On Finality in Blockchains

Emmanuelle Anceaume &
CNRS, Univ Rennes, Inria, IRISA, Rennes, France

Antonella Del Pozzo &

CEA-List, Université Paris-Saclay, Palaiseau, France

Thibault Rieutord &

CEA-List, Université Paris-Saclay, Palaiseau, France
Sara Tucci-Piergiovanni &

CEA-List, Université Paris-Saclay, Palaiseau, France

—— Abstract

This paper focuses on blockchain finality, which refers to the time when it becomes impossible to

remove a block that has previously been appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual. To favor availability against consistency in the
face of partitions, most blockchains only offer probabilistic eventual finality: blocks may be revoked
after being appended to the blockchain, yet with decreasing probability as they sink deeper into the
chain. Other blockchains favor consistency by leveraging the immediate finality of Consensus — a
block appended is never revoked — at the cost of additional synchronization.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a thorough study of several possible deterministic finality
properties and explore their solvability. This is achieved by introducing the notion of bounded
revocation, which informally says that the number of blocks that can be revoked from the current
blockchain is bounded. Based on the requirements we impose on this revocation number, we provide
reductions between different forms of eventual finality, Consensus and Eventual Consensus. From
these reductions, we show some related impossibility results in presence of Byzantine processes, and
provide non-trivial results. In particular, we provide an algorithm that solves a weak form of eventual
finality in an asynchronous system in presence of an unbounded number of Byzantine processes.
We also provide an algorithm that solves eventual finality with a bounded revocation number in
an eventually synchronous environment in presence of less than half of Byzantine processes. The
simplicity of the arguments should better guide blockchain designs and link them to clear formal
properties of finality.

2012 ACM Subject Classification Theory of computation
Keywords and phrases Blockchain, consistency properties, Byzantine tolerant implementations
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.6

Funding This work was partially supported by the French ANR project ByBloS (ANR-20-CE25-
0002) devoted to the modular design of building blocks for large-scale fault-tolerant multi-users

applications.

1 Introduction

This paper focuses on blockchain finality, which refers to the time when it becomes impossible
to remove a block previously appended to the blockchain. Blockchain finality can be
deterministic or probabilistic, immediate or eventual.

Informally, immediate finality guarantees, as its name suggests, that when a block is
appended to a local copy, it is immediately finalized and thus will never be revoked in the
future. Designing blockchains with immediate finality favors consistency against availability
in presence of transient partitions of the system. It leverages the properties of Consensus (i.e
a decision value is unique and agreed by everyone), at the cost of synchronization constraints.
? Emmanuelle Ancez%ume, Antonella. Del Pozzo, Thibault Rieutord, and Sara Tucci-Piergiovanni;

37 icensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 6; pp.6:1-6:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:emmanuelle.anceaume@irisa.fr
https://orcid.org/0000-0003-4158-149X
mailto:antonella.delpozzo@cea.fr
https://orcid.org/0000-0003-0913-2141
mailto:thibault.rieutord@cea.fr
mailto:sara.tucci@cea.fr
https://orcid.org/0000-0001-9738-9021
https://doi.org/10.4230/LIPIcs.OPODIS.2021.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2

On Finality in Blockchains

Assuming partially synchronous environments, most of the permissioned blockchains satisfy
the deterministic form of immediate consistency, as for example Red Belly blockchain [8] and
Hyperledger Fabric blockchain [2]. The probabilistic form of immediate finality is typically
achieved by permissionless pure proof-of-stake blockchains such as Algorand [7].

Unlike immediate finality, eventual finality only ensures that eventually all local copies of
the blockchain share a common increasing prefix, and thus finality of their blocks increases
as more blocks are appended to the blockchain. The majority of permissionless cryptoassets
blockchains, with Bitcoin [20] and Ethereum [25] as celebrated examples, guarantee eventual
finality with some probability: blocks may be revoked after being appended to the blockchain,
yet with decreasing probability as they sink deeper into the chain. In an effort to replace
the energy-wasting proof-of-work (PoW) method of Bitcoin and Ethereum, recent proof-of-
stake blockchains such as e.g. [16, 12, 15] emerged. These blockchains offer as well a form
of eventual finality. More broadly, all these permissionless solutions favor availability (or
progress) relying on a Nakamoto-style consensus: a broadcast primitive to diffuse blocks
and a local reconciliation mechanism to select a unique chain. It is indeed admitted that
a blockchain may lose consistency by incurring a fork, which is the presence of multiple
chains at different processes. The reconciliation mechanism, available to recover from a fork,
consists in a local deterministic rule selecting a chain among the different possible alternatives.
In Bitcoin for instance any participant reconciles the state following the “longest” chain
rule (the term “longest” chain rule is commonly employed, but this is actually the one that
required the most work to be built). Once a winner chain is chosen, the other alternatives
are revoked, as such all the blocks belonging to them. In designs using Nakamoto-style
consensus, however, network effects make the moment at which all honest processes observe
the same set of candidate chains unknown. Reconciliation and finalisation guarantees are
then uncertain, or simply extremely inefficient, for example by considering a block as finalised
after one or more days. To solve this problem a number of projects are investigating how
to add “finality gadgets” (e.g., [5, 24]) to Nakamoto-style blockchains, which means seeking
additional mechanisms or protocols to reach “better” finality properties in network adversarial
settings. The hope is to find ways to get deterministic finality by periodically running finality
gadgets on top of Nakamoto-style consensus. For the time being, the only way that has been
concretely pursued is to resort to Byzantine Consensus — e.g. Tenderbake [4] adds Byzantine
Consensus to the existing proof-of-stake method assuring deterministic finality to each block
followed by other two blocks. How to add mechanisms that do not resort to Consensus,
however, is an intriguing and open question, related to the finality properties one would like
to guarantee.

The quest for “good” deterministic finality properties for blockchains is still in its infancy,
though. Our motivation is to provide a protocol-independent abstraction of several possible
finality properties to study their solvability. To this aim we formalise, for the first time, the
notion of finality in a protocol-agnostic way. At the heart of the proposed formalisation lies
the notion of revocation number. Informally, given a system run and a blockchain bc read by
a user at some time ¢, we call the revocation number the natural number n such that by
pruning the last n blocks from bc, we obtain a prefix of any blockchain bc’ read after ¢.

By leaving the revocation number unbounded in all the runs of the system, we formalise
our weakest form of finality, the eventual finality consistency criterion F: In each run, the
revocation number can be infinite when the run goes to infinity, still each block will be
eventually finalised.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

By introducing restrictions on the revocation number, we then introduce stronger criteria.

The strongest criterion, called F¢, is obtained by restricting the revocation number to be a
constant ¢ in all the runs of the system. Informally, F¢ guarantees that finality of each block
is deferred by at most ¢ blocks in all system runs, i.e., any block followed by at least ¢ blocks
in the blockchain cannot be revoked.

