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Abstract
We theoretically investigate the role of dissipation in excited state quantumphase transitions (ESQPT)
within the Lipkin–Meshkov–Glickmodel. Signatures of the ESQPT are directly visible in the complex
spectrumof an effectiveHamiltonian, whereas they get smeared out in the time-dependence of system
observables. In the latter case, we showhowdelayed feedback control can be used to restore the
visibility of the ESQPT signals.

1. Introduction

The properties of a quantumphase transition (QPT) [1] and an excited stateQPT (ESQPT) [2, 3] driven by
quantumfluctuations inmany body quantum systems at zero temperature feeds the interest sincemany
decades. At a quantum level, theQPT is visible as a non-analyticity of the ground state at some point in the
parameter space [1]. In contrast the ESQPT is a quantum criticality of the excited states, hidden as a level
clustering [2] in the energy spectrum. Therefore, the ESQPTbecomes visible in the system spectrumdensity as
discontinuities or divergence [2, 4], which induce a non-analyticity for some systemobservables, e.g. for the
average over the corresponding eigenstates [5].Moreover, the eigenstate structure contains the ESQPT
signatures, too [6]. For some famousmodels likeDicke superradiance [7–10] or Lipkin–Meshkov–Glick (LMG)
[11], themain properties of bothQPTs can be explained and understood at a semiclassical level in the
thermodynamic limit, where aQPT corresponds to a bifurcation [5, 12] and a ESQPT is connected to a saddle
point in the semi-classical energy potential [2]. A critical pathwith an energy of the saddle point—the so called
separatrix—can then be defined in the semiclassical configuration space. The pathswhich are close to the
separatrix constructs then the ESQPT signal: for bothmodels, the ESQPTmanifests in the observable average as
a peak at a certain energy [4, 13, 14]. Furthermore, a semiclassical treatment allows the analytical calculation of
the density of states [4, 15]. ESQPTwas for example studied in connectionwith quenches [5, 6] or chaos [5] and
was already observed inmolecular systems [16] ormicrowaveDirac billiards [17].

Feedback control is a promising tool to change the systemdynamics in a desiredway. Influence of the laser
statistics [18], neurosystems [19] or even control at a quantum level [20–24] are only some examples of its
powerfulness. One usually distinguishes between the closed and open control loops, in the last one the feedback
depends on the state of the system,where time delayed Pyragas control [25] has an important niche. For
instance, it was used to speed up the convergence to a steady state in the dissipative quantum system [26].

In our previous works, we applied time delayed Pyragas control to aDickemodel [7] to create newnon-
equilibriumphases [27] and suggested a newmethod to extract the ESQPT-signal from the time evolution in the
closed LMG system [11, 28]. Furthermore, closed loop control was already applied to the LMGmodel to induce
newphases or tomodify the divergence in density of states [29–31].Moreover, Oberthaler et al implemented the
LMGmodel using the existing ingenious experimental setup based on Rb87 Bose–Einstein condensates [32],
which offer a high degree of freedom for systempreparation, providing a possibility to test new insights about
the (ES)QTP. Surprisingly, the effects of a dissipative environment on the ESQPT seems not to bewell studied in
contrast to theQPT [33], though they are always present in experimental realizations.
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Inspired by this, we study the effects of dissipation on the ESQPT signal in the LMGmodel and apply a time
delayed feedback scheme to cancel themby the creation of newphases. In ourmodel, we condition the atomic
coupling on the difference of a spin observable average at two different times and perform the calculation at a
mean-field-level. On topwe show, that in dissipative systems the ESQPT is directly visible from a complex
system spectrum.

Ourwork is organized as follows. In section 2we introduce the dissipative LMGmodel and the feedback. In
section 3we study the dissipative effects on a ESQPT at a quantum level evaluating the complex spectrumof an
effectiveHamiltonian. In section 4we show the smoothing effects of the ESQPT signal due to dissipation at a
mean-field level and show in section 5 how to compensate themusing time delayed Pyragas control. In the last 6
sectionwe discuss the results.

2. LMGmodelwith dissipation and feedback

The LMGmodel [11] describes an interaction betweenN spins and represents a special case of aHeisenberg
model. In general, the LMGHamiltonian reads

g g
= - - -ˆ ˆ ˆ ˆ ( )H hJ

N
J

N
J , 1z

x
x

y
y

2 2

where å s= Î=
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2 1
are collective angularmomentumoperators, h is an effective parameter

for externalmagnetic field in z-direction and gx or gy describes the spin–spin interaction strength, which is the
same for all spins in the LMGmodel. In the following, wewill always use the isotropic g = 0y case, if we do not
explicitly point to g ¹ 0y case.

