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Abstract
Multi-party random number generation is a key building-block in many practical protocols. While
straightforward to solve when all parties are trusted to behave correctly, the problem becomes much
more difficult in the presence of faults. This paper presents RandSolomon, a partially synchronous
protocol that allows a system of N processes to produce an unpredictable common random number
shared by correct participants. The protocol is optimally resilient, as it allows up to f = ⌊ N−1

3 ⌋ of
the processes to behave arbitrarily, ensures deterministic termination and, contrary to prior solutions,
does not, at any point, expect faulty processes to be responsive.
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1 Introduction

In a Byzantine fault-tolerant random number generator (BFT-RNG) protocol, a set of
participating processes agree on a single random number that cannot be manipulated or
halted, despite the presence of Byzantine failures, i.e., assuming that a faulty process may
arbitrarily deviate from the prescribed algorithm. We distinguish between commission and
omission failures [15]. Intuitively, a commission fault occurs when a process sends messages
a correct process would not send, whereas an omission fault occurs when a process does not
send messages a correct process would send.

A BFT-RNG protocol is typically divided into three phases:

1. Generation and Commitment Phase – each process locally generates some random
value and then publicly commits to this value without revealing it.

2. Reveal Phase – the values previously committed are revealed.
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3. Computation Phase – using the values revealed, the processes decide on the resulting
random number.

The idea is to make sure that at the moment the committed random values are revealed,
it is already too late for the adversary to manipulate the output. Furthermore, assuming
that the local random numbers are uniformly distributed, so should be the distribution of
the output.

To the best of our knowledge, this paper describes the first partially synchronous BFT-RNG
protocol that maintains optimal resilience (up to ⌊ N−1

3 ⌋ Byzantine processes in a system of
N) that ensures deterministic termination. Unlike prior solutions [10, 31], our protocol does
not expect that faulty processes remain responsive in the generation phase, i.e., it tolerates
omission faults.

State of the art. In designing a BFT-RNG algorithm, we face two major challenges:
(i) how to share random inputs despite omission failures, so that Byzantine processes cannot
learn them before the reveal phase begins, and (ii) how to compute correct results despite
commission faults of Byzantine processes. Existing protocols solve the first challenge by using
techniques such as secret sharing [28], verifiable delay functions [4], threshold signatures [3, 5],
and fully homomorphic encryption [13] and the second – by requiring a verifiable proof that
a shared data was generated correctly.

Techniques. A (f, N)-secret sharing [28] scheme allows a process during the generation and
commitment phase to share a secret s with N processes so that any subset of size f +1 among
them can retrieve s, while no subset of f or less can. This way, even if a process refuses to
disclose the original secret it has committed, the correct processes in the system can still
reconstruct it in the reveal phase by using the shares they received earlier. Moreover, the
values cannot be learned too early as the number of shares held by the Byzantine processes
does not surpass f . Threshold-signature schemes, such as Schnorr [3] or BLS [5], are also
very helpful in this context, as they allow to efficiently verify that a number of processes
surpassing a given threshold agree with a certain value.

One can also make sure that the processes commit to a value without revealing it
beforehand and provide a mechanism to retrieve commitments of Byzantine processes by
using verifiable delay functions [4]. This technique guarantees that Byzantine processes
cannot use the data shared by the correct processes to change change their inputs and affect
the result. Once a stipulated verifiable delay has expired, the correct processes can access
the information presented by any process guaranteeing that the protocol is not halted.

The two homomorphic structures of most interest for BFT-RNG are Fully Homomorphic
Encryption (FHE) [13] and homomorphic hashes. Given two sets A and B, a map f : A → B

is said to be (◦-)homomorphic if it preserves an existing operation ◦ on both sets: ∀x, y ∈
A, f(x ◦ y) = f(x) ◦ f(y) [6]. FHE allows processes to make operations in ciphertexts without
knowing the plaintexts and can be then used instead of secret sharing for solving the same
problem of preventing misbehaving parties from accessing data too early on and denying
the access of correct participants to the data when it must be shared. As for homomorphic
hashes, they are, as the name indicates, hash functions with homomorphic properties (i.e.
by performing some operations over some data and their associated hashes, one obtains a
result and a consistent associated hash). Homomorphic hashes allow to solve the second
challenge of BFT-RNG design: they provide a mean to check that an operation was correctly
executed by observing the hashes of the inputs and the hash of the outputs and can therefore
contribute in detecting commission failures.
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Other kinds of proofs of well formed data include Verifiable Random Functions (VRF) or
Public Verifiable Secret Sharing (PVSS). VRF [21] are functions that once provided with
an input x, output both a random number y and a proof π that allows any process using
π to verify whether y was generated using x or not. Algorand’s VRF [14] uses a common
coin (generated by the Algorand consensus) to correctly generate verifiable random numbers.
PVSS-based proof [27] exchange together with secret shares some additional information
that prove the data integrity without revealing any information of the original secret.