Between F and F°¢ we then define three other forms of deferred finality: F™, where the
revocation number is bounded but not known, F¢, where the revocation number is constant
but holds only eventually, and finally F*", where the bound on the revocation number is
not known and holds only eventually. F™ guarantees that finality of each block is deferred
by a constant ¢ in each system run, but this constant can vary from one run to another. For
Fo¢ and F*™ we have that F*¢ guarantees that eventually finality of each block is deferred
by ¢ in all system runs, while for F%", eventually finality of each block is deferred by ¢ in
each system run with ¢ varying from one run to another. Nicely, we obtain each consistency
criterion by adding a proper bounded revocation property to F and we prove that F™, F*°,
F&™ are all equivalent.

The rigorous formalisation of these consistency criteria enables us to easily show that
solutions that guarantee F¢ are equivalent to Consensus, while solutions that guarantee F"
(or equivalently F*™ and F®¢) are not weaker than Eventual Consensus, an abstraction
that captures eventual agreement among all participants. From these reductions, we show
some related impossibility results in presence of Byzantine processes. Beside reductions and
related impossibilities, we propose the following non-trivial results:

F cannot be achieved in an asynchronous system if the reconciliation rule follows the
“longest” chain rule (Theorem 22). This implies that the reconciliation rule, used in current
blockchains to provide probabilistic finality in synchronous settings, cannot guarantee
that participants will eventually converge to a stable prefix of the chain in asynchronous
settings.

A solution that guarantees F in an asynchronous system with a possibly infinite set of
processes which can append infinitely many blocks. This novel solution is simple and
tolerant to an unbounded number of Byzantine processes (Theorem 23).

A solution that solves F™ in an eventually synchronous environment in presence of less
than half of Byzantine processes (Theorem 24). The central point of our solution is to let
correct processes blame each fork on a particular Byzantine process, which can then be
excluded from the computation. Weakening the classic requirement of < 1/3 to < 1/2

Byzantine processes makes such a solution well adapted to large scale adversarial systems.

As for the previous one, we are not aware of any such solution in the literature.

We hope that these results will better guide blockchain designs and link them to clear
formal properties of finality. Hence, in the remainder of this article, Section 2 situates our
work with respect to similar ones. Section 3 formally presents the sequential specification of
a blockchain and the formalisation of the different finality properties we may expect from a
blockchain when concurrently accessed. Section 4 presents reductions between different forms
of finality, Consensus and Eventual Consensus. Section 5 first shows why F is not solvable
in an asynchronous environment when the “longest” chain rule is used, and then presents
two original and simple algorithms that respectively solve F and F™. Finally, Section 6
concludes the paper.

6:3

OPODIS 2021

6:4

On Finality in Blockchains

2 Related Work

Formalization of blockchains in the lens of distributed computing has been recognized as
an extremely important topic [14]. Garay et al. [10] have been the first to analyze the
Bitcoin backbone protocol and to define invariants this protocol has to satisfy to verify with
high probability an eventual consistent prefix. The authors have analyzed the protocol in a
synchronous system, while others, as for example Pass et al. [21], have extended this line
of work considering a more adversarial network. In those works the specification of the
consistency properties are protocol dependent and thus provide an abstraction level that
does not allow us to model the blockchain as a shared object being agnostic of the way it is
implemented. The objective we pursue throughout this work is to formalize the semantic
of the interface between the blockchain and the users. To do so we consider the blockchain
as a shared object, and thus the consistency properties are specified independently of the
synchrony assumptions of underlying distributed system and the type of failures that may
occur. By doing this, we offer a higher level of abstraction than well-known properties do.

This approach has been recently followed in particular by Anta et al. [3], Anceaume et
al. [1] and Guerraoui et al. [13] 1. In Anta et al. [3], the authors propose a formalization of
distributed ledgers, modeled as an ordered list of records along with implementations for
sequential consistency and linearizability using a total order broadcast abstraction. Anceaume
et al. [1] have captured the convergence process of two distinct classes of blockchain systems:
the class providing strong prefix as [3] (for each pair of chains returned at two different
processes, one is the prefix of the other) and the class providing eventual prefix, in which
multiple chains can co-exist but the common prefix eventually converges. The authors of [1]
show that to solve strong prefix the Consensus abstraction is needed, however they do not
address solvability of eventual prefix and do not formalise finality. Interestingly, our notion
of finality and bounded revocation is able to encompass the strong and the eventual prefix
consistency properties of [1].

3 Definitions

3.1 Preliminary Definitions

We describe a blockchain object as an abstract data type which allows us to completely
characterize a blockchain by the operations it exports [18]. The basic idea underlying the
use of abstract data types is to specify shared objects using two complementary facets: a
sequential specification that describes the semantics of the object, and a consistency criterion
over concurrent histories, i.e. the set of admissible executions in a concurrent environment [22].
Prior to presenting the blockchain abstract data type we first recall the formalization used
to describe an abstract data type (ADT).

3.1.1 Abstract data types

An abstract data type (ADT) is a tuple of the form T = (A, B, Z, z9,7,6). Here A and B
are countable sets respectively called input alphabet and output alphabet. Z is a countable
set of abstract object states and zg € Z is the initial abstract state. The map 7: Z x A — Z
is the transition function, specifying the effect of an input on the object state and the

! While not related to the blockchain data structure, authors of [13] have formalized the notion of
cryptocurrency showing that Consensus is not needed.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

map 6 : Z X A — B is the output function, specifying the output returned for a given input
and an object local state. An input represents an operation with its parameters, where (%)
the operation can have a side-effect that changes the abstract state according to transition
function 7 and (i) the operation can return values taken in the output B, which depends on
the state in which it is called and the output function 6.

3.1.2 Concurrent histories of an ADT

Concurrent histories are defined considering asymmetric event structures, i.e., partial order
relations among events executed by different processes.

» Definition 1 (Concurrent history H). The execution of a program that uses an abstract
data type T =(A, B, Z,&y,7,0) defines a concurrent history H = (3, E, A, —, <, /), where
Y = AU (A x B) is a countable set of operations;
E is a countable set of events that contains all the ADT operations invocations and all
ADT operation response events;
A : E — X is a function which associates events to the operations in X;
s is the process order, irreflexive order over the events of E. Two events (e,e’) € E?
are ordered by — if they are produced by the same process, e # ¢ and e happens before €',
that is denoted as e — €.
<: is the operation order, irreflexive order over the events of FE. For each couple
(e,e') € E? if € is the invocation of an operation occurred at time t' and e is the response
of another operation occurred at time t with t < t' then e < ¢€';
: is the program order, irreflexive order over E, for each couple (e,e’) € E? with e # ¢’
iferse ore<eé thene /e

3.2 The blocktree ADT

We represent a blockchain as a tree of blocks. The same representation has been adopted
in [1]. Indeed, while consensus-based blockchains prevent forks or branching in the tree of
blocks, blockchain systems based on proof-of-work allow the occurrence of forks to happen
hence presenting blocks under a tree structure. The blockchain object is thus defined as a
blocktree abstract data type (Blocktree ADT).