Especially in the experimental realizations, the LMG system is always coupled to an environment which
cause the damping and thermalization of the system and can bemodelled by amaster equation [33, 34]with
collective decay [35]
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To compensate the dissipative effects we assume a time dependent coupling gx of Pyragas form [25] .
Thereforewe condition gx to depend on a difference of Ĵz averages at two different timeswith time delay τ as
following

g g g
l
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In the following, we investigate the ESQPT signal at the quantum level using the effectiveHamiltonian
approach and at a semiclassical level using the solution ofmean-field equations in thermodynamic limit. In the
second casewe show the unique effect of the feedback loop especially in context of the ESQPT signal.

3.Dissipative ESQPT at quantum level

The fate of the ESQPT signal in presence of dissipation is still not studiedwell. In closed systems the ESQPT is
hidden in the energy spectrumor is visible in observable averages as a function of energy [13] as a non-
analyticity, which can be obtained by quantummechanical or semi-classical calculations. Its origin can be
understood at a semi-classical level as critical points from the energy surface.

In dissipative systems described by a Lindbladmaster equation, an effective non-hermitianHamiltonian can
be defined in a standardway. Rewriting themaster equation (2) as

⎡⎣ ⎤⎦r r
k

r= - + + -ˆ̇ ˆ ˆ ˆ ˆ ˆ ( )H
N

J Ji , , 4eff

we obtain the effective non-hermitianHamiltonian

k
= - - +ˆ ˆ ˆ ˆ ( )H H

N
J Ji

2
5eff

with complex spectrum,which is shown in the figure 1 (left) for different values ofκ in the symmetry broken
phase. For k ¹ 0 the spectrumhas an imaginary part which scales withκ. The imaginary part can be interpreted
as a decay rate at a certain energy level [36, 37]. To complete the spectral informationwe show in the right part of
figure 1 the corresponding density of states. For example, open triangles show the density of states along the blue
dashed line in the leftfigure in the known k = 0-case [15], where a logarithmic divergence at = -E N0.5 is due
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to the ESQPT.Note, that in some references like [28] the normalization of the systemobservables is performed
by ºj N 2 instead of here usedN normalization, the ESQPT is then located at = -E j1 .

Howdoes the dissipation affect the ESQPT? The ESQPT survives and, somewhat surprisingly, it becomes
visible not only in the density of states of the non-hermitianHamiltonianHeff, but can be also directly seen from
its complex eigenvalues, see figure 1 (left). The ESQPT is hidden in this representation in aË-form at the energy
of = -E N0.5 .Another feature (due to the assumed Lindblad operator (2)) is the vanishing of the imaginary
part ofHeff at the north and south poles of the corresponding Bloch sphere, which leads to zero imaginary part at
the corresponding energies of N0.5 .Thus the decay rate is zero there and the dissipative effects disappear at
this points. Note, this effect is also present at the level of themean-field equations (7), where dissipative terms do
not contribute at the poles for arbitraryκ values due to conservation of the spin length.

We used two differentmethods to calculate the density of states in the k = h0.05 case. First, we used only the
real part of the eigenvalues and counted their number in a certain energetic window (blue crosses infigure 1).
Second, we used

⎛
⎝⎜

⎞
⎠⎟n p= -

-
( ) ( )E

E H
1 Tr

1
6

eff

I

with the non-hermitianHamiltonian (open squares).We emphasize, that the results agrees and have still a
logarithmic divergence at the energy = -E N0.5 which can bewellfitted by a log-function (red dotted curve).
Especially for > -E N0.5 there is no strong deviation from the k = 0 case (open triangles). Only for
< -E N0.5 , there is a deviation from the non-dissipative result, which can be better seen for the curvewith a

bigger dissipation rate k = 0.5 (diamondswith horizontal line).
We emphasize, that only theË-structure and not the zero imaginary part in the complex spectrum indicates

the ESQPT. For g = 0y both effects are at the energy = -E 0.5, though they can be easily separated for an

anisotropic LMGHamiltonian g ¹( )0 ,y where the ESQPT can be shifted to other energies and a jump in a

density of states can occur on top [15]. Setting g = h2.5 ,y we observe a shift of theË-signal to the

corresponding energy of ESQPT in this case (open circles in the left part offigure 1 ). The corresponding density
of states (open circles in the right part of the figure) has a peak at the ESQPT energy » -E N0.54 and a jump at
= -E N0.5 [15]. Note, that the finite size effects smooths the peak and the jump in this case.

