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Abstract
Motivated by the serious problem that hospitals in rural areas suffer from a shortage of residents,
we study the Hospitals/Residents model in which hospitals are associated with lower quotas and the
objective is to satisfy them as much as possible. When preference lists are strict, the number of
residents assigned to each hospital is the same in any stable matching because of the well-known
rural hospitals theorem; thus there is no room for algorithmic interventions. However, when ties are
introduced to preference lists, this will no longer apply because the number of residents may vary
over stable matchings.

In this paper, we formulate an optimization problem to find a stable matching with the maximum
total satisfaction ratio for lower quotas. We first investigate how the total satisfaction ratio varies
over choices of stable matchings in four natural scenarios and provide the exact values of these
maximum gaps. Subsequently, we propose a strategy-proof approximation algorithm for our problem;
in one scenario it solves the problem optimally, and in the other three scenarios, which are NP-hard,
it yields a better approximation factor than that of a naive tie-breaking method. Finally, we show
inapproximability results for the above-mentioned three NP-hard scenarios.
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1 Introduction

The Hospitals/Residents model (HR), a many-to-one matching model, has been extensively
studied since the seminal work of Gale and Shapley [11]. Its input consists of a set of residents
and a set of hospitals. Each resident has a preference over hospitals; similarly, each hospital
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31:2 Maximally Satisfying Lower Quotas in the Hospitals/Residents Problem with Ties

has a preference over residents. In addition, each hospital is associated with a positive integer
called the upper quota, which specifies the maximum number of residents it can accept. In
this model, stability is the central solution concept, which requires the nonexistence of a
blocking pair, i.e., a resident–hospital pair that has an incentive to deviate jointly from the
current matching. In the basic model, each agent (resident or hospital) is assumed to have a
strict preference for possible partners. For this model, the resident-oriented Gale–Shapley
algorithm (also known as the deferred acceptance mechanism) is known to find a stable
matching. This algorithm has advantages from both computational and strategic viewpoints:
it runs in linear time and is strategy-proof for residents.

In reality, people typically have indifference among possible partners. Accordingly, a
stable matching model that allows ties in preference lists, denoted by HRT in the context
of HR, was introduced [20]. For such a model, several definitions of stability are possible.
Among them, weak stability provides a natural concept, in which agents have no incentive
to move within the ties. It is known that if we break the ties of an instance I arbitrarily,
any stable matching of the resultant instance is a weakly stable matching of I. Hence, the
Gale–Shapley algorithm can still be used to obtain a weakly stable matching. In applications,
typically, ties are broken randomly, or participants are forced to report strict preferences
even if their true preferences have ties. Hereafter, “stability” in the presence of ties refers to
“weak stability,” unless stated otherwise.

It is commonly known that HR plays an important role not only in theory but also in
practice; for example, in assigning students to high schools [1,2] and residents to hospitals [30].
In such applications, “imbalance” is one of the major problems. For example, hospitals in
urban areas are generally more popular than those in rural areas; hence it is likely that the
former are well-staffed whereas the latter suffer from a shortage of doctors. One possible
solution to this problem is to introduce a lower quota of each hospital, which specifies the
minimum number of residents required by a hospital, and obtain a stable matching that
satisfies both the upper and lower quotas. However, such a matching may not exist in
general [16, 28], and determining if such a stable matching exists in HRT is known to be
NP-complete (which is an immediate consequence from page 276 of [29]).

In general, it is too pessimistic to assume that a shortage of residents would force hospitals
to go out of operation. In some cases, the hospital simply has to reduce its service level
according to how much its lower quota is satisfied. In this scenario, a hospital will wish to
satisfy the lower quota as much as possible, if not completely. To formulate this situation,
we introduce the following optimization problem, which we call HRT to Maximally Satisfy
Lower Quotas (HRT-MSLQ). Specifically, let R and H be the sets of residents and hospitals,
respectively. All members in R and H have complete preference lists that may contain ties.
Each hospital h has an upper quota u(h), the maximum number of residents it can accept.
The stability of a matching is defined with respect to these preference lists and upper quotas,
as in conventional HRT. In addition, each hospital h is associated with a lower quota ℓ(h),
which specifies the minimum number of residents required to keep its service level. We
assume that ℓ(h) ≤ u(h) ≤ |R| for each h ∈ H. For a stable matching M , let M(h) be the set
of residents assigned to h. The satisfaction ratio, sM (h), of hospital h ∈ H (with respect to
ℓ(h)) is defined as sM (h) = min

{
1, |M(h)|

ℓ(h)

}
. Here, we let sM (h) = 1 if ℓ(h) = 0, because the

lower quota is automatically satisfied in this case. The satisfaction ratio reflects a situation
in which hospital h’s service level increases linearly with respect to the number of residents
up to ℓ(h) but does not increase after that, even though h is still willing to accept u(h) − ℓ(h)
more residents. These u(h) − ℓ(h) positions may be considered as “marginal seats,” which
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do not affect the service level but provide hospitals with advantages, such as generous work
shifts. Our HRT-MSLQ problem asks us to maximize the total satisfaction ratio over the
family M of all stable matchings in the problem instance, i.e.,

max
M∈M

∑
h∈H

sM (h).

The following are some remarks on our problem: (1) To our best knowledge, almost all
previous works on lower quotas have investigated cases with no ties and have assumed lower
quotas to be hard constraints. Refer to the discussion at the end of this section. (2) Our
assumption that all preference lists are complete is theoretically a fundamental scenario
used to study the satisfaction ratio for lower quotas. Moreover, there exist several cases in
which this assumption is valid [4, 14]. For example, according to Goto et al. [14], a complete
list assumption is common in student–laboratory assignment in engineering departments of
Japanese universities because it is mandatory that every student be assigned. (3) If preference
lists contain no ties, the satisfaction ratio sM (h) is identical for any stable matching M

because of the rural hospitals theorem [12,30,31]. Hence, there is no chance for algorithms to
come into play if the stability is not relaxed. In our setting (i.e., with ties), the rural hospitals
theorem implies that our task is essentially to find an optimal tie-breaking. However, it is
unclear how to find such a tie-breaking.

Our Contributions. First, we study the goodness of any stable matching in terms of the
total satisfaction ratios. For a problem instance I, let OPT(I) and WST(I), respectively,
denote the maximum and minimum total satisfaction ratios of the stable matchings of I.
For a family of problem instances I, let Λ(I) = maxI∈I

OPT(I)
WST(I) denote the maximum gap

of the total satisfaction ratios. In this paper, we consider the following four fundamental
scenarios of I: (i) general model, which consists of all problem instances, (ii) uniform model,
in which all hospitals have the same upper and lower quotas, (iii) marriage model, in which
each hospital has an upper quota of 1 and a lower quota of either 0 or 1, and (iv) R-side
ML model, in which all residents have identical preference lists. The exact values of Λ(I)
for all such fundamental scenarios are listed in the first row of Table 1, where n = |R|. In
the uniform model, we write θ = u(h)

ℓ(h) for the ratio of the upper and lower quotas, which is
common to all hospitals. Further detailed analyses can be found in the full version [13].

Subsequently, we consider our problem algorithmically. Note that the aforementioned
maximum gap corresponds to the worst-case approximation factor of the arbitrarily tie-
breaking Gale–Shapley algorithm, which is frequently used in practice; this algorithm first
breaks ties in the preference lists of agents arbitrarily and then applies the Gale–Shapley
algorithm on the resulting preference lists. This correspondence easily follows from the rural
hospitals theorem (see the full version [13] for the details).

In this paper, we show that there are two types of difficulties inherent in our problem
HRT-MSLQ for all scenarios except (iv). Even for scenarios (i)–(iii), we show that (1) the
problem is NP-hard and that (2) there is no algorithm that is strategy-proof for residents
and always returns an optimal solution; see Section 6 and Appendix A.1.

