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—— Abstract

An accountable distributed system provides means to detect deviations of system components

from their expected behavior. It is natural to complement fault detection with a reconfiguration
mechanism, so that the system could heal itself, by replacing malfunctioning parts with new ones.
In this paper, we describe a framework that can be used to implement a large class of accountable
and reconfigurable replicated services. We build atop the fundamental lattice agreement abstraction
lying at the core of storage systems and cryptocurrencies.

Our asynchronous implementation of accountable lattice agreement ensures that every violation
of consistency is followed by an undeniable evidence of misbehavior of a faulty replica. The system
can then be seamlessly reconfigured by evicting faulty replicas, adding new ones and merging
inconsistent states. We believe that this paper opens a direction towards asynchronous “self-healing”
systems that combine accountability and reconfiguration.
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1 Introduction

There are two major ways to deal with failures in distributed computing;:

Fault-tolerance: we anticipate failures by investing into replication and synchronization, so
that the system’s correctness is not affected by faulty components.

Accountability: we detect failures a posteriori and raise undeniable evidences against faulty
components.

Accountability in computing has been proposed for generic distributed systems [18,19] as

a mechanism to detect deviations of system nodes from the algorithms they are assigned

with. It has been shown that a large class of deviations of a given process from a given

deterministic algorithm can be detected by maintaining a set of witnesses that keep track of

all observable actions of the process and check them against the algorithm [20].

The generic approach can be, however, very expensive in practice and one may look for a
more tractable, application-specific accountability mechanism. Indeed, instead of pursuing
the ambitious goal of detecting deviations from the assigned algorithm, we might want to
only care about deviations that violate the specification of the problem the algorithm is
trying to solve.
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The idea has been successfully employed in the context of Byzantine Consensus [11]. The
accountable version of consensus guarantees correctness as long as the number of faulty
processes does not exceed some fixed f. But if correctness is violated, e.g., honest processes
take different decisions, then at least f + 1 Byzantine processes are presented with undeniable
evidences of misbehavior. This is not surprising: a decision in a typical f-resilient consensus
protocol must receive acknowledgements from a quorum of processes, and any two quorums
must have at least f + 1 processes in common [31]. The fact that two processes took different
decisions implies that at least f+ 1 processes in the intersection of the corresponding quorums
equivocated, i.e., acknowledged conflicting decision values. Assuming that every decision is
provided with a cryptographic certificate containing the set of signed acknowledgements from
a quorum of processes, we can immediately construct a desired evidence. Polygraph [11], a
recent accountable Byzantine Consensus protocol, naturally builds upon the classical PBFT
protocol [9]. One may ask — okay, we have detected a faulty process, but what should we
do next? Ideally, we would like to reconfigure the system by evicting the faulty process and
reinitializing the system state.

Reconfigurable replicated systems [15,16,21,35] allow the users to dynamically update the
set of replicas. It has been recently shown that reconfiguration can be implemented in purely
asynchronous environments [1,2,15,21,23,35]. The idea was first applied to (read-write)
storage systems [1,2,15], and then extended to max-registers [21,35] and more general lattice
data types, first in the crash-fault context [23] and then for Byzantine failures [24].

Contribution. In this paper, we propose a framework that can be used to implement a
large class of replicated services that are both accountable and reconfigurable. Following
recent work on reconfiguration [21,23,24], we build atop the fundamental lattice agreement
abstraction. Lattice agreement [4,14] (LA) takes arbitrary inputs in a lattice (a partially
ordered set equipped with a join operator) and returns outputs that are (1) joins of the
inputs, and (2) ordered with respect to the lattice partial order. The LA abstraction is
weaker than consensus and can be implemented in an asynchronous system.

Lattice agreement appears to be a perfect match for both desired features: accountability
and reconfiguration. Indeed, a quorum-based LA implementation enables detection of
misbehaving parties: as soon as two correct users learn two incomparable values, they also
obtain a proof of misbehavior of all replicas that signed both values. Furthermore, the
very process of reconfiguration can be represented as agreement defined on a lattice of
configurations [21,23]. These two observations inspire the design of our system.

We propose an accountable and reconfigurable implementation that reaches agreement
on a joint lattice: an object lattice (defining the current state of the replicated object) and
a configuration lattice (defining the current configuration of the replicas). Assuming that
the number of failures is less than half of the system size, our implementation is alive. It is
also safe if only benign (crash) failures occur. Once safety is violated, i.e., two correct users
learn two incomparable object states, some Byzantine replicas are inevitably confronted with
an undeniable proof of misbehavior. The system is then seamlessly reconfigured by evicting
the detected replicas, adding new ones and merging inconsistent states. Once the state is
merged, the system comes back to providing safety and liveness, as long as no new replicas
exhibits Byzantine behavior. Eventually all Byzantine replicas are detected and the system
comes back to maintaining both liveness and safety.

Outdated configurations are harmless. Our system prevents users from accessing outdated
configurations with the use of forward-secure digital signature scheme [5,13]. A member of
each new configuration is assigned a new secret key. Furthermore, honest members of an old
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configuration are expected to destroy their old keys before moving to a new one. Thus, if
they are later compromised, they will not be able to serve clients’ requests, and the remaining
Byzantine replicas will not constitute a quorum.

On Byzantine clients. For simplicity, our solution assumes that service replicas are subject to
Byzantine failures, but clients are benign: they can only fail by crashing. This assumption has
already been made in designs of fault-tolerant storage systems [29]. In our case, it precludes
the cases when a Byzantine client brings the system into a compromised configuration or
slows down the system by issuing excessive reconfiguration requests. In Appendix A we also
describe a one-shot version of accountable lattice agreement, without reconfiguration, in which
both clients and replicas can be Byzantine. Marrying reconfiguration and accountability in a
long-lived service that can be accessed by Byzantine clients remains an important challenge.
One way to address it is to assume an external access control mechanism [36] ensuring that
only “authentic” configurations are accepted as inputs to the reconfiguration procedure. We
discuss this issue in more detail in Section 6.

Summary. Altogether, we believe that this paper opens a new area of asynchronous “self-
healing” systems that combine accountability and reconfiguration. Such a system either
preserves safety and liveness or preserves liveness and compensates safety violations with
eventual detection of Byzantine replicas. It also exports a reconfiguration interface that
allows the clients to replace compromised replicas with new, correct ones. In this paper, we
show that both mechanisms, accountability and reconfiguration, can be implemented in a
purely asynchronous (in the modern parlance — responsive) way.