3.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)

A blocktree data structure is a directed rooted tree bt = (Vi, Ep:) where Vi, represents a
set of blocks and Fy; a set of edges such that each block has a single path towards the root
of the tree by called the genesis block. A branching in the tree is called a fork. Let BT be
the set of blocktrees, B be the countable and non empty set of uniquely identified blocks
and let BC be the countable non empty set of blockchains, where a blockchain is a path
from a leaf of bt to by. A blockchain is denoted by bc. The structure is equipped with two
operations append() and read(). Operation append(b) adds block b & bt to V4 and adds the
edge (b, V') to Ey where b/ € Vi, is returned by the append selection function f,() applied to
bt. Operation read() returns the chain be selected by the read selection function f,.() applied
to bt (note that in [1], the read() and append() operations are defined with a unique selection
function). The read selection f,.() takes as argument the blocktree and returns a chain of
blocks, that is a sequence of blocks starting from the genesis block to a leaf block of the
blocktree. The chain bc returned by a read() operation r is called the blockchain, and is
denoted by r/be. The append selection function f,() takes as argument the blocktree and

6:5

OPODIS 2021

6:6

On Finality in Blockchains

returns a chain of blocks. Function last_ block() takes as argument a chain of blocks and
returns the last appended block of the chain. Only blocks satisfying some validity predicate
P can be appended to the tree. Predicate P is an application-dependent predicate used to
verify the validity of the chain obtained by appending the new block b to the chain returned
by f.() (denoted by f,(bt)"b). In Bitcoin for instance this predicate embeds the logic to
verify that the obtained chain does not contain double spending or overspending transactions.
Formally,

» Definition 2 (Sequential specification of the Blocktree ADT). The Blocktree Abstract Data
Type is the 6-tuple BT — ADT={A = {append(b), read()/bc € BC},B = BCU{T,L1},Z =
BT,& = by, 7,0}, where the transition function 7: Z x A — Z is defined by

T(bt, read()) = bt

(Vir U {b}, By U {b, last__block(f,(bt))}) if P(fa(bt)"b)
bt otherwise,

7(bt, append(d)) = {

and where the output function § : Z x A — B is defined by
o(bt, read()) = f(bt)

T if P(fo(bt)"b
d(bt, append(b)) = { 1 Othe(rfvi(se.) |

Note that we do not need to add the validity check during the read operation in the
sequential specification of the Blocktree ADT because in absence of concurrency the validity
check during the append operation is enough.

3.2.2 Concurrent Specification and Consistency Criteria of the
BlockTree ADT

The concurrent specification of the blocktree abstract data type is the set of its concurrent
histories. A blocktree consistency criterion is a function that returns the set of concurrent
histories admissible for the blocktree abstract data type. In this paper, we define different
consistency criteria for the blocktree. We first define eventual finality, which is the weakest
consistency criterion that we may expect from blockchains, along with the notion of block
revocation. We then combine eventual finality with different forms of revocation to provide
stronger consistency criteria. The presented family of consistency criteria is a comprehensive
characterization of what we may expect from blockchains.

» Notation 3.
E(a*,r*) is an infinite set containing an infinite number of append() and read() invocation
and response events;
E(a,r*) is an infinite set containing (i) a finite number of append() invocation and
response events and (i) an infinite number of read() invocation and response events;
Oinv and 0,4y, indicate respectively the invocation and response event of an operation o;
and in particular for the read() operation, r,s,/bc denotes the returned blockchain be
associated with the response event ry.s, and for the append() operation ain,(b) denotes the
invocation of the append operation having b as input parameter;
length : BC — N denotes a monotonic increasing deterministic function that takes as input
a blockchain be and returns a natural number as length of be. Increasing monotonicity
means that length(bc™{b}) > length(bc);

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

We represent chain be as an infinite list bob* L+ of blocks, where the first block bc|0] = by,
the genesis block, followed by block values b, and an infinite number of L values. Notation
beli] refers to the i-th block of blockchain be. Note that the special “L” symbol counts for
zero for the length function.

be C bc’ if and only if be prefizes bc’. The operator T ignores all the records set to L.

» Definition 4 (BT Eventual Finality Consistency criterion (F)). A concurrent history
H= (X, E,A—,=,) of a system that uses a BT-ADT wverifies the BT eventual finality
consistency criterion if the following four properties hold:
Chain validity:
Vrrsp € E, P(rysp/bc).
Each returned chain is valid.
Chain integrity:
Vrrsp € E,¥b € 1ygp/bc 0 b # by, Fainy () € E, ainy(b) Trsp-
If a block different from the genesis block is returned, then an append operation has been
invoked with this block as parameter. This property is to avoid the situation in which
reads return blocks never appended.
Eventual prefix:
VE € E(a,r*) U E(a*,1%),Vr.sp/bc, Vi € N beli] # L, 3ri o, i rrsp /105 Vil 2 Thgy
Mg (/6] = (12 /)] # L.
In all the histories in which the number of read invocations is infinite, then for any read
operation such that the returned chain has a block at position i, there exists a read 1’ /bc
from which all the subsequent reads r” /bc” will return the same block at position i, i.e.
bc'[i] = be'[i] # L.
Ever growing tree:
VE € E(a*,r*),Vk € N,3r € E : length(rs/bc) > k.
In all the histories in which the number of append and read invocations is infinite, for
each length k, there exists a read that returns a chain with length greater than k. This
property avoids the trivial scenario in which the length of the chain remains unchanged
despite the occurrence of an infinite number of append operations (i.e., tree built as a star
with infinite branches of bounded length). Specifically the “Ever growing tree” property
imposes that in presence of an infinite number of read and append operations, for any
natural number k, there will always exist a read operation that will return a chain of at
least length k. Note that the well known “Chain Growth Property” [10, 21] states that
each (honest) chain grows proportionally with the number of rounds of the protocol, which
in contrast to our specification, makes it protocol dependent.

Bounded revocation

As previously said, the bounded revocation properties are at the heart of our formalisation
of blockchain finality. Informally, given a history, we call the revocation number the natural
number n such that for any two reads r/bc and r’/bc’, where r precedes 7/, by pruning the
last n blocks from bc we obtain a chain that is a prefix of bc’.

Note that the eventual finality consistency criterion presented so far does not impose any
bound on the revocation number, which can be then infinite when the history goes to infinity.

To obtain stronger consistency criteria, we then introduce restrictions to the revocation
number. To this aim, we define the c-bounded revocation property, which states that the
revocation number n is bounded by a constant ¢ in all histories. We also define the bounded
revocation property, which states that the revocation number n is bounded by a constant

6:7

OPODIS 2021

6:8

On Finality in Blockchains

¢ in each history, but may be unbounded when we consider the union of all the histories,
i.e., the bound can vary from a history to another. Eventual forms of c-bounded revocation
and bounded revocation state that the revocation number will be equal to a constant ¢ only
eventually. More formally:

» Definition 5 (c-Bounded Revocation). Jc € N,VE, Vr,g,/be, 1y, /bc" € E i 1pgp /1., Vi €
N : i < (length(be) — ¢), be[i] = bc'[i] # L.

» Definition 6 (Bounded Revocation). VE, 3c € N,Vr.g,/be, 1y, /bc" € E 2 1pgy /1, Vi €
N : i < (length(bc) — ¢), beli] = bc'[i] # L.