Protocols. In Table 1, which is a modified and expanded version of the table given in [26], we
present a comparison including several existing BFT-RNG algorithms and the solution we
present in this paper: RandSolomon. In some of these protocols, the networks (with N nodes)
are partitioned into clusters of size c, this parameter appears in some of the complexity
bounds given in the table.

Table 1 Comparison of distributed RNG solutions.

RNG Sync. Vulnerability Term.
Communication

Complexity
(Overall)

Computation
Complexity

(per process)
Resilience Techniques

Cachin et al. [10] A Trusted
key dealer Det. O(N2) O(N) f < N

3
Unique threshold

signatures (eg BLS)[5]

RandShare [31] A No ommission
in commit. Det. O(N3) O(N3) f < N

3 PVSS [27]

RandHound[31] A No ommission
in commit. Prob. O(c2N) O(c2N) f < N

3
PVSS [27]

Multisignatures [3]

RandHerd[31] A No ommission
in commit. Prob. O(c2 log N) O(c2 log N) f < N

3
PVSS [27]

Multisignatures [3]

SCRAPE[11] S None Det. O(N3) O(N2) f < N
2 PVSS [27]

DFinity[16] S None Prob. O(cN) O(c) f < N
2 BLS signatures [5]

HydRand[26] S No ommission
in commit. Det. O(N2) O(N) f < N

3 PVSS [27]

ProofOfDelay[8] S None Det. O(N) +
Ethereum High f < N

2 Delay functions [4]

No-Dealer[18] S None Det. O(N2) O(N2) f < N
2

Shamir [28]
Homomorphic Hash

Nguyen et al.[22] S Trusted
Requester Prob. O(N) O(1) f < N FHE [13], VRF [21]

Ouroboros
Praos[12] P Weaker

properties Det. O(N) +
Ourob. Praos

O(1) +
Ourob. Praos f < N

3 VRF [21]

Algorand[14] P Weaker
properties Prob. O(cN) +

Algorand
O(c) +

Algorand f < N
3 VRF [21]

RandSolomon P None Det. O(N)×
Consensus

O(N)×Erasure
Correcting Code f < N

3

PK crypto
ReedSolomon
Retraceability

Synchrony (Sync). The second column of the comparison table shows which kind of synchrony
the underlying system must provide in order to allow the deployment of each protocol. Here
we distinguish A=Asynchronous, S=Synchronous and P=Partially Synchronous algorithms.

Vulnerability. It might seem impossible to have asynchronous implementations of BFT-RNG
as we have already stated that this problem is impossible in the presence of at least one
Byzantine participant in asynchronous systems [18]. Notice, one might introduce additional
assumptions on the failure model for these solutions to exist.

This is the case with the solution by Cachin et al. [10] which assumes that there exists a
special process capable of generating and distributing a key.

OPODIS 2021
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Other asynchronous solutions, such as RandShare, RandHound and RandHerd [31],
assume that every entity initially publishes some information about their secret. The
asynchronous protocols in [31] are therefore not fully BFT, as they do not tolerate omission
failures in the generation phase. This assumption that Byzantine processes will not omit
during the commitment phase of the protocol is also an exploitable vulnerability in the
synchronous protocol HydRand [26], although it can be modified to restart once there are
missing contributions. Nguyen et al.’s proposal [22], also a synchronous protocol, assumes a
Requester, a trusted entity generating FHE keys, which can be considered as a client using
the system.

Algorand [14] and Ouroboros Praos [12], maintain weak forms of RNG: common coin [14]
and random beacon [12], RNG mechanisms in these protocols may not reach perfect agreement
on the random value, and the coins values may be manipulated by the adversary to some
extent or even be changed due to network asynchrony without affecting the correctness of
their respective systems.