Road map. The rest of the paper is organized as follows. In Section 2, we introduce our
system model. In Section 3, we state the problem of reconfigurable and accountable lattice
agreement (RALA) and in Section 4.1, we describe our RALA implementation analysing its
correctness. In Section 5, we discuss related work, and in Section 6 we present an overview
of possible improvements and interesting open questions. In Appendix A, we present our
one-shot accountable lattice agreement (A1LA) that assumes that both clients and replicas
can be Byzantine and analyse its correctness.

2 System Model

We assume that the system is asynchronous and that it is composed by a set II of processes
that communicate over reliable message-passing channels exchanging authenticated messages.
These processes are split into a set X of replicas that maintain a replicated service and a set
T" of clients that use the service. We assume the existence of a global clock with range N,
but the processes do not have access to it.

In each run, a process can be: (1) correct (C) if it faithfully follows the algorithm it
is assigned with, (2) benign (B) if it can only deviate from the algorithm by prematurely
stopping taking steps of its algorithm, or (3) malicious (M) or Byzantine if it skips steps or
takes a step not prescribed by its algorithm.

We assume a forward-secure digital signature scheme [5,6,13,28]. In the scheme, the
public key of a process p is fixed while its secret key sk¥ evolves with its timestamp t, a natural
number bounded by a fixed natural parameter 7', usually taken sufficiently large (e.g., 264),
to accommodate any possible system lifetime. For any ¢, ¢ <’ < T, the process can update
its secret key and obtain skl, from sk?. However, we assume that it is computationally
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infeasible to “downgrade” the key to a lower timestamp, from skl to sk?. In particular, once
a process updates its timestamp from ¢ to ¢’ > ¢, and then destroys sk?, it is no longer able
to sign messages with timestamp less than ', even if it turns Byzantine later.

More formally, we model a forward-secure signature scheme as an oracle which associates
every process p with a timestamp ¢,. The oracle provides process p with three operations:
(1) UpdateFSKeys(t) sets t, to ¢ if ¢ is greater than the current value of ¢, but less or equal
to T' (2) FSSign(m, t) returns a signature s for message m and timestamp ¢, assuming ¢ > ¢,;
(3) FSVerify(m,t, s, q) returns true iff the message m provides a signature s generated by a
valid call FSSign(m,t) by process q.

We also make use of a weak broadcast primitive that ensures that once a correct process
broadcasts a message, all correct processes eventually receive it, e.g., via a gossip mechanism.
Notice that, unlike reliable broadcast [7,8], we only require the primitive to disseminate
messages broadcast by correct processes, not to make them eventually agree on the set of
delivered ones.

We assume that all clients are benign. For the sake of simplicity, we assume that once a
correct process learns an output, it eventually proposes a new input, and that there are only
finitely many correct clients.!

3 Reconfigurable and Accountable Lattice Agreement: Specification

A lattice is a partially ordered set where any pair of elements has a unique join, or supremum,
and a unique meet, or infinum. We denote O the object lattice corresponding to the data type
the user wishes to implement using the system (such as a counter, a set or commit-abort)
and K the configuration lattice.

A configuration k is a finite set of pairs (o, inout)|o € X, inout € {+,—}. Intuitively,
(0, +) € k means that o has been earlier added to the configuration and (o, —) means that
o has been removed from it. We say that a replica o is a member of & if (¢, +) € k and
(0,—) ¢ k.

|| is defined as the cardinality of the set of pairs representing the configuration; x.excluded
returns all the replicas excluded from it; x.included that were at some moment included
on it; k.members := k.included\k.excluded. We only consider well-formed configurations k:
k.excluded € k.included (a replica can be removed only if it has been previously added).

In the reconfigurable accountable (long-lived) lattice agreement (RALA) abstraction,
defined on a product lattice (£,Z) = (O x K,£9 x £K), a client ¢; periodically proposes
inputs (¢, k)|t € O,k € K to replicas in X and obtains, as output, a value v € L.

Additionally, the client locally maintains an accusation set «; = (A, P) where A X is
a set of replicas and P € P is a proof (here P is the set of proofs). The system provides
a Boolean map verify-proof : (2" x P) — {true, false} that can be used by any process or
third party to verify a proof. For example, a proof can be a set of messages that, for every
replica in r € A, contains one or more messages signed by r that cannot be sent by r in any
execution of our algorithm.

When a client ¢ receives an input v from the upper-level application we say that ¢ proposes
v. When ¢ outputs a value v € L, we say that ¢ learns (or decides) v. When c sets its
accusation set to (A, P), we say that ¢ accuses A with P.

1 QOur specification can be easily refined to accommodate infinitely many correct clients under the
assumption that the number of concurrently proposed values is bounded.
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Given a client ¢;, let I = ((uf,K}), (1},K%), ) denote the sequence of inputs and
T = (vf, v}, ) denote the sequence of outputs. If for some client ¢; and k € N, k], # s},
i.e., ¢; proposes to change the configuration, we say that c¢; issues a reconfiguration request.
Now a RALA system must ensure the following properties:

Validity. Each value v}, k > 0, learned by a client ¢; is a join of the k-prefix of its input
sequence and some values from other client’s inputs.

Completeness. If a correct client learns a value that is incomparable with a value learnt
by another correct client then it eventually accuses some replicas it had not yet accused
before.

Vei,c;j € CnT,Vk,le N, — (U,ZC Cv vl & Ulk) , where ¢; learns v} at time ¢

= W >t: A'[t] < A'[t]
Accusation Stability. The accusation sets monotonically increase.
VeseDot, ' e Nyt <t/ 2 A'[t] € AY[Y]

Accuracy. If a client accuses a set of replicas A, then it has a valid proof against each
replica in A:

Ve; € T, Vt € N, verify-proof(A'[t], P'[t])

Authenticity. It is computationally infeasible to accuse a benign process, i.e., to
construct P € P s.t. verify-proof( A, P) = true and A n B # (.
Agreement. The correct clients eventually agree on the replicas they accuse.

VteN, Ve, c; e, It eN, ¢/ >t: A'[t] € A[t']

Liveness. If the system reconfigures only finitely many times, every value proposed by a
correct client is eventually included in the value learned by every correct client.

Ve; e T, Vk e N,Ve; e I, 30 e N|uk & )

A configuration & is said to be active (at a given moment of time t) if (1) it is a join
of configurations proposed and learnt by time ¢, (2) and no other correct process learns
a configuration k’|k = k' by time ¢. Liveness guarantees of our algorithm rely upon the
following condition:

Configuration availability: For all times ¢, any configuration that is active at all ¢ > ¢
contains a majority of correct processes.