We then consider strategy-proof approximation algorithms. We propose a strategy-proof
algorithm Double Proposal, which is applicable in all above possible scenarios, whose
approximation factor is substantially better than that of the arbitrary tie-breaking method.
The approximation factors are listed in the second row of Table 1, where ϕ is a function
defined by ϕ(1) = 1, ϕ(2) = 3

2 , and ϕ(n) = n(1 + ⌊ n
2 ⌋)/(n + ⌊ n

2 ⌋) for any n ≥ 3. Note that
θ2+θ−1

2θ−1 < θ holds whenever θ > 1. We also provide inapproximability results in the last row,
where ϵ denotes an arbitrarily small positive constant.
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31:4 Maximally Satisfying Lower Quotas in the Hospitals/Residents Problem with Ties

Table 1 Maximum gap Λ(I), approximation factor of Double Proposal, and inapproximability
of HRT-MSLQ for four fundamental scenarios I.

General Uniform Marriage R-side ML

Maximum gap Λ(I)
(i.e., Approx. factor of
arbitrary tie-breaking GS)

n + 1 θ 2 n + 1

Approx. factor of
Double Proposal

ϕ(n) (∼ n+2
3 ) θ2+θ−1

2θ−1 1.5 1

Inapproximability n
1
4 −ϵ 3θ+4

2θ+4 − ϵ 9
8 − ϵ —

∗) Under P ̸= NP
†) Under the Unique Games Conjecture

Techniques. Our algorithm Double Proposal is based on the resident-oriented Gale–
Shapley algorithm and is inspired by previous research on approximation algorithms [17, 25]
for another NP-hard problem called MAX-SMTI. Unlike in the conventional Gale–Shapley
algorithm, our algorithm allows each resident r to make proposals twice to each hospital.
Among the hospitals in the top tie of the current preference list, r prefers hospitals to which
r has not yet proposed to those which r has already proposed to once. When a hospital h

receives a new proposal from r, hospital h may accept or reject it, and in the former case, h

may reject a currently assigned resident to accommodate r. In contrast to the conventional
Gale–Shapley algorithm, a rejection may occur even if h is not full. If at least ℓ(h) residents
are currently assigned to h and at least one of them has not been rejected by h so far, then
h rejects such a resident, regardless of its preference. This process can be considered as the
algorithm dynamically finding a tie-breaking in r’s preference list.

The main difficulty in our problem originates from the complicated form of our objective
function s(M) =

∑
h∈H min{1, |M(h)|

ℓ(h) }. In particular, non-linearity of s(M) makes the
analysis of the approximation factor of Double Proposal considerably hard. We therefore
introduce some new ideas and techniques to analyze the maximum gap Λ and approximation
factor of our algorithm, which is one of the main novelties of this paper.

To estimate the approximation factor of the algorithm, we need to compare objective
values of a stable matching M output by the algorithm and an (unknown) optimal stable
matching N . A typical technique used to compare two matchings is to consider a graph
of their union. In the marriage model, the connected components of the union are paths
and cycles, both of which are easy to analyze; however, this is not the case in a general
many-to-one matching model. For some problems, this approach still works via “cloning,”
which transforms an instance of HR into that of the marriage model by replacing each hospital
h with an upper quota of u(h) by u(h) hospitals with an upper quota of 1. Unfortunately,
however, in HRT-MSLQ there seems to be no simple way to transform the general model
into the marriage model because of the non-linearity of the objective function.

In our analysis of the uniform model, the union graph of M and N may have a complex
structure. We categorize hospitals using a procedure like breadth-first search starting from
the set of hospitals h with the satisfaction ratio sN (h) larger than sM (h), which allows us
to provide a tight bound on the approximation factor. For the general model, instead of
using the union graph, we define two vectors that distribute the values s(M) and s(N) to
the residents. By making use of the local optimality of M proven in Section 3, we compare
such two vectors and give a tight bound on the approximation factor.
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We finally remark that the improvement of Double Proposal over the maximum gap
shows that our problem exhibits a different phenomenon from that of MAX-SMTI because
the approximation factor of MAX-SMTI cannot be improved from a naive tie-breaking
method if strategy-proofness is imposed [17].

Related Work. Recently, the Hospitals/Residents problems with lower quotas are quite
popular in the literature; however, most of these studies are on settings without ties. The
problems related to HRT-MSLQ can be classified into three models. The model by Hamada
et al. [16], denoted by HR-LQ-2 in [28], is the closest to ours. The input of this model is
the same as ours, but the hard and soft constraints are different from ours; their solution
must satisfy both upper and lower quotas, the objective being to maximize the stability (e.g.,
to minimize the number of blocking pairs). Another model, introduced by Biró et al. [5]
and denoted by HR-LQ-1 in [28], allows some hospitals to be closed; a closed hospital is
not assigned any resident. They showed that it is NP-complete to determine the existence
of a stable matching. This model was further studied by Boehmer and Heeger [6] from a
parameterized complexity perspective. Huang [19] introduced the classified stable matching
model, in which each hospital defines a family of subsets R of residents and each subset of
R has an upper and lower quota. This model was extended by Fleiner and Kamiyama [9]
to a many-to-many matching model where both sides have upper and lower quotas. Apart
from these, several matching problems with lower quotas have been studied in the literature,
whose solution concepts are different from stability [3, 10,26,27,33].

Paper Organization. The rest of the paper is organized as follows. Section 2 formulates
our problem HRT-MSLQ, and Section 3 describes our algorithm Double Proposal for
HRT-MSLQ. Section 4 shows the strategy-proofness of Double Proposal. Section 5 is
devoted to proving the maximum gaps Λ and approximation factors of algorithm Double
Proposal for the several scenarios mentioned above. Finally, Section 6 provides hardness
results such as NP-hardness and inapproximability for several scenarios. Because of space
constraints, some proofs are omitted and included in the full version [13].

2 Problem Definition

Let R = {r1, r2, . . . , rn} be a set of residents and H = {h1, h2, . . . , hm} be a set of hospitals.
Each hospital h has a lower quota ℓ(h) and an upper quota u(h) such that ℓ(h) ≤ u(h) ≤ n.
We sometimes denote a hospital h’s quota pair as [ℓ(h), u(h)] for simplicity. Each resident
has a preference list over hospitals, which is complete and may contain ties. If a resident r

prefers a hospital hi to hj , we write hi ≻r hj . If r is indifferent between hi and hj (including
the case that hi = hj), we write hi =r hj . We use the notation hi ⪰r hj to signify that
hi ≻r hj or hi =r hj holds. Similarly, each hospital has a preference list over residents and
the same notations as above are used. In this paper, a preference list is denoted by one row,
from left to right according to the preference order. When two or more agents are of equal
preference, they are enclosed in parentheses. For example, “r1: h3 ( h2 h4 ) h1” is a
preference list of resident r1 such that h3 is the top choice, h2 and h4 are the second choice
with equal preference, and h1 is the last choice.

An assignment is a subset of R × H. For an assignment M and a resident r, let M(r)
be the set of hospitals h such that (r, h) ∈ M . Similarly, for a hospital h, let M(h) be the
set of residents r such that (r, h) ∈ M . An assignment M is called a matching if |M(r)| ≤ 1
for each resident r and |M(h)| ≤ u(h) for each hospital h. For a matching M , a resident r

STACS 2022



31:6 Maximally Satisfying Lower Quotas in the Hospitals/Residents Problem with Ties

is called matched if |M(r)| = 1 and unmatched otherwise. If (r, h) ∈ M , we say that r is
assigned to h and h is assigned r. We sometimes abuse notation M(r) to denote the unique
hospital where r is assigned. A hospital h is called deficient or sufficient if |M(h)| < ℓ(h) or
ℓ(h) ≤ |M(h)| ≤ u(h), respectively. Additionally, a hospital h is called full if |M(h)| = u(h)
and undersubscribed otherwise.