» Definition 7 (Eventual c-Bounded Revocation). 3c € N,VE,3r € E : Vr, /be,), /b’ €
E vy S Trsps Trsp /" Trsps Vi € N oi < (length(be’) —), bc'[i] = be”'[i] # L

rsp?

» Definition 8 (Eventual Bounded Revocation). VE,3c € N,3r € E : Vr!_ /bc,r!. /b € E :

rSp TSP

Trsp /" Trsps Trsp /" Trsps Vi € N2 < (length(bc’) — ¢), bc'[i] = be"[i] # L

TSP
Note that Bounded Revocation properties are not protocol dependent in contrast to the
well-known “Common-Prefix Property” [10, 21], which states that for any two rounds r and
r’ of the protocol with r < r’, the (honest) chain read at round r from which the last ¢
blocks have been pruned is a prefix of (resp. is equal to with high probability) the one read
at round r’.

Based on these different forms of bounded revocation, we define four criteria stronger
than eventual finality. Nicely, we obtain each consistency criterion by adding the proper
bounded revocation property to F.

By adding c-bounded revocation to JF, we obtain the c-deferred finality form, denoted by
F¢. Informally, F¢ guarantees that finality of each block is deferred by at most ¢ blocks in
all histories, i.e., any block followed by at least ¢ blocks in the blockchain cannot be revoked.

By adding the bounded revocation property to F, we obtain the bounded deferred finality
form, denoted by F". Informally F™ guarantees that finality of each block is deferred by a
constant ¢ in each history, but this constant can vary from history to history. In other words
constant ¢ is unknown.

Finally, by adding respectively, eventual c-bounded finality and eventual bounded finality
to F, we obtain other two forms of deferred finality, namely F*¢ F*™ both equivalent to
F". Informally, F¢ guarantees that eventually finality of each block is deferred by ¢ in all
histories. For F*™ eventually finality of each block is deferred by ¢ in each history, with ¢
varying from history to history.

In the following we formally introduce F¢, F™, F®¢, F*™ and show equivalences between
Foe, FO™ and F".

» Definition 9 (BT c-Deferred Finality Consistency criterion (F¢)). A concurrent history
H=(X,E,A\,—,=,) of the system that uses a BT-ADT wverifies the BT c-deferred finality
consistency criterion if chain validity, chain integrity, eventual prefiz, ever growing tree, and
the c-bounded revocation properties hold.

» Definition 10 (BT Bounded Deferred Finality Consistency criterion (F™)). A concurrent
history H = (X, E, A, +—, <,) of the system that uses a BT-ADT verifies the BT bounded
deferred finality consistency criterion if chain validity, chain integrity, eventual prefix, ever
growing tree, and the bounded revocation properties hold.

» Definition 11 (BT Eventual c-Deferred Finality Consistency criterion (F*€)). A concurrent
history H = (X, E, A, —, <,) of the system that uses a BT-ADT verifies the BT eventual
c-deferred finality consistency criterion if chain validity, chain integrity, ever growing tree,
eventual prefiz and the eventual c-bounded revocation properties hold.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

» Definition 12 (BT Eventual Bounded Deferred Finality Consistency criterion (F*™)). A
concurrent history H = (X, E, A, —, <, /) of the system that uses a BT-ADT wverifies the
BT eventual bounded deferred finality consistency criterion if chain validity, chain integrity,
ever growing tree, eventual prefiz and the eventual bounded revocation properties hold.

Note that in the blockchain literature, F¢, with ¢ = 0, is also referred to as immediate
finality. Immediate finality is equivalent to BT strong consistency defined in [1], which
implies that for any two read operations, one of the returned blockchains is the prefix of the
other one.

» Notation 13. For readability reasons, in the following we will simply say finality instead
of finality consistency criterion.

» Theorem 14. F" and F*" are equivalent.

Proof. Trivially, 7™ implies F*™. Let us now consider the other direction. From F®™, we
have that given any execution F, there exists ¢ € N and a read operation r such that for all
reads ', 7" after r, with v 7 " the blockchain returned by r’ pruned of the last ¢ blocks
is a prefix of the blockchain returned by r”. Let ¢’ be the maximal length of blockchains
returned by read operations occurring before r, and let ¢ = max(c, ¢'). By construction, F"
is satisfied for E with revocation number n = ¢”. Hence F*" implies F". <

We now show that F*" and F°¢ are equivalent. This equivalence is shown by first
proving that F°" and F°°=0 are equivalent and then that F>°=% and F°° are equivalent.

» Theorem 15. F*°=0 qnd F>™" are equivalent.

Proof. Let P; be a protocol guaranteeing F*™. We build protocol P as follows: to make
an append() operation, processes simply use the append() operation of P;. For the read()
operation, processes use the read() operation provided by P; to obtain the blockchain and
prune the second half of it before returning the first half of the blockchain. Let us show that
protocol P, guarantees F°¢=C. For this, we need to show that the properties of F°¢=C are
satisfied:

Chain validity: The chain validity property is still satisfied by pruning half of the chain.

Chain integrity: The chain integrity property is still satisfied by pruning half of the

chain.

Eventual prefix: The eventual prefix property is still satisfied by pruning half of the

chain.

Ever growing tree: The ever growing tree property is still satisfied by pruning half of

the chain.

(¢ = 0)-eventual bounded revocation: This property follows from the removal of the

second half of the chain. Indeed, if we remove the second half of the chain, then eventually

for any two read() operations, then the first read() returns a prefix of the second read()

operation.

For the other direction, we can build a solution to F°" using a solution to F*¢=0. <«
» Theorem 16. F*°=0 and F¢ are equivalent.

Proof. Trivially, 7°¢=0 implies F*. For the other direction, we apply a construction close
to the one used in the proof of Theorem 15. Specifically, given a protocol P; that guarantees
Fo¢, we build a protocol Py by using P; as follows. To make an append() operation,
processes simply use the append() operation of P;. For the read() operation, processes use

6:9

OPODIS 2021

6:10

On Finality in Blockchains

the read() operation provided by P; to obtain the blockchain and prune its last ¢ blocks
before returning it. Note that if there are less than ¢ blocks, processes then return the genesis
block. The properties of F¢=0 trivially follow from the properties of F*¢ and the proposed
transformation. |

» Corollary 17. F*, Fo", F*>¢, and F>°=9 are equivalent.

Proof. Straightforward from Theorems 14, 15 and 16. <

4 (Eventual) Consensus Reductions

In this section, we show that guaranteeing F° is equivalent to solving Consensus, while
guaranteeing bounded deferred finality (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

4.1 c-Bounded Deferred Finality and Consensus

» Theorem 18. Guaranteeing F¢ is equivalent to solving Consensus.

Proof. Let us first remark that F¢=° is equivalent to BT Strong Consistency [1], which has
been shown to be equivalent to Consensus [1].