This is a conventional assumption in asynchronous reconfigurable systems [1,23,35]. The
intuition behind it is the following. If an active configuration remains active forever, i.e., it is
never superseded, then it should contain enough correct replicas. On the other hand, a once
active but later superseded configuration may contain arbitrarily many Byzantine processes:
the clients’ requests will be served by the new configuration.

Notice that the properties above imply that either the values learnt by correct processes
are comparable or eventually some Byzantine replicas are detected. If from some point on,
no more Byzantine faults take place, we ensure that all new learnt values are comparable.
Our requirement of finite number of reconfigurations is standard in the corresponding
literature [2,23,35] and, in fact, can be shown to be necessary [34]. In practice, we ensure
liveness in “sufficiently long” time intervals without reconfiguration.
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Notice that the choice of new configurations to propose is left entirely to the clients, as
long as the condition above is satisfied. In Section 6, we discuss possible reconfiguration
strategies the clients may want to choose. However, it is important to emphasize that
regardless of this strategy, the system does not allow the accused replicas to affect
the system’s safety and liveness anymore.

4 Reconfigurable and Accountable Lattice Agreement:
Implementation

4.1 Algorithm

Our RALA implementation is given in Algorithm 2, Algorithm 3, and Algorithm 4. We
assume that every method in the algorithms is executed by the process sequentially, without
being interrupted by other methods of this process. Moreover, we consider that the processes
ignore accused replicas, messages with invalid signatures and messages whose signatures do
not match the configuration content.

Algorithm 1 Example of Verify-proof Operation.

operation Verify-Proof(accusation(A,P))

1 foreach Process be A do

2 let M SG be the union of all messages by b in P

3 Check if every m in M SG has a valid signature continue if not

Get all ACKs in M SG and check if they are comparable, continue if not

~

5 Get all Proposal in M SG and check if they obey the description continue if not
6 Get all Decision in M SG and check if their ACKs hold continue if not

7 return false

8 return true

Overview. The clients propose values to the replicas which can either accept them by issuing
an ACK or reject them by issuing a NACK. Once enough responses are gathered by the
proposing client, it can accordingly either proceed to learn the value it proposed or to refine
its proposal so it contains the missing information replicas raised. If no malicious replica
tries to deviate, the values learnt are comparable and no accusations are raised. On the other
hand, once a replica induces clients to learn incomparable values it is eventually detected
and an accusation against it is produced.

The following definitions and boolean map are used in the algorithm and proofs of
correctness:

» Definition 1 (S satisfies configurations). Let S be a set of replicas, k a configuration, and
D a set of configurations. We say that S satisfies D upon « iff, for each d € D, S contains
a magority of replicas in each configuration in the set k U Ud.

» Definition 2 (Pending Configurations). A configurations is called pending as long as a client
has received it but has not yet included it in the most recent decided configuration (lines 38
and 44). This set is comprised of the current client proposal, as well as configurations coming

from ACKs (line 13 and 24).

The map verify_maj: (X x K x 25) — {true, false} where verify_maj(S, k, D) = true iff
S satisfies D upon k. This map is used to indicate that the client gathered all the responses
it needed.
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Ledgers. Every client maintains a local ledger, called ackL, reserved to keep track of signed
ACK messages the client received and their senders. Also, clients and replicas maintain two
more ledgers to register the values introduced in the system by their origin processes called
objL and confL. By indexing a ledger [ by a process p (I[p]), one can recover all the values
signed by p present in [.

Algorithm 2 Reconfigurable Accountable Lattice Agreement: Code for client ¢ part 1.

Local variables:

status, initially waiting { Boolean indicating status: waiting or proposing }

dest, initially ¥ { Set of replicas that must be contacted }

nackBool, initially false { Flag indicating whether a NACK has already been received or not }
activePropNb, initially —1 { Index of the current active proposal }

activeOutNb, initially 0 { Index of the next value to be learnt }

propV, initially L { Value currently being proposed }

objL, initially empty { Ledger matching object values in the system to their original proposer }
confL, initially containing Initial Conf signed by ¢ { Analogous to objL for configurations }
ackL, initially empty { Ledger matching acks to the replicas that issued them }

pendConf, initially ¢ { Set of pending configurations }

RESPSet, initially ¢§ { Set of replicas that responded }

lastDec, initially (L,intialConfig) { Last decided value }

Input:

inBuffer  { Values received by the client from an external source to insert in the system }
Outputs:

outV, initially L { Array of values learnt by the client }

accusation, initially ¢§ { Set of accusations issued by the client }

upon status = waiting AND inBuffer # L

9 extract and sign objects from inBuffer and include them to objL

10 extract and sign configurations from inBuffer and include them to confL
11 Propose

operation Propose

12 propV := extractLedger(objL, confL, c)

13 include propV.conf to pendConfSet

14 status := proposing

15 activePropNb := activePropNb + 1

16 clear ackL[activeOutNb]

17 clear RESPSet

18 nackBool := false

19 dest := propV.conf.included — lastDec.conf.excluded

20 multicast (PROPOSAL, (objL, confL,lastDec, active PropNb)) to replicas in dest

upon verify _maj(RESPSet,last Dec.conf, pendConf) = true
21 if nackBool = true then Propose else Decide

upon receive (ACK, (HASH (propV),lastDec, pendConf’, activePropNb)»
from replica » AND status = proposing AND r ¢ ackL AND r € dest
if propV.conf € pedingConf’ then

N
N

23 append r’s ACK message to ackL[activeOutNb]

24 include elements from pendConf’ which aren’t subset of lastDec.conf in pendConfSet
25 append r to RESPSet

26 else (ACCUSATION, (accusation))

27 include (r, ACK) to accusation

28 broadcast (ACCUSATION, (accusation))

OPODIS 2021
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Issuing a proposal. A client starts in a waiting status and listens for values in its inBuffer to
include them in a new proposal (lines 9 and 10), not taking any values from the buffer while
the executing a proposal. Additionally, it must also listen for decisions made by other clients
(lines 45 and 46) including them in its proposal, preventing malicious replicas from keeping
values from it. It then proceeds to multicast its propV to the replicas that might satisfy the
pending configurations (variable dest) it has seen upon the last decided configuration it came
by (line 20) and waits for them to respond.

