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—— Abstract

Spanners have been shown to be a powerful tool in graph algorithms. Many spanner constructions
use a certain type of clustering at their core, where each cluster has small diameter and there are
relatively few spanner edges between clusters. In this paper, we provide a clustering algorithm
that, given k£ > 2, can be used to compute a spanner of stretch 2k — 1 and expected size O(nHl/k)
in k rounds in the CONGEST model. This improves upon the state of the art (by Elkin, and
Neiman [TALG’19]) by making the bounds on both running time and stretch independent of the
random choices of the algorithm, whereas they only hold with high probability in previous results.
Spanners are used in certain synchronizers, thus our improvement directly carries over to such
synchronizers. Furthermore, for keeping the total number of inter-cluster edges small in low diameter
decompositions, our clustering algorithm provides the following guarantees. Given g € (0, 1], we

102") such that each edge ¢ € E is

an inter-cluster edge with probability at most 5 - w(e) in O (lo%) rounds in the CONGEST model.
Again, this improves upon the state of the art (by Miller, Peng, and Xu [SPAA’13]) by making the
bounds on both running time and diameter independent of the random choices of the algorithm,

compute a low diameter decomposition with diameter bound O (

whereas they only hold with high probability in previous results.
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1 Introduction

Clustering has become an essential tool in dealing with large data sets. The goal of clustering
data is to identify disjoint, dense regions such that the space between them is sparse. When
working with graphs, this translates to partitioning the vertex set into clusters with relatively
few edges between clusters such that the clusters satisfy a particular property. One can
for example demand that the clusters have low diameter [4, 2, 9, 31], high conductance
[22, 24, 36, 12, 13, 35, 14], or low effective resistance diameter [1]. In this paper, we focus on
the low diameter decomposition and its connection to spanners. Low diameter decompositions
are formally defined as follows.
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Spanners and Low Diameter Decompositions

» Definition 1. Let G = (V, E) be a weighted graph. A probabilistic (3, )-low diameter
decomposition of G is a partition of the vertex set V into subsets Vi,...,V;, called clusters,
such that

each cluster V; has strong diameter at most ¢, i.e., dgpy,(u,v) <0 for all u,v € Vit;

the probability that an edge e € E is an inter-cluster edge is at most 8 - w(e), i.e., for
e = (u,v), the probability that u € V; and v € V} for i # j is at most B - w(u,v).

In an unweighted graph, another typical definition of the low diameter decomposition
replaces the second condition with an upper bound on the number of inter-cluster edges [31].
In this fashion, a probabilistic low diameter decomposition has O(8m) inter-cluster edges in
expectation.

Originally, low diameter decompositions were developed for distributed models, where they
have been proven useful by reducing communication significantly in certain situations [4, 6].
Later, they also have shown to be fruitful in other models; they have been applied in shortest
path approximations [15], cut sparsifiers [27], and tree embeddings with low stretch [2, 9, 10].

The clustering technique used for computing low diameter decompositions has implicitly
been used to develop sparse spanners [11, 30, 17] and synchronizers [4, 7]. The main idea is
to create the clusters, and add some, but not all, of the inter-cluster edges. In a sense, the
inter-cluster edges are sparsified. We formalize this concept as follows.

» Definition 2. Let G = (V, E) be an unweighted graph. A sparsified (¢, 0)-low diameter
decomposition of G is a partition of the vertex set V into subsets Vi,...,V;, called clusters,
together with a set of edges F C E such that

each cluster V; has strong diameter at most ¢, i.e., dgpv,(u,v) <0 for all u,v € Vi;

for every edge, one of its endpoints has an edge from F into the cluster of the other
endpoint, i.e., Ve = (u,v) € E, we have either (u',v) € F for some v’ € C,, or (u,v’) € F
for some v’ € C,2.
[Fl <.
Moreover, we say that a sparsified (¢,9)-low diameter decomposition is tree-supported if for
each cluster V; we have a cluster center ¢; € V; and a tree of height at most §/2 spanning the
cluster. All these trees together are called the support-forest.

Our main result is a clustering algorithm that produces a sparsified low diameter decom-
position.

» Theorem 3. There exists an algorithm, such that for each unweighted graph G = (V, E) and
parameter k > 2 it outputs a tree-supported sparsified (¢, 2k — 2)-low diameter decomposition,
with ¢ = O(n* /%) in expectation. The algorithm runs in k rounds in the CONGEST model,
and in O(klog™ n) depth and O(m) work in the PRAM model.

An important feature of this result is that the bounds on the strong diameter and
number of rounds are not probabilistic; they are independent of the random choices in the
algorithm. We show two applications of this theorem: constructing spanners and constructing
synchronizers.

L For U C V, we write G[U] for the graph induced by U, i.e., G[U] := (U,U x U N E).
2 For v € V, we write C, for the cluster containing v.
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Spanners. Given a graph G = (V, E), we say that H C G is a spanner of stretch «, if
dp(u,v) < a-dg(u,v), for every u,v € V. It is straightforward that a tree-supported
sparsified ((, 2k — 2)-low diameter decomposition gives a spanner of size ¢ + n and stretch
2k — 1, for details we refer to Section 3.1. This gives us the following corollary.

» Corollary 4. There exists an algorithm, such that for each unweighted graph G = (V, E)
and parameter k > 2 it outputs a spanner H of stretch 2k — 1. The expected size of H
is at most O(n'*1/%). The algorithm runs in k rounds in the CONGEST model, and in
O (klog™ n) depth and O(m) work in the PRAM model.