To prove the theorem it is then sufficient to give a protocol Py that guarantees F=° given
a solution P; that satisfies F¢, the other direction being trivial. We build Py by applying
the same transformation of P; described in the proof of Theorem 16. The properties of F¢=9
trivially follow from the properties of F¢ and the proposed transformation. |

» Corollary 19. There does not exist any solution that solves F¢ in an eventual synchronous
system with more than 1/3 of Byzantine processes.

Proof. The proof follows from the equivalence between F¢ and Consensus (cf. Theorem 18),
which is unsolvable in a synchronous (and thus also in an eventually synchronous) system
with more than one third of Byzantine processes [17]. <

4.2 Bounded Deferred Finality and Eventual Consensus

In this section we show that guaranteeing bounded deferred finality is not weaker than
Eventual Consensus. To this aim we first recall the Eventual Consensus problem with a
small modification of the validity property to make it suitable to the blockchain context and
then we show that F°°=9 (which is equivalent to F*" by Corollary 17) is not weaker than
Eventual Consensus.

The Eventual Consensus (EC) abstraction [9] captures eventual agreement among all
participants. It exports, to every process p;, operations proposeEC;, proposeEC,, ... that
take multi-valued arguments (correct processes propose valid values) and return multi-valued
responses. Assuming that, for all j € N, every process invokes proposeEC; as soon as it
returns a response to proposeEC;_1, the abstraction guarantees that, in every admissible run,
there exists k € N and a predicate Pgc, such that the following properties are satisfied:

EC-Termination. Every correct process eventually returns a response to proposeEC; for

all j e N.

EC-Integrity. No process responds twice to proposeEC; for all j € N.

EC-Validity. Every value returned to proposeEC; is valid with respect to predicate Pgc.

EC-Agreement. No two correct processes return different values to proposeEC; for all

j=>k.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

» Theorem 20. Guaranteeing F*¢=" (or any of the equivalent forms) is not weaker than
solving Eventual Consensus.

Proof. We show that there exists a protocol P; that solves Eventual Consensus assuming the
existence of a protocol P, that solves F*¢=0. We do the transformation as follows. Every
correct process p invokes proposeEC; for all j € N. We impose that the validity predicate P
of the blocktree ADT (see Section 3) be equal to predicate Pgpc. When a correct process
p invokes the proposeEC;(v) operation of Py, for any j € N, then p executes the following
sequence of three steps: (7) p invokes the append(v) operation of Py, then (i) p invokes
a sequence of read() operations up to the moment the read() returns a chain be such that
be[j] # L, and finally (%ii) p decides chain be (i.e., it returns chain bc) and triggers the next
operation proposeECj;1(v"). We now show that protocol P; solves Eventual Consensus.
EC-Termination This property is guaranteed by the ever growing tree property.
EC-Integrity This property follows directly from the transformation.
EC-Validity This property follows by construction and by the chain validity property
since predicate P equals to predicate Pgc.
EC-Agreement This property follows by the eventual prefix property and the 0-eventual
revocation property, which guarantees that there exists a read() operation r such that all
the subsequent ones return blockchains that are each prefix of the following one. In other
words, eventually there is agreement on the value contained in be[j]. This implies that
there exists k& for which all proposeEC; with j > k return the same value to all correct
processes.
Finally, by Corollary 17, the proof of the Theorem completes. <

» Theorem 21. There does not exist any solution that solves F™ (and any of the equivalent
forms) in an asynchronous system with at least one Byzantine process.

Proof. The proof follows from Corollary 17 and the fact that F*¢=° is not weaker than
Eventual Consensus (cf. Theorem 20). Since Eventual Consensus is equivalent to the leader
election problem [9], which cannot be solved in an asynchronous system with at least one
Byzantine process [23], this completes the proof of the Theorem. <

5 Finality Solutions

In this section we first show the impossibility of solving our weakest form of finality F when
the append operation, in case of forks, selects the “longest” chain. We then provide the first
solution to F with an unbounded number of Byzantine processes in an asynchronous system
using an alternative selection rule.

5.1 Impossibility to Satisfy F with the Longest Chain Rule

In the following we prove that, in an asynchronous environment, we cannot provide F if, in
case of forks, the append selection function f,() follows the longest chain rule, i.e., returns
the longest chain of the blockchain tree. Note that this result holds even in absence of
failures. Obviously we assume that blocks are not created using the Consensus abstraction:

With Consensus, immediate finality is easily ensured, and thus no fork will ever occur.

Thus, when the Consensus abstraction cannot be implemented (due to the adversity of the
environment), many blockchain systems adopt a selection function f, based on the longest
chain. For instance, in proof-of-work systems such as Bitcoin, selected chains are the ones
that have required the most amount of work, which is equivalent to the longest chains when

6:11

OPODIS 2021

6:12

On Finality in Blockchains

the difficulty is constant. In Ethereum, while the selection rule is based on heaviest sub-tree
of the blockchain tree, or in proof-of-stake systems like EOS [12] or Tezos [11], the same
argument applies.

To show this impossibility result, we consider a scenario in which the occurrence of any
fork produces at most two alternative chains (this is often referred to as a branching factor
of 2). We consider a finite number of processes and an append selection function f, that
in case of forks deterministically selects the longest chain through the length function (see
Section 3.2.2), and in case of a tie selects the chain following any deterministic rule (for
instance the chain whose last block hast the smallest digest). We show that it is impossible
to guarantee F for such append selection function f,.

Intuitively, the impossibility follows from the fact that with the longest chain selection
rule, races can occur between different branches in the tree. We show that as forks may
occur, we can create two infinite branches sharing only the root. One or the other branch
constitutes alternatively the longest chain and append operations select chains from each
branch alternatively. This is enough to show that the only common prefix that is returned is
the root hence, violating eventual finality.

» Theorem 22. [t is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. The interested reader is invited to read the proof in the Appendix of this paper. <«

5.2 Asynchronous Solution Satisfying F with an Unbounded Number of
Byzantine Processes

We consider an asynchronous system with a possibly infinite set of processes which can
append infinitely many blocks, and processes can be affected by Byzantine failures. Each
process has a unique identifier ¢ € N and is equipped with signatures that can be used to
identify the message sender identifier. Each block is identified with the identifier of the
process that created it. Block identifier is inserted in the header of the block. Moreover, since
it has been proven that reliable communications are necessary to ensure eventual finality [1],
we assume that each process is equipped with an Eventually Reliable Broadcast primitive
that satisfies the following two properties: If a correct process p broadcasts a message m
then p eventually delivers m and if a correct process p delivers m then all correct processes
eventually deliver m. Such a primitive can be implemented by organizing the infinite set
of processes in a topology in which for each pair of correct processes, there exists a path
composed by only correct processes [19]. Thus, we do not require any assumptions on the
proportion between Byzantine and correct processes in the system but on the way those
processes are arranged on the network topology.

The main idea of Algorithm 1 consists in using local selection functions f, and f, for
append and read operations respectively and characterizing blocks by their parents and
producer signatures.