Algorithm 3 Reconfigurable Accountable Lattice Agreement: Code for client ¢ part 2.

upon receive (NACK, (HASH (propV), AobjL', AconfL’, activePropNb)) from replica 7
AND status = proposing AND r € dest

20 mackV := extractLedger(AobjL’, AconfL', r)

30  if nackV E propV return

31 objL := objL U objL’

s2  confL := confL U confL’

33 nackBool := true

34 append r to RESPSet

operation Decide

35 outV[activeOutNb] := propV

3s  broadcast (DECISION, (objL, confL, ackL[activeOutNb]))
a7 lastDec := outV[activeOutNb]

38 pendConfSet := (J

30 activeOutNb := activeOutNb + 1

40  Status := waiting

upon receive { DECISION, (objL’, confL’, ackL')) from client ¢’
a1 outV' := extractLeger(objL’, confL")

42 lastDecOld := lastDec

43 lastDec := lastDec U outV’

44 Eliminate from pendConf subsets of lastDec.conf

15 objL := objL' U objL

16 confL := confL’ U confL

ar Vi | outV' & outV[i] && outV[i] & outV’

48 let M = {m|m € ackL[i] && m € ackL' && m ¢ accusation}
19 foreach m € M do include (m, {ackL[m], ackL’[m])}) to accusation
50 if |M| > 0 then broadcast {ACCUSATION, (accusation))

51 if lastDec.conf & lastDecOld.conf v outV’' & propV then Propose

operation extractLedger (objL’, confL’, sender)
sz if 3 process p € objL’ or confL’ with invalid signature then

53 accusation := accusation U {(sender, getMSG(objL") U getMSG(confL’)}
54 broadcast (ACCUSATION, (accusation))

55 return ¢J

s6  let received Value = (u[v|3p, objL'[p] = v], uc|3Ip, confL’[p] = c])

57 return received Value

upon receive (ACCUSATION, (accusation’)) from client g

s AProof .= &

59  foreach process b accused in accusation’ with p and who isn’t present in accusation do
60 include (b, p) in AProof

61 if AProof # (J then

62 accusation := accusation U AProof

o
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Treating Client Proposals. The replicas that receive the proposal extract the value from
the ledger (line 65). This makes use of the operation eztractLedger which verifies that all the
values came from existing clients, making these values valid. Each replica then checks whether
the new proposal contains the join values it has already seen proposed (repV'), in which case
they ack it (line 73) or not, in which case they nack it (line 76), sending a complement to
the ledger allowing the client to update its proposal. Benign replicas always forward their
keys, destroying the old ones in the process, before responding to clients (line 72).

A replica cannot provide a client with outdated information because the timestamp used
in the signature of its messages is only valid if it has been forwarded to the content it proposes
and cannot be rolled back. Moreover, if a benign replica sees that a client isn’t aware of
a decision it has already come by, it will ignore the client proposal until it includes newer
information (line 63).

The function getMSG (line 53) takes a set of input values and returns the set of proposals
or NACK messages that originally contained them.

Algorithm 4 Reconfigurable Accountable Lattice Agreement: Code for replica r.

Local variables:

objL, initially empty { Object Ledger }

confL, initially empty { Configuration Ledger }

repV initially L { Value held by replica }

pendConf, initially ¥ { Pending Configurations }
lastDec, initially 1

signature timestamp ¢, initially |Initial Configuration|

sign all outgoing messages m with FSSign(m,t.)

upon receive (PROPOSAL, (objL’, confL’, lastDec’, activePropNb')) from client ¢
63  if lastDec’  lastDec then return

6a  lastDec := lastDec U lastDec’

65 propV' := extractLedger(objL’, confL")

66 objL := objL U objL’

67 confL := confL U confL’

6s if repV E propV’ then

69 repV := propV’

70 Include propV’.conf to pendConf

71 t, := |repV.conf|

72 UpdateFSKeysDestroyOld(t,)

73 send (ACK, (HASH (propV’),lastDec, pendCon f, activePropNb')) to c

74 else

75 repV = repV L propV’

76 send {(NACK, (HASH (propV'), objL — objL’, confL — confL’, activePropNb')) to ¢

upon receive {( DECISION, (objL’, confL’, ackL')) from client c
77 lastDec := lastDecyu extractLedger (objL’, confL’)

7s  Eliminate from pendConf subsets of lastDec.conf

70 objL := objL’ U objL

so  confL := confL’ U confL

operation extractLedger (objL’, confL’)
s1 let receivedValue = (u[v|3p, objL'[p] = v], u[c|Ip, confL[p] = c])
82 return received Value

25:9
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Treating Replica Responses. Once the client gets an ACK from a replica, it includes the
message in its ackL (line 23) and registers the replica in its response set (line 25). Upon
reception of a NACK, a client complements its objL and confL (lines 31 and 32) and sets the
NACK bool, including the replica in its response set (lines 33 and 34). When a client sees
that it has gathered responses from a set of replicas that satisfies the pending configurations,
it proceeds to check its NACK bool, as the presence of a NACK means that it cannot decide
yet, and if it is false, then it will decide (line 21).

Each proposal gets a unique number (activePropNb) so clients consider only reactions to
the active proposal, ignoring late messages they might receive. Clients also ignore messages
coming from replicas they already accused, as well as messages signed using timestamps that
do not correspond to the configuration in their contents.

A client either waits until it gets responses from a set of replicas (keeping track via RE-
SPSet) that satisfies the pending configurations or until it gets a newer decided configuration
from another client broadcast. It is necessary to get majorities in all those combinations of
system configurations because the client doesn’t know if any combination of them was learnt
by another client and must be sure that it has reached all possible active configurations that
can be learnt before it learns one by itself. Furthermore, the state transfer from one replica
to another will be directly provided by this procedure, as once a client learns a configuration
the object information is already in place, which is one of the advantages of this solution. It
becomes then necessary to keep track of the state of the system by including information
about which was the last combination of decisions seen (variable lastDec), as well as pending
configurations (variable pendConf).

Issuing and Treating Convictions. We keep an array of all output values instead of just the
current one, as well as their corresponding ack ledgers, indexing the currently active entry
by activeOutNb. This is necessary in order to monitor that after long delays in the network
when two correct clients re-establish their connection they can still check if in this period
their decisions were comparable (line 47) and be able to accuse processes that lead them to
this incomparable state. The clients broadcast their accusations as well as their decisions.

They avoid issuing redundant accusations by keeping track of the variations (line 61). If a
process gets new misbehavior proofs, it includes them on its accusations (line 62). Algorithm 1
shows one possible implementation of the verify proof function, checking that every issued
accusation was made after a process tried to forge some signature, issued incoherent ACKs,
tried to input values in the system in discordance with the specification or decided something
without gathering the necessary acknowledgements.

Once a replica is accused by a client, the client begins to ignore the replica and the
underlining application can for instance issue a reconfiguration effectively replacing it by one
or more new replicas. The clients will then eventually learn comparable values once they join
their values and the malicious replicas that try to subvert the system have been accused.

4.2 Correctness

We claim that the system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 solves RALA.