A resident–hospital pair (r, h) is called a blocking pair for a matching M (or we say that
(r, h) blocks M) if (i) r is either unmatched in M or prefers h to M(r) and (ii) h is either
undersubscribed in M or prefers r to at least one resident in M(h). A matching is called
stable if it admits no blocking pair. Recall that the satisfaction ratio of a hospital h (which
is also called the score of h) in a matching M is defined by sM (h) = min{1, |M(h)|

ℓ(h) }, where
we define sM (h) = 1 if ℓ(h) = 0. The total satisfaction ratio (also called the score) of a
matching M , is the sum of the scores of all hospitals, that is, s(M) =

∑
h∈H sM (h). The

Hospitals/Residents problem with Ties to Maximally Satisfy Lower Quotas, denoted by
HRT-MSLQ, is to find a stable matching M that maximizes the score s(M). The optimal
score of an instance I is denoted by OPT(I).

Note that if |R| ≥
∑

h∈H u(h), then all hospitals are full in any stable matching (recall
that preference lists are complete). Hence, all stable matchings have the same score |H|,
and the problem is trivial. Therefore, throughout this paper, we assume |R| <

∑
h∈H u(h).

In this setting, all residents are matched in any stable matching as an unmatched resident
forms a blocking pair with an undersubscribed hospital.

3 Algorithm

In this section, we present our algorithm Double Proposal for HRT-MSLQ along with
a few of its basic properties. Its strategy-proofness and approximation factors for several
models are presented in the following sections.

Our proposed algorithm Double Proposal is based on the resident-oriented Gale–
Shapley algorithm but allows each resident r to make proposals twice to each hospital. Here,
we explain the ideas underlying this modification.

Let us apply the ordinary resident-oriented Gale–Shapley algorithm to HRT-MSLQ,
which starts with an empty matching M := ∅ and repeatedly updates M by a proposal-
acceptance/rejection process. In each iteration, the algorithm takes a currently unassigned
resident r and lets her propose to the hospital at the top of her current list. If the preference
list of resident r contains ties, the proposal order of r depends on how to break the ties in
her list. Hence, we need to define a priority rule for hospitals that are in a tie. Recall that
our objective function is given by s(M) =

∑
h∈H min{1, |M(h)|

ℓ(h) }. This value immediately
increases by 1

ℓ(h) if r proposes to a deficient hospital h, whereas it does not increase if r

proposes to a sufficient hospital h′, although the latter may cause a rejection of some resident
if h′ is full. Therefore, a naive greedy approach is to let r first prioritize deficient hospitals
over sufficient hospitals and then prioritize those with small lower quotas among deficient
hospitals. This approach is useful for attaining a larger objective value for some instances;
however, it is not enough to improve the approximation factor in the sense of worst case
analysis, as a deficient hospital h in some iteration might become sufficient later and it might
be better if r had made a proposal to a hospital other than h in the tie. Furthermore, this
naive approach sacrifices strategy-proofness as demonstrated in Appendix A.2. This failure
of strategy-proofness follows from the adaptivity of this tie-breaking rule, in the sense that
the proposal order of each resident is affected by the other residents’ behaviors.
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In our algorithm Double Proposal, each resident can propose twice to each hospital.
If the head of r’s preference list is a tie when r makes a proposal, then the hospitals to which
r has not yet proposed are prioritized. This idea was inspired by an algorithm of [17]. Recall
that each hospital h has an upper quota u(h) and a lower quota ℓ(h). In our algorithm,
we use ℓ(h) as a dummy upper quota. Whenever |M(h)| < ℓ(h), a hospital h accepts any
proposal. If h receives a new proposal from r when |M(h)| ≥ ℓ(h), then h checks whether
there is a resident in M(h) ∪ {r} who has not been rejected by h so far. If such a resident
exists, h rejects that resident regardless of the preference of h. Otherwise, we apply the usual
acceptance/rejection operation, i.e., h accepts r if |M(h)| < u(h) and otherwise replaces
r with the worst resident r′ in M(h). Roughly speaking, the first proposals are used to
implement priority on deficient hospitals, and the second proposals are used to guarantee
stability.

Formally, our algorithm Double Proposal is described in Algorithm 1. For convenience,
in the preference list, a hospital h that is not included in any tie is regarded as a tie consisting
of h only. We say that a resident is rejected by a hospital h if she is chosen as r′ in Lines 12
or 17. To argue strategy-proofness, we need to make the algorithm deterministic. To this
end, we remove arbitrariness using indices of agents as follows. If there are multiple hospitals
(resp., residents) satisfying the condition to be chosen at Lines 5 or 7 (resp., at Lines 12
or 17), take the one with the smallest index (resp., with the largest index). Furthermore,
when there are multiple unmatched residents at Line 3, take the one with the smallest index.
In this paper, Double Proposal always refers to this deterministic version.

Algorithm 1 Double Proposal.

Input: An instance I where each h ∈ H has quotas [ℓ(h), u(h)].
Output: A stable matching M .

1: M := ∅
2: while there is an unmatched resident do
3: Let r be any unmatched resident and T be the top tie of r’s list.
4: if T contains a hospital to which r has not proposed yet then
5: Let h be such a hospital with minimum ℓ(h).
6: else
7: Let h be a hospital with minimum ℓ(h) in T .
8: end if
9: if |M(h)| < ℓ(h) then

10: Let M := M ∪ {(r, h)}.
11: else if there is a resident in M(h) ∪ {r} who has not been rejected by h then
12: Let r′ be such a resident (possibly r′ = r).
13: Let M := (M ∪ {(r, h)}) \ {(r′, h)}.
14: else if |M(h)| < u(h) then
15: M := M ∪ {(r, h)}.
16: else {i.e., when |M(h)| = u(h) and all residents in M(h) ∪ {r} have been rejected by

h once}
17: Let r′ be any resident that is worst in M(h) ∪ {r} for h (possibly r′ = r).
18: Let M := (M ∪ {(r, h)}) \ {(r′, h)}.
19: Delete h from r′’s list.
20: end if
21: end while
22: Output M and halt.

STACS 2022
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▶ Lemma 1. Algorithm Double Proposal runs in linear time and outputs a stable
matching.

Proof. Clearly, the size of the input is O(|R||H|). As each resident proposes to each hospital
at most twice, the while loop is iterated at most 2|R||H| times. At Lines 5 and 7, a
resident prefers hospitals with smaller ℓ(h), and hence we need to sort hospitals in each tie
in an increasing order of the values of ℓ. Since 0 ≤ ℓ(h) ≤ n for each h ∈ H, ℓ has only
|R| + 1 possible values. Therefore, the required sorting can be done in O(|R||H|) time as a
preprocessing step using a method like bucket sort. Thus, our algorithm runs in linear time.

Observe that a hospital h is deleted from r’s list only if h is full. Additionally, once h

becomes full, it remains so afterward. Since each resident has a complete preference list and
|R| <

∑
h∈H u(h), the preference list of each resident never becomes empty. Therefore, all

residents are matched in the output M .
Suppose, to the contrary, that M is not stable, i.e., there is a pair (r, h) such that (i) r

prefers h to M(r) and (ii) h is either undersubscribed or prefers r to at least one resident
in M(h). By the algorithm, (i) implies that r is rejected by h twice. Just after the second
rejection, h is full, and all residents in M(h) have once been rejected by h and are no worse
than r for h. Since M(h) is monotonically improving for h, at the end of the algorithm h is
still full and no resident in M(h) is worse than r, which contradicts (ii). ◀

In addition to stability, the output of Double Proposal satisfies the following property,
which plays a key role in the analysis of the approximation factors in Section 5.