Termination (Term). A protocol ensures deterministic termination (Det) if it terminates in
every execution, in contrast to probabilistic termination (Prob), when a protocol terminates
with a fixed probability. RandHound, RandHerd [31] and Dfinity [16] allow a small probability,
depending on the parameters of the system, of the Byzantine adversary fully corrupting
a cluster, which results in prematurely halting the protocol. In the case of Algorand, a
failure happens when the set (of expected cardinality c) of nodes chosen to be proposers is
empty. In the protocol by Nguyen et al. [22], this happens when all selected contributors
are Byzantine.

Complexity. Communication complexity corresponds to the amount of messages exchanged
and can be loosely translated into how many bits must be sent in the network for producing
a result, while Computation Complexity measures how much time would it take to perform
local computations given an input. In the table, we use term High to refer to the complexity
of delay functions, which, though independent of the number of processes in the system
(strictly speaking, their complexity is O(1)), are very computationally heavy by design.

No-Dealer [18] specifies that the protocol must be restarted in case of certain Byzantine
behavior, but does not include this fact in its complexity. As there are at most N

2 Byzantine
nodes, it might be necessary to restart this number of times, increasing their claimed
complexity to the one presented in the table.

The protocol by Nguyen et al. [22] employs a summation on the secrets shared by the
contributors, which results in linear computation complexity.

Finally, the two last columns Resilience and Techniques show how many Byzantine
processes can be tolerated among the N participants and the main techniques employed in
each solution.

Contributions. RandSolomon is the first BFT-RNG protocol providing deterministic termina-
tion in a partially synchronous system with f < N

3 Byzantine processes, which is the optimal
level of resilience [18]. Interestingly, the protocol relies only on standard cryptographic
primitives: a public key infrastructure [25], block erasure correcting codes which can be
interpreted as our version of secret-sharing [20] and standard digital signatures. The name
of the protocol is inspired by the potential use of Reed-Solomon codes [24].

Our coding approach carries some similarities with SCRAPE [11] in the sense that they
also recognised the potential of using codes such as Reed-Solomon to perform secret sharing.
However the similarities stop there as, in RandSolomon, we not only propose a partially
synchronous solution, but also introduce a new technique to cope with Byzantine commission



L. Freitas de Souza et al. 23:5

failures: retraceability, which circumvents the need for verification of the secret sharing. In a
nutshell, we consider the secrets produced by Byzantine processes without checking their
integrity until the last phase of the protocol, when we compute the final result. At this
moment, we can retrace all the steps that should have been taken and detect a commission
failure. This then results in discarding incorrectly formed data in order to ensure a correct
result, based on the inputs of non-Byzantine processes.

2 Formal system model and properties

Before turning to the RandSolomon protocol description, let us first duly formalise the system
model as well as a set of properties that a protocol must have to be considered a distributed
Byzantine fault-tolerant random number generator.

Our system is made up of N nodes which run our protocol as a process which executes a
prescribed sequence of steps. Among the participants, a portion f < N

3 of them might be
Byzantine who can collaborate with each other but have limited computing power.

The nodes can communicate with each other via messages that are sent through a point
to point network. This network is available for all running processes and guarantees that if a
message is sent through a channel, then it must be eventually delivered (in agreement with
the partial-synchrony assumption). Whenever a process executes a broadcast it does so by
just sending a message to every other process (we use a best effort broadcast).

Recall that in a BFT-RNG protocol, every process proceeds through clearly demarcated
phases: (1) generation and commitment, (2) reveal, and (3) result computation. A phase
begins with the first correct process entering it. In this setup, a BFT-RNG protocol satisfies
the following properties:

Agreement. Every correct process decides on the same random number;
Unpredictability. Before the beginning of the reveal phase, no process can distinguish
an execution that generates RAND as a random number, from an execution that generates
RAND′, for any RAND′ ̸= RAND;
Randomness. The values decided by correct processes follow a uniform distribution;
Termination. Eventually, every correct process decides on a value.

Although not an intrinsic property of BFT-RNGs, our protocol differs from existing
protocols because it provides retraceability. It means that after the reveal phase, a process
can verify that all the steps taken to generate the shared data used to produce the final
random number were correctly followed.