» Definition 3. Let’s define a state s as being the value of the variable propV. A state
s is considered as decided when the first client ¢ in state s broadcasts its decision at line
36. Moreover, we define s.lastDec and s.pendConf as being the value of these variables on
the client ¢ at the moment of the state decision. Finally, s.confComb is defined as the set
{s.lastDec.conf U {ud}|d € 25-pendConf}
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» Definition 4. We define then a graph G5 whose vertices are the different decided states of
the system plus the state (L, initConf) and whose edges exist between two vertices s and s’
whenever the following is true:

s— s sz s As.confes .confComb

» Lemma 5. At every benign replica, the variables repV, pendConf and lastDec are mono-
tonically increasing.

Proof. The variable repV is updated in line 69 where it is assigned a new value which has
passed the test in line 68, so the new value contains the old one.

The other updates involving these variables in lines 64, 70 and 75 are joins where one of
the operands is the old value, so the new values must contain the old ones. |

» Lemma 6. Given decided states 5, s and s’ in G, if s — s, § — &', §'.lastDec E s,
s.lastDec € s’ then either there is an edge between s and s’ or there is an accusation.

Proof. From 5 — s, 5 — s’ we derive that:
5.conf € s.confComb A 5.conf € s'.confComb = 5.conf € s.confComb n s'.confComb

Because the decision only happens after triggering the event that begins in line 21, then
it must be that the clients who decided these states got responses from replicas forming
majority quorums in S.conf and they must therefore intersect in at least a replica r.

Let us assume for now that r followed the algorithm and behaved correctly. Let cs be the
client that decided s and ¢, be the client that decided s’. Assuming w.l.o.g that the replica
r served the client ¢, before, using lemma 5 and observing that s and s’ correspond to the
first decision of these values, s = s’. Since s’ passed the test in line 63 in replica r, it means
that s.lastDec C s'.last Dec, moreover because we assume that s’.lastDec = s we can write:

s.conf = U({s.lastDec.conf} v s.pendConf) & U({s'.lastDec.conf} v s.pendConf)

= Ll({s.conf} v s.pendConf) = s.conf

Furthermore, we see that all pending configurations in s which weren’t included by the last
decided configuration in s’ must also be pending in s’ because this information will be carried
by the ack from replica r (line 24). We can then conclude:

s.conf = U({s’.lastDec.conf} v s.pendConf)

= U({s’.lastDec.conf} U {u € s.pendConf,u & s .lastDec.conf})

€ U({S’.lastDec.conf} U C|C E §'.pendConf) = s'.confComb

Hence there is an edge from s to s’ in G in this scenario.

If the replica r didn’t follow the algorithm and issued incomparable acks, then this event
shall be detected and r will be accused. r’s ack would be included in both clients ¢, and cg
ackLs being broadcasted together with the decision in line 36 and once the first client who
decided and then received the other’s decision go through the line 49, it would find r in both
ledgers and accuse it. <
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» Lemma 7. All the infinite connected components of G5 have the same suffiz.

Proof. Because we assume that the system reconfigures finitely many times, there is a point
where all the decisions regarding the different configurations the system passed, which were
broadcasted in line 36, arrive at the recipient clients. They’ll process the configuration
included in these values in lines 43 and 46 and the use of the forward secure signatures will
prevent them from processing messages of old replicas. As a result, all the clients will have
the same values of lastDec.conf and propV.conf, meaning that they will contact the same
replicas and need to form a majority in the active configuration lastDec.conf u propV.conf,
where their majority quorums intersect. As seen in the lemma 6 if any malicious replica tries
to issue incomparable ACKs the clients will accuse it and ignore it from this point onward.
They will retry the proposal again until none of the replicas in the majority misbehaves.
Let s be the first state decided in this scenario, henceforth the states will be totally
ordered, sharing the same configuration which is always present in confComb, meaning that
these states are connected. The graph will only have one growing branch and any new state
s’ in it will be a descendant of s. Finally, this branch will be infinite because the clients
never stop proposing. |

» Theorem 8. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides validity.

Proof. The learnt values by a client are extracted from its objL and confL.

First of all, at the beginning of a proposal (lines 9 and 10) the value present in the input
buffer is read and put into the ledgers, guaranteeing that when a decision is made it shall be
present in it.

These variables are then modified in lines 31, 32, 45 and 46. Therefore, the values included
into them either come from the the input buffer from the clients where they are signed,
or they are informed by replicas nacking proposals after passing signature check or by the
information of other clients decisions. We conclude that the values learnt always come from
the client input buffers directly or indirectly. <

» Theorem 9. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides completeness.

Proof. By Lemma 6 whenever the graph G forks an accusation is issued. Each fork occur
when clients learn incomparable values and are caused by some Byzantine replicas which are
eventually accused. Moreover, by lemma 7 the system cannot be indefinetely forked and all
inconsistencies are eventually solved when no new accusations are issued as required. |

» Theorem 10. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides accusation stability.

Proof. The set of accused processes is reflected in the algorithm via the variable accusation
which is updated in lines 49, 53, and 62. As one can see, they either attribute this variable to
a union where one of the operands is itself or a value is explicitly included into it. Therefore
after each update the new value must, by the definition of these operations, include the old
one, i.e. the accusation set is monotonically increasing. |

» Theorem 11. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides accuracy.
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Proof. An accusation can be issued in lines 27, 49 and 53.

The first occurrence checks that an ACK was issued but the matching configuration
proposal wasn’t added by the replying replica as described in line 70 meaning that this line
was skipped.

On the second case the decision of incomparable values requires, as seen earlier in
Theorem 9 that a replica acknowledged incomparable values, violating the behavior of
benign replicas described by Lemma 5. Having two ACKs signed by the same process
for incomparable values characterises an irrefutable proof and the replicas in it will be a
non-empty subset of M because they deviated from the algorithm.

On the last case a replica will be caught providing fake signatures, which is by itself
enough to accuse it as this is a clear deviation from the algorithm. |

» Theorem 12. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides authenticity.

Proof. Authenticity follows from our cryptographic assumptions and specially from three
properties of the underlying system:

Every message contains a signature;

The signatures can be verified by a public function;

No other process can sign on behalf of a correct process. |

» Theorem 13. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 provides agreement.

Proof. Agreement is a direct consequence of the dissemination of information implemented in
the algorithm. Every accusation is broadcasted and every message containing an accusation
is analysed and, if it holds, leads to the adoption of the information (line 60). |

» Theorem 14. The system of processes implemented following Algorithm 2, Algorithm 3,
Algorithm 4 is alive.