Spanners themselves have been useful in computing approximate shortest paths [5, 16],
distance oracles and labeling schemes [38, 32], and routing [33]. A simple greedy algorithm [3]
gives a spanner of stretch 2k — 1 and of size O(n'*1/¥), which is an optimal trade-off under
the girth conjecture [18]. However, its fastest known implementation in the RAM model takes
O(kn?t1/(2k+1)) time [34]. Halperin and Zwick [23] gave a linear-time algorithm to construct
spanners with an optimal trade-off for unweighted graphs in the RAM model. However,
this algorithm does not adapt well to distributed and parallel models of computation. This
problem can be overcome by exploiting the aforementioned relation with sparsified low
diameter decompositions. This was (implicitly) done by Baswana and Sen [11], who provide
an algorithm that computes a spanner of stretch 2k — 1 and of size O(kn'T'/*) in O(k)
rounds. The state of the art is by Elkin and Neiman [17], which builds off [30], and is also
based on low diameter decompositions. They provide an algorithm that with probability
1 — 1/c computes a (2k — 1)-spanner of expected size O(c!/*n'*1/*) in k rounds. Standard
techniques of boosting the failure probability to something inverse polynomial (or “with high
probability”) will require a logarithmic overhead. Alternatively, one can view the algorithm of
Elkin and Neiman as an algorithm that outputs an a-spanner of expected size O(cl/ kpl+l/k )
in O(«) rounds, such that with probability 1 — 1/¢ we have that o = 2k — 1.

Corollary 4 improves on the result of Elkin and Neiman by making the bounds on
the stretch and the running time independent of the random choices in the algorithm. In
particular, the algorithm of Elkin-Neiman involves sampling vertex values from an exponential
distribution. The exponential distribution introduces an (as we show) unnecessary amount
of randomness; we demonstrate that the geometric distribution suffices. We replace the extra
random bits the exponential distribution provides by a tie-breaking rule on the vertex IDs,
which we believe contributes to a more intuitive construction.

Synchronizers. The second application of Theorem 3 is in constructing synchronizers in
the CONGEST model. A synchronizer gives a procedure to run a synchronous algorithm on
an asynchronous network. More precisely, the goal is to run any synchronous R(n)-round
M (n)-message complexity CONGEST model algorithm on an asynchronous network with
minimal time and message overhead. The first results on synchronizers are by Awerbuch [4],
called synchronizers «, 3, and . Subsequently, these results were improved by Awerbuch
and Peleg [8], and Awerbuch et al. [7], both having O(R(n)log® n) time and O(M (n)log® n)
message complexity.

The synchronizer « from [4] essentially consists of running a combination of the simple
synchronizers « and 8 on a sparsified ({, §)-low diameter decompositions. In that case, the
bound ¢ on the sparsified inter-cluster edges goes into the bound for the communication
overhead of the synchronizer and the strong diameter bound § goes into the bound for the
time overhead of the synchronizer. Applying synchronizer v on our clustering, we obtain the
following result.

16:3
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» Theorem 5. There exists an algorithm that, given k > 2, can run any synchronous
R(n)-round M (n)-message complexity CONGEST model algorithm on an asynchronous
CONGEST network. In expectation, the algorithm uses a total of O(M(n) + R(n)n'+t1/¥)
messages. Provided that each message incurs a delay of at most one time unit, it takes
O(R(n)k) rounds. The initialization phase takes O(k) time, using O(km) messages.

The running time claimed in this theorem is independent of the random choices in our
algorithm, which is a direct result of Theorem 3. The previous sparsified low diameter
decompositions (implicit in [17]) would provide similar bounds on the running time, but only
with constant probability.

Low Diameter Decompositions. Perhaps unsurprisingly, we show that, with the right
choice of parameters, our clustering algorithm can also compute unsparsified low diameter
decompositions.

» Theorem 6. There exists an algorithm, such that for each graph G = (V, E) with integer
weights w: E — {1,..., W} and parameter 5 € (0, 1] it outputs a low diameter decomposition,

whose components are clusters of strong diameter of at most O (k’%) Moreover, each edge

is an inter-cluster edge with probability at most 8 - w(u,v). The algorithm runs in O (%)

rounds in the CONGEST model, and in O (%) depth and O(m) work in the PRAM
model.

Similar to our spanner algorithm, the bounds on the running time and strong diameter
hold independent of the random choices within the algorithm, as opposed to the previous
state of the art [31], where they only hold with high probability. In the low diameter
decomposition as discussed above, the trade-off between 8 and diameter bound O (10%) is

essentially optimal [9].

Technical Overview

Our clustering algorithm follows an approach known as ball growing, related to the prob-
abilistic partitions of [9, 10]. In a sequential setting, this consists of picking a vertex, and
repeatedly adding the neighbors of the current vertices to the ball. This stops when a
certain bound is reached, such as a bound on the diameter of the ball or on the number of
edges between the current ball and the remainder of the graph. The algorithm repeats this
procedure with the remainder of the graph until this is empty. Miller, Peng, and Xu [31]
showed that this can be parallelized by letting each vertex create its own ball, but after
a certain start time delay. In [31], this has been done by sampling the delays from the
exponential distribution, which leads to the aforementioned probabilistic diameter guarantee,
as the exponential distribution can take infinitely high values — albeit with small probability.
Furthermore, multiple authors (see e.g. [19, 31]) argue that one can round the sampled values
from the exponential distribution for most of the algorithm and solely use that the fractional
values of the sampled value induce a random permutation of the nodes. In this paper, we
show that even fewer random bits are needed: we do not require a random permutation of
the nodes. We demonstrate that a tie-breaking rule based on the IDs is enough.