3 The RandSolomon protocol

Overview. From a high-level viewpoint, the protocol aggregates enough locally generated
random numbers, so that enough inputs inputs are truly random and the final result observes
all the properties desired. Numbers are produced locally, then encoded using an erasure
correcting code and encrypted before sharing. All non-Byzantine processes agree on which
numbers should be used by solving consensus, while the result remains secret (sealed under
an encryption layer) as no process holds all the information necessary for computing it prior
to the reveal phase. The protocol cannot be stopped by f (or less) Byzantine processes, as
prior to the consensus the progress of correct processes depends solely on themselves and
after it, thanks to our use of the erasure correcting code, the correct processes can retrieve
data without using the information held by their Byzantine counterparts.

OPODIS 2021
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Notation. We shall use [N ] = {1, 2, · · · , N}, (·)i to indicate that the value enclosed by the
parenthesis contains a signature of process pi and {·}i to indicate that the value enclosed
by the curly brackets was encrypted using pi’s public key. Furthermore, b will denote the
number of symbols in the encoded value to be encrypted in a given encryption key; z the
size of the symbols used in a code; t is the number of erasures a code can correct; l is the
length of a code; d the number of data symbols in a code.

3.1 Primitives
The system requires a deterministic encryption infrastructure where every process knows the
public key of every other processes in the system, but each of them maintains its private key
secret. Deterministic means here that at every time two processes encrypt the same number
using the same key, they get the same result [2].

Although the use of deterministic encryption is crucial for the correct execution of the
protocol, these primitives are used only to encrypt long-enough (at least 256 bits) sequences
of uniformly random bits. As such, the source of randomness in cleartext mitigates the
security issues which crop up when using deterministic encryption [23].

We use a consensus protocol to ensure that each correct process disposes of the same
information. The consensus protocol used here must ensure that eventually every correct
process outputs a value (Termination) and that not two correct processes outputs different
values (Agreement). Further, the protocol must ensure external validity [9]: only a valid
value can be output, i.e., the output must satisfy a predefined valid predicate:

▶ Definition 1 (Predicate valid). valid(v) is true iff v contains N − f inputs signed by N − f

different processes.

Any partially-synchronous algorithm that tolerates f Byzantine failures among 3f + 1
processes can be used [7, 32, 14].

Finally, let us consider a different perspective on secret sharing mechanisms [28]. In a
classical Shamir secret-sharing protocol, when a dealer shares a secret s with N processes
p1, p2, · · · , pN using a threshold of N − t, it sends the shares s1, s2, · · · , sN to their respective
processes. Any N − t of these shares are sufficient to retrieve s, while less than N − t can
reveal nothing on the secret in question. Indeed, one could consider the string s1s2 · · · sN

as a code, the non-received values as erasures and hence conclude that, in fact, the secret
sharing scheme can be also analysed as an Erasure Correcting Code capable of correcting t

erasures [20].
In Information Theory, the number of substitutions required to change one string into

another is known as Hamming Distance [19]. We can then conclude that we need in fact an
Erasure Correcting Code with Hamming distance at least t + 1. The class of error-erasure
correcting codes known as Reed-Solomon (RS)[24] with the required distance is capable of
correcting t erasures (notice we do not treat it as an error correcting code, but an erasure
correcting: an error correcting code is capable of correcting a string with corrupted data
placed in unknown locations, while an erasure correcting code needs to know the positions of
the string which were corrupted). Therefore, this class provides optimal block size known
as Singleton Bound [29]. From a more pragmatic viewpoint, Reed-Solomon codes have free
library implementations in many programming languages, they have deterministic parameters
and encoding which are ideal for our requirements. Furthermore, most applications running
our protocol will have relatively small block sizes and one can enhance the performances
through hardware implementations [17]. It should be noted however, that any code complying
with the following Abstract Code requirements can be used in our protocol.
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Abstract Code.
Have a code-word of size b × N symbols;
Be able to correct up to b × f symbol erasures;
b × z ≥ 256

Considering that we make use of Reed-Solomon codes we briefly present their general
parameters:

Abstract Reed-Solomon code.
The symbols have size z bits
The data has length d symbols
The code-word has length l where l ≤ 2z − 1 symbols
It can correct up to t erasures where, t = l − d

Adjusting the above Abstract RS code to match the Abstract code and the system
requirements, leads to the following Concrete Reed-Solomon Code which is suitable for
implementing our protocol.

Concrete Reed-Solomon code.
The symbols have size z bits;
Each block to be encrypted has a size b of at least 256

z symbols;
The data has a length of b(N − f)-symbols;
The code-word has a length of b × N symbols.