Proof. After the system stops reconfiguring a client can eventually receive the last configura-
tion learnt by the broadcast in line 36 and then every client will contact active configurations.
If a client then starts a proposal when receiving a value v in its input buffer, a majority
of replicas in all active configurations shall eventually respond to this client, following our
majority of correct replicas assumption in this scenario. From this point on, all decisions
shall contain v as the last learnt configuration all clients contact will provide a majority of
replicas that include v. |

5 Related Work

Accountability. In security terms, accountability ensures that the actions of an entity can
be traced solely to that entity. This supports non-repudiation, deterrence, fault detection,
and after-action recovery. Distributed computing research has focused for many years on
failure detection [10,12,22], a close relative of accountability. By identifying faulty processes,
failure detection helps the distributed computation to make progress in a safe way, but does
not provide evidences of misbehaviors that can be verified by a third party. To the best
of our knowledge, PeerReview [20] was the first proposing a general solution to provide
accountability as an add-on feature for any distributed protocol. In PeerReview each process
in the system records messages in tamper-evident logs: an auditor can challenge a process,
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retrieve its logs, and simulate the original protocol to ensure that the process behaved
correctly. By doing so, any observable deviating action can be traced back to at least one
Byzantine process that was responsible for it. The main issue is that for an auditor to prove
that a process is Byzantine it must receive a response to the challenge from the process. If no
response is received, the auditor cannot determine whether the process is faulty or not. As a
result, some Byzantine processes might be suspected forever and never proven guilty. This
limitation is common to distributed protocols that are not designed to provide accountability.

Polygraph [11] equips Byzantine Consensus with an accountability mechanism. As in our
system, the very messages sent during the protocol execution carry the necessary information
to construct a proof in case of Consensus agreement violation. This way, there is no need
to query processes to collect evidences and construct a proof. Fairledger [25] and LLB
(Long-Lived Blockchain) [32] are consensus-based state-machine replication protocols that are
able to detect consistency violations in consensus instances and reconfigure themselves. In
contrast, we do not rely on consensus for reconfiguration and propose a purely asynchronous
accountable and reconfigurable service.

Lattice agreement. Attiya et al. [4] introduced the (one-shot) lattice agreement abstraction
and, in the shared-memory context, described a wait-free reduction of lattice agreement to
atomic snapshot. Falerio et al. [14] introduced the long-lived version of lattice agreement
(adopted in this paper), called generalized lattice agreement, and described an asynchronous
message-passing implementation of lattice agreement assuming a majority of correct processes.
In the Byzantine failure model, Di Luna et al [27] proposed for the first time a solution for
Byzantine asynchronous generalized lattice agreement, later improved by [36]. All these
algorithms propose a fault-tolerant approach where safety and liveness are guaranteed with
f < n/3 Byzantine processes and authenticated channels. In our accountability approach,
liveness and recovery from safety violations are guaranteed with f < n/2 Byzantine processes
and authenticated channels.

Asynchronous reconfiguration. Dynastore [1] was the first solution emulating a reconfig-
urable atomic read/write register without consensus: clients can asynchronously propose
incremental additions or removals to the system configuration. Since proposals commute,
concurrent proposals are collected together without the need of deciding on a total order.
In [21] it has been observed that asynchronous reconfiguration can be handled using an
external reliable lattice-agreement object. Reconfigurable lattice agreement [23] enables
reconfigurable versions of a large class of objects and abstractions, including state-based
CRDTs [33], atomic-snapshot, max-register, conflict detector and commit-adopt.

In the Byzantine fault model, Dynamic Byzantine storage [3,30] allows a trusted adminis-
trator to issue ordered reconfiguration calls that might also change the set of replicas. More
recently, [24] describes a generic Byzantine fault-tolerant reconfigurable lattice agreement,
implemented without assuming a trusted administrator.

The reconfiguration technique used in this paper takes inspiration from [23] while been
enriched with the use of forward-secure signatures as proposed in [24] to protect the system
from Byzantine replicas belonging to old configurations. Note that none of the cited work
provide proof-of-misbehavior of Byzantine processes.
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6 Concluding remarks

In this paper, we propose the first design of an asynchronous replicated system that not only
detects misbehavior that affects its safety properties, but is also able to mitigate misbehaving
replicas by reconfiguration. Compare to earlier [16,25] and concurrent [32] work, we do not
employ consensus to agree on the evolving configurations. The algorithm described in this
paper can be improved and generalized in multiple ways. Below we discuss some of them.

Garbage collection. In the current version of our algorithm, every process locally maintains
a complete history of updates, and periodic reinitialization of the system is an important
issue. In particular, it appears challenging to reinitialize the set of accusations, as a slow

client may never be able to be convinced that a compromised replica is not trustful anymore.

One may think, e.g., of a periodic instances of a consensus protocol among the clients to
agree on the new initial system state, running in parallel with our algorithm. Altogether,
periodic “truncation” of the ever-growing state in an asynchronous protocol remains an
interesting question for the future work.

Complexity. Similar to earlier solutions of (generalized) lattice agreement [14,23], the
latency of learning a value in our algorithm (in the number of asynchronous query-response
rounds, assuming that the configuration does not change) is proportional to the number
of concurrently proposed values. It remains unclear if there is an asymptotically faster
algorithm. There are interesting solutions for one-shot Byzantine lattice agreement that
take log k rounds for k proposed values [37], but we do not have a comparable long-lived
implementation.

For simplicity, in our algorithm, the sizes of messages grow linearly with the number
of distinct values learnt by the clients. One can improve this by sending relative updates
instead of complete histories in PROPOSE and DECISION messages. The size of ACK and
NACK messages already grow much slower, as they use digests of corresponding proposals
and only contain information about changes: in the case of ACKs, these changes consist of
the pending configurations since last decision and in the case of NACKs — with respect to
the proposed value the replica is responding to. An ACCUSATION message has asymptotic
complexity of an ACK message. The issue of maintaining bounds on ever-growing message
sizes is related to the more general question of garbage-collection and reinitialization.

Clients: Byzantine and heavy. Early proposals of quorum-based fault-tolerant storage
systems typically assumed that clients are benign (see, e.g., [29]). While the effect of
Byzantine writers can be mitigated using erasure coding [17] or voting [26], it appears
nontrivial to handle malicious reconfiguration requests. Indeed, a Byzantine client can block
progress by plunging the system in constant reconfiguration, or break safety of the replicated
data by rendering the system to a compromised configuration. How to handle such attacks
is an intriguing challenge.

Assuming that the clients are benign enables assigning them with a major part of the
total work. This results in linear message complexity: the replicas only passively respond to
clients’ queries.

