models of Kunze et al. [29] and Zhang et al. [60] 
excellent on the test/validation sample (see Table  1). 
Unfortunately, Huber et  al. [28] did not report AUC 
results for the test sample. Applying their models to the 
test sample, they came up with a J-statistics of 0.59. The 
J-statistics (Youden Index) is the sum of sensitivity and 
specificity minus one [63]. If the proportion of predicted 
positives in the true positives group is higher than in the 
true negatives group, the value is always above zero [63].

Utilized PROMs and MCID derivation
PROMs used varied widely across studies. Across all 
included studies, sixteen different PROMs have been 
applied to KA and six to HA patients, respectively. No 
PROM was utilized in all studies. All included studies 
except Kunze et al. [29] included at least three PROMs. 
Kunze et al. [29] only included a generic PROM. Harris 
et  al. [27] only included treatment-specific PROMs, the 
remaining studies included both generic and treatment 
specific PROMs.

Fontana et al. [2] included four PROMs in their paper, 
namely SF-36 physical component score (PCS), SF-36 
mental component score (MCS), Hip Disability and Oste-
oarthritis Outcome Score for Joint replacement (HOOS 
JR) and the Knee Disability and Osteoarthritis Outcome 
Score for Joint replacement (KOOS JR). While the former 
are generic health status scores with either an additional 
focus on physical (PCS) or on mental health (MCS) [64], 
the latter are knee or hip specific scores [65]. Harris et al. 
[27] included KOOS Total, JR and the subscales KOOS 

pain, symptoms, activities of daily living (ADL), quality 
of life (QoL) and recreation. Huber et  al. [28] included 
the EQ-5D-3L and EQ VAS (both general health) as well 
as the Oxford Knee Score (OKS) and Oxford Hip Score 
(OHS), which are both disease specific, whereas Kunze 
et  al. [29] only included the generic EQ VAS. Katakam 
et al. [59] included the KOOS as disease-specific PROM 
and the Patient Reported Outcomes Measurement Infor-
mation System (PROMIS) Global PF, PROMIS Global 
MH [66] and numerical rating scale for pain (NRS 
Pain). Finally, Zhang et  al. [60] reported the Western 
Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) as well as SF-36 PS and SF-36 MCS.

MCIDs can be calculated either anchor-based, distri-
bution-based or based on evidence from previous studies 
[67]. All studies used distribution-based or anchor-based 
methods or referred to such. While for HOOS JR and 
KOOS JR they adopted values based on anchor-based 
methods from the literature, Fontana et  al. [2] deter-
mined the score for SF-36 PCS and MCS themselves 
based on distribution-based methods. Harris et  al. [27] 
calculated MCIDs applying anchor-based methods, with 
the Self-Administered Patient Satisfaction Scale (SAPS) 
as anchor. To determine the score for each PROM which 
discriminates patient satisfaction best, they used the 
Youden index. Huber et al. [28] calculated MCIDs using 
distribution-based methods (half a standard deviation) 
for EQ VAS (preoperative score) and referred to the lit-
erature for OHS and OKS, respectively. Kunze et al. [29] 
also defined MCIDs based on distribution-based meth-
ods as half of a standard deviation. However, in con-
trast to the other studies, they used postoperative scores 
instead of preoperative scores to determine MCIDs. 
Katakam et  al. [59] derived all MCIDs by distribution-
based methods. Zhang et  al. [60] referred to the litera-
ture which based the MCID calculation on anchor-based 
methods for MCID derivation of all PROMs.

Variable importance
Out of the six included studies, five [2, 28, 29, 59, 60] 
reported variable importance. If studies reported variable 
importance for different algorithms, for simplicity, only 
the variable importance for best performing algorithms 
as well as the best predictive PROM will be reported. 
Among those, preoperative PROM scores were the most 
predictive variables in all studies. In four studies [2, 28, 
59, 60], a depression-indicating variable was among the 
top five most important predictors. Further, three studies 
[2, 28, 59] had at least two other PROMs or PROM sub-
scales ranging among the top five predictors for MCIDs. 
As Kunze et  al. [29] did not include more than one 
PROM in their study, it was not possible to have other 
PROM scores among the best predictor variables.
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Missing data
Studies facilitated different strategies to deal with missing 
data. Fontana et al. [2] handled numeric missing variables 
by imputation to the mean, while for categorial variables, 
an extra class was created for missing values, exploiting 
information of missing values. Huber et al. [28] removed 
all patients with missing values and variables with vari-
ance close to or at zero. Kunze et  al. [29] and Katakam 
et  al. [59] performed multiple imputation for variables 
with less than 30 percent missing values. Kunze et al. [29] 
excluded one variable with more than 30 percent missing 
values. Zhang et al. [60] reported two variables with few 
missing values and applied imputation with mean values. 
Harris et al. [27] did not report missing values. A detailed 
overview of missing values for each study is given in 
Additional file 2: Missing data values for included studies.