It should be noted that as our protocol allows correct processes to retrace the execution
followed by Byzantine processes and detect when they generate incorrect messages, we can
use erasure correction instead of error correction. This drastically improves the coding
performance as every error-erasure correcting code can correct two times more erasures than
errors. This has two implications on our protocol: first we need fewer parity bits; second, if we
were to unnecessarily use the code for errors correction, the protocol would only tolerate up
to ⌊ N−1

4 ⌋ Byzantine processes. The reason for the potential loss of resilience comes from the
fact that we would need to correct 2f errors: f errors introduced by the Byzantine member
during the generation and f more for the missing blocks due to asynchrony. Therefore the
number of parity blocks would have to be at least 2(2f) = 4f blocks, while the code must
have length N blocks. Because the length of a code is larger than the number of parity
symbols, N > 4f . This illustrates the contribution of retraceability: it implies simpler data
reception by eliminating the need to generate proofs and to check them, and guarantees
better resilience whilst maintaining the correctness of the protocol.

3.2 Algorithm
Generation and commitment. Each process pi taking part in the protocol begins by
generating a random number ri of b(N − f) symbols and encoding it using a Reed-Solomon
encoder complying with the specification given in subsection 3.1 obtaining a number si of
b × N symbols (lines 1, 2). This encoded number si is then split in N blocks of b symbols
and each of these blocks are encrypted using the public key of the different processes in the
system in order, signing the final result and obtaining the variable si (line 3).

Each process pi share their si (line 4) and collect N − f numbers of this type, coming
from N − f distinct processes according to their signatures. With this set of N − f -numbers
they can engage in consensus and learn the same set, say RNL, of (N −f) numbers generated
by N − f distinct processes (line 6).

OPODIS 2021
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Algorithm 1 RandSolomon code for process pi.

Each function is entirely executed before executing the next
Static Local Variables:
RNL := 0: set of encoded and encrypted shared random numbers learnt in Consensus
SEEN := ∅: map where the key is the index of a process and the value is the value it
produced σi [1 ..N ][1 ..N ] := ⊥: array of plain random number shares used in
reconstruction RANDi := 0: random number decided by pi

{Generation and Commitment Phase}
1 Generate random number ri of b(N − f) symbols of z-bits
2 Encode ri into si with Desired RS
3 si = ({si[1]}1, {si[2]}2, · · · , {si[N ]}N )i

4 Broadcast ⟨GENERATED, si⟩

upon receiving ⟨GENERATED, sj⟩
5 SEEN [j] := sj

6 if |SEEN | = N − f then RNL := Consensus(SEEN)

{Reveal Phase}
upon RNL ̸= ∅
7 ∀sj ∈ RNL do
8 Decrypt sj [i] from sj into sj [i]
9 σi[j][i] := sj [i]
10 Broadcast ⟨REVEAL, (σi[:][i])i⟩

upon receiving ⟨REVEAL, (σj)j⟩, j ̸= i execute after RNL ̸= ∅
11 ∀sk ∈ RNL do
12 If {σj [k][j]}j = sk[j] from sk then σi[k][j] := σj [k][j]

{Result Computation Phase}
upon RNL ̸= ∅ ∧ ∀sj ∈ RNL, ∃K ⊆ [N ], |K| = N − f : σi[j][k] ̸= ⊥
13 step := 0
14 PRE := 0
15 ∀sj ∈ RNL sorted by j do
16 Decode σi[j] into r̃j using Desired RS
17 If r̃j encoded with Desired RS and blockwise encrypted doesn’t match sj

then r̃j := 0
{Circular right shift by step blocks or b × step symbols}

18 PRE := PRE ⊕ (r̃j ≫ step)
19 step++
{XOR blocks pairwise with triple in the end if necessary}
20 for k := 1; 2k − 1 < N − f ; k := k + 2
21 RANDi[k] := PRE[2k − 1] ⊕ PRE[2k]
22 if 2k − 1 = N − f then RANDi[k] := RANDi[k] ⊕ PRE[N − f ]
23 Decide RANDi
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Reveal. After obtaining the RNL set, each process can decrypt the blocks it is responsible
for (line 8) and reveal them to the system via a broadcast (line 10).

(A best-effort broadcast in which a process simply sends the message to every other
process will suffice.)

The processes gather the shares necessary for decoding the erasure correcting code,
making sure that they truly are the decrypted versions of the RNL shares (line 12).