▶ Lemma 2. Let M be the output of Double Proposal, r be a resident, and h and h′ be
hospitals such that h =r h′ and M(r) = h. Then, we have the following conditions:

(i) If ℓ(h) > ℓ(h′), then |M(h′)| ≥ ℓ(h′).
(ii) If |M(h)| > ℓ(h), then |M(h′)| ≥ ℓ(h′).

Proof. (i) Since h =r h′, ℓ(h) > ℓ(h′), and r is assigned to h in M , the definition of the
algorithm (Lines 4, 5, and 7) implies that r proposed to h′ and was rejected by h′ before
she proposes to h. Just after this rejection occurred, |M(h′)| ≥ ℓ(h′) holds. Since |M(h′)| is
monotonically increasing, we also have |M(h′)| ≥ ℓ(h′) at the end.

(ii) Since |M(h)| > ℓ(h), the value of |M(h)| changes from ℓ(h) to ℓ(h)+1 at some moment
of the algorithm. By Line 11 of the algorithm, at any point after this, M(h) consists only
of residents who have once been rejected by h. Since M(r) = h for the output M , at some
moment r must have made the second proposal to h. By Line 4 of the algorithm, h =r h′

implies that r has been rejected by h′ at least once, which implies that |M(h′)| ≥ ℓ(h′) at
this moment and also at the end. ◀

Lemma 2 states some local optimality of Double Proposal. Suppose that we reassign r

from h to h′. Then, h may lose and h′ may gain score, but Lemma 2 says that the objective
value does not increase. To see this, note that if the objective value were to increase, h′ must
gain score and h would either not lose score or lose less score than h′ would gain. The former
and the latter are the “if” parts of (ii) and (i), respectively, and in either case the conclusion
|M(h′)| ≥ ℓ(h′) implies that h′ cannot gain score by accepting one more resident.

4 Strategy-proofness

An algorithm is called strategy-proof for residents if it gives residents no incentive to misrep-
resent their preferences. The precise definition follows. An algorithm that always outputs
a matching deterministically can be regarded as a mapping from instances of HRT-MSLQ
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into matchings. Let A be an algorithm. We denote by A(I) the matching returned by A

for an instance I. For any instance I, let r ∈ R be any resident, who has a preference ⪰r.
Additionally, let I ′ be an instance of HRT-MSLQ which is obtained from I by replacing ⪰r

with some other ⪰′
r. Furthermore, let M := A(I) and M ′ := A(I ′). Then, A is strategy-proof

if M(r) ⪰r M ′(r) holds regardless of the choices of I, r, and ⪰′
r.

In the setting without ties, it is known that the resident-oriented Gale–Shapley algorithm
is strategy-proof for residents (even if preference lists are incomplete) [8,15,32]. Furthermore,
it has been proved that no algorithm can be strategy-proof for both residents and hospitals [32].
As in many existing papers on two-sided matching, we use the term “strategy-proofness” to
refer to strategy-proofness for residents.

Before proving the strategy-proofness of Double Proposal, we remark that the exact
optimization and strategy-proofness are incompatible even if a computational issue is set
aside. The following fact is demonstrated in Appendix A.1.

▶ Proposition 3. There is no algorithm that is strategy-proof for residents and returns an
optimal solution for any instance of HRT-MSLQ. The statement holds even for the uniform
and marriage models.

This proposition implies that, if we require strategy-proofness for an algorithm, then we
should consider approximation even in the absence of computational constraints. Now, we
show the strategy-proofness of our approximation algorithm.

▶ Theorem 4. Algorithm Double Proposal is strategy-proof for residents.

Proof. To establish the strategy-proofness, we show that an execution of Double Proposal
for an instance I can be described as an application of the resident-oriented Gale–Shapley
algorithm to an auxiliary instance I∗. The construction of I∗ is based on the proof of
Lemma 8 in [17]; however, we need nontrivial extensions.

Let R and H be the sets of residents and hospitals in I, respectively. An auxiliary instance
I∗ is an instance of the Hospitals/Residents problem that has neither lower quotas nor ties
and allows incomplete lists. The set of residents in I∗ is R′ ∪ D, where R′ = {r′

1, r′
2, . . . , r′

n}
is a copy of R and D = { dj,p | j = 1, 2, . . . , m, p = 1, 2, . . . , u(hj) } is a set of

∑m
j=1 u(hj)

dummy residents. The set of hospitals in I∗ is H◦ ∪H•, where each of H◦ = {h◦
1, h◦

2, . . . , h◦
m}

and H• = {h•
1, h•

2, . . . , h•
m} is a copy of H. Each hospital h◦

j ∈ H◦ has an upper quota u(hj)
while each h•

j ∈ H• has an upper quota ℓ(hj).
For each resident r′

i ∈ R′, her preference list is defined as follows. Consider any tie
(hj1hj2 · · · hjk

) in ri’s preference list. Let j′
1 j′

2 · · · j′
k be a permutation of j1 j2 · · · jk such that

ℓ(hj′
1
) ≤ ℓ(hj′

2
) ≤ · · · ≤ ℓ(hj′

k
), and for each j′

p, j′
q with ℓ(hj′

p
) = ℓ(hj′

q
), p < q implies j′

p < j′
q.

We replace the tie (hj1hj2 · · · hjk
) with a strict order of 2k hospitals h•

j′
1
h•

j′
2

· · · h•
j′

k
h◦

j′
1
h◦

j′
2

· · · h◦
j′

k
.

The preference list of r′
i is obtained by applying this operation to all ties in ri’s list, where

a hospital not included in any tie is regarded as a tie of length one. The following is an
example of the correspondence between the preference lists of ri and r′

i:

ri : ( h2 h4 h5 ) h3 ( h1 h6 ) where ℓ(h4) = ℓ(h5) < ℓ(h2) and ℓ(h6) < ℓ(h1)
r′

i : h•
4 h•

5 h•
2 h◦

4 h◦
5 h◦

2 h•
3 h◦

3 h•
6 h•

1 h◦
6 h◦

1

For each j = 1, 2, . . . , m, the dummy residents dj,p (p = 1, 2, . . . , u(hj)) have the same list:

dj,p : h◦
j h•

j
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For j = 1, 2, . . . , m, let P (hj) be the preference list of hj in I and let Q(hj) be the strict
order on R′ obtained by replacing residents ri with r′

i and breaking ties so that residents
in the same tie of P (hj) are ordered in ascending order of indices. The preference lists of
hospitals h◦

j and h•
j are then defined as follows:

h◦
j : Q(hi) dj,1 dj,2 · · · dj,u(hj)

h•
j : dj,1 dj,2 · · · dj,u(hj) r′

1 r′
2 · · · r′

n

Let M be the output of Double Proposal applied to I. For each resident ri, there are
two cases: she has never been rejected by M(ri), and she had been rejected once by M(ri)
and accepted upon her second proposal. Let M1 be the set of pairs (ri, M(ri)) of the former
case and M2 be that of the latter. Note that |M1(hj)| ≤ ℓ(hj) for any hj . Define a matching
M∗ of I∗ by

M∗ = { (r′
i, h◦

j ) | (ri, hj) ∈ M2 } ∪ { (r′
i, h•

j) | (ri, hj) ∈ M1 }
∪ { (dj,p, h◦

j ) | 1 ≤ p ≤ u(hj) − |M2(hj)| }
∪ { (dj,p, h•

j) | u(hj) − |M2(hj)| < p ≤ min{u(hj) − |M(hj)| + ℓ(hj), u(hj)} } .

Then, the following holds.

▶ Lemma 5. M∗ coincides with the output of the resident-oriented Gale–Shapley algorithm
applied to the auxiliary instance I∗.