4.Dissipative ESQPT signal atmean-field level

4.1.Mean-field-equations
Toderive amean-field equation for the dissipative LMG system,we use r=ˆ ( ˆ ˆ )O OTr , assume the

factorization assumptions »ˆ ˆ ˆ ˆO O O O1 2 1 2 which is known to hold in the thermodynamic limit and to
forecast the same observable averages and the phase transition as the quantummechanical calculations [28, 38].

Figure 1. (Left)The complex spectrum for different values of γ. TheË-structure indicates the position of the ESQPT. The inset shows
the zoomaround the ESQPT energy. (Right)The density of states of the effective LMGHamiltonian shows a logarithmic divergence at
E=−0.5N. Crosses and empty symbols are obtained using only the real part of the spectrumor thewhole spectrumwith equation (6),
respectively. For comparison, the g ¹ 0y case is additionally shown in bothfigures (open circles). Parameters:
g = =( )h N1.5 , 10 000 (blue crosses),N= 1000 (other cases), l = 0.
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We then obtain a following set of closed semiclassical equations ofmotion [33]
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with rescaled averages = ˆJ J .i N i
1 Without time delay l =( )0 theQPT,which is one important property in this

system, corresponds at this semi-classical level to a pitchfork bifurcation [34]: equation (7) has two stationary
states J ,i

0 corresponding to a normal phase with =( ) ( )J J J, , 0, 0, 1 2x y z
0 0 0 and a symmetry broken phase
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whose stability swaps at a critical coupling
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2

Note, that even the dissipativemodel still fulfils the conservation law + + =J J J 1 4,x y z
2 2 2 thus the dynamical

evolution is restricted to a sphere. Furthermore, evenwith time delay (l > 0) thefixed points remain the same,
as the Pyragas term vanishes in the steady state.

In the following, we investigate the ESQPT signal in presence of dampingwith andwithout control. Later we
show that the time delayed coupling g ( )t may affect the linear stability offixed points and the dynamical
evolution of the system in a completely unexpectedway, particular in its acting against the dissipation.

4.2.Dissipative damping of the ESQPT
Using the semiclassical equation ofmotion, equation (7), we now study the action of dissipation on the ESQPT
at this level. Thereforewefirst look at a dynamical evolution of the LMG system. The spin averages of the system
are restricted to the Bloch sphere, which is shown infigure 2 (inset). The colour represents the energy for a given
system configuration for k = 0 and thewhite lines represent the pathswith the same energy in the symmetry
broken phase.Without dissipation the system follows one of this paths keeping the energy fixed, i.e. staying in
the eigenstate. For each eigenstate one can compute an averaged value for ( )J J, .x z

2 The black (dotted) curve
(figure 2) shows this values formultiple eigenstates. This is a novel representation of two observable averages,
whichwas recently suggested to visualize the energy independent ESQPT signal [28], which is visible again as a
peak. The continuation of the peakwould end by ( )0, 1 2 . In the upper half of a Bloch sphere we see a separatrix,
a (white) pathwhich goes through a north pole of the sphere. Due to the symmetry of the path, its averaged

Figure 2.The figure shows the smoothing impact of damping on the ESQPT signal for differentκ values. The (blue) crosses show the
averaging results using the integrationmethod forD =t 20.The ESQPT-signal under influence of damping gets smoothed. (Inset)
Trajectories on the Bloch sphere visualize the system evolution, equation (7), for k = h0.1 (dashed green), k = h0.2 (orange) and
k = 0 (white contours). The colour shows the rescaled energy in k = 0 case. Parameters: g l= =h1.5 , 0.
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values for Jx
2 and Jy

2 should be zero, whereas the Jz average is 1/2. Thus, paths close to the separatrix are
responsible for the ESQPTpeak in ( )J J,x z

2 diagram.Without dissipation k =( )0 the period length forfixed
energy diverges at the separatrix energy [2].