To perform an append operation of a block b, correct processes extend the chain returned
by function f, applied on their current view of bt with b, i.e., f,(bt)"b, and rb-broadcast
fa(bt)™b. When a process rb-delivers a blockchain be, it calls bt.addIfValid(bc) that merges bc
with bt if the former is valid. By merging bc with bt we mean that for each block b; of bc
starting from the genesis block by, if b; is not present in bt then b; is added to bt, i.e., b; is
added to the block of bt whose hash is equal to the one contained in b;’s header. A read()
operation triggered by a correct process p returns the chain selected by f, on the current
blocktree bt of p. Given a blocktree bt, the append selection function f, selects a chain in bt

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Algorithm 1 Guaranteeing F with an unbounded number of Byzantine processes.

upon rb-delivery(bc)

| bt.addIfValid(be)

end

upon append(d)

| rb-broadcast(fq(bt)"b)
end

upon read()

‘ return f,.(bt)

end

© o N O ok~ W N =

by going from the root (i.e., genesis block) to a leaf, choosing at each fork b; the edge to the
child with the lowest identifier. If more than one child have the same identifier (i.e., they
have been created by the same process), then all of them are ignored. If all the children have
the same identifier, then f, returns the chain from the genesis block to b;. Blocks are ranked

by the creator identifier, in the domain of the natural number and thus lower bounded by 0.

Then even though, an infinite number of blocks is added continuously to a fork, there is not,
for a given block, an infinite number of blocks with a smaller identifier. Thus eventually the
selection function f, will always select the same prefix. Finally, since blocks are diffused by
an eventually reliable broadcast primitive, eventually all correct processes will have the same
view of the blocktree. When a process invokes the read() operation, it returns the blockchain
selected by the read selection function f,. applied to its current view of the blocktree. By
imposing that f,. = f,, then eventually all the processes, when reading, will select the same
prefix.

» Theorem 23. Algorithm 1 is a solution satisfying F in an asynchronous system with a
possibly infinite set of processes which can append infinitely many blocks, and suffer from an
unbounded number of Byzantine failures.

Proof. We show by construction that Algorithm 1 solves F in an asynchronous system with
a possibly infinite set of processes which can append infinitely many blocks, and can suffer
an unbounded number of Byzantine failures. Intuitively, despite the unbounded number of
blocks in each fork, by the eventually reliable broadcast, eventually for each fork all correct
processes have the same block with the smallest identifier. Hence, by the read selection
function f,. that at each fork selects the block with the smallest identifier in order to select
the chain to return, eventually, at all correct processes, function f, returns the blockchain
having a common increasing prefix. Let p1,ps,..., be a possibly infinite set of processes,
such that each one maintains its local view bt; of blocktree bt by running Algorithm 1. Then
for any correct process p; the following properties hold.

Chain validity: it is satisfied by function bt.addlfValid(bc) that merges blockchain be to

bt; only if the former is valid.

Chain integrity: The read() operation returns the chain of blocks selected by function

fr applied to bt;. By Line 2 of Algorithm 1, only valid blocks are locally added to bt;

once they have been reliably delivered. By Algorithm 1, the only place at which blocks

are reliably broadcast is in the append() operation.

Eventual prefix: This property follows from the definition of f, and the eventually

reliable broadcast primitive. Thanks to the latter, for any b in the bt of a correct process

p, eventually all correct processes deliver b. Let t;, be the time after which no process can

6:13

OPODIS 2021

6:14

On Finality in Blockchains

append further blocks b.p;1q to b such that b.p;q is part of the chain returned by f,. This
time t, always exists, as for each block b having potentially infinitely many children we
have, by definition of function f,, that f,(bt) selects a chain in bt by going from the root
to a leaf, choosing at each fork b the edge to the child with the lowest identifier. Since
identifiers are lower bounded by 0, eventually function f, will always select the same
child b of b. The same argument applies for b’ and its children. Hence, if any two correct
processes invoke the read operation infinitely many times, then as f, = f,, eventually
they return chains that satisfy the eventual prefix property.

Ever growing tree: This property relies on the fact that each fork has a finite number
of blocks since there are finitely many processes and each (Byzantine or correct) process
can contribute with at most one block per parent as multiple children created by the same
process are ignored by f,. Thus, eventually, new blocks contribute to the tree growth. <«

5.3 Eventually Synchronous Solution Satisfying Bounded Deferred
Finality with less than half of Byzantine Processes

In this section we prove that the bounded deferred finality is solvable in an eventually
synchronous message-passing system with less than n/2 Byzantine processes, where n is the
number of processes.

We propose an algorithm, called AF for Accountable Forking. This algorithm is inspired
by the Streamlet [6] algorithm. Streamlet [6] assumes the presence of less than a third of
Byzantine processes and an eventually synchronous system with a known message delay A
after GST. Algorithm AF relies on weaker assumptions: we assume the presence of only
a majority of correct processes and we do not explicitly use bound A. We suppose that
processes have access to the eventually reliable broadcast presented in Section 5.2. Prior to
presenting our algorithm, we first recall the description of the original Streamlet [6].

The Streamlet Algorithm. The Streamlet algorithm works in an eventually synchronous
system with a known message delay A and a finite set of n processes. In particular, before
the Global Stabilisation Time (GST), message delays can be arbitrary; however, after GST,
messages sent by correct processes are guaranteed to be received by correct processes within
A time units. Each epoch, composed of 2A time units, has a designated leader chosen at
random by a publicly known hash function. Each block b is labelled with the epoch (b.epoch)
at which it has been created. This allows processes to determine whether block b has been
created by a legitimate leader. Algorithm 2 presents Steamlet protocol [6].

The Accountable Forking (\AF) Algorithm. We propose AF, an algorithm that extends
Streamlet. AF guarantees that for any given fork, correct processes can blame the process
that originates it, i.e, a Byzantine process creating a fork is accountable for it. This is
achieved as follows: First, we only require that a block gains votes from a majority of distinct
processes to become notarized, which means that forks can occur. The second modification
we propose goes deeper: if a fork occurs, any correct processes can detect the Byzantine
process that originated it, and excludes it from the voters. Specifically, when two conflicting
chains are finalized (i.e., two finalized chains that are not the prefix of one another) then
processes look for inconsistent blocks. By definition, two notarized blocks b, b’ are inconsistent
with one another if one of the following two conditions holds:

Condition 1. b and b’ share the same epoch, i.e, b.epoch = b'.epoch;

Condition 2. either ((b.epoch < V' .epoch) and (b.height > V'.height)) or ((V'.epoch <

b.epoch) and (b'.height > b.height)). Function height counts the number of blocks from

the genesis block.

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Algorithm 2 Streamlet algorithm [6].

Propose-Vote. In every epoch:
The epoch’s designated leader proposes a new block and reliably broadcasts it, extending
the longest notarized chain (defined below) it has seen, or breaking ties arbitrarily if
they have the same height.
Each process votes (rb-broadcasts a vote) for the first proposal it sees from the epoch’s
leader, as long as the proposed block extends (one of) the longest notarized chain(s)
that the voter has seen. A vote is a signature on the proposed block.
When a block gains votes from at least 2n/3 distinct processes, it becomes notarized.
A chain is notarized if its constituent blocks are all notarized.
Finalize. Notarized does not mean final. If in any notarized chain, there are three
adjacent blocks with consecutive epoch numbers, the prefix of the chain up to the second
of the three blocks is considered final. When a block becomes final, all of its prefixes
must be final too.