We sample with a capped-off geometric distribution, also used in [28, 7]. As opposed to
the standard geometric distribution, the capped-off version can only take a finite number
of values. We believe this leads to a more direct proof of the spanner algorithm of [17] and
of the decomposition algorithm of [31]. Moreover, by making the sparsifier low diameter
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decomposition explicit, the application to synchronizers is almost immediate. In the remainder
of this paper, we will not think of the sampled values as start time delays, but as the distance
to some conceptual source s, similar to the view in [31]. The rest of the clustering algorithm
then consists of computing a shortest path tree rooted at s, which is easily calculated, both
in the CONGEST and PRAM model. The clusters consists of the trees that remain when we
disconnect the shortest path tree by removing the root s.

As an anonymous reviewer pointed out, in the case of low diameter decompositions, the
algorithm of Miller et al. [31] admits an alternative approach. We can exploit the fact that
the exponential delays are bounded with high probability. In case the delays exceed the
bound, we could return a sub-optimal clustering, without any central communication. As this
only happens with low probability, it does not impact the expected number of inter-cluster
edges. Note however, that the spanner construction of Elkin and Neiman [17] is not in
this high-probability regime, therefore this straightforward approach would not work. We
additionally believe that, beyond the result itself, our algorithm provides a more streamlined
view.

2 The Clustering Algorithm

Let G = (V, E) be a graph with integer weights w: E — {1,...,W}. Let p € (0,1) and
r € N be parameters, to be chosen according to the application of our algorithm. In the
following, we provide an algorithm for computing a clustering, where the strong diameter of
these clusters will be 2r. In particular, we will show that each cluster is tree-supported by a
tree of height . The number of inter-cluster edges depends on both p and 7, and can be
bounded in two ways. The first approach, detailed in Section 3, shows we have a sparsified
low diameter decomposition. Here, for each vertex we compute the expected number of edges
in the sparsified set of inter-cluster edges, which gives a bound that does not depend on
m, but only on n,p and r. The second approach, detailed in Section 4, shows we have a
probabilistic low diameter decomposition, by computing the probability that any edge is an
inter-cluster edge.

2.1 Construction

First we conceptually add a node s to the graph G to form the graph G’. The node s will
function as an artificial source for a shortest path tree. Each vertex will have a distance to s
in G’ depending on some random offset. Hereto, each vertex samples a value ¢, from the
capped exponential distribution GeomCap(p,r), defined by

p(l—p)t fO<i<r—1;
P[GeomCap(p,7) =i = (1 —p)" ifi=r;

(
0 else.

This distribution corresponds to the model where we repeat at most r Bernoulli trials, and
measure how many trials occur (strictly) before the first success, or whether there is no
success in the first r trials. We check that GeomCap is indeed a probability distribution on

{0,1,...,r}:

Z]P’[GeomCap(p7 r)y=1i] = ip(l —p)'+(1—-p) pll_((ll_pp))’" +(1-p)" =1
i=0 i=0

16:5

OPODIS 2021



16:6

Spanners and Low Diameter Decompositions

As the intuition suggests, GeomCap has a memoryless property as long as the cap is not
reached, i.e., P[GeomCap(p,r) =i | GeomCap(p,r) > i] = p for i < r — 1. The proof is
completely analogous to the proof of the memoryless property of the geometric distribution.

For each vertex v € V, we conceptually add an edge (s,v) to G, with weight w(s,v) :=
r — 6,. We define d(s,z) := w(s,u) + dg(u, ), which is the minimal path length, for a
path from s to 2 over u. Now we have that the distance from s to x equals dg(s,z) =
min, ey {d™ (s,z)}. We call this the level of x, ranging from 0 (closest to s) to r (furthest
from s). Moreover, we define p,(z) to be the predecessor of x on an arbitrary but fixed
shortest path from u to x. Next, we construct a shortest path tree T rooted at s. When
necessary, we do tie-breaking according to IDs: let v be such that dg:(s,z) = d¥)(s,x)
and ID(v) < ID(u) for all u € V satisfying dg:(s,2) = d*)(s,z). Then we connect z to
the shortest path tree using the edge (p,(z),x). Moreover, we add = to the cluster of v
and write ¢, := v for the corresponding cluster center. Intuitively, the clusters correspond
to the connected components that remain when we remove the source s from the created
shortest path tree. The formal argument for this can be found in the proof of Lemma 7. The
computation of this shortest path tree is model-specific, we provide details in Section 2.3.

The algorithm outputs the shortest path tree T, and for each z € V', the center of its
cluster center ¢, and its level. The knowledge of cluster centers immediately gives a clustering,
where — by the remark above — each cluster has radius at most r. In Section 3, we show how
to construct a set of edges F' C E from the cluster centers and levels, such that H :==T U F
is a spanner.

In the above, we only need an arbitrary ordering of the vertices. If we assume that each
vertex v € V has a unique identifier, ID(v) € {1,..., N}, we can provide an alternative
way of constructing the same shortest path tree. We construct a graph where w(s,v) =
r — 0, + ID(v)/(N 4+ 1), and compute a shortest path tree rooted at s. This embeds the
tie-breaking rule in the weight of the added edges, and thus in the distances. For generality —
and suitable implementation in distributed models with limited bandwidth — the remainder
of this paper relies on the former characterization using the tie-breaking rule.

2.2 Tree-Support

Next, we will show that the created clusters are tree-supported by a tree of height r. We
have already chosen cluster centers, and we will show that we can identify trees rooted at
these centers that satisfy the tree-support condition.