Result computation. Once a process has gathered at least N − f shares of each of the
numbers in the RNL set, it can reconstruct all of them (line 16). If the decoded version r̃j of
a RNL number is again encoded and encrypted, leading to the same value for sj , then this
implies that any N − f shares obtained by any correct process will give the same r̃j making
it consistent to be used in the final step computations.

Importance of verification. Notice that if pi is Byzantine, then it can generate a number
ri and insert f blocks with errors in si. By colluding with other Byzantine processes in
the system, a correct process pj might get no response from f Byzantines and get these
f erroneous blocks, essentially receiving a number with 2f incorrect blocks, which leads
it to decode a number r̃′

i ̸= ri. Meanwhile a process pk can get the Byzantine processes’
correct shares instead of the blocks with errors, decoding r̃′′

i = ri, which would lead these two
different correct processes producing two different random numbers in the end. This attack
is nullified by the simple verification done in the line 17 and setting this number produced
by a Byzantine process to 0, which is done by every process. It should be noted that because
at least N − f numbers are used and that there are at most f Byzantines, at least f + 1
numbers will not be nullified.

Cyclic XOR. Finally the correct processes will hold the same decoded versions of the RNL
numbers which are well formed and can produce the same final random number by first
cyclically shifting each number to the right by increasing steps of blocks (remember a block
has b symbols) and then taking an XOR of them (line 18). Here, the reason for the shift is
that for Byzantine processes might know the full contents of up to f numbers and f positions
from each of the other numbers before the reveal phase. Assuming all the numbers produced
by Byzantines were chosen, then the shift ensures that at least f + 1 different positions from
the numbers created by correct processes will be used, hence including at least one unknown
value for the malicious participant before the reveal.

Pairwise (triple) XOR and decision. The final step is to XOR the last three blocks together
and the remaining blocks pairwise when N − f is odd and XOR all the blocks pairwise
when N − f is even. Suppose this last step was not taken and the shifted XOR blocks were
returned. Then if the 2f positions known by the Byzantine could potentially be used in the
computation of a position pos in the result and these blocks XOR to a value x, they can
assure that by promoting any unknown value different than x ⊕ y to be the last operand
used in pos assures that the value y will not appear in pos. Because of the deterministic
encryption they can immediately check the candidate values for being different than x ⊕ y,
although it is computationally unfeasible to determine their value. In our solution, however,
because we guarantee that the Byzantine do not know at least two values used, there are
2b×z pairs that XOR to any given value and it is unfeasible to test the two values for being
different than all of them (as b × z ≥ 256 in real scale instantiations of the protocol), let
alone read, which would take 22×b×z tests.

OPODIS 2021
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3.3 Execution example

We present now an example of a possible execution of our protocol with one Byzantine process
and four processes in total illustrated in Figure 1. For pedagogical reasons we assume that
the symbols have 8-bits and that each block to be encrypted contains 1 symbol (b = 1, z = 8),
relaxing the requirement that b × z ≥ 256.

The beginning of the protocol and the Generation and Commitment Phase, corresponding
to lines from lines 1 to 3 of the algorithm is shown in Figure 1a. The correct processes p1, p2
and p3 produce each a 3 bytes random number, correctly encoding into a 4 bytes reed-solomon
codeword. The values s1, s2, s3 ready to be shared are obtained by encrypting each of the 4
bytes from the codewords with the public keys of the p1, p2, p3 and p4, respectively. On the
other hand, process p4, who is Byzantine, maliciously produces two bad values: s′

4 with an
error in its third byte and s′′

4 with an error on its second byte.

Figure 1b then shows lines 4 and 5 where processes share their produced values and collect
values coming from other processes. Notice that contrary to correct processes, Byzantine
processes might send different values to different destinations.

Once each process has gathered three (N-f) different values, they propose what they know
to the consensus component (line 6 and Figure 1c). Nothing prevents the Byzantine process
p4 of making more than one proposal to consensus, but any proposal which is not composed
by N − f signatures is discarded. Once the consensus algorithm terminates, any valid value
might be returned, but all processes will get the same result (decided value equal to s1, s2
and s′

4).

The Reveal Phase illustrated in Figure 1d then begins, comprising lines 7 to 12. At this
point processes openly share the symbols that were previously encrypted in their public keys.
One deviation Byzantine processes might do is to send wrong numbers that do not correspond
to the agreed values counterparts. However, because of the deterministic encryption, the
receiver can detect it by asserting that the encrypted version does not match the plain value
received and discard it. Moreover, even if the Byzantine process does not send its share to
every participant it does not matter, as N − f shares are available nonetheless.