We now complete the proof of the theorem.
Given an instance I, suppose that some resident ri changes her preference list from

⪰ri to some other ⪰′
ri

. Let J be the resultant instance. Define an auxiliary instance J∗

from J in the manner described above. Let N be the output of Double Proposal for
J and N∗ be a matching defined from N as we defined M∗ from M . By Lemma 5, the
resident-oriented Gale–Shapley algorithm returns M∗ and N∗ for I∗ and J∗, respectively.
Note that all residents except r′

i have the same preference lists in I∗ and J∗ and so do all
hospitals. Therefore, by the strategy-proofness of the Gale–Shapley algorithm, we have
M∗(r′

i) ⪰r′
i

N∗(r′
i). By the definitions of I∗, J∗, M∗, and N∗, we have M(ri) ⪰ri

N(ri),
which means that ri is no better off in N than in M with respect to her true preference ⪰ri .
Thus, Double Proposal is strategy-proof for residents. ◀

5 Maximum Gaps and Approximation Factors of Double Proposal

In this section, we analyze the approximation factors of our algorithm, together with the
maximum gaps Λ for the four models mentioned in Section 1. All results in this section are
summarized in the first and second rows of Table 1 in Section 1.

For an instance I of HRT-MSLQ, let OPT(I) and WST(I) respectively denote the
maximum and minimum scores over all stable matchings of I, and let ALG(I) be the score
of the output of our algorithm Double Proposal. Then, WST(I) can be the score of the
output of the algorithm that first breaks ties arbitrarily and then applies the Gale–Shapley
algorithm for the resultant instance (see the full version [13]). Therefore, the maximum gap
is equivalent to the approximation factor of such arbitrary tie-breaking GS algorithm.

For a model I (i.e., subfamily of problem instances of HRT-MSLQ), let

Λ(I) = max
I∈I

OPT(I)
WST(I) and APPROX(I) = max

I∈I

OPT(I)
ALG(I) .
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In subsequent subsections, we provide exact values of Λ(I) and APPROX(I) for the four
fundamental models. Recall our assumptions that preference lists are complete, |R| <∑

h∈H u(h), and ℓ(h) ≤ u(h) ≤ n for each h ∈ H.

5.1 General Model
Let IGen denote the family of all instances of HRT-MSLQ, which we call the general model.

▶ Proposition 6. The maximum gap for the general model satisfies Λ(IGen) = n + 1.
Moreover, this equality holds even if residents have a master list, and preference lists of
hospitals contain no ties.

We next obtain the value of APPROX(IGen). Recall that ϕ is a function of n = |R| defined
by ϕ(1) = 1, ϕ(2) = 3

2 , and ϕ(n) = n(1 + ⌊ n
2 ⌋)/(n + ⌊ n

2 ⌋) for n ≥ 3.

▶ Theorem 7. The approximation factor of Double Proposal for the general model
satisfies APPROX(IGen) = ϕ(n).

We provide a full proof in the full version of the paper [13]. Here, we present the ideas to
show the inequality OPT(I)

ALG(I) ≤ ϕ(n) for any I ∈ IGen.

Proof sketch of Theorem 7. Let M be the output of the algorithm and N be an optimal
stable matching. We define vectors pM and pN on R, which distribute the scores to residents.
For each h ∈ H, among residents in M(h), we set pM (r) = 1

ℓ(h) for min{ℓ(h), |M(h)|} residents
and pM (r) = 0 for the remaining |M(h)|−min{ℓ(h), |M(h)|} residents. Similarly, we define pN

from N . We write pM (A) :=
∑

r∈A pM (r) for any A ⊆ R. By definition, pM (M(h)) = sM (h)
and pN (N(h)) = sN (h) for each h ∈ H, and hence s(M) =

∑
h∈H sM (h) = pM (R) and

s(N) =
∑

h∈H sN (h) = pN (R). Thus, pN (R)
pM (R) = s(N)

s(M) , which needs to be bounded.
Let R′ = {r′

1, r′
2, . . . , r′

n} be a copy of R and identify pN as a vector on R′. Consider a
bipartite graph G = (R, R′; E) whose edge set is E := { (ri, r′

j) ∈ R × R′ | pM (ri) ≥ pN (r′
j) }.

For any matching X ⊆ E in G, denote by ∂(X) ⊆ R ∪ R′ the set of vertices covered by
X. Then, pM (R ∩ ∂(X)) ≥ pN (R′ ∩ ∂(X)) holds since each edge (ri, r′

j) ∈ X ⊆ E satisfies
pM (ri) ≥ pN (r′

j). In addition, the value of pN (R′ \ ∂(X)) − pM (R \ ∂(X)) is bounded from
above by |R \ ∂(X)| = |R| − |X| = n − |X| because pN (r′) ≤ 1 for any r′ ∈ R′ and pM (r) ≥ 0
for any r ∈ R. Therefore, the existence of a matching X ⊆ E with large |X| helps us bound
pN (R)
pM (R) . Indeed, the following claim plays a key role in our proof: (⋆) The graph G admits a
matching X ⊆ E with |X| ≥ ⌈ n

2 ⌉.
In the proof in the full version [13], the required bound of pN (R)

pM (R) is obtained using a
stronger version of (⋆). Here we concentrate on showing (⋆). To this end, we divide R into

R+ := { r ∈ R | M(r) ≻r N(r) } ,

R− := { r ∈ R | N(r) ≻r M(r) or [M(r) =r N(r), pN (r) > pM (r)] } , and
R0 := { r ∈ R | M(r) =r N(r), pM (r) ≥ pN (r) } .

Let R′
+, R′

−, R′
0 be the corresponding subsets of R′. We show the following two properties.

There is an injection ξ+ : R+ → R′ such that pM (r) = pN (ξ+(r)) for every r ∈ R+.
There is an injection ξ− : R′

− → R such that pN (r′) = pM (ξ−(r′)) for every r′ ∈ R′
−.

We first define ξ+. For each hospital h with M(h) ∩ R+ ̸= ∅, there is r ∈ M(h) ∩ R+ with
h = M(r) ≻r N(r). By the stability of N , hospital h is full in N . Then, we can define an
injection ξh

+ : M(h) ∩ R+ → N(h) so that pM (r) = pN (ξh
+(r)) for all r ∈ M(h) ∩ R+. By

regarding N(h) as a subset of R′ and taking the direct sum of ξh
+ for all hospitals h with

M(h) ∩ R+ ̸= ∅, we obtain a required injection ξ+ : R+ → R′.
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We next define ξ−. For each hospital h′ with N(h′)∩R′
− ≠ ∅, any r ∈ N(h′)∩R′

− satisfies
either h′ = N(r) ≻r M(r) or [h′ = N(r) =r M(r), pN (r) > pM (r)]. If some r ∈ N(h′) ∩ R′

−
satisfies the former, the stability of M implies that h′ is full in M . If all r ∈ N(h′)∩R′

− satisfy
the latter, they all satisfy 0 ̸= pN (r) = 1

ℓ(h′) , and hence |N(h′) ∩ R′
−| ≤ ℓ(h′). Additionally,

pN (r) > pM (r) implies either pM (r) = 0 or ℓ(h′) < ℓ(h), where h := M(r). Observe that
pM (r) = 0 implies |M(h)| > ℓ(h). By Lemma 2, each of ℓ(h′) < ℓ(h) and |M(h)| > ℓ(h)
implies |M(h′)| ≥ ℓ(h′) ≥ |N(h′) ∩ R′

−|. Then, in any case, we can define an injection
ξh′

− : N(h′) ∩ R′
− → M(h′) such that pN (r′) = pM (ξh′

− (r′)) for all r′ ∈ N(h′) ∩ R′
−. By taking

the direct sum of ξh′

− for all hospitals h′ with M(h′) ∩ R− ̸= ∅, we obtain ξ− : R′
− → R.