» Lemma 7. FEach cluster is tree-supported by a tree of height at most r.

Proof. Let v € V be a vertex, which is part of the cluster centered at c,. We show that there
is a path from ¢, to v contained in this cluster, which has length at most dg(c,,v) < r.We
proceed to show by induction on dg(c,,v) that there is a path from ¢, to v contained in
their cluster, which has length at most dg(c,,v). The base case, v = ¢,, is trivial. Let u be
the predecessor of v on some path from ¢, to v of length dg(c,,v). It suffices to show that u
is in the same cluster, then the result follows from the induction hypothesis. By definition of
¢y, we have that

der(s,0) = dgi (s, ¢0) + da(co, v) = dar (s, ¢) + dg (e, 1) + w(u, v) = d) (s, u) +w(u, v).

By the triangle inequality we have dg/(s,v) < dg/(s,u) + w(u,v). Combining this, we see
d)(s,u) < dg:(s,u). As the distance dg (s, ) is minimal, by definition we have d(¢*) (s, u) =
de (s,u). Now suppose that u is part of some cluster ¢,. Then we have d(¢+) (s, u) = dg/ (s, u)
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and ID(c,) < ID(c,). However, this implies that d(¢«)(s,v) < d©)(s,u) + w(u,v) =
d) (s, u) +w(u,v) = d®)(s,v). Hence by the tie-breaking for v we have ID(c,) < ID(c,)
and thus ¢, = ¢,. |

As an immediate corollary, we obtain a bound on the strong diameter of the clusters.

» Corollary 8. Fach cluster has a strong diameter of 2r.

2.3 Implementation and Running Time

For the RAM model, the implementation is straightforward and can be done in linear time [37].

The implementation in distributed and parallel models requires a little more attention. For
both models, the computational aspect is very similar to prior work [31, 17].

2.3.1 Distributed Model

The algorithm as presented, can be implemented efficiently both in the LOCAL and in the
CONGEST model. It runs in r + 1 rounds as follows. In the initialization phase, each

vertex v samples its value §, and sets its initial distance to the conceptual vertex s as r — &,.

In the first round of communication, v sends the tuple (r — §,,ID(v)) to its neighbors. In
each round, v updates its distance to s according to received messages. It then broadcasts
the tuple of its updated distance and the ID corresponding to the first vertex on the path
from s to v. Note that at the end of the algorithm, each node knows its own level and cluster
center, and the level and cluster center of each of its neighbors.

When the algorithm is applied with » = O(n) (if » > n, we can simply return the
connected components of the graph as clusters), we maintain a bound on the message size of
O(logn), so there are no digit precision consideration for the CONGEST model. Moreover,
each vertex v has distance at most r — §,, < r to s, the algorithm terminates within r + 1
rounds.?

2.3.2 PRAM Model

The implementation in the PRAM model is slightly different to the CONGEST model.

Instead of broadcasts by each vertex in each round, a vertex v updates its distance only
once: either after one of its neighbors updated its distance, or after time r + 1 — §,, it sets its
distance to r — d,,. The total required depth differs on the exact model of parallelism, it is
O(rlog* n) in the CRCW model of parallel computation. To show this, we follow the general
lines of [25], but we have to be careful: during the shortest path computation, we might need
to apply our tie-breaking rule, i.e., finding the minimum ID among all options. Note that in
the PRAM model, we can assume without loss of generality that the IDs are labeled 1 to n in
the adjacency list representation. Finding the minimum can be done with high probability in
O(log™ n) depth and O(n) work, as we can sort a list of integers between 1 and n in O(log™ n)
depth and O(n) work [21]. If we exceed the O(log™n) depth bound, we stop and output
the trivial clustering consisting of singletons. This clustering clearly satisfies the diameter
bound, and as we only output it with low probability, it has no effect on the expected
number of inter-cluster edges. So we can conclude that the additional sorting overhead for

the tie-breaking is a factor O(log* n). The algorithm has total work O (m + ﬁ), where
the contribution of O (ﬁ) comes from sampling from the geometric distribution. In this

paper, this factor vanishes as we always have p such that O (ﬁ—p) = O(m).

3 The “41” appears, as nodes in the lowest level have distance 0 to the source s.
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3 Constructing a Sparsified Low Diameter Decomposition

In this section, we show how the clustering algorithm leads to a sparsified low diameter
decomposition. The procedure is as follows: given k > 2, weset r = k—1, p=1—n"1* and
compute a clustering using the algorithm of Section 2. We denote F' C E for the sparsified
set of inter-cluster edges. Intuitively, for each vertex v € V', we add an edge to F' for each
cluster in which we have a neighbor on one level below, or a neighbor on the same level as v
with the ID of the cluster center smaller than the ID of center of the cluster of v.

» Lemma 9. There exists a set of edges F C E of expected size O(n*+/*), such that for
every edge, one of its endpoints has an edge from F into the cluster of the other endpoint.

Proof. We define, I := |J . C(), where C(z) consists of the following edges

C(x) :=={(z,pu(x)) : dW(s,z) = de(s,2)}
U{(z,pu(x)) : dW(s,2) = dg/(s,2) + 1 and ID(u) < ID(c,)}.