Risk of bias assessment
Risk of bias assessment within studies was conducted 
using PROBAST (Prediction model Risk of Bias ASsess-
ment Tool), which assesses the bias for the prediction 
tools. PROBAST includes a four-step approach. While 
steps one and two consider the review question and clas-
sification of the prediction model, step three assesses 
the risk of bias (ROB) and applicability, and finally step 
four closes with an overall judgement [47]. Table 2 rep-
resents the suggested tabular presentation for PROBAST 
results by Wolff et al. [47]. A guidance on how to perform 
PROBAST is also given at the website probast.org, and in 
Moons et al. [45] (Additional file 3: Probast assessment of 
all included studies).

After conducting the PROBAST assessment, four stud-
ies were free of ROB, while two were of high risk of ROB. 
All studies were applicable, that is, populations, predic-
tors and outcomes fit this reviews purpose [47]. All stud-
ies had in common that predictors were not excluded 
from the outcome definition, yielding a possible bias 

introduction [45]. As the case in this setting, the outcome 
(MCID) is partially defined by pre-surgery PROMs, a 
predictor also applied in the prediction models. There-
fore, bias was not assumed to be introduced by pre-oper-
ative PROMs due to the nature of the study setting. Next, 
all studies determined the outcome with knowledge of 
predictor information, i.e. predictors were known as the 
outcome was determined [45]. That is inherent to the 
study setting and is not assumed to introduce any bias. 
Further, almost all studies had events per variable (EVP) 
– that is, the number of participants with the least often 
reported outcome (MCID vs. no MCID) over the number 
of candidate predictors – below the recommended value 
for machine learning of 200 by Moons et al. [45]. How-
ever, Moons et  al. [45] refer to van der Ploeg et  al. [68] 
for the value of 200. van der Ploeg et al. [68] indicated a 
number of EVP ≥ 200 if studies AUC was reported on the 
training dataset and not tested on a validation dataset, 
calculating the bias (or optimism) as difference between 
the AUC on the training and on the validation dataset. 
As stated, all studies at least applied cross-validation to 
account for overfitting, thus no study reported outcome 
metrics only on the training dataset without any valida-
tion [68]. Consequentially, EVP was not considered to be 
able to introduce bias in all studies.

However, two studies [27, 28] were subject to risk of 
bias beyond that common traits. Harris et  al. [27] did 
not repot how missing values were handled, nor if there 
were any, resulting in a high ROB judgement. Note that, 
following Moons et al. [45], Harris et al. [27] can only be 
rated as model development study but not as validation 
study, as they only performed internal validation (cross-
validation), but no validation on an external test dataset 
[45].

Huber et al. [28] did not report calibration of models as 
outcome metric, a potential ROB in the analysis domain 
[45]. Additionally, important metrics such as AUC, which 

Table 2  PROBAST ROB and applicability assessment results* for all included studies following the suggested tabular presentation by 
Wolff et al. [47]

ROB, Risk of bias

* + indicates low ROB/low concern regarding applicability; − indicates high ROB/high concern regarding applicability; and ? indicates unclear ROB/unclear concern 
regarding applicability

ROB Applicability Overall

Study Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

Fontana et al. [2]  +   +   +   +   +   +   +   +   + 

Harris et al. [27]  +   +   +  −  +   +   +  −  + 

Huber et al. [28]  +   +   +  −  +   +   +  −  + 

Katakam et al. [59]  +   +   +   +   +   +   +   +   + 

Zhang et al. [60]  +   +   +   +   +   +   +   +   + 

Kunze et al. [29]  +   +   +   +   +   +   +   +   + 
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is commonly reported across all other studies included 
in this review, was only reported on the training dataset. 
However, on the test dataset, it was not reported, and it 
was further not stated why it was not reported on the 
test dataset. Furthermore, Huber et  al. [28] dropped all 
participants with missing values, another potential for 
bias introduction [45]. Moreover, Huber et  al. [28] did 
only imprecisely describe the study population. Instead 
of TKA/THA patients, which are the patients the NHS 
England PROMs dataset consists of [69], this study only 
reported their participants to be knee or hip replacement 
patients. The reader unfamiliar with the dataset may con-
clude that the dataset includes hip/knee replacement 
patients other than TKA/THA. Consequentially, Huber 
et al. [28] was characterized as being at high ROB.