Let G∗ = (R, R′; E∗) be a bipartite graph (possibly with multiple edges), where E∗ is
the disjoint union of E+, E−, and E0, defined by

E+ := { (r, ξ+(r)) | r ∈ R+ } , E− := { (ξ−(r′), r′) | r ∈ R′
− } , and

E0 := { (r, r′) | r ∈ R0 and r′ is the copy of r } .

Figure 1 A graph G∗ = (R, R′; E∗).

See Fig. 1 for an example. By the definitions of ξ+, ξ−, and R0, any edge (r, r′) in E∗

belongs to E, and hence any matching in G∗ is also a matching in G. Since ξ+ : R+ → R′

and ξ− : R′
− → R are injections, we observe that every vertex in G∗ is incident to at most

two edges in E∗. Then, E∗ is decomposed into paths and cycles, and hence E∗ contains a
matching of size at least ⌈ |E∗|

2 ⌉. Since |E∗| = |R+| + |R−| + |R0| = n, this means that there
exists a matching X ⊆ E with |X| ≥ ⌈ n

2 ⌉, as required. ◀

5.2 Uniform Model
Let IUniform denote the family of uniform problem instances of HRT-MSLQ, where an instance
is called uniform if upper and lower quotas are uniform. In the rest of this subsection, we
assume that ℓ and u are nonnegative integers to represent the common lower and upper
quotas, respectively, and let θ := u

ℓ (≥ 1). We call IUniform the uniform model.

▶ Proposition 8. The maximum gap for the uniform model satisfies Λ(IUniform) = θ.
Moreover, this equality holds even if preference lists of hospitals contain no ties.

▶ Theorem 9. The approximation factor of Double Proposal for the uniform model
satisfies APPROX(Iuniform) = θ2+θ−1

2θ−1 .

Note that θ2+θ−1
2θ−1 < θ whenever ℓ < u because θ − θ2+θ−1

2θ−1 = (θ−1)2

2θ−1 > 0. Here is the ideas to
show that OPT(I)

ALG(I) ≤ θ2+θ−1
2θ−1 holds for any I ∈ IUniform.
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Proof sketch of Theorem 9. Let M be the output of the algorithm and N be an optimal
stable matching, and assume s(M) < s(N). Consider a bipartite graph (R, H; M ∪N), which
may have multiple edges. Take an arbitrary connected component, and let R∗ and H∗ be the
sets of residents and hospitals, respectively, contained in it. It is sufficient to bound sN (H∗)

sM (H∗) .
Let H0 be the set of all hospitals in H∗ having strictly larger scores in N than in M , i.e.,

H0 := { h ∈ H∗ | sN (h) > sM (h) } .

Using this, we sequentially define

R0 := { r ∈ R∗ | N(r) ∈ H0 } , H1 := { h ∈ H∗ \ H0 | ∃r ∈ R0 : M(r) = h } ,

R1 := { r ∈ R∗ | N(r) ∈ H1 } , H2 := H∗ \ (H0 ∪ H1), and R2 := R∗ \ (R0 ∪ R1).

Figure 2 Example with [ℓ, u] = [2, 3].

See Fig. 2 for an example. We use scaled score functions vM := ℓ ·sM and vN := ℓ ·sN and
write vM (A) =

∑
h∈A vM (h) for any A ⊆ H. We bound vN (H∗)

vM (H∗) , which equals sN (H∗)
sM (H∗) . Note

that the set of residents assigned to H∗ is R∗ in both M and N . The scores differ depending
on how efficiently those residents are assigned. In this sense, we may think that a hospital h

is assigned residents “efficiently” in M if |M(h)| ≤ ℓ and is assigned “most redundantly” if
|M(h)| = u. Since vM (h) = min{ℓ, |M(h)|}, we have vM (h) = |M(h)| in the former case and
vM (h) = 1

θ · |M(h)| in the latter. We show that hospitals in H1 provide us with advantage of
M ; any hospital in H1 is assigned residents either efficiently in M or most redundantly in N .

For any h ∈ H0, sM (h) < sN (h) implies |M(h)| < ℓ. Then, the stability of M implies
M(r) ⪰r N(r) for any r ∈ R0. Hence, the following {H≻

1 , H=
1 } defines a bipartition of H1:

H≻
1 := { h ∈ H1 | ∃r ∈ M(h) ∩ R0 : h ≻r N(r) } ,

H=
1 := { h ∈ H1 | ∀r ∈ M(h) ∩ R0 : h =r N(r) } .

For each h ∈ H≻
1 , as some r satisfies h ≻r N(r), the stability of N implies that h is

full, i.e., h is assigned residents most redundantly, in N . Note that any h ∈ H≻
1 satisfies

vM (h) ≥ vN (h) because h ̸∈ H0, and hence vM (h) = vN (h) = ℓ. Then, |N(h)| = u =
θ · vN (h) = (θ − 1) · vM (h) + vN (h) for each h ∈ H≻

1 . Additionally, for any h ∈ H∗, we have
|N(h)| ≥ min{ℓ, |N(h)|} = vN (h). Since |R∗| =

∑
h∈H∗ |N(h)|, we have

|R∗| ≥ (θ − 1) · vM (H≻
1 ) + vN (H≻

1 ) + vN (H∗ \ H≻
1 ) = (θ − 1) · vM (H≻

1 ) + vN (H∗).
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For each h ∈ H=
1 , there is r ∈ R0 with M(r) = h =r N(r). As r ∈ R0, the hospital

h′ := N(r) belongs to H0, and hence |M(h′)| < ℓ. Then, Lemma 2(ii) implies |M(h)| ≤ ℓ, i.e.,
h is assigned residents efficiently in M . Note that any h ∈ H0 satisfies vM (h) < vN (h) ≤ ℓ.
Then, the number of residents assigned to H0 ∪ H=

1 is vM (H0 ∪ H=
1 ). Additionally, the

number of residents assigned to H≻
1 ∪ H2 is at most θ · vM (H≻

1 ∪ H2). Thus, we have

|R∗| ≤ vM (H0 ∪ H=
1 ) + θ · vM (H≻

1 ∪ H2) = vM (H∗) + (θ − 1) · vM (H≻
1 ∪ H2).

From these two estimations of |R∗|, we obtain vN (H∗) ≤ (θ − 1) · vM (H2) + vM (H∗), which
gives us a relationship between vM (H∗) and vN (H∗). Combining this with other inequalities,
we can obtain the required upper bound of vN (H∗)

vM (H∗) . ◀

5.3 Marriage Model
Let IMarriage denote the family of instances of HRT-MSLQ, in which each hospital has an
upper quota of 1. We call IMarriage the marriage model. By definition, [ℓ(h), u(h)] in this
model is either [0, 1] or [1, 1] for each h ∈ H. Since this is a one-to-one matching model,
the union of two stable matchings can be partitioned into paths and cycles. By applying
standard arguments used in other stable matching problems, we can obtain Λ(IMarriage) = 2
and APPROX(IMarriage) = 1.5.

As shown in Example 15 in Appendix A.1, there is no strategy-proof algorithm that can
achieve an approximation factor better than 1.5 even in the marriage model. Therefore, we
cannot improve this ratio without sacrificing strategy-proofness.

5.4 Resident-side Master List Model
Let IR-ML denote the family of instances of HRT-MSLQ in which all residents have the same
preference list. This is well studied in literature on stable matching [7,21–23]. We call IR-ML
the R-side ML model. We have already shown in Proposition 6 that Λ(IR-ML) = n + 1. Our
algorithm, however, solves this model exactly.

Note that this is not the case for the hospital-side master list model, which is NP-hard
as shown in Theorem 14 below. This difference highlights the asymmetry of two sides in
HRT-MSLQ.

6 Hardness Results

We obtain various hardness and inapproximability results for HRT-MSLQ. First, we show
that HRT-MSLQ in the general model is inapproximable and that we cannot hope for a
constant factor approximation.