First, we show that F satisfies the property stated in the lemma, then we consider its size.
Let (z,y) € E, without loss of generality, we assume dg(s,x) > dg/(s,y), and in case of
equality we assume ID(c,) > ID(c,). We will show that there is an edge (z,p,(z)) € C(x)
to the cluster of y. First of all, notice that dg/(s,y) > dg(s,x) — 1 by the triangle inequality.
If do/(s,y) = der(s,x) — 1, then d(®v) (s, x) < dg(s,x). Because of minimality of dg(s, ),
we have d(®)(s,z) = dg/(s,x), and thus (z,p.,(z)) € C(z) by definition of C(z). If
der(s,y) = de (s, ), we have ID(c,) > ID(c,). Moreover, we have d®+)(s,z) < dg(s,z) + 1.
So again it follows that (x,p, (z)) € C(x) by definition of C(x).

Now, we turn to the expected size of F. By linearity of expectation, we have E [F] =
> wev E[C(z)]. We will show that for each x € V' the expected size of C(z) is at most
2n'/k . For each u € V, we potentially add an edge (z, p,(z)) to C(z). First, we calculate
the probability that at least ¢ such vertices u contribute an edge. Hereto, we look at the
random variables X, = d® (s, z) = k — 8, + dg(u, ). According to these random variables,
we order all vertices: V' = {uy,us,...,u,}, such that for i < j we satisfy one of the following
properties

KXoy < Xy

Xu; = Xy, and ID(u;) < ID(uy).

We calculate P[|C(X)| > t], i.e., the probability that {(x,p., (z)),..., (z,p., (z))} C C(x).

We do this by conditioning on u; = v. We observe

PI{(@pun (@), (290 (2))} € C(@) | w0 = 0] =

t—1

H]P’[(x,pui(x)) € C(z) and (z,py(z)) € C(z) | up = v].

i=1
So we calculate P [(x, py, () € C(z) and (z,p,(z)) € C(z) | uy = v] for ¢ < t. By definition
of C(z), this can only hold if either z’s closest neighbors in the clusters centered at u; and
v are on the same level (in which case we have ID(u;) < ID(v), as v = u; and ¢ < t) or
the neighbor from the cluster centered at u; is at a level lower and ID(v) < ID(u;). Note
that the level of the closest neighbor in the cluster of u; or v corresponds to the distance
d) (s, x) = X, or d) (s, x) respectively. As the allowed distances depend on the ID of u;,
we split the vertices according to ID:

Ve :={ueV:ID(u) <ID(v)};
Vs :={u eV :ID(u) > ID(v)}.
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If u; € Vo, then we know X,, < d)(s,z). If both (x,p,,(2)) and (z,p,(z)) are in C(z), we
must have X,,, = d(*)(s, ). So for every i < t, we are looking at

P[(z,py,(x)) € C(z) and (z,p,(x)) € C(z) | u; € V< and up = v]
<]P’[ v—d(”)sx’ 6V<andut=v},

=P [X =dW(s, ) ‘ € Ve and X, < d(“)(s,x)} ,

where the last equality holds as we only rewrote the condition using the order of the u;’s
We fill in the definition of X, and use that the probability of the event we are looking at is
independent of ID(u;):

P {Xui =dW (s,z) | u; € Vo and X, < d(”)(s,x)]
=P [k = bu, +da(us, ) = dV) (s, ) ] w; € Ve and k — 8, + de(u;, z) < d®(s, z)
:P[k—éui—i—dg(u“ z) = dW(s, ‘k: G, + da(us, ) < dV) (s, )}
—P [5% =k + de(us, x) — dV(s ] Su, > k + de (us, ) — d(“)(s,x)} .
When k + dg(u;, z) — d®)(s,2) < k — 2, this equals p, by the memoryless property of the

geometric distribution. To distinguish this, we partition the vertices v with ID(u) < ID(v)
into two set

Vei:={ueV:ID(u) < ID(v) and k + dg (u;, ) — dV) (s, z) < k — 2};
Veg:={ueV:ID(u) < ID(v) and k + dg (u;, ©) — dV)(s,z) = k — 1}.
Now for u; € V5, we obtain by the same reasoning
P[(z,pu,(x)) € C(z) and (x,p,(2)) € C(x) | u; € Vs and u, = v]
=P [51” =k +dg(ui, ) —dV(s,z) + 1|6y, > k+ da(ug,z) —d(s,z) + 1| .

As before, when k + dg(u;, ) — d¥)(s,x) +1 < k — 2, this equals p, by the memoryless
property of the geometric distribution. And again, we partition V5 into two sets

Voi:={ueV:ID(u) >
Ve ={ueV:ID(u) >

ID(v) and k + dg(us, z) — d® (s,2) + 1 < k — 2};
ID(v) and k + dg(us, 2) —d¥ (s,2) +1 =k —1}.
If we define V; = V1 UV5 1 and Vo = Vo o U VS o, we can summarize our results as
P[(x, pu,(x)) € C(z) and (x,p,(z)) € C(z) | u; € V7 and u, = v] < p.
Next, we split the expected value of C(z) depending on Vi and Va:
EflC@)| [ur =] =E[|C(x) V1| [ us = o] + E[|C(z) N V2| [ ug = o]

We bound the first summand with n'/* independent of v. Hereto, we observe that for any
non-negative discrete random variable X we have

=Y sPX=s]=> Y PX=s/=> > PX=s=) PX>t.
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Using this, we obtain
E[|C(x) N Vil [ ue = 2]

=Y "PIC(x) N V| >t | uy =]

n t—1

< ZHP[(I,pu(m)) € C(z) and (z,py(x)) € C(z) | u; € V1 and u = v]

t=1i=1

where the last equality holds by definition of p. For the second summand, we look at all v
simultaneously.