If a process votes for blocks inconsistent with one another then it is detected as Byzantine.

Once a correct process p detects a Byzantine process ¢, p ignores all messages coming from
q. Since all messages received by a correct process ¢ are eventually received by any correct
process, then all of them do the same with respect to q.

» Theorem 24. There exists a solution that satisfies F>°=° (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. We show in the Appendix that algorithm AF is such a solution. |

6 Conclusion

In this work we have defined different consistency criteria for blockchains. We have first
defined eventual finality, which is the weakest consistency criterion that we may expect from
blockchains, along with the notion of block revocation. By combining eventual finality with
different forms of revocation we obtained stronger consistency criteria, thus providing a
comprehensive characterization of what we may expect from blockchains. We have formally
shown that in an asynchronous system it is not possible to provide a known bound on
the number of blocks that can be revoked. On the other hand, we have proposed for the
first time a solution in an eventually synchronous system with less than half of Byzantine
processes guaranteeing that eventually such bound is reached. We have also shown that in
an asynchronous system, finality with no bound on the number of revocable blocks cannot
be solved using the reconciliation rule of Bitcoin. Still we provide an asynchronous solution
with an unlimited number of Byzantine processes. We hope that this work will better guide
blockchain designs.

—— References

1 Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru,
and Sara Tucci Piergiovanni. Blockchain abstract data type. In Proceedings of the ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2019.

2 Elli Androulaki and et al. Hyperledger fabric: a distributed operating system for permissioned
blockchains. In Proceedings of the Furopean Conference on Computer Systems (EuroSys),
2018.

6:15

OPODIS 2021

6:16

On Finality in Blockchains

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

Antonio Anta Fernéndez, Kishori Konwar, Chryssis Georgiou, and Nicolas Nicolaou. Formaliz-
ing and implementing distributed ledger objects. ACM SIGACT News, 49(2):58-76, 2018.
Lacramioara Agtefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci-Piergiovanni, and Eugen Zalinescu. Tenderbake — A solution to dynamic repeated
consensus for blockchains. In Proceedings of the Fourth International Symposium of Foundations
and Applications of Blockchain, 2021.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, 2017. arXiv:
1710.09437.

Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. https:
//eprint.iacr.org/2020/088.pdf, 2020.

Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. (leader/randomization/
signature)-free byzantine consensus for consortium blockchains. CoRR, abs/1702.03068, 2017.
arXiv:1702.03068.

Swan Dubois, Rachid Guerraoui, Petr Kuznetsov, Franck Petit, and Pierre Sens. The weakest
failure detector for eventual consistency. In Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC), 2015.

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Proc. EUROCRYPT International Conference, 2015. Updated version
2020: https://eprint.iacr.org/2014/765.pdf.

L.M. Goodman. Tezos — A self-amending crypto-ledger, 2014.

Tan Grigg. EOS: An introduction. https://whitepaperdatabase.com/eos-whitepaper/.
Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovi¢, and Dragos-Adrian Sered-
inschi. The consensus number of a cryptocurrency. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing (PODC), 2019.

Maurice Herlihy. Blockchains and the future of distributed computing. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), 2017.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Proceedings of the Advances in
Cryptology, 2017.

Artem Koltsov, Vitaly Cheremensky, and Stanislav Kapulkin. Casper White Paper.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 1982.

B. Liskov and S. Zilles. Programming with abstract data types. ACM SIGLAN Notices, 9(4),
1974.

Alexandre Maurer and Sébastien Tixeuil. On byzantine broadcast in loosely connected networks.
In Proceedings of the 26th International Symposium on Distributed Computing (DISC), 2012.
Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. www.bitcoin.org, 2008.
Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Proceedings of the EUROCRYPT International Conference, 2017.

Matthieu Perrin. Distributed Systems, Concurrency and Consistency. ISTE Press, Elsevier,
2017.

Michel Raynal. Eventual leader service in unreliable asynchronous systems: Why? how? In
Proceedings of the IEEE International Symposium on Network Computing and Applications
(NCA), 2007.

Alistair Stewart. Poster: Grandpa finality gadget. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS '19, pages 2649-2651, 2019.
Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. http://
gavwood. com/Paper.pdf.

http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://eprint.iacr.org/2020/088.pdf
https://eprint.iacr.org/2020/088.pdf
http://arxiv.org/abs/1702.03068
https://whitepaperdatabase.com/eos-whitepaper/
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

A Appendix

» Theorem 22. [t is impossible to guarantee F if the append operation is based on the
longest chain rule in an asynchronous environment.

Proof. To capture the synchronisation power of the system, we abstract the deterministic
creation of new blocks and their addition to the blockchain within an oracle. This oracle
is the only generator of valid blocks, and regulates the number of appended children from
a same parent. The same approach has been proposed in [1]. The branching factor of an
oracle is the maximal number of children that can be appended to a block. The oracle owns
a synchronization power equal to Consensus if its branching factor is equal to 1. The oracle
grants access to the blocktree as a shared object, through the following three operations:
update view() returns the current state of the blocktree; getValidBlock(b;, b;) returns a valid
block b;-, constructed from b;, that can be appended to block b;, where b; is already included
in the blocktree; and setValidBlock(b;, b;) appends the valid block b’ to b;, and returns T
when the block is successfully appended and L otherwise. The following theorem shows that,
even with this strong oracle (that allows to have a bounded branching factor in contrast to
proof-of-work (PoW) approaches), we cannot reach eventual finality if we rely on the longest
chain rule to resolve forks.

In the proof we consider the stronger oracle allowing the occurrence of one fork, i.e., an
oracle with branching factor equal to 2. That is, this oracle allows for two valid blocks to
be appended to the same parent. If the oracle receives new requests to append additional
blocks to this parent, it shall return L to all such requests.

Let p; and p2 be two processes trying to append infinitely many blocks. Without loss of
generality, we carry out this proof with a length function that counts the number of blocks
from the genesis block.