For k ¹ 0 the energy is not conserved anymore and the system tends oscillating around the Jz-axis to a
steady state equation (8). Figure 2 (inset) shows two examples of the system state evolution ( )( )J J J t, ,x y z for two
differentκ values, whichwhere obtained by solving equation (7)numerically. The ESQPT signal is nowhidden
in the dynamical evolution of the system. But, as we can see infigure 2, especially for bigκ values there are only
less paths, which are close to the separatrix, thus the ESQPT signal will be damped especially for big dissipation
ratesκ. The impact of damping to the ESQPT signal in the J J,z x

2 plane can be obtained by calculating themean
values of ( ) ( )J t J t,x z

2 -evolution for a period or byfinding some optimal effective periodDt , in away that the
mean values calculated using the definition

ò=
D

Î
=

+D { }¯ ( ) ( ) ( )O t
t

O t t a T
1

d , 0, , 10
t a

a t

max

matches to the closed case as good as possible. Note, as a period length in thefirst case we take the time for one
full rotation around the Jz-axis, which changes with time.

In thefirst case, the results for different damping ratesκ are shown infigure 2 by coloured circles/diamonds
and unfilled squares.We see, that the peak is now smoothed, but still visible especially for small damping rates.
The blue crosses show the second casewith effective periodwhich lead to amuch better ESQPT signal.

5. Pyragas control of the ESQPT signal

Nowwe set l ¹ 0 in g ( )t ,x equation (3) and investigate the impact of time delayed control on the system.

5.1. Linear stability analysis with time delay
Ausual approach to analyse the effects of time delayed feedback isfirst to check the stability offixed points in the
presence of control [39]. Thereforewe linearize equation (7) around the fixed points d= +( )J t J J ,i i i

0 obtaining
the following systemof linearized equations with d d dº ( )J Jv , ,x y
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with eliminated Jz component by use of the spin-length conservation law.
The roots of the corresponding characteristic equation

tL - - -L =( ( )) ( )1 B Adet exp 0 13

determines the stability of a fixed point, which is stable if all real parts of all solutionsΛ are negative [40].
Infigure 3we plot the biggest real part of eigenvalues in the t l- -domain.We see that there is awindow

forλ -values, there the stability offixed points oscillates from stable to unstable and fromunstable to stable while
increasing the time delay. Outside this window, the fixed points remains either stable l ( )h1 or lose their
stability forever l( )h2.5 .Note, that the boundaries between stable and unstable zones (brown line) can be
calculated from an analytical expression, see the appendix. Next, we analyse the systemproperties in the unstable
regime, use them to obtain a sharp ESQPT signal and show chaotic behaviour for larger time delays τ.

5.2. Feedback compensates dissipation
Our feedback scheme (equation (3))modifies the systemdynamics in an interesting and unexpectedway.
Increasing the time delay τ, we cross the boundary andmake the fixed point unstable. For smaller τ values the
trajectory ends in a new stable state in formof a limit cycle, thus aHopf-bifurcation occurs.Moreover the
trajectory of the limit cycle has only small deviations frompaths withfixed energy, which the LMG systemwould
takewithout dissipation. The size of trajectories can be changed by τ, thus tuning the time delay value
corresponds to a change of energy in a closed LMG system. Figure 4 demonstrates the feedback action, showing

5
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the trajectory evolution for different values of τ. Herewe start close to thefixed point. The red (thick) curve
shows the stationary state. Note, that the change of initial condition to the region outside the separatrix leads to
the same stationary state for the considered τ values.

Thus, using the stationary limit cycle states forfixed τ values offers a possibility to obtain an ESQPT-Signal
again, by calculating the

ò=
-

¯ ( ) ( )J
t t

J t t
1

d 14z
t

t

z
2 1 1

2

and J̄x
2 (with similar definition) averages forfixed values of τ ( >t t2 1 andwith t1 big enough to become a

stationary solution). Figure 5 shows the results of this calculation and compares themwith the closed and

Figure 3. Stability diagram in the t l- -plane. The colour represents the stability robustness offixed points in the symmetry broken
phase, which are not stable for positive values (red coloured area). The brown line defines a boundary condition andhas an analytical
expression. Parameters: g k= =h h1.5 , 0.05 .

Figure 4.Dynamical evolution of the controlled LMG systemon the Bloch sphere for the following τ-values (from left to right):
t =h 0.2; 0.25; 0.3; 0.31; 0.35; 0.5; 1; 2.5; The red thick path represents the stationary state. Increase of τ forces the solution to cross
the separatrix. In this way the ESQPT signal (figure 5) is restored from stationary solutionswith different τ values. Note, the axes and
scaling are as in the inset of figure 2 but are not visible due to breakdown. Parameters: g l k= = =h h1.5 , 1, 0.05 .
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dissipative cases without feedback. The (orange) rhombi shows the ¯ ¯J J,z x
2 time averages in stationary limit cycle

phase of the dissipative LMG system, the black curve shows the ESQPT-signal of a closed systemwithout control.
Each rhombus has its own time delay.We see a very good overlap between the control caused and the original
signals, thus our feedback schema compensates the dissipative smoothing (unfilled green squares) of the
ESQPT-signal verywell. The inset infigure 5 shows the τ-dependence of the averaged values.We have checked
that this dependency is qualitatively the same as the energy dependency of the corresponding expectation values
in eigenstates with the energyE in the closed systemwithout time delay. Note, that up to t » h0.2 (inset) the
fixed point is stable and the averaged values are the values of the fixed point.