Y E[C@)NVal | up = v]Plug =] < Y E[|Va| | up = 0] P[uy = 0]
veV veV
< ZE[|{UEV:5u=k—1}| | ur = 0] Plus = v]
veV
=E[{ueV:d0,=k—-1}],

where the last equality holds by the law of total probability. We bound this as follows
El{ueV:6,=k—1}]| <nP[0, =k—1] =n(1 —p)*~t =nl/k
where the last equality holds by definition of p. In total, this gives us E[|C(x)]] < 2n'/k. <

Together Lemma 7 and Lemma 9 imply the following theorem.

» Theorem 3 (Restated). There exists an algorithm, such that for each unweighted graph
G = (V, E) and parameter k > 2 it outputs a tree-supported sparsified (¢, 2k — 2)-low diameter
decomposition, with ( = O(an/k) in expectation. The algorithm runs in k rounds in the
CONGEST model, and in O(klog™n) depth and O(m) work in the PRAM model.

3.1 Constructing a Spanner

Now, we can construct a spanner from the tree supported low diameter decomposition in
the following manner. Let T denote the support forest, and let F' denote the set as given in
Lemma 9. We define the spanner H := (V,T U F'). As any forest has at most n — 1 edges,
the expected size of H is at most O(n'*t1/¥). Actually, one could also show that 7' C F in
our construction of F', but this would not impact the asymptotic size bound. To show that
H is a spanner, we show its of limited stretch.

» Lemma 10. H is a spanner of stretch 2k — 1.
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Proof. We will show that for every edge (x,y) € E, there exists a path from = to y in H
of length at most 2k — 1. Consequently we have that dg(z,y) < (2k — 1)dg(z,y) for every
x,y € V, hence H is a spanner of stretch 2k — 1.

Let (x,y) € E. By definition of F, one of the endpoints has an edge in F into the cluster
of the other endpoint. Without loss of generality, let there be an edge (z,2) € F with z in
the cluster of y. By Corollary 8, there is path of length at most 2(k — 1) from z to y, so in
total we have a path of length at most 2(k — 1) + 1 =2k — 1 from z to z to y. |

Now, the following corollary follows from Theorem 3 and Lemma 10.

» Corollary 11 (Restated). There exists an algorithm, such that for each unweighted graph
G = (V, E) and parameter k > 2 it outputs a spanner H of stretch 2k — 1. The expected size
of H is at most O(n'*Y/*). The algorithm runs in k rounds in the CONGEST model, and
in O (klog" n) depth and O(m) work in the PRAM model.

3.2 Constructing a Synchronizer

Suppose we are given a synchronous CONGEST model algorithm, but we want to run it on an
asynchronous CONGEST network. That is, the messages sent in the network can now have
arbitrary delays and, in an event-driven manner, nodes become active each time they receive
a message. For the purpose of analyzing the time complexity of the algorithm, it is often
assumed that the delay is at most one unit of time, however, the algorithm should behave
correctly under any finite delays. In this situation, a node should start simulating its next
(synchronous) round when it has received all the messages from the previous round from its
neighbors. The problem is that it cannot tell the difference between the situation if a message
from a particular neighbor has not arrived yet or if this same neighbor is not sending any
message in that round at all. We say that a node is safe if all the messages it has sent have
arrived at their destination. In order to determine whether all neighboring nodes are safe,
additional messages are sent. The procedure governing these additional messages is called
the synchronizer. There are two things to take into account when analyzing synchronizers.
First, the time overhead: how much time is needed to send the additional messages for each
synchronous round. Second, the message-complexity (or communication) overhead: how
many additional messages are sent. For more details on synchronizers see e.g. [29, 26].

Let us first consider two simple synchronizers: synchronizer « and synchronizer 3, see [4].
In synchronizer «, when a node receives a message from a neighbor, it sends back an
“acknowledge” message. When a node has received acknowledge messages for all its sent
messages, it marks itself safe and reports this to all its neighbors. The synchronizer « uses,
for each simulated synchronous round, additional O(1) time, and O(m) messages.

Synchronizer g will produce a different trade off between time and message overhead.
It uses an initialization phase in which it creates a rooted spanning tree, where the root is
declared the leader. Now after sending messages of a certain synchronous round, again nodes
that receive messages reply with an acknowledge message to each. Nodes that are safe, and
whose children in the constructed tree are also safe communicate this to their parent in the
tree. Eventually the leader will learn that the whole graph is safe, and will broadcast this
along the spanning tree. Synchronizer 8 uses O(D) time and O(n) messages per synchronous
round.

Now we are ready to consider a little more involved example, called synchronizer ~,
see [4]. This synchronizer makes use of clustering, where within each cluster synchronizer
£ is used and between clusters synchronizer « is used. In the LOCAL model, the cluster
centers can simply select a communication link for each neighboring cluster to communicate
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individually with the neighboring cluster centers [4]. However, in the CONGEST model,
communicating information about neighboring clusters to the cluster center might lead to

congestion problems. Using a slightly more careful analysis, the procedure can be adapted
to the CONGEST model.

» Lemma 11 (Implicit in [4]). Given a T(n)-round synchronous CONGEST model algorithm
for constructing a sparsified (¢, 9)-low diameter decomposition, any synchronous R(n)-round
M (n)-message complexity CONGEST model algorithm can be run on an asynchronous
CONGEST network with a total of O(M(n) + R(n)(¢ 4+ n)) messages, and, provided that
each message incurs a delay of at most one time unit, in time O(R(n)d). The initialization
phase takes O(T(n)) time, using O((T'(n) + §)m) messages.

For a sketch of the algorithm, we refer to Appendix A. If we plug in our clustering, we
obtain the following theorem.