We illustrate our proof with Figure 1. At time ¢g, for both p; and py, the update_ view()
of bt equals by, thus when both apply the append selection function f, on it to select the leaf
where to append the new block, they both get by. Then they both call getValidBlock(bg, b; 1) =
b;, where i = 1 for p; and ¢ = 2 for pa. At time t; > to, p1 and py are poised to call
setValidBlock(bo, b} ;). We then let p; call setValidBlock(bo, b} ;), which must return T and
hence b/Ll is appended to by. Process p; then proceeds to append a new block by o, i.e., after
having updated its bt’s view, through the update view() function, p; applies the append
selection function f, on it to select the leaf where to append its new block, in this case the
only leaf is b ;. It calls getValidBlock(bj 1, b1,2) function which returns {b} ,} and it is poised
to call setValidBlock(b] 1,0 5)-

We let p; continue to append new blocks until some time t5 at which it is poised to
call setValidBlock(b} ;,, b} 5, 1), with h = 1, such that the length of the chain bo,..., b ;4
would be greater than or would have the same length but a larger lexicographical order than
the chain b, b’2’1 if b/2,1 were already appended to block by. Afterwards, at time t3 > to,
we let pp resume and complete its call to setValidBlock(bg, b3 ;) which must also succeed
and return T as our oracle has a branching factor of 2. By construction, ps sees the two
branches in its following update_ view() of bt (i.e., chain by, bll,h with i = 1, and chain by, b} ;)
of the same length thus the selection function f, selects the branch b, b ; for where to
append the next block as block b} ; is smaller than b} , in the lexicographical order. We
let po append blocks to this branch until some time ¢4 at which it becomes poised to call
setValidBlock(by ., 05 ., 1) with ¢ = 2 such that the length of the chain by, ..., b5 . is smaller
than the chain by, ..., bll, ny1s Or in case of equal length has a higher lexicographical order,
and such that the length of the chain by, ..., b’Q,C+1 is greater than the chain by, ..., bll,h+1’
or in case of equal length has a smaller lexicographical order.

6:17

OPODIS 2021

6:18

On Finality in Blockchains

time

Figure 1 A blocktree generated by two processes. On the x-axis the longest chain value of each
chain at different time instants (from the root to the current leaf) and the relationships between
those values.

As before, it is time to stop the execution of ps and resume the execution of p; and
to let it complete its call to setValidBlock(?} ;, b} ;,,,). We can continue to create two
infinite branches sharing only the root by alternatively letting p; and ps extend their own
branch while stopping one and resuming the execution of the other each time its length
would overcome the length of the other branch extended with the pending block (and the
appropriate lexicographical orderings in case of equal length). This way we construct a tree
composed of two infinite branches sharing only the root by as common prefix. It is easy to
see that we can integrate read operations that may return the current chain from any branch
as both branches are temporarily the longest one. Thus, the common prefix never increases,
and so, the eventual finality consistency criterion is not satisfied.

It is important to note that with any length function that increases monotonically with
prefixes (e.g, the length function could count the total number of transactions that belong to
the blocks on the same branch) then this scenario still holds. In that case h and ¢ in the
proof could be larger than 1 and 2 respectively. |

» Theorem 24. There exists a solution that satisfies F*°=° (and all the equivalent forms)
in an eventually synchronous system with less than half Byzantine processes.

Proof. Let us first demonstrate that voting for two inconsistent blocks b and b’ is a Byzantine
failure. We have two cases to consider. If both b and &’ are inconsistent because Condition 1
holds, then the intersecting voters are Byzantine as correct processes vote only once per epoch.
Hence if process g votes for b and b’ then ¢ is Byzantine. If both b and ¥" are inconsistent
because Condition 2 is met, then the intersecting voters are Byzantine, as correct processes
vote only for blocks extending one of the longest notarized chains. That is, if correct process
p votes for b it means that b is extending a notarized block b,,q that is of height b.height —1,
therefore p cannot vote afterwards for a block &’ whose height is strictly smaller than b.height
because p must extend one of the longest notarized chain. It follows that if process ¢ votes
for both b and b’ then ¢ is Byzantine.

Let us now show that a fork occurs because of two inconsistent blocks. If there is a
fork then this gives rise to two sequences of three adjacent blocks with consecutive epochs,
b1,ba,bs and V), b, b5 (by construction given the finalization rule). If no blocks share the
same epoch number then we can assume w.l.o.g. that bs.epoch < b}.epoch. Let block b’
belonging to the prefix of b such that b’.epoch > by.epoch and ¥ .height is the smallest in the
prefix of b5. Such block always exists as b] satisfies those two conditions. We have two cases:
Either V'.height < bs.height or b’ .height > bs.height. In the former case, b’ is inconsistent
with b3 since by assumption b'.epoch > bs.epoch. In the latter case, the predecessor of v’
is inconsistent with b3. Indeed, the predecessor of b has a strictly smaller height than b,
and by assumption has a larger epoch number than b3. Figure 2 illustrates the presence

E. Anceaume, A. Del Pozzo, T. Rieutord, and S. Tucci-Piergiovanni

Case 1: by.height > b’ height

/’) by height=6, b, height=5 (b'=b,’)

,,,

Case 2: by.height <= b"height
/ \ hy.height=6, b;"height=6 (b’=b,’)

\J epoch
ST TN
O Notarized block Last finalized block | \ Conflicting block
in a branch NN

Figure 2 Illustration of block inconsistencies due to the occurrence of a fork when the finalized
blocks are not labelled with the same epoch. Epochs are on the x axis, and all consecutive blocks
have consecutive epochs, e.g., b. and by have four epochs of difference, 4 and 7 respectively, while b1
and by are labelled with consecutive epochs.

of inconsistent blocks in presence of a fork at some block b.. From b, two chains are built,
the first one consisting of the sequence of three blocks by, b and b3, and the second chain
consisting of four consecutive blocks by, b}, b5, b5 (to illustrate the first case) and of five
consecutive blocks by, be, b}, by, b5 (to illustrate the second case). In both cases block b} plays
the role of block b'. In the first case (figure in the top), bs.height = 6 and b’.height = 5 while

bs.epoch = 6 and b'.height = 5. Thus Condition 2 applies. In the second case (figure in

the bottom), since b'.height > b3.height then there must exist some block b, in the b’ prefix.

Thus be.height < V'.height. Given that by assumption b..epoch > bs.epoch, then Condition 2
holds for b, and b3. Hence there is always a couple of inconsistent blocks in a fork.
Let us now conclude our proof that protocol AF solves F*¢=C, If a fork occurs, then

each correct process eventually detects at least one Byzantine process and ignores its votes.

Thus, the number of forks is finite since we have a finite number of Byzantine processes. As a
consequence, there is always a single chain that is eventually finalized. As there is a majority
of correct processes, algorithm AF remains live as the original Streamlet one. Algorithm
AF also inherits the properties of the original Streamlet algorithm regarding the eventual
finalization of blocks when the system becomes synchronous.

Finally, by applying Corollary 17, we complete the proof of the theorem. <

6:19

OPODIS 2021

	1 Introduction
	2 Related Work
	3 Definitions
	3.1 Preliminary Definitions
	3.1.1 Abstract data types
	3.1.2 Concurrent histories of an ADT

	3.2 The blocktree ADT
	3.2.1 Sequential Specification of the Blocktree ADT (BT-ADT)
	3.2.2 Concurrent Specification and Consistency Criteria of the BlockTree ADT

	4 (Eventual) Consensus Reductions
	4.1 c-Bounded Deferred Finality and Consensus
	4.2 Bounded Deferred Finality and Eventual Consensus

	5 Finality Solutions
	5.1 Impossibility to Satisfy F with the Longest Chain Rule
	5.2 Asynchronous Solution Satisfying F with an Unbounded Number of Byzantine Processes
	5.3 Eventually Synchronous Solution Satisfying Bounded Deferred Finality with less than half of Byzantine Processes

	6 Conclusion
	A Appendix