Alternatively, we may follow earlier work on asynchronous Byzantine reconfiguration [24],
and assume an external access control mechanism ensuring that inputs from the clients
(including reconfiguration calls) are “acceptable”. In particular, the proposed configurations
should satisfy the configuration availability condition (Section 3): every combination of
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candidate configurations should contain enough correct replicas. Also, the access control
mechanism should provide a verification procedure that would allow the third party to verify
validity of reconfiguration requests. The clients are then only responsible for submitting valid
to the set of replicas. The resulting algorithm will, however, likely to be more costly in terms
of message complexity, as each reconfiguration will have to handle each of the valid requests.

Our algorithm can also be easily extended to accommodate partitions of the clients into
(benign) administrators and (Byzantine-prone) users, along the lines of [25,30].

For completeness, in Appendix A, we describe a specification and a corresponding
implementation of a one-shot lattice agreement abstraction that assumes that both clients and
replicas can be Byzantine. Our system is particularly well suited for the client-administrator
approach as the reconfiguration requests are issued by the proposing entities (in this case an
administrator) and not the entities maintaining the system (the replicas).

Reconfiguration strategy. In this paper, we delegated the task of choosing new configura-
tions to the clients. The clients are free to reconfigure the system even if no new misbehaving
replicas are detected. The only requirement we impose on the configurations proposed by
the clients is that resulting configurations must remain available (Section 3). But one may
think of more explicit reconfiguration strategies. For example, each time a new misbehaving
replica is detected, it is replaced with a new one taken from a “pool” of correct replicas (a
similar approach is proposed in LLB [32] for consensus-based reconfiguration).
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A  Accountable Lattice Agreement with Byzantine Clients

In this section, we discuss a one-shot static version of accountable lattice agreement that
considers that both clients and replicas might be Byzantine.

A.1 Problem statement

The general accountable one-shot lattice agreement (A1LA) abstraction, defined on a lattice
(L,2), takes, as a single input, an element in £ and produces, as an output, a pair of an
element in £ and a set of accusations. Again, an accusation is a pair (A, P) where A c II
and P is a proof of misbehavior. And we assume that the proof can be independently verified
by a third party through a boolean map verify-proof : (2! x P) — {true, false}.

We say that this version is general because both clients and replicas can be malicious.
The system contains N replicas where a majority of them are correct. Let U < B be the finite
set of benign clients that proposed values in that run, and let u; denote the value proposed
by a process p; € U. Let Vp and V¢ be the sets of, respectively, benign and correct clients
that learned values in that run, and let v; denote the value learned by a process p; € Vi
(obviously, Vo € Vg € U). The A1LA abstraction satisfies the following properties:

Validity. The value learnt by a benign client ¢; with input value u; is a join of values
proposed by clients in U (including ¢;), at most |M| values coming from M, and u;:

Ve, eV iuw; Ev; av; Eu({usle; eUUF), FCL, |F|<|M|.
Consistency. Either the values learned by the correct clients are totally ordered:
Vei, ¢ € Vo ivg E vy v vy E vy

or every correct process eventually accuses a set of processes.
Accuracy. If a benign process p; accuses A (with P), then A is a subset of M and P
contains a proof against each process in A.

Vp; € B, A < M A verify-proof(A, P)

Authenticity. It is computationally infeasible to construct A n B # ¢ and P € P such
that verify-proof(A, P) = true.

Liveness. If a correct client proposes a value, it eventually learns a value or accuses a
set of processes.

One can see that a benign client can accuse a set of processes only if there is at least
one Malicious process (M # ) and in the absence of malicious processes no proofs of
misbehavior are created. The Consistency property guarantees that either correct clients
learn comparable values or some malicious process will be accused. Notice that we cannot
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avoid executions in which a Benign but not correct client learns a value that is inconsistent
with a value learnt by another benign client if there are malicious processes without issuing
accusations.

A.2 The algorithm

Our solution to A1LA is presented in Algorithm 5, Algorithm 6 and Algorithm 7. As before,
each method is executed in its entirety without being interrupted. Each client might be in
an active state where it proposes values and takes steps towards learning something new,

re-proposing if necessary or in a passive state where it only reacts to other client proposals.

On start-up clients that receive input values from the application sign them and put them to
their input ledgers (line 84) and proceed to propose it to the system by multicasting (91).

When a replica receives a proposal with a ledger, it extracts the proposed value by the
other process merging the new inputs to its own ledger (117). Before treating the ledger a
verification is made to guarantee its integrity (113). Once the message is validated, there
might be inconsistencies in the ledger introduced by malicious processes that tried to insert
more than one value in the system and an accusation might be issued (118). Otherwise
the ledger is consistent and an ACK can then be produced if the proposal comprises the
previously received ones (126), otherwise a NACK shall be sent informing the proposer of
values that it didn’t include in its proposal via a complement to its ledger (130).

Received ACKs are discarded if they correspond to old proposals, or if they come from a
process whose ACK has already been accounted in the current proposal, or if they don’t match
the proposed value they were sent for. Note that the latter is in itself a sign of byzantine
behavior but doesn’t constitute an irrefutable proof of misbehavior as the conflicting messages,
i.e. the proposal and the ACK, are signed by different processes. When the ACK is valid
it is included in the ackL (97) and the respective counter is incremented (98). Similarly,
outdated NACKs are ignored when received, as well as empty ledgers, ledgers who don’t
include new values (101). Once the ledger is validated, the proposed value is set to include
the information patch (87) and the counter of NACKs is incremented (103).

After a client has received responses from at least a majority of replicas (99 and 104)
for its proposal it proceeds to evaluate if it can decide on a value or not, in case it has not
accused any malicious processes along the way. If a NACK has been received, it tries to learn
its new proposal (92) which includes the missing values in the previous attempt, otherwise it

decides upon its proposal and broadcasts it alongside the ledger of ACKs it has collected (96).

At this point clients who are proposing incomparable values to the one decided check the
ACKs they received so far as byzantine processes can lead the system to decide incomparable
values by issuing contradictory ACKs for different processes, which can be detected at this
point and lead to their accusation (110).
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Algorithm 5 Accountable One-Shot Lattice Agreement: Code for client ¢ part 1.