5.3. Chaotic behaviour
For t  1 the stationary dynamics can becomemuchmore complex than just a creating limit cycles.
Oscillationswithmore than onemaximumandminimumappear, which is known as away to chaos by period
doubling [41, 42]. Infigure 6 (left)we plot all localmaxima andminima betweenwhich Jx(t) oscillates in the

Figure 5.Time delayed feedback undo the dissipative effects to the ESQPT signal. The orange (light-coloured) rhombus shows
averaged system values ¯ ¯J J,z x

2 in the stationary state for fixed τwith t Î [ ]h0.1, 0.6 , whichmatches to the signal of the closed system
(black curve) verywell. Unfilled squares represent the ESQPT-signal under dissipation. The blue crosses shows the ESQPT-signal
obtain from adynamical evolution of the system for one big τ-value using equation (10). (Inset) ¯ ¯J J,z x

2 as a function of τ in a steady
state. Parameters: g l= =h h1.5 , 1 .

Figure 6. (Left)Bifurcation and period doubling for different time delays τ. For each τ-values the values of localmaxima andminima
of Jx(t)-value are plotted in stationary case. The dashed orange lines shows the unstable fixed points. The arrows points to the non-
trivial fixed points. The phase diagram is divided the regions A–Ewith different properties. The inset shows shows a zoomof area A
which contains three areas A1–A3with different dynamic. (Right) Steady state of the system for t =h 7 and different initial condition
in the ( )J J,x y plane. Themaxima andminima of Jx oscillations (dash–dotted arrows) are shown in the bifurcation diagram (left) and
are located at a vertical dash–dotted line. Parameters: g l= =h h1.5 , 1 .
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stationary state (for t 1) forfixed values of time delay τ. Note, that the steady state of the system can depend
on the initial condition, too, which has to be changed, to get all possible end states. First, we show an example
how to obtain the data-points which are located on the vertical dash–dotted line in the bifurcation diagram.
Figure 6 (right) shows possible end states of the system in the ( )J J,x y plane for different initial conditions. The
maxima andminima of the Jx oscillation (arrows) are lying on the dash-dotted line in the bifurcation diagram.
Next, we discuss the systems dynamic as a function of τ, therefore wemark different areas in the bifurcation
diagramby capital letters A–E. In the inset we show a zoom for the area A, which contains three parts A1–A3.
Increasing τ from zero, both stablefixed points (arrow, orange line, part A1) loses their stability (orange dotted
line) at the first boundary condition from the figure 3 and aHopf-bifurcation appears (part A). There are two
limit cycle possible, for positive and negative Jx values, however both limit cycles growwith τ andmerge to one
big limit cycle which covers both Jx sides on the bloch sphere, part A3 (see alsofigure 4 for visualization). In part
B, thefixed points become stable again. But there exist still a stable limit cycle solutionwith rather big Jx-
amplitude. Thus, in area B two stable solutions are possible, which is not in contradiction to the stability of the
fixed point, as the initial condition is not chosen in away to fulfil the linearized assumption. The systemwill then
converge either to thefixed point or to the limit cycle, depending on the initial condition. For  t4 5 this
limit cycle disappears. Further increase of time delay leads to a creation of a period doubling structure (areaC),
which is separated bywindowswhere the solution converges to a limit cycle. In the regionD the fixed point
becomes stable again and the double period structure is gone, whereas in the region E it appears again. Note, that
the dotted line at =J 0x

max represents the unstable trivialfixed point.
Such chaotic behaviour can also be used to obtain the ESQPT signal, see blue crosses infigure 5. Fixing the

time delay in the chaotic area of the bifurcation diagram (figure 6, left), one can use the integrationmethodwith
effective period (equation (10)) to obtain the shown curve. Thereforewe solve the corresponding equation of
motion (7) and use equation (10) starting from t= 0 till t 1.We see, that also this resultmatches pretty well
with the original ESQPT signal.