Discussion
This paper was the first to systematically review 
approaches predicting MCIDs in patient reported out-
come measures for patients undergoing total hip or knee 
arthroplasty. As summarized, all six included papers were 
published within the last two years. Given that a substan-
tial amount of patients undergoing joint replacement 
remain unsatisfied afterwards [17] and/or do not achieve 
an MCID in general reported health [28, 29] or condi-
tion-specific PROMs [27], there is a need of creating, 
evaluating, and implementing approaches to accurately 
identify patients which would remain unsatisfied after 
surgery. The actuality of papers published indicates that 
the problem is recently getting attention and that modern 
approaches like ML are being exploited to identify such 
patients.

All studies included various models, and models were 
partially common among studies (mainly random forest, 
GBM, LASSO, SVM, neural networks, elastic net LR). 
However, no type of model clearly outperformed oth-
ers across studies. This is in line with Hastie et  al. [35], 
who state that there is no ML algorithm that is known a 
priori to perform best on a given problem and thus only 
application will show which algorithm (with which tun-
ing parameters) is superior in the specific setting. For 
example, random forest was applied in five studies, but 
only performed as best model in two. However, Kunze 
et al. [29] and Katakam et al. [59] described that they per-
formed feature selection with a random forest. It could 
be that predictive performance was biased in these stud-
ies so that the random forest ended up with features best 
fitting for that method, but other models could have per-
formed better with other features. Nevertheless, among 
all studies, performance of the applied ML models did 
not differ too much. Interestingly and counterintuitively, 
neither the number of features included, nor the sam-
ple size seemed to influence predictive performance to 

a large extend. Specifically, the best predictive model on 
AUC [29] was developed with the second smallest sample 
(n = 616) and with the fewest number of features avail-
able compared to all other studies. Overall, ML models’ 
performance was well in the respective prediction task, 
indicated by the fact that three out of five studies that 
reported AUC on test data reached good or excellent per-
formance [27, 29, 60]. The AUC is an appropriate metric 
for measuring discrimination and to our knowledge the 
only metric applicable to imbalanced data without being 
biased [70] – a highly valuable characteristic in datasets 
with MCIDs as outcomes. Besides that, it has its disad-
vantages. Specifically, in practice, it is often necessary 
to have outcome metrics that reflect the performance of 
an algorithm at a specific sensitivity specificity trade-off 
[71]. In that context, other metrics are more appropriate 
and might be reported on a balanced test dataset in case 
of imbalanced data [70]. Four out of six studies [2, 27, 
29, 59] did only report the AUC as discrimination met-
ric, while one [28] did completely rely on other metrics 
on test data. This reflects potential for improvement. The 
AUC is an important performance indicator and there-
fore should be reported by all studies. Common met-
rics such as F1-measure, G-mean or J-statistic could be 
additionally reported without much extra effort, and we 
encourage authors to do so.

PROMs included differed widely across studies. Due 
to the heterogeneity of datasets and PROMs, conclu-
sions about which PROM can be predicted best are not 
possible yet. However, EQ VAS [28, 29] and SF-36 MCS 
[2, 60] were each two times the best predictable PROMs 
in the six included studies. Interestingly, Fontana et  al. 
[2] and Zhang et  al. [60] found that MCIDs for SF-36 
MCS, a mental health PROM, could be better predicted 
than somatic ones (HOOS JR, KOOS JR, WOMAC, 
SF-36 PCS) in TJA patients. In general, there is a cer-
tain advantage of using generic PROMs like EQ VAS or 
EQ-5Ds over indication-specific PROMs such as KOOS 
or HOOS. With generic (i.e. disease unspecific) PROMs, 
medical outcomes of procedures such as surgeries for 
TKA or THA can be made comparable with other health-
care interventions, facilitating cost-effectiveness analysis 
and improving decision makers information on allocating 
healthcare resources [72].

MCID calculations for PROMs were performed accord-
ing to established methods. However, two studies [29, 59] 
did not report the MCIDs threshold value. This should be 
a standardized procedure. Reporting MCID values is rel-
evant because then they can be compared   with MCID 
values from other studies. Recent evidence suggests that 
MCIDs for PROMs are highly variable and can differ 
substantially across study populations, calculation meth-
ods or even within the same calculation method (e.g. 
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anchor-based calculation, but using different anchors 
might yield different results) [73]. It remains unclear 
whether the MCID calculation method has an impact on 
ML performance to predict MCIDs in total joint arthro-
plasty patients. This is a relevant question and should be 
subject to further research. That being said, three stud-
ies [2, 28, 29] defined at least some MCIDs based on dis-
tributions. Even though distribution-based methods are 
common practice, it is not clear that they detect differ-
ences that really matter to patients rather than being an 
arbitrary set threshold based on observed data. MCIDs 
calculated with anchor-based techniques may  be pre-
ferred as they stronger focus on the patients perspective 
[74].