» Theorem 5 (Restated). There exists an algorithm that, given k > 2, can run any synchron-
ous R(n)-round M (n)-message complexity CONGEST model algorithm on an asynchronous
CONGEST network. In expectation, the algorithm uses a total of O(M(n) 4+ R(n)n'+1/F)
messages. Provided that each message incurs a delay of at most one time unit, it takes
O(R(n)k) rounds. The initialization phase takes O(k) time, using O(km) messages.

4 Constructing a Low Diameter Decomposition

In this section, we show that for an integer weighted graph the computed clustering is

a probabilistic low diameter decomposition. To be precise, if we set p = g, and r =
H In (%) + ﬁ—‘ we obtain a (57 0] (102")>—10W diameter decomposition. By Corollary 8,

we know that each of the clusters has a strong diameter of at most 2r = 2 H In (272) + ﬁ—‘ =

O (10%) Now, we show that the probability that an edge e € F is an inter-cluster edge is

at most 4p - w(e) = B - w(e). We use a general proof structure from [31], but make it more
streamlined; we avoid an artificially constructed “midpoint” on the edge (u,v). Further, our
proof borrows the idea of conditioning on the event E,/ , o from Xu [39], which we adapt to
our situation.

» Lemma 12. For (u,v) € E, the probability that u and v belong to different clusters is at
most 4p - w(u,v).

Proof. Suppose (u,v) is an inter-cluster edge. Without loss of generality, we assume
dgi(s,v) < dg/(s,u). By the triangle inequality, we have dg/(s,u) < dg/(s,v) + w(u,v),
hence we have dg(s,u) —dg/(s,v) < w(u,v). Using this, we can upper bound the probability
that an edge (u,v) is an inter-cluster edge by the probability that this inequality holds. Note
that we can assume 4p - w(u, v) < 1, otherwise the statement is trivially true.

We want to condition on the cluster center v’ that satisfied d*")(s,u) = dg(s,v), and
on the cluster center v’ # v’ that minimizes d(“,)(s, u). Moreover, we ask that these cluster
respect the tie-breaking rule, i.e., both have minimal ID among all centers with equal distance.
Finally, we condition on the value of dg/ (s, u), which we set to a. We call this event Ey/ o,
which we formally define to hold when the following four conditions are satisfied
1. d“)(s,u) < a;

2. for w' € V'\ {v'} we either have d®)(s,v) > d")(s,v), or we have d) (s, v) = d)(s,v)

and ID(v) < ID(w’);
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3. d™)(s,0) = a;

4. for w' € V\ {u',v'} we either have d®)(s,u) > d)(s,u), or we have d®)(s,u) =
d“)(s,u) and ID(v') < ID(w’).

Now, we condition on E,/ . o and use the law of total probability:

P[(u,v) is an inter-cluster edge]

= Z Z ZIP [(u,v) is an inter-cluster edge | Ey v/ o] P[Eu v .0l
w eV eV\{u} «

<> ¥ ZQP[d(U’>(s,u) —d¥)(s,0) < wlu,v) ] Eua} P[Ew v.a) .-

uw eV eV\{uv} «

For simplicity, we omit the bounds for the sum over «, which is a finite sum as we always
have o < r +m. The factor two appears because the event assumes dg(s,v) < dg(s,u),
hence we gain a factor two by symmetry of u and v. We look at the first probability more
closely. We can loosen some of the event’s restrictions, and just maintain d(”/)(s,v) < q,
as the event we examine is independent of conditions 2, 3, and 4 of the event E,/ ,/ . We
obtain

P {d(“/)(s,u) —d™)(s,v) < w(u,v) ‘ Eu’,v’7a:|

=P [a —d™)(s,v) < w(u,v) ‘ d@)(s,0") < a}

=P[5y <r+dg(v,v) —a+w(u,v) |y >r+ds(,v)—a],
where the last equality holds by definition of d*")(s, v). Now if r+dg (v, v) — a+w(u,v) < r
(or equivalently, & > dg(v',v) + w(u,v)), we stay away from our cap on the geometric

distribution, and hence we can apply the memoryless property of the geometric distribution
to obtain

Plo, <r+dg(,v) —a+w(u,v) | by >r+ds(v',v) —a
=1 (1 p
< pw(u,v),
where the last step holds by Bernoulli’s inequality. If we have r + dg(v',v) — a+w(u,v) > r

(or equivalently, a < dg(v',v) + w(u,v)), we show that the probability P [E, . ] of the
event taking place is already small:

PlE. ool <P [d(“,)(sw) < a and d<u/)(s,u) = oe}
=P [6v/ >r+de(v,v) - a] P [dml)(s, u) = a} (since the events are independent)

<Poy >1—w(u,v)]P [d(“/)(s,u) = a} ,

where the last equality holds as r + dg(v',v) — a + w(u,v) > r. We bound this probability
as follows:

P[5 > 7~ w(u, )] B [d)(s,0) = a] < (1= p) ) B [0 (5,u) = o
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2

Now we use that r = P In ("—) + %—‘, to obtain
P P P

n2
(1 _p)r—w(u,v) < (1 _ p)% 1n(7>+ﬁ—w(u,v)

((1 -p)
¥l

3

IN

(as 4p - w(u,v) < 1)

1/p)1n(np2)

<

3

Combining all of this, we obtain

P [(u,v) is an inter-cluster edge]

). > > Pl 6w =) < wl)

uw' eV o' eV\{uv'} a>dg (v’ ,v)+w(u,v)

+2 Z Z Z P [d(u/)(s, u) — d“’,)(s?v) < w(u,v)

uw' eV o' eV\{u'} a<dg (v’,v)+w(u,v)