▶ Theorem 10. HRT-MSLQ is inapproximable within a ratio n
1
4 −ϵ for any ϵ > 0 unless

P=NP.

Proof. We show the theorem by way of a couple of reductions, one from the maximum
independent set problem (MAX-IS ) to the maximum 2-independent set problem (MAX-2-IS ),
and the other from MAX-2-IS to HRT-MSLQ.

For an undirected graph G = (V, E), a subset S ⊆ V is an independent set of G if no
two vertices in S are adjacent. S is a 2-independent set of G if the distance between any
two vertices in S is at least 3. MAX-IS (resp. MAX-2-IS) asks to find an independent set
(resp. 2-independent set) of maximum size. Let us denote by IS(G) and IS2(G), respectively,
the sizes of optimal solutions of MAX-IS and MAX-2-IS for G. We assume without loss
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of generality that input graphs are connected. It is known that, unless P=NP, there is no
polynomial-time algorithm, given a graph G1 = (V1, E1), to distinguish between the two
cases IS(G1) ≤ |V1|ϵ1 and IS(G1) ≥ |V1|1−ϵ1 , for any constant ϵ1 > 0 [34].

Now, we give the first reduction, which is based on the NP-hardness proof of the
minimum maximal matching problem [18]. Let G1 = (V1, E1) be an instance of MAX-
IS. We construct an instance G2 = (V2, E2) of MAX-2-IS as V2 = V1 ∪ E1 ∪ {s} and
E2 = { (v, e) | v ∈ V1, e ∈ E1, e is incident to v in G1 } ∪ { (s, e) | e ∈ E1 }, where s is a new
vertex not in V1 ∪ E1. For any two vertices u and v in V1, if their distance in G1 is at least
2 then that in G2 is at least 4. Hence, any independent set in G1 is also a 2-independent
set in G2. Conversely, for any 2-independent set S in G2, S ∩ V1 is independent in G1 and
|S ∩ (V2 \ V1)| ≤ 1. These facts imply that IS2(G2) is either IS(G1) or IS(G1) + 1. Since
|E2| = 3|E1| ≤ 3|V1|2, distinguishing between IS2(G2) ≤ |E2|ϵ2 and IS2(G2) ≥ |E2|1/2−ϵ2 for
some constant ϵ2 > 0 would imply distinguishing between IS(G1) ≤ |V1|ϵ1 and IS(G1) ≥
|V1|1−ϵ1 for some constant ϵ1 > 0, which in turn implies P=NP.

We then proceed to the second reduction. Let G2 = (V2, E2) be an instance of MAX-
2-IS. Let n2 = |V2|, m2 = |E2|, V2 = {v1, v2, . . . , vn2}, and E2 = {e1, e2, . . . , em2}. We
construct an instance I of HRT-MSLQ as follows. For an integer p which will be determined
later, define the set of residents of I as R = { ri,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p }, where ri,j

corresponds to the jth copy of vertex vi ∈ V2. Next, define the set of hospitals of I as H ∪ Y ,
where H = { hk | 1 ≤ k ≤ m2 } and Y = { yi,j | 1 ≤ i ≤ n2, 1 ≤ j ≤ p }. The hospital hk

corresponds to the edge ek ∈ E2 and the hospital yi,j corresponds to the resident ri,j .
We complete the reduction by giving preference lists and quotas in Fig. 3, where 1 ≤

i ≤ n2, 1 ≤ j ≤ p, and 1 ≤ k ≤ m2. Here, N(vi) = { hk | ek is incident to vi in G2 }
and “( N(vi) )” denotes the tie consisting of all hospitals in N(vi). Similarly, N(ek) =
{ ri,j | ek is incident to vi in G2, 1 ≤ j ≤ p } and “( N(ek) )” is the tie consisting of all
residents in N(ek). The notation “· · · ” denotes an arbitrary strict order of all agents missing
in the list.

ri,j : ( N(vi) ) yi,j · · · hk [0, p]: ( N(ek) ) · · ·

yi,j [1, 1]: ri,j · · ·

Figure 3 Preference lists of residents and hospitals.

We will show that OPT(I) = m2 + p · IS2(G2). To do so, we first see a useful prop-
erty. Let G3 = (V3, E3) be the subdivision graph of G2, i.e., V3 = V2 ∪ E2 and E3 =
{ (v, e) | v ∈ V2, e ∈ E2, e is incident to v in G2 }. Then, the family I2(G2) of 2-independent
sets in G2 is characterized as follows [18]:

I2(G2) =
{

V2 \
⋃

e∈M

{endpoints of e}

∣∣∣∣∣ M is a maximal matching of G3

}
.

In other words, for a maximal matching M of G3, if we remove all vertices matched in M

from V2, then the remaining vertices form a 2-independent set of G2, and conversely, any
2-independent set of G2 can be obtained in this manner for some maximal matching M of
G3.

Let S be an optimal solution of G2 in MAX-2-IS, i.e., a 2-independent set of size
IS2(G2). Let M̃ be a maximal matching of G3 corresponding to S. We construct a
matching M of I as M = M1 ∪ M2, where M1 = { (ri,j , hk) | (vi, ek) ∈ M̃, 1 ≤ j ≤ p }
and M2 = { (ri,j , yi,j) | vi ∈ S, 1 ≤ j ≤ p }. It is not hard to see that each resident is
matched by exactly one of M1 and M2 and that no hospital exceeds its upper quota.
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We then show the stability of M . Each resident matched by M1 is assigned to a first-
choice hospital, so if there were a blocking pair, then it would be of the form (ri,j , hk) where
M(ri,j) = yi,j and hk ∈ N(vi). Then, vi is unmatched in M̃ . Additionally, all residents
assigned to hk (if any) are its first choice; hence, hk must be undersubscribed in M . Then, ek

is unmatched in M̃ . hk ∈ N(vi) implies that there is an edge (vi, ek) ∈ E3, so M̃ ∪ {(vi, ek)}
is a matching of G3, contradicting the maximality of M̃ . Hence, M is stable in I.

A hospital in H has a lower quota of 0, so it obtains a score of 1. The number of hospitals
in Y that are assigned a resident is |M2| = p|S| = p ·IS2(G2). Hence, s(M) = m2 +p ·IS2(G2).
Therefore, we have OPT(I) ≥ s(M) = m2 + p · IS2(G2).

Conversely, let M be an optimal solution for I, i.e., a stable matching of score OPT(I).
Note that each ri,j is assigned to a hospital in N(vi) ∪ {yi,j} as otherwise (ri,j , yi,j) blocks
M . We construct a bipartite multi-graph GM = (V2, E2; F ) where V2 = {v1, v2, . . . , vn2} and
E2 = {e1, e2, . . . , em2} are identified as vertices and edges of G2, respectively, and an edge
(vi, ek)j ∈ F if and only if (ri,j , hk) ∈ M . Here, a subscript j of edge (vi, ek)j is introduced to
distinguish the multiplicity of edge (vi, ek). The degree of each vertex of GM is at most p, so
by Kőnig’s edge coloring theorem [24], GM is p-edge colorable and each color class c induces
a matching Mc (1 ≤ c ≤ p) of GM . Each Mc is a matching of G3, and by the stability of M ,
we can show that it is in fact a maximal matching of G3. Let M∗ be a minimum cardinality
one among them.

Define a subset S of V2 by removing vertices that are matched in M∗ from V2. By the above
observation, S is a 2-independent set of G2. We will bound its size. Note that s(M) = OPT(I)
and each hospital in H obtains the score of 1, so M assigns residents to OPT(I) − m2
hospitals in Y and each such hospital receives one resident. There are pn2 residents in
total, among which OPT(I) − m2 ones are assigned to hospitals in Y , so the remaining
pn2 − (OPT(I) − m2) ones are assigned to hospitals in H. Thus F contains this number of
edges and so |M∗| ≤ pn2−(OPT(I)−m2)

p = n2 − OPT(I)−m2
p . Since |V2| = n2 and exactly one

endpoint of each edge in M∗ belongs to V2, we have that |S| = |V2| − |M∗| ≥ OPT(I)−m2
p .