Once processes gather three shares for each of the numbers agreed upon in consensus
they can start the Result Computation Phase executing lines 15 to 23. Figure 1e shows how
they first obtain the decoded version of the numbers and then redo both the reed-solomon
encoding and the encryption of the blocks to check that they correspond to the value decided
in consensus. At this point they discard the value generated by p4 nullifying its contribution
and computing the final random number by XORing the other values as shown in Figure 1f.

On the right column of the same figure we can see that the processes sort the agreed
numbers by their origin, in this case they take r1, r2 and r′′

4 in this order. They proceed
by cyclically shifting the first number by 0 blocks, the second by 1 block and the last by
2 blocks. They obtain the same number DD, 81, 8B and produce the same final random
number D7 by XORing all three blocks, as these are the last three blocks. Note that if the
system had f = 3 and N = 10, for example, the result from the cyclic XOR would have
N − f = 7 blocks B1|B2|B3|B4|B5|B6|B7 and the final random number would have three
blocks: B1 ⊕ B2|B3 ⊕ B4|B5 ⊕ B6 ⊕ B7.
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(a) (b)

(c) (d)

(e)

(f)

Figure 1 Example of a RandSolomon execution with one Byzantine process among a system of 4
processes.
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4 Formal analysis of the protocol

4.1 Correctness
This section is devoted to the proof that RandSolomon is a correct partially-synchronous
BFT-RNG. We do so by showing that the protocol satisfies the set of properties stated in
Section 2.

▶ Proposition 1. RandSolomon achieves Agreement.

Proof. Because of the consensus using the external validity property , every correct process
has the same RNL set. Correct processes then use shares that have been verified and match
the values agreed upon (line 12), allowing them to only access the original values generated
in line 2.

If a RNL number sj passes the test in line 17, any N − f correctly decrypted shares of
this number shall yield the same number, as the encoded value contains no errors. It follows
that every correct process will only use correctly decrypted shares and every correct process
will hold the same number r̃j which will pass the test by our hypothesis.

If, however, this RNL number sj does not pass the test, then there is an error in its
encoding, as the test is merely checking if it was correctly done, and it will be visible to all
correct processes in the system which will all proceed to ignore this number.

Therefore all RANDi are equal, as they are formed by XORing and shifting the same
RNL numbers which every correct process agrees upon. ◀

▶ Proposition 2. RandSolomon achieves Unpredictability.

Proof. A process with limited computational power has negligible probability of determining
the plain value corresponding to an encrypted value it does not possess the decryption key
of. It can however test that it does not correspond to a certain value.

If Byzantine processes collude and share each others values before the different processes
agree on which N − f values at the end of the generation phase will compose the final result,
they will know at most f full values. They will also possess f shares of each of the remaining
f + 1 chosen values corresponding to their positions but it is impossible for them to get
any more shares prior to correct processes entering the reveal phase and sending them this
information. Thus, they cannot determine the value of any given position in the decided
value as the shifts makes so that at least 2f + 1 positions from the operands are needed in
order to determine a position from the result and as established, the Byzantine can know
at most 2f of them. It can still determine that the result is different than some specific
value though, but as each position is then determined by the XORed with at least one other
position, this possibility is then nullified as it would require the Byzantine processes to test
2b×z pairs of numbers in order to eliminate a value, which is computationally unfeasible with
real scale protocol parameters (b × z ≥ 256). ◀

▶ Proposition 3. RandSolomon achieves Randomness.

Proof. By hypothesis, correct processes are capable of generating uniformly random numbers.
The result of XORing a uniformly distributed random variable X in D with a constant
c in D is a uniformly distributed random variable in D. Also, the result of XORing two
independent uniformly distributed variables X and Y over D is uniformly distributed. As we
already established in the final two paragraphs of subsection 3.2, each position in the final
result is independent from each other and uses at least two uniform random numbers coming
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from correct processes unknown to the Byzantine before the reveal phase. This means no
proposed values are preferred over others and the randomness of the operands is transferred
to the output. ◀

▶ Proposition 4. RandSolomon achieves Termination.