<2 Z Z Z p-w(u,v) P[Ey v ol

uw' eV o' eV\{uv'} a>dg (v ,v)+w(u,v)

+2 Z Z Z %]P’ {d(“,)(s,u) :a}

uw' eV o' eV\{u'} a<dg (v’ ,v)+w(u,v)

<2p - w(u,v) Z Z Z]P’[Eu/,v/,a} + 2% Z Z ZIP’ {d<ul>(s,u) = a} .

uw' eV eV\{u'} « uw' eV eV\{u'} «

Eu,’v,’a} P(Eur v o]

Eu’,v’,aj| P [Eu’,v',a}

Next, we notice that all events E,/ .  are disjoint by design, so

)OI D SLIRRERE

weVoeV\{u} «
Clearly we have ) P {d(”/)(s, u) = a} =1, as this is just a sum over all possible values of
d®) (s, u). Filling both in, we conclude

. . p
P[(u,v) is an inter-cluster edge] < 2p - w(u,v) + 2 Z Z 2 <A4dp-w(u,v). <
uw' eV eV\{u'}
Together with Corollary 8, this gives us the following theorem.

» Theorem 6 (Restated). There exists an algorithm, such that for each graph G = (V, E)
with integer weights w: E — {1,..., W} and parameter 5 € (0, 1] it outputs a low diameter

decomposition, whose components are clusters of strong diameter of at most O (10253”).
Moreover, each edge is an inter-cluster edge with probability at most 8 - w(u,v). The

algorithm runs in O (lo%) rounds in the CONGEST model, and in O (%) depth

and O(m) work in the PRAM model.

5 Conclusion

We have presented an algorithm that computes a clustering, more precisely, a tree-supported
sparsified low diameter decomposition. This directly leads to a sparse spanner and can
be applied to compute a synchronizer for the CONGEST model. Moreover, we show that
we also improve upon the state-of-the art for low diameter decompositions. By showing
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that clustering can be done using a capped geometric distribution, we improve on existing
algorithms for spanners and low diameter decompositions in two ways. First, we obtain
bounds on the diameter/stretch and running time that are independent of the random choices
of the algorithm. Second, the discreteness of the geometric distribution fits the discrete
nature of graph theoretical problems better than a continuous distribution. We believe this
leads to a more intuitive algorithm.

A natural question that remains is whether it would be possible to give a with-high-
probability bound on the total number of inter-cluster edges or the size of the spanner rather
than an in-expectation bound. A more ambitious goal is to develop a completely deterministic
algorithm with the same bounds, improving on the work of Ghaffari and Kuhn [20].
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A  Using Sparsified Low Diameter Decompositions for Synchronization

In the following, we turn to the algorithm realizing Lemma 11, i.e., we show how we can
run a synchronous CONGEST algorithm on an asynchronous CONGEST network, using
a sparsified low diameter decomposition. Hereto, we present an implementation of the
synchronizer v in the CONGEST model, using sparsified low diameter decompositions for
the communication. We refer to [4] for a proof of correctness of the synchronizer ~.

The initialization phase consists of three steps. First, we compute the sparsified (¢, d)-low
diameter decomposition. To do this in the asynchronous CONGEST model, we use the
synchronizer « (for details see [4], or textbooks, e.g., [29, 26]). Hence this takes O(T'(n)) time,
and O(T'(n)m) messages. Second, we pick a cluster center for each cluster and construct a
tree rooted at the cluster center spanning the cluster. We can do this in O(9) time, using
O(dm) messages, again using the synchronizer o.. Note that if the computed decomposition
was tree-supported, these trees are already given. As a third and final step of the initialization
phase, each vertex needs to be aware of its incident sparsified inter-cluster edges, as it will use
these to communicate to neighboring clusters. This might be already determined during the
construction of the clustering. It could also be the case that for each sparsified inter-cluster
edge, only one of the two incident vertices knows this. In O(1) time, using O(m) messages,
this can be communicated using the synchronizer a.. In total, we use O(T'(n)) time for the
initialization phase, and O((T(n) + §)m) messages.

Now we are set up for the simulation of the R(n)-round, M (n)-message complexity
synchronous CONGEST model algorithm. In each simulation of a synchronous round of
this algorithm, vertices respond to each message with an acknowledge message, same as in
the synchronizers a and 8. When a vertex has received acknowledge messages for each sent
message, it declares itself safe. If a vertex and all its children in the cluster tree are safe, it
notifies its parent in the cluster tree. Once the cluster center has received confirmation that
the whole cluster is safe, it down-casts this information to the whole cluster. Each vertex
communicates that its cluster is safe over its sparsified inter-cluster edges. Once a vertex
received a message of being safe over each sparsified inter-cluster edge, it declares itself ready.
When a vertex and all its children in the cluster tree are ready, it sends a ready-message to
its parent in the cluster tree. Once a cluster center received ready-messages from the whole
cluster, it down-casts a message “cluster ready” to all cluster vertices.

Assuming that each message incurs a delay of at most one time unit, we need at most
O(9) time for this procedure, as we send information along the trees of height § for a total of
four times. See [4] for the argument explaining why confirmation that neighboring clusters
are done suffices. Moreover, the only communication links participating in this procedure, are
the edges from the sparsified low diameter decomposition (consisting of at most ¢ inter-cluster
edges and n tree edges). Each of these edges sends up to four messages in total, giving a
total bound on the number of messages of O(R(n)(¢+n)) for the synchronization. This gives
a total time bound of O(R(n)d), and message complexity bound of O(M (n) + R(n)({ + n)).
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