Local variables:

status, initially passive { Boolean for the current state: passive or active }

ackCnt, initially 0 { The number of acks received for the active proposal }
nackCnt, initially 0 { The number of nacks received for the active proposal }
activePropNb, initially —1 { The number of nacks received for the active proposal }
propV, initially L { The value being proposed }

inL, initially empty { KV table (ledger) init. w/ proposed values signed by their originators }
ackL, initially empty { Key value table holding received signed acks by replicas }
Input:

itV { Value initially proposed by the process, provided by external source }
Outputs:

outV, initially L { Value learnt by the client }

accusation, initially ¢ { Proofs of misbehavior gathered }

upon startup if initV # L

s3  propV := initV

s« include signed initV to inL
ss  Propose

operation Propose

s6  Status := active

s7  propV := extractLedger(inL, c)

ss  activePropNb := activePropNb + 1

so  clear ackL

90 ackCnt := nackCnt := 0

o1 multicast (PROPOSAL, (inL, active PropNb)) to Servers

operation FvaluateDecision
92 if nackCnt > 0 then Propose

93 else

94 outV := propV

95 status := passive

96 multicast (DECISION, (outV, ackL)) to Servers

upon recewve (ACK, (propV, activePropNb))
from given replica » AND r ¢ ackL status = active
97 append ¢’s ack to ackL
98 ackCnt := ackCnt + 1
oo if ackCnt + nackCnt > [¥+1] then EvaluateDecision

upon receive (NACK, (ALedger, activePropNb)) from process g
AND status = active AND ALedger # &

100 AValue = extractLedger(ALedger, q)

w1 if AValue E propV return

102 inL = inL U (inL")

103 nackCnt := nackCnt + 1

w1 if ackCnt + nackCnt > [}1] then EvaluateDecision
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Algorithm 6 Accountable One-Shot Lattice Agreement: Code for client ¢ part 2.

upon receive ( DECISION, (outV’, ackL’)) from process q
105  if 3(p,v) € ackL'|v # outV’

106 accusation := accusation U {(q, DECISION)}

107 status = passive

108 return

w9 if outV' & propV && propV & outV’ then

110 let M = {m|m € ackL && ackL'} do

11 foreach m € M do include (b, {ackL[b], ackL'[b]}) to accusation
112 if |M| > 0 then status := passive

operation extractLedger (inL’, sender)
s if 3 process p € inl’ with invalid signature then

114 accusation := accusation U {(sender, getPropNACKMSG (inL')}
115 status := passive
116 return ¢J

ur inl” = inL U (inL')
ns let M = {m|m € inLl” && |inL"[m]| > 1} do

119 foreach m € M do include (m, getPropNACKMSG(inL"[m])) to accusation
120 status := passive

121 return J

122 let receivedValue = ufv|3p, inL'[p] = v]

123 return received Value

Algorithm 7 Accountable One-Shot Lattice Agreement: Code for replica r.

Local variables:
inL, initially empty
{ Key value table holding initially proposed values signed by their originators }
repV initially L { Value held by the replica }
accusation, initially &F { Proofs of misbehavior gathered by the replica }

upon receive (PROPOSAL, (inL', activePropNb')) from process q
124 propV' := extractLedger(inL')
125 if repV & propV’ then

126 send (ACK, (propV’, activePropNb')» to q

127 repV := prop V'

128 else

129 repV := repV u propV’

130 send (NACK, (inL — inL', activePropNV')) to q

operation extractLedger (inL’, sender)
{ Identitical to client operation with the same name without lines 115 and 120 }
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A.3 Correctness

We claim that the algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7 solves
the General Accountable One-Shot Lattice Agreement.

» Lemma 15. At every benign process, the variable propV is monotonically increasing.

Proof. The variable is updated only in line 87. As one can see, it is a join operation where
one of the operands is the previous value, hence the new value by definition contains the old
value. <

» Lemma 16. If a benign process p learns a value v, then v cannot contain two or more
values signed by the same process.

Proof. A process adds values to its proposal propV, when it receives a nack response. The
insertion is then subject to verification following line 118. Process p will only proceed to a
deciding a value if the list comprehension yields an empty list, in which case there is at most
one value introduced on its proposal per process in the system. |

» Lemma 17. At every benign process, the variable repV is monotonically increasing.

Proof. The variable is updated in lines 127 and 129. The first update assigns to this variable
a new value which has passed the test in line 125, so the new value contains the old one.
Similarly to propV, the second update is a join where one of the operands is the old value, so
the new value must contain the old one. <

» Theorem 18. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides consistency.

Proof. Suppose, by contradiction, that two benign processes p and ¢ learned two incomparable
values v’ and v”. The majority that acknowledged v" at p must intersect with the majority
that acknowledged v” at ¢q. Let r be any process in the intersection. If r is not Byzantine
then by Lemma 17, v’ and v” must be comparable and consistency will hold.

Otherwise, » must have acked incomparable values, which shall be detected in line 110
meaning that the processes that output incomparable values will accuse r. <

» Theorem 19. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides validity.

Proof. The inclusion of the process own proposal follows from Lemma 15 with the initialisa-
tion of propV to initV, remarking that outV is but one of the values taken by propV.

As for the cap on the number of values coming from byzantine processes, suppose that
there are at least |M| + ¢, where ¢ € N*| values coming from byzantine processes. It means
that at least one byzantine process b signed two or more initial values that are output by a
benign process. Because of Lemma 16, this is impossible. |

» Theorem 20. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides accuracy.

Proof. An accusation can be issued in lines 114, 119, 111.

On the first case it will have a proposal signed by a process which doesn’t hold valid
signed origins for its values. One of the values can come from the process itself, in which
case a benign process would have signed it and put in its ledger on the initialisation. The
other values must come through NACKs that also provide signed origins obtained in line 117
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which benign processes include in its ledger. Having a proposal signed by a process which
provided fake signatures to the origin of its values consist as an irrefutable proof and M’ will
be a non-empty subset of M.

The second scenario tracks processes that have inserted more than one value in the system.

A benign process would only do it once during initialisation and having two inclusions signed
by the same process consists as irrefutable proof and M’ will be a non-empty subset of M.

Finally, the decision of incomparable values requires, as seen earlier in Theorem 18 that
a process acknowledged incomparable values, violating the behavior of benign processes
described by Lemma 17. Having two ACKs signed by the same process for incomparable
values characterises as irrefutable proof and M’ will be a non-empty subset of M. <

» Theorem 21. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides authentiticy.

Proof. This property is exactly the same as Theorem 12. |

» Theorem 22. The Algorithm presented in Algorithm 5, Algorithm 6 and Algorithm 7
provides liveness.

Proof. Following Theorem 19 combined with Lemma 15, each run can have at most |U]
different values being proposed. Since by the end of this many proposals a client shall propose
the join of all these values, it will get ACKs from a majority of processes proceeding to learn
a value or gather enough information for accusing at least one byzantine process, as at this
byzantine clients must have introduced more than one value in the system for the proposal
not to go through and Theorem 20 holds. |
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