Proof. Every correct process generates their random numbers and propose a set of N − f of
them to the consensus component. This means that there will be at least N − f processes
engaging in it, and because it can tolerate up to f failures, it will eventually give all correct
processes their RNL sets.

Once N − f correct processes learn what the RNL set is, they will share their shards,
meaning that each correct process is guaranteed to receive at least N −f correct shares of each
of their RNL numbers, satisfying the conditions for entering the computation phase, where
their progress becomes purely local as they do not depend on other processes anymore. ◀

4.2 Complexity
We shall analyse our algorithm in terms of message complexity: the maximum number of
messages transmitted per random number generated; bit complexity: the maximum number
of bits exchanged over the network per random bit generated; time complexity: the number of
message round trips required per random number generated; and computational complexity:
the number of operations to be executed per process per random number generated.

In the generation and commitment phase, each process executes one broadcast, meaning
that there are O(N2) messages being sent at this phase. After consensus is reached on
the value of RNL, each process executes exactly one more broadcast, leaving the message
complexity of this part of the protocol on O(N2). The result computation phase in done
locally. Hence the message complexity of our protocol is O(N2) outside consensus.

In terms of bit complexity, RandSolomon produces random numbers of O(N) bits, therefore
we consider the number of bits exchanged divided by N . The messages of the generation
phase contain random numbers whose lengths are proportional to the number of processes in
the system by design. Therefore, the bit complexity of this step is O(N2). Afterwards in the
reveal phase, each process includes one decrypted block per number in the RNL set. Each
decrypted block has constant size and the cardinality of RNL is f +1, so the bit complexity of
this stage is also O(N2). Therefore, without taking consensus into account, the bit complexity
of our protocol is O(N2). The inputs for consensus are comprised of N − f values of O(N)
bits and therefore the bit complexity (used in the Table 1) is O(N)×Consensus.

With respect to time complexity, our protocol requires outside consensus two message
delays given the two aforementioned broadcasts, each executed by all processes in parallel.
Consensus might require view-changes in the worst case bringing its time complexity to
O(f) which corresponds to our overall time complexity. As for computational complexity we
present the analysis split on the three phases of the protocol in Table 2.

Table 2 Computational complexity.

Operation Generation Reveal Result

Encryption O(N) O(N2) O(N2)
Decryption 0 O(N) 0

ECC encoding O(1) 0 O(N)
ECC decoding 0 0 O(N)
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If the erasure correcting code used is indeed Reed-Solomon, then the encoding and
decoding complexities of a single number with length O(N) is O(N log N) [30], meaning that
the per-process computational complexity is O(N2 log N) when this particular code is used.

When considering the complexity of the Consensus protocol, one can easily adopt last
generation PBFT consensus protocols developed in the context of blockchain-type ledgers. In
this context, the Tendermint (analysed in detail in [1]) or Hotstuff [32] consensus protocols
can be used within RandSolomon. Doing so leads to an overall message complexity of O(N2)
and bit complexity of O(N3) accounting view-changes with the complexity of consensus
dominating that of our protocol for both protocols considered. As such, any system which
already has the protocol machinery to solve consensus can implement RandSolomon without
incurring a significant performance impact.

In a run where the system is synchronous (after passed GST) and the consensus leader
is correct, the protocol terminates in constant number of message delays and incurs only
O(N2) bit complexity, comparable to that of synchronous protocols.

The complexity analysis of RandSolomon is summarised in Table 3.

Table 3 RandSolomon Protocol complexities integrating Consensus as in [32].

Complexity Generation Consensus Reveal Result Total

Message O(N2) O(N2) O(N2) 0 O(N2)
Bit O(N2) O(N3) O(N2) 0 O(N3)

Time 1 msg delay O(f) 1 msg delay 0 O(f)
Computation O(N) O(N) O(N2) O(N2 log N) O(N2 log N)

5 Conclusion

We presented RandSolomon, a Byzantine fault-tolerant protocol capable of generating a
common random number in a partially-synchronous system. As we have previously shown in
section 1, although the problem of generating randomness in multi-party systems has already
been extensively discussed, the partially-synchronous systems still lacked a BFT solution
with the optimal resilience of f Byzantine participants among 3f + 1 with deterministic
termination. Not only did we provide such a solution but we also employed very simple
public key cryptography, not relying on a random oracle, by means of what we have called
retraceability. Our approach is modular, using Consensus as a black box, which facilitates
future implementations of the protocol with improved complexity metrics.
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