Therefore IS2(G2) ≥ |S| ≥ OPT(I)−m2
p . Hence, we obtain OPT(I) = m2 + p · IS2(G2) as

desired. Now we let p = m2, and have OPT(I) = m2(1 + IS2(G2)).
Therefore distinguishing between OPT(I) ≤ (m2)1+δ and OPT(I) ≥ (m2)3/2−δ for some

δ would distinguish between IS2(G2) ≤ (m2)ϵ2 and IS2(G2) ≥ (m2)1/2−ϵ2 for some constant
ϵ2 > 0. Since n = |R| = n2m2 ≤ (m2)2, a polynomial-time n1/4−ϵ-approximation algorithm
for HRT-MSLQ can distinguish between the above two cases for a constant δ < ϵ/2. Hence,
the existence of such an algorithm implies P=NP. This completes the proof. ◀

We then show inapproximability results for the uniform model and the marriage model
under the Unique Games Conjecture (UGC).

▶ Theorem 11. Under UGC, HRT-MSLQ in the uniform model is not approximable within
a ratio 3θ+3

2θ+4 − ϵ for any positive ϵ.

▶ Theorem 12. Under UGC, HRT-MSLQ in the marriage model is not approximable within
a ratio 9

8 − ϵ for any positive ϵ.

Furthermore, we give two examples showing that HRT-MSLQ is NP-hard even in very
restrictive settings. The first is a marriage model for which ties appear in one side only.

▶ Theorem 13. HRT-MSLQ in the marriage model is NP-hard even if there is a master
preference list of hospitals and ties appear only in preference lists of residents or only in
preference lists of hospitals.
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The other is a setting like the capacitated house allocation problem, where all hospitals
are indifferent among residents.

▶ Theorem 14. HRT-MSLQ in the uniform model is NP-hard even if all the hospitals quotas
are [1, 2], preferences lists of all residents are strict, and all hospitals are indifferent among
all residents (i.e., there is a master list of hospitals consisting of a single tie).
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A Examples

We give some examples that show the difficulty of implementing strategy-proof algorithms
for HRT-MSLQ.

A.1 Incompatibility between Optimization and Strategy-proofness
Here, we provide two examples that show that solving HRT-MSLQ exactly is incompatible
with strategy-proofness even if we ignore computational efficiency. This incompatibility holds
even for restrictive models. The first example is an instance in the marriage model in which
ties appear only in preference lists of hospitals. The second example is an instance in the
uniform model in which ties appear only in preference lists of residents.

▶ Example 15. Consider the following instance I, consisting of two residents and three
hospitals.

r1: h1 h2 h3 h1 [1, 1]: (r1 r2)

r2: h1 h2 h3 h2 [1, 1]: (r1 r2)

h3 [0, 1]: (r1 r2)

Then, I has two stable matchings M1 = {(r1, h1), (r2, h2)} and M2 = {(r1, h2), (r2, h1)},
both of which have a score of 3. Let A be an algorithm that outputs a stable matching with
a maximum score for any instance of HRT-MSLQ. Without loss of generality, suppose that
A returns M1. Let I ′ be obtained from I by replacing r2’s list with “r2 : h1 h3 h2.” Then,
the stable matchings for I ′ are M3 = {(r1, h1), (r2, h3)} and M4 = {(r1, h2), (r2, h1)}, which
have scores 2 and 3, respectively. Since A should return one with a maximum score, the
output is M4, in which r2 is assigned to h1 while she is assigned to h2 in M1. As h1 ≻r3 h2
in her true preference, this is a successful manipulation for r2, and A is not strategy-proof.

Example 15 shows that there is no strategy-proof algorithm for HRT-MSLQ that attains an
approximation factor better than 1.5 even if there are no computational constraints.

▶ Example 16. Consider the following instance I, consisting of six residents and five hospitals,
where the notation “· · · ” at the tail of lists denotes an arbitrary strict order of all agents
missing in the list.

r1: h1 · · · h1 [1, 2]: r1 r2 r6 · · ·

r2: h3 h2 h1 · · · h2 [1, 2]: r2 · · ·

r3: h3 · · · h3 [1, 2]: r3 r4 r2 · · ·

r4: (h3 h4) · · · h4 [1, 2]: r5 r4 r6 · · ·

r5: h4 · · · h5 [1, 2]: r6 · · ·

r6: h4 h5 h1 · · ·
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This instance I has two stable matchings

M1 = {(r1, h1), (r2, h2), (r3, h3), (r4, h3), (r5, h4), (r6, h4)}, and
M2 = {(r1, h1), (r2, h3), (r3, h3), (r4, h4), (r5, h4), (r6, h5)},

both of which have a score of 4. Let A be an algorithm that outputs an optimal solution for
any input. Then, A must output either M1 or M2.

Suppose that A outputs M1. Let I ′ be an instance obtained by replacing r2’s preference
list from “r2 : h3 h2 h1 · · · ” to “r2 : h3 h1 h2 · · · .” Then, the stable matchings I ′ admits are
M2 and M ′

1 = {(r1, h1), (r2, h1), (r3, h3), (r4, h3), (r5, h4), (r6, h4)}, whose score is 3. Hence,
A must output M2. As a result, r2 is assigned to a better hospital h3 than h2, so this
manipulation is successful.

If A outputs M2, then r6 can successfully manipulate the result by changing her list from
“r6 : h4 h5 h1 · · · ” to “r6 : h4 h1 h5 · · · .” The instance obtained by this manipulation has two
stable matchings M1 and M ′

2 = {(r1, h1), (r2, h3), (r3, h3), (r4, h4), (r5, h4), (r6, h1)}, whose
score is 3. Hence, A must output M1 and r6 is assigned to h4, which is better than h5.

A.2 Absence of Strategy-proofness in Adaptive Tie-breaking
We provide an example that demonstrates that introducing a greedy tie-breaking method
into the resident-oriented Gale–Shapley algorithm in an adaptive manner destroys the
strategy-proofness for residents.

▶ Example 17. Consider the following instance I (in the uniform model), consisting of five
residents and three hospitals.

r1: h1 h2 h3 h1 [1, 2]: r2 r3 r5 r1 r4

r2: (h1 h2) h3 h2 [1, 2]: r2 r4 r1 r3 r5

r3: h1 h2 h3 h3 [1, 2]: r1 r2 r3 r4 r5

r4: h2 h1 h3

r5: h1 h3 h2

Consider an algorithm that is basically the resident-oriented Gale–Shapley algorithm and
let each resident prioritize deficient hospitals over sufficient hospitals among the hospitals
in the same tie. Its one possible execution is as follows. First, r1 proposes to h1 and is
accepted. Next, as h1 is sufficient while h2 is deficient, r2 proposes to h2 and is accepted.
If we apply the ordinary Gale–Shapley procedure afterward, then we obtain a matching
{(r1, h3), (r2, h2), (r3, h1), (r4, h2), (r5, h1)}. Thus, r1 is assigned to her third choice.

Let I ′ be an instance obtained by swapping h1 and h2 in r1’s preference list. If we run
the same algorithm for I ′, then r1 first proposes to h2. Next, as h2 is sufficient while h1 is
deficient, r2 proposes to h1 and is accepted. By applying the ordinary Gale–Shapley procedure
afterward, we obtain {(r1, h2), (r2, h1), (r3, h1), (r4, h2), (r5, h3)}. Thus, r1 is assigned to a
hospital h2, which is her second choice in her original list. Therefore, this manipulation is
successful for r1.
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