Additionally, studies should report all relevant outcome 
measures, including calibration. For one study [28], the 
lack of reporting calibration was one factor for categoriz-
ing it as high ROB. Further, even if not a source of bias 
in the ROB [45], confidence interval reporting is highly 
important as it helps to understand the certainty of the 
estimates. However, we found that only half of the stud-
ies reported confidence intervals at least for the main 
outcome, showing high potential for improvement. Fur-
thermore, only two studies [28, 60] performed imbal-
anced data adjustment. This might be crucial when using 
other performance metrics than the AUC [70] or when 
models are sensitive to balanced datasets during train-
ing [28]. We therefore recommend to at least test balanc-
ing classes and report it, even if it yields no benefit. The 
same holds for feature preprocessing (e.g. variable trans-
formations), a description of the country where the study 
took place (not reported in Zhang et  al. [60]), a precise 
description of the study population (imprecise in Huber 
et al. [28]) and reporting how missing data was handled. 
No study reported how outliers were handled. We advise 
all machine learning algorithm developers to assess their 
studies using the IJMEDI checklist for machine learning 
applications in medicine as described in Cabitza et  al. 
[75]. It helps to avoid such problems. All studies but one 
[27] properly applied model validation, feature selection 
and hyperparameter tuning on the training dataset and 
reported their final results on an unforeseen test dataset, 
even though one study [28] did not report all important 
metrics on the test dataset. However, the result that 5 of 6 
studies applied their models to independent test datasets 
provides strong evidence that the predictive performance 
in forecasting whether patients will receive an MCID 
or not after TJA is reasonable to believe. Additionally, 
all papers discussed the clinical utility and limitations 
of their applications. Two [27, 28] compared their ML 
models with traditional approaches, Zhang et al. [60] dis-
cussed the lack of comparison with traditional models as 
a limitation.

Two studies [27, 28] had a high risk of bias. Main 
problems in the studies with high risk of bias could have 
been easily handled through transparent and reasonable 
reporting [35]. Further, given that ML prediction models 
performance is typically assessed using AUC [41, 43, 76], 
studies should apply this metric to increase transparency 
and comparability with other studies’ results. Especially 
when used as the main metric for assessing performance 
in the training dataset [28], it should not be omitted in 
the test dataset.

However, this study comes with limitations. First, as a 
result of the limited number of studies included for the 
purpose of this review, and due to the results of ROB 
both within and across studies, the performance of ML 
models in the stated context based on this body of evi-
dence should be interpreted with caution. Second, we did 
not search the literature database Scopus due to a lack of 
access and might have potentially missed relevant studies. 
Fortunately, evidence suggests high precision of our used 
search engines in identifying relevant literature [77, 78]. 
Third, as model parameter tuning is up to the researcher 
[35], it can always lead to inferior performing models. We 
were not able to control hyperparameter tuning in the 
studies and therefore rely on the subjective performance 
of the individual researchers of the studies in doing so. 
This also holds that different methods might outperform 
others when tuned more sophisticated. Therefore, we 
also recommend reporting various specifications of the 
used models with the best tuned model indicated. Fourth 
and finally, we did not compare machine learning meth-
ods to other prediction methods. It might be that other 
prediction tools such as logistic regression or pre-surgery 
PROMs themselves might perform as good, better, or 
worse than machine learning. This needs further investi-
gation. ML studies may therefore include other methods 
as baseline/comparison models.

Conclusion
Given the promising results of models’ performance of 
the included studies, ML-based applications to support 
informed decision making as well as to implement an 
objective instance in shared decision making between 
clinicians and patients undergoing TKA or THA should 
be considered for practical implementation. Discussed 
issues of risk of bias and underreporting must be elimi-
nated in future research to derive transparent and unbi-
ased results. Especially, important metrics such as the 
AUC, calibration and uncertainty should be reported 
standardized across and consistently within studies for 
better comparability. Further, dataset preparation espe-
cially with respect to an unforeseen dataset is crucial 
when it comes to performance assessment and should be 
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applied in every study. Relevant checklists are available to 
ensure high quality of studies applying ML in healthcare.
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