6.Discussion

In this paper we have demonstrated the effect of dissipation on the ESQPT signal for the LMGmodel and
showed how to compensate it using time delayed Pyragas feedbackmodulating the interaction parameter
between the atoms.Our results show, that the ESQPT is encoded in the spectral properties of the effective
Hamiltonian aswell as it is visible in themeasured averaged values of the spin components. In the last case,
smoothing effects appearwhich can be undone by our feedback scheme.

We think, that an experimentalmeasurement of an ESQPT signal using the time delayedmethod is easier
than in an ideal, closed system.Using time delay one has only tomeasure the system values for different time
delays τ, instead of preparing the system in eigenstates or coherent superpositions to obtain the same
information [28].

We also checked the interaction strength gx depending on other operator differences instead of J ,z
2 or a

modulatedmagnetic field h instead of g .x However, in both cases the general dynamical properties remains the
same. The LMG systemhas still limit cycles close to the separatrix for some fixed time delayed values and has a
parameter rangewith chaotic behaviour. Both effectsmight be interesting froman experimental point of view.
On the one hand, it is easier to control themagnetic field h, on the other hand, choosing another feedback loop
can shift the appearing effects to other τ values, which could be easer to realize.

We also tried tofind ESQPT signatures in the correlation function [43] º ++ -( ) ˆ ( ) ˆ ( )C z J t z J t ,t using

the quantum regression theorem [44], but have not succeed, as the ESQPT signal (which should be visible as a
peak at zero frequency in the Fourier space) interfere with effects likemacroscopic occupation and degenerated
spectrum in the symmetry broken phase.However one possible way out could be to drive the LMG system
additionally with an external laser and calculating the resonance fluorescence spectrum, but this would require a
re-derivation of themaster equation.Note, that such spectra have been already calculated for an LMG system,
but only in the linearized version [34].

Similar to theDickemodel with feedback [27], the Pyragas controlled LMGmodel has stable limit cycle
phases. In contrast to theDickemodel, it shows chaotic dynamics for bigger time delay. This is surprisingly as
onewould expect such behaviour especially from theDicke system,which is chaotic in nature [45]. However,the
Dickemodel has an additional bosonicmodewhich is not bounded by a conservation law like the spin
components. This could be a reason, why no chaotic behaviour appears there.

We think, that the feedback-induced limit cycles are hidden property of the LMGmodell. On the one hand
limit cycles are a natural property of the closed system.On the other hand, the time dependent limit cycles
describe the ESQPT signal pretty well. Though the chaotic behaviour is an artefact of the time delay feedback, as
it was neither a part of a closed LMG system.
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The feedback scheme is applied at a semiclassical level, thuswe have neglected the influence offluctuations
in the thermodynamic limit, which could be important [46]. Nevertheless, we think, that thefluctuations have
not dramatic contributions to the described effects for N 1as they should scale with N1 and the used
feedback scheme does notmodify γ in a strongway. Furthermore, the semiclassical LMGmodel predicts in
many cases the same results [4, 13, 28]. But the full quantumversion of the considered feedback type still
remains an open issue.However, a recently published article [24] shows away to go beyondmeanfield for a
coherent type of feedbackwhere the author describes feedback action viamapping to a bigger system. This
would be one possible way to study the role of oscillations in quantum systemswith one special feedback type.
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Appendix. Boundary condition

Todetermine the boundaries infigure 3we choose only imaginaryΛ values in equation (13), thus
L º Î·i s s, . Splitting then the equation (13) in an imaginary and real part, we obtain the correspondingly

conditions
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Bringing all sin and cos terms in both equations to one side, squaring them and adding together, we
eliminate the τ-dependence and obtain the following equation
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which can be solved for s and has then in general 4 different solutions

=  -  - · ( )s F F F
1

2
4 . 41 1

2
0

The equation (4)fixes now the eigenvalue L = is for a given fixed point and feedback strengthλ.
equation (1) gives for everyfixed s-value the corresponding time-delay τ, solving for example the imaginary part
for τwe obtain

⎛
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2
4

0 1

1
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2

where Îz .The choice of z is necessary to get boundary conditions at higher time delays τ. Note, that the s
dependence is also hidden inGi.

At this stepwe have still tomuch solutions. A lot of them are non-physical (if t < 0 or t Î ) or do not
fulfil the real part equation (1) and have to be sorted out. The remaining solutions are plotted as a brown line in
figure